
J. Math. Cryptol. 6 (2012), 149–169
DOI 10.1515/ jmc-2011-0099 © de Gruyter 2012

Compact McEliece keys
based on quasi-dyadic Srivastava codes

Edoardo Persichetti

Communicated by Rainer Steinwandt

Abstract. The McEliece cryptosystem is one of the few systems to be considered secure
against attacks by Quantum computers. The original scheme is built upon Goppa codes
and produces very large keys, hence recent research has focused mainly on trying to reduce
the public key size. Previous proposals tried to replace the class of Goppa codes with other
families of codes, but this was revealed to be an insecure choice. In this paper we introduce
a construction based on Generalized Srivastava codes, a large class which includes Goppa
codes as a special case, that allows relatively short public keys without being vulnerable
to known structural attacks.
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1 Introduction

Recent public-key cryptography is largely based on number theory problems, the
most popular being factoring and computing discrete logarithms. These systems
constitute an excellent choice in many applications, and their level of security is
well defined and understood. One of the major drawbacks, though, is that they will
be very vulnerable once quantum computers of an appropriate size are available.
There is then a strong need for alternative systems that would resist even attackers
equipped with quantum technology.

One of the most well-known systems believed to be secure even against quan-
tum attacks is the McEliece cryptosystem. It is based on algebraic coding theory,
and has a very fast and efficient encryption procedure. The original McEliece [7],
introduced in 1978, uses binary Goppa codes as a basis for the construction.
Though this proved to be very resistant against all known attacks, it has one big
flaw: the size of the public key. In fact, the public key size for the original parame-
ters ([1024,524]-code with error correction capacity of 50) proposed by McEliece
is 67,072 bytes, against the 256 bytes of a 1024-bit Modulus instance of RSA.
Thus, during the last years, research has focused mainly on finding a way to sig-
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nificantly reduce the size of the public key. The alternative version provided by
Niederreiter, for example, nearly halves (to 32,750 bytes) the public key size, but
this is still huge compared to a desirable key size, and clearly impractical on con-
strained devices.

To have a more compact public key it has been proposed to use codes with
particular structures. Two examples are given by Misoczki and Barreto with dyadic
matrices [8] and Berger et al. with quasi-cyclic codes [2]. This approach does lead
to very small public keys, e.g. 4,096 bits (512 bytes).

Unfortunately, modifying the structure of the codes exposes the cryptosystems
to the so-called structural attacks (algebraic attacks). These attacks aim to exploit
the hidden structure, in order to recover the private key. Almost all of the variants
presented until now have been broken or proven to be insecure mostly due to an
attack presented by Faugère et al. in [4].

Our scheme is based on Generalized Srivastava codes and represents a general-
ization of [8], with the advantage of a better flexibility. This comes mainly from
the fact that Goppa codes are a subclass of Generalized Srivastava codes, corre-
sponding to a particular choice of parameters. In our construction the parameters
can instead be chosen in different ways, in order to maximize the reduction in the
key size, or to comply with higher levels of security.

In particular, we claim a greater resistance to the known structural attacks, while
the keys have similar size to the ones presented in [8].

The paper is organized as follows: in Section 2 we introduce definitions and
concepts from coding theory. In Section 3, we briefly summarize the McEliece
cryptosystem and Goppa codes. Section 4 is the central part of the paper and
contains a precise description of the construction. More details about security are
given in Section 5, as well as some sample parameters. Finally, we conclude in
Section 6.

2 Preliminaries

We present here some definitions we will need to define our scheme.

Definition 2.1. Given a ring R (in our case the finite field Fqm) and a vector
Nh D .h0; : : : ; hn�1/ 2 Rn, the dyadic matrix �. Nh/ 2 Rn�n is the symmetric
matrix with components �ij D hi˚j , where ˚ stands for bitwise exclusive-or on
the binary representations of the indices. The sequence Nh is called its signature.
Moreover,�.t; Nh/ denotes the matrix�. Nh/ truncated to its first t rows. Finally, we
call a matrix quasi-dyadic if it is a block matrix whose component blocks are t � t
dyadic submatrices.
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If n is a power of 2, then every 2k � 2k dyadic matrix can be described recur-
sively as

M D

 
A B

B A

!
where each block is a 2k�1 � 2k�1 dyadic matrix (and where any 1 � 1 matrix is
dyadic).

Definition 2.2. Given two disjoint sequences Nv D .v1; : : : ; v`/ 2 F`q and NL D
.L1; : : : ; Ln/ 2 Fnq , the Cauchy matrix C. Nv; NL/ is the matrix with components
Cij D

1
vi�Lj

, i.e.

C. Nv; NL/ D

0BB@
1

v1�L1
� � �

1
v1�Ln

:::
:::

:::
1

v`�L1
� � �

1
v`�Ln

1CCA :
Cauchy matrices have the property that all of their submatrices are invertible

[12].

Definition 2.3. Given a sequence Nx D .x1; : : : ; xn/ 2 Fnq , the Vandermonde ma-
trix of order `, V.`; Nx/, is the matrix with components Vij D xi�1j , i.e.

V.`; Nx/ D

0BBBB@
1 � � � 1

x1 � � � xn
:::

:::
:::

x`�11 � � � x`�1n

1CCCCA :

Definition 2.4. Given two sequences Nx D .x1; : : : ; xn/, Ny D .y1; : : : ; yn/ 2 Fnqm ,
a Generalized Reed–Solomon (GRS) code of order ` is defined by a parity-check
matrix related to the Vandermonde form, more precisely V.`; Nx/ �Diag. Ny/, i.e. the
matrix with components Aij D yjxi�1j :

H D

0BBBB@
y1 � � � yn

y1x1 � � � ynxn
:::

:::
:::

y1x
`�1
1 � � � ynx

`�1
n

1CCCCA :
If the resulting code is then restricted to Fq it is called an alternant code.



152 E. Persichetti

Definition 2.5. For m; n; s; t 2 N and a prime power q, let N̨ D .˛1; : : : ; ˛n/,
Nw D .w1; : : : ; ws/ be nC s distinct elements of Fqm , and .z1; : : : ; zn/ be nonzero

elements of Fqm . The Generalized Srivastava (GS) code of order st and length n
is defined by a parity-check matrix of the form

H D

0BBBB@
H1

H2
:::

Hs

1CCCCA
where each block is

Hi D

0BBBBB@
z1

˛1�wi
� � �

zn

˛n�wi
z1

.˛1�wi /2
� � �

zn

.˛n�wi /2

:::
:::

:::
z1

.˛1�wi /t
� � �

zn

.˛n�wi /t

1CCCCCA :

The parameters for such a code are the length n � qm � s, dimension k �
n�mst and minimum distance d � stC1. GS codes are also part of the alternant
family, as will be shown further in the paper. More information about this class of
codes can be found in [6, Chapter 12, §6].

3 The McEliece cryptosystem

In this section we give the basic notions about the McEliece cryptosystem, as well
as Goppa codes, on which the whole cryptosystem relies.

The general framework proceeds as follows:
Key generation: Pick a k � n generator matrix G for a w-error correcting linear

code over the finite field Fq , an n� n permutation matrix P and a k � k invertible
matrix S at random, then compute G0 D SGP , which is another valid genera-
tor matrix. This is the public key. The private key consists of G;S; P , and the
parameters n; k;w are public.

Encryption: To encrypt a plaintext x 2 Fkq , compute the corresponding code-
word xG0 and add some errors at random by using an error vector e of weight at
most w, obtaining the ciphertext y D xG0 C e.

Decryption: Given a ciphertext y, calculate yP�1 D xG0P�1 C eP�1 D

xSGPP�1 C eP�1 D xSG C eP�1, and since the weight of eP�1 is still less
or equal to w, it is enough to apply the decoding algorithm for the code to retrieve
xS and consequently x.
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Since the published code does not come with any recognizable structure, an
attacker that does not know the secret key is faced with the General Decoding
Problem (GDP), that is, to find the closest codeword in a linear code C to a given
vector, assuming that there is a unique closest codeword. This problem is well
known and was proved to be NP-complete. Moreover, GDP is believed to be hard
on average, and not just on the worst-case instances.

A version of the McEliece cryptosystem that uses the parity-check matrix in-
stead of the generator matrix has been proposed by Niederreiter [9], and has been
proved to be completely equivalent in terms of security.

The original McEliece scheme makes use of binary Goppa codes.

Definition 3.1. Fix a finite field Fq and an integer m > 1. Choose a polyno-
mial g.z/ in Fqm Œz� of degree t < n=m and a sequence of distinct elements
˛1; : : : ; ˛n 2 Fqm such that g.˛i / ¤ 0 for all i . The polynomial g.z/ is called the
Goppa polynomial. The set of words Nc D .c1; : : : ; cn/ 2 Fnqm with

Pn
iD1

ci

z�˛i
�

0 .mod g.z// defines an Œn; n�t � linear code over Fqm . The corresponding Goppa
code is the restriction of this code to Fq , i.e. the set of elements Nc D .c1; : : : ; cn/ 2
Fnq which satisfy the above condition.

Alternatively (and usually) a Goppa code is defined by means of its parity-check
matrix, which is of the form

H D

0BB@
1

g.˛1/
� � �

1
g.˛n/

:::
:::

:::
˛t�1

1

g.˛1/
� � �

˛t�1
n

g.˛n/

1CCA :
It is clear then that a Goppa code has dimension k � n � mt . The minimum

distance is t C 1, or 2t C 1 in the special binary case (q D 2).
More generally, a Goppa code is a particular case of the class of alternant codes,

with xi D ˛i , yi D 1=g.˛i /. They form a very large family to choose from, and
possess an efficient decoding algorithm, which makes them a natural candidate for
encryption purposes.

4 Construction

Our proposal is to use GS codes instead of Goppa codes. Note that GS codes
are also alternant codes, hence an efficient decoding algorithm exists. According
to Sarwate [11, Corollary 2] the complexity of decoding is O.n log2 n/, which
is the same as for Goppa codes; thus GS codes are another suitable choice for
a McEliece-type cryptosystem. Now, it is evident that an equivalent parity-check



154 E. Persichetti

matrix (by a row permutation) for a GS code is given by

OH D

0BBBB@
OH1
OH2
:::

OHt

1CCCCA
where each block is

OHi D

0BBBBB@
z1

.˛1�w1/i
� � �

zn

.˛n�w1/i

z1

.˛1�w2/i
� � �

zn

.˛n�w2/i

:::
:::

:::
z1

.˛1�ws/i
� � �

zn

.˛n�ws/i

1CCCCCA :
On the other hand, it can be easily proved that every GS code with t D 1 is a

Goppa code. We know [6, Chapter 12, Proposition 5] that Goppa codes admit a
parity-check matrix in Cauchy form under certain conditions (the generator poly-
nomial has to be monic and without multiple zeros).

Misoczki and Barreto [8, Theorem 2] showed that the intersection of the set of
matrices in Cauchy form with the set of dyadic matrices is not empty if the code
is defined over a field of characteristic 2, and the dyadic signature satisfies

1

hi˚j
D

1

hi
C

1

hj
C

1

h0
: (4.1)

In this case the parameters for the Cauchy matrix form are determined as viC1 D
1=hi C ! and LjC1 D 1=hj C 1=h0 C ! for a certain offset ! 2 Fqm .

We use these facts, and the algorithm given by Barreto et al. in [1, Algorithm 2],
which is an improvement to the one presented in [8], to build a GS code in quasi-
dyadic form.

1. Fix a finite field Fqm D F2u where q D 2�, u D m�. Choose a code length
n < qm, n D n0s, and s being a power of 2. The parameters s; t are chosen
such that mst < n. More details about the choice of s and t will be given later.

2. Produce a valid dyadic signature Nh over Fqm using the algorithm of [1]. This
consists essentially of two steps:
� Assign nonzero distinct values at random to h0 and to every hj for j a

power of 2. The remaining elements are formed using (4.1) for the appro-
priate choices of i and j . The resulting signature will have length qm.

� Return a selection of blocks of dimension s up to length n, making sure
to exclude any block containing an undefined entry.
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3. Starting from the signature Nh, build the Cauchy support as shown above by
choosing at random the offset ! (refer to Appendix C about the choice of the
offset), then form the first s � n block in Cauchy fashion. This corresponds to
OH1 by setting wi D vi , j̨ D Lj and remembering that we are in characteristic

2, so that

vi � Lj D vi C Lj D wi C j̨ D j̨ C wi D j̨ � wi :

Note that this block is dyadic (of order s) as it defines a GS code with t D 1,
equivalent to a Goppa code.

4. Build the remaining blocks by consecutive powers, up to the power of t . This
means OH2 is obtained by squaring each element of OH1, OH3 is obtained by
cubing, and so on.

5. Pick the zi uniformly at random with the following restriction:

zisCj D zis for i D 0; : : : ; n0 � 1, j D 1; : : : ; s.

6. The final matrix will be H D OH � Diag.zi /. Project H over the base field to
obtain an mst � n parity-check matrix, which can be row-reduced to the sys-
tematic formH� D .M jIn�k/, having k D n�mst with high probability (see
Appendix A). Note that all of these operations preserve the dyadic structure,
since the powering process acts on every single element, the zi are chosen to
be equal s-wise and all the operations occurring during the row reducing are
performed block by block in the ring of dyadic matrices over Fq . Hence H�

and in particular M will be still formed by dyadic blocks.

7. The public key is the generator matrixG D .IkjMT /. SinceMT is k�.n�k/
D k � mst and is s � s block dyadic, it requires only kmst=s D kmt field
elements for storage, equivalent to kmt� bits.

The public key G just generated can be used, for instance, as a trapdoor for
a McEliece scheme, or equivalently H� can serve as trapdoor for a Niederreiter
scheme. In the following section we analyze the security of a scheme based on
quasi-dyadic trapdoors.

Some remarks about the construction: The algorithm presented by Barreto et
al. runs in polynomial time. Since every element of the signature is assigned a
value exactly once, the running time is O.qm/ O.n/ steps. Misoczki and Barreto
[8] did not give a lower bound for the number of possible distinct codes, but only
the upper bound

�N=t
`

�
� `Š � t` �

QdlogN e
iD0 .q � 2i / (due to, respectively, selection,

rearrangement, permutations of the blocks and number of signatures generated by
the algorithm). It is believed that the algorithm does produce close to this number
of codes, but it is too hard to actually state the exact number of distinct codes
constructible.
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5 Security

Misoczki and Barreto in [8] give an assessment of the hardness of decoding quasi-
dyadic codes, providing a reduction to the Syndrome Decoding problem.

As with the original McEliece cryptosystem, the quasi-dyadic variant is suscep-
tible to general decoding attacks. The best attack known at the moment is con-
sidered to be Information Set Decoding, which was recently generalized to codes
over Fq (see [10]); a new version of the attack is presented in [3] under the name
of Ball-Collision Decoding, but the improvement in the decoding time seems to
be relevant only asymptotically and a generalization of ball-collision decoding to
the nonbinary case has not yet been presented. Since decoding attacks don’t take
into account the special properties of the code but just the length, dimension, and
number of errors introduced, these parameters (which are all related) need to be
carefully chosen.

Recently, a very effective structural attack has been presented by Faugère,
Otmani, Perret and Tillich [4]. It relies on the fundamental property H � GT D 0

to build an algebraic system, using then Gröbner bases techniques to solve it. The
special properties of Goppa codes in dyadic form are of key importance, as they
contribute to considerably reduce the number of unknowns of the system. Also, the
extension degree m comes into account as it defines the dimension of the solution
space.

Idea of the attack: A k � n generator matrix G D ¹gi;j º is given as public
key, G being a matrix formed of ` � ` blocks, with k D k0`, n D n0`. Since
every Goppa code is an alternant code, a parity-check matrix will exist in the form
H 0 D ¹yjx

i
j º; these elements are represented by two sets of unknowns ¹Xiº and

¹Yiº. We then obtain the following system of equations:

®
gi;0Y0X

j
0 C � � � C gi;n�1Yn�1X

j
n�1 D 0 j i D 0; : : : ; k � 1; j D 0; : : : ; ` � 1

¯
:

(5.1)
Some relations are derived [4, Proposition 5] from the dyadicity and from the

algorithm used to build the signature, namely

8̂̂<̂
:̂
Yj`Ci D Yj`;

Xj`Ci CXj` D Xi CX0;

Xj`C.i˚i 0/ D Xj`Ci CXj`Ci 0 CXj`

for any 0 � j � n0 � 1 and 0 � i; i 0 � ` � 1.
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Lemma 5.1 ([4]). The system has (after applying the relations):

� n0 � 1 unknowns Yi ,

� n0 � m linear equations involving only the Yi (the case j D 0 in equation
(5.1)),

� n0 � 2C log2 ` unknowns Xi ,

� `.`�1/.n0�m/ nonlinear equations containing monomials of the form YiX
�
i

for � > 0.

Proof. The first property states that the Yi of each block are all equal, thus there
are n=` D n0 distinct variables, and we can arbitrarily choose one of them, which
explains n0 � 1. Moreover, because of the dyadicity of G, the linear equations in
the Yi are identical, hence redundant, for all the rows of each dyadic block. So
we have k=` D .n � m`/=` D .n0` � m`/=` D `.n0 � m/=` D n0 � m linear
equations as claimed.

The other two are a direct consequence of the second and third properties: in
fact, we can fix arbitrarily two variables, say X0 and X`, and express every other
in terms of those two for each block, which means n0 C log2 ` � 2.

The attacker first tries to deduce a simpler system involving only the Xi : fix the
free Yi variables and rewrite the remaining as a function of those, then substitute
into the equations.

If it is possible to find the free variables (if the number of those is very small,
even just by guessing) the computation of the desired simplified system follows
immediately. Since there are n0�1 variables and n0�m equations, we have exactly
n0 � 1� .n0 �m/ D m� 1 free variables; thus it is important for security to keep
the extension degree m high (Faugère et al. [5] indicate that this number should
be not smaller than 20). Once the Yi are removed, the second step is to linearize
the system by using the following trick: observe that each block of equations is
now homogeneous, then consider only those whose degree corresponds to a power
of 2, and discard the rest. There are exactly blog2 .` � 1/c D log2 .` � 1/ such
equations, which usually allows to recover the Xi . A more detailed description
can be found in [4].

It is clear that, since GS codes also belong to the class of alternant codes, this
framework can be applied to our proposal; as we will see, all the properties hold
in a similar way.

While a detailed complexity analysis has not yet been given, it makes sense
to compare the two security levels. In fact, we can think of a Goppa code or a
GS code with the same parameters Œn; k; d � having, respectively, k D n � m` D

n �mst H) ` D st .
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If t D 1 then our scheme is exactly the same as [8]. For t > 1, however, the
system parameters change, as n D n0` D n00s having n00 > n0. We now focus our
attention on the linear part: just like before, it is possible to prove that all the Yi in
a block are equal.

Proposition 5.2. Let Yi be the set of unknowns defined in (5.1). Then:

YisCj D Yis for i D 0; : : : ; n0 � 1, j D 1; : : : ; s.

Proof. Recall from Definition 2.4 the generic form for a parity-check matrix in
alternant form:

H D

0BBBB@
y1 � � � yn

y1x1 � � � ynxn
:::

:::
:::

y1x
`�1
1 � � � ynx

`�1
n

1CCCCA :

However, the general alternant form for Srivastava codes is given in a slightly
different way. In fact, if we consider an invertible `� ` matrix C , then H 0 D CH
is also a parity-check matrix:

H D

0BBBB@
c1;1 � � � c1;`

c2;1 � � � c2;`
:::

:::
:::

c`;1 � � � c`;`

1CCCCA
0BBBB@

y1 � � � yn

y1x1 � � � ynxn
:::

:::
:::

y1x
`�1
1 � � � ynx

`�1
n

1CCCCAD
0BBBB@
y1g1.x1/ � � � yng1.xn/

y1g2.x1/ � � � yng2.xn/
:::

:::
:::

y1g`.x1/ � � � yng`.xn/

1CCCCA
where gi .x/ D ci;1 C ci;2x C ci;3x2 C � � � C ci;`x`�1 for each i D 1; : : : ; `.

In the case of Srivastava codes we have ` D st , and we set

g.i�1/tCk.x/ D

Qs
jD1 .x � wj /

t

.x � wi /k
; yi D

ziQs
jD1 .˛i � wj /

t

for i D 1; : : : ; s and k D 1; : : : ; t . It is easy to see that with these settings, we get
the parity-check matrix given in Definition 2.5.

Now, we want to prove that yisCj D yis for i D 0; : : : ; n0 � 1; j D 1; : : : ; s.
Let’s then fix a specific i (i.e. choose a block) and consider in particular yisCj� D
yis for any j � 2 ¹1; : : : ; sº.
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If we can prove that
Qs
jD1 .˛isCj� � wj / D

Qs
jD1 .˛is � wj /, then obviously

sY
jD1

.˛isCj� � wj /
t
D

sY
jD1

.˛is � wj /
t

H)
1Qs

jD1 .˛isCj� � wj /
t
D

1Qs
jD1 .˛is � wj /

t
:

We know that zisCj D zis for i D 0; : : : ; n0 � 1; j D 1; : : : ; s by construction.
Hence

zisCjQs
jD1 .˛isCj� � wj /

t
D

zisQs
jD1 .˛is � wj /

t
;

and this means yisCj D yis . Since this does not depend on the choice of i , it is
then true for all i , and we obtain our result.

It remains to prove
Qs
jD1 .˛isCj� � wj / D

Qs
jD1 .˛is � wj /.

Now, remember that, by means of the algorithm, the support was built as

wiC1 D viC1 D 1=hi C ! and j̨C1 D LjC1 D 1=hj C 1=h0 C !;

so our expression becomes

sY
jD1

.1=hisCj��1 C 1=h0 � 1=hj�1/ D

sY
jD1

.1=his�1 C 1=h0 � 1=hj�1/

or, without loss of generality, rearranging and since we are in characteristic 2,

sY
jD1

.1=h0 C 1=hisCj� C 1=hj / D

sY
jD1

.1=h0 C 1=his C 1=hj /:

Let k1 D is C j � and k2 D is; then, remembering equation (4.1), we can rewrite

sY
jD1

.1=h0 C 1=hk1
C 1=hj / D

sY
jD1

.1=h0 C 1=hk2
C 1=hj /

”

sY
jD1

.1=hk1˚j / D

sY
jD1

.1=hk2˚j /”
1Qs

jD1 hk1˚j

D
1Qs

jD1 hk2˚j

”

sY
jD1

hk1˚j D

sY
jD1

hk2˚j ;

which is true since k1 and k2 belong to the same block (the matrix is s� s dyadic).
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Essentially, this corresponds to multiplying together the elements of a string
of length s (substring of a row) on two different rows of the same block, which,
because of the dyadicity, we know being just a rearrangement one of the other.
Hence the equality holds, and this terminates the proof.

Proposition 5.2 tells us that there are n00 � 1 distinct variables (like before, we
can arbitrarily fix one of them). Now, the dimension of the blocks is smaller (as
s < `), so we will have more equations, but the numbers are not increasing at the
same rate. In fact

k=s D .n �mst/=s D .n00s �mst/=s D s.n
0
0 �mt/=s D n

0
0 �mt:

We will then have

� n00 � 1 unknowns Yi ,

� n00 �mt linear equations,

which give a solution space of dimension mt � 1. This is a major improvement
since now the security does not rely entirely and only on m; we can instead in-
crease t so that we are not forced to use a big extension field, which gives large
and unpractical keys, while making the attack less effective.

In the following tables we give various sets of parameters in order to better
illustrate the features of our scheme. We also include experimental results about
resistance to the attack just presented (column “FOPT”, log2 of binary operations);
these are obtained by using the upper bound provided by equation (13) in [5, Sec-
tion 6]. We remark that the resulting numbers are just a theoretical upper bound
that gives the approximate cost of computing a Gröbner basis with the indicated di-
mensions and variables, but nevertheless are useful to give an idea of the expected
cost of the attack against that specific set of parameters. The numbers obtained
by the theorem match with the costs obtained for the attacks successfully mounted
against the codes of [2] and [8]. It also seems to emerge why the authors indi-
cate 20 as a safe threshold, since all the parameters that produce a number of free
variables greater than 20 generate a complexity superior to 2128.

Table 1 highlights the differences in performance and security according to the
choice of m and t when keeping fixed the other parameters. The column “ISD”
refers to the estimated complexity of decoding attacks1 (log2 of binary operations).
Note that the first line (t D 1) represents a Goppa code.

1 To compute this number we refer to [10] and use the corresponding script provided by Chris-
tiane Peters in http://www2.mat.dtu.dk/people/C.Peters/isdfq.html.

http://www2.mat.dtu.dk/people/C.Peters/isdfq.html
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m n k s t Errors Size
(bytes)

ISD FOPT

24 12288 6144 28 1 128 36864 128 150
12 6144 3072 27 2 128 18432 128 150
8 4096 2560 26 3 96 15360 128 160

Table 1. Example of parameters for GS codes over the base field F22 , for a fixed
number (mt � 1 D 23) of free variables. The column “Size” refers to the public key
size.

k s t Errors Size
(bytes)

ISD FOPT

960 25 5 80 7200 90 186
768 26 3 96 3456 80 105

Table 2. GS codes over the base field F22 with fixed length n D 1920 and extension
degree m D 6.

Here we chose to keep constant this particular number of free variables mainly
because mt D 24 gives a lot of possibilities for factoring (i.e. a lot of different
choices for m and t ) and the resulting amount 23 is well above the threshold of 20
indicated in [5].

It is also possible to observe that choosing an odd value for t gives better results
even with a smaller number of errors (e.g. compare line 2 and 3). That is because
while the product st decreases (and consequently the numbers of correctable er-
rors), so do the code minimum requirements for size (n) and dimension (k). This
allows a tighter choice of parameters and overall works better for our purposes.

From Table 2 it is evident that a bigger t allows the construction of a code with
better performance, but results in a much bigger key. It is also clear how deeply
all the parameters are intertwined, at the same time contributing to the flexibility
of the scheme: the first code, for instance, generates a much greater complexity
against the structural attack, while achieving an even smaller key size than any
of the codes in Table 1. However, the security against general decoding attacks
decreases considerably.

Keeping all of this in mind, we give in Table 3 a sample of some smaller codes
with the aim to minimize the public key size.
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Base
field

m n k s t Errors Size
(bytes)

ISD FOPT

F25 2 992 416 25 9 144 4680 128 105
F24 3 768 432 24 7 56 4536 80 132
F25 2 512 256 24 23 64 2560 80 96

Table 3. Sets of parameters for smaller GS codes, obtained by choosing larger base
fields and increasing t , while lowering the extension degree.

6 Conclusions

We have given a detailed description of a construction based on Quasi-Dyadic
Generalized Srivastava codes. This is a generalization of [8], and is suitable as a
trapdoor for a McEliece or Niederreiter scheme. The public keys are considerably
smaller than the original McEliece’s proposal, and the construction easily gives
codes secure against general decoding attacks.

Thanks to the introduction of the parameter t we are able to modulate our
scheme in a much more flexible way, allowing us to consider codes over smaller
extension fields without losing in security; moreover, the parameter t balances
both the ratio (extension degree)=(number of free variables), and the reduction in
the public key size, as this depends solely on s, which grows or shrinks according
to t (for a fixed dimension and error-correction capacity).

The result of this is a flexible and practical scheme which produces very small
keys and resists all the attacks presented so far. As a comparison, take the codes
presented in [8]:

For all these codes, the level of security .m � 1 D 15/ against the FOPT attack
[4] is the same of the last code in Table 3, but only one has the same key size
(2560 bytes), whereas the others are all considerably larger. If our main concern is
resistance against structural attacks rather than general decoding attacks, it is then
evident that we have an advantage.

An example could be represented by the codes in Table 3, line 1 and Table 4,
line 3. For the same security level of 2128 we have a solution space of dimension
mt � 1 D 17 for the former as opposed to 15 for the latter.

We remark that until a precise complexity analysis for the structural attacks
is given, we should obey the condition obtained from the experimental results
presented in [5], thus keeping the dimension of the solution space for the Yi strictly
greater than 20.
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n k ` Size
(bytes)

ISD FOPT

8192 4096 256 8192 256 99
6912 2816 256 5632 192 95
4092 2048 128 4096 128 98
3584 1536 128 3072 112 95
2304 1280 64 2560 80 100

Table 4. Quasi-Dyadic Goppa codes [8, Table 2] over F2 and with extension degree
m D 16.

The choice of a base field other than F2, though actually increasing the public
key size, looks like a better choice for the construction. Unlike the case of Goppa
codes, GS codes do not benefit from an increased error-correction capacity in the
binary case, so there is no particular reason to choose binary over nonbinary. In-
stead, choosing a bigger base field allows us to further reduce the extension degree
to values for which the scheme would otherwise be infeasible.

We have also given (Appendix A) an estimate of the probability of getting a full-
rank matrix after the projection on the base field. This is necessary to be sure that
the key generation algorithm is efficient. Since also this probability depends on
the choice of the base field, this is yet another reason to choose nonbinary codes.

Further ideas of research include developing a precise security analysis which
would allow a better optimization of the parameters. An implementation of a
McEliece encryption scheme using quasi-dyadic GS codes is currently being de-
signed; it would be interesting to apply the same framework to other cryptographic
applications such as, for example, signature schemes (as in [1]).

A Full-rank matrices

We give an estimate of the expected probability of having an invertible submatrix
after the co-trace operation defined in point 6 of the key generation algorithm, so
that row reduction to the systematic form is actually possible. To do this, we start
by considering random matrices as a general case.
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Lemma A.1. Let M be a random n � n matrix over the finite field Fq . Then the
probability that M is nonsingular is

p D

Qn
iD1.q

n � qi�1/

qn
2

:

Proof. A matrix M is nonsingular if and only if its rows are linearly independent
vectors. The choices for the first row are qn � 1, while for each row after the first,
we have to be sure that it is not in the span of the previous vectors; hence for the
i -th row we have only qn�qi�1 choices. This gives .qn�1/.qn�q/ � � � .qn�qn�1/
choices over the total qn

2

, which is what we wanted to prove.

Now, we take into account the special form of our matrix. Since it is dyadic,
the number of choices for the row vectors is restricted, since every time we choose
a row, the following s � 1 are uniquely determined according to the dyadic form
(permutations). Practically speaking, we are considering an r � r quasi-dyadic
matrix, where r D mst D r0s, and we are choosing only r0 row vectors.

However now, in each choice, we must also ensure that the set of s rows pro-
duced is by itself linearly independent. Since each of those is composed by r0
square blocks of side s, we first focus on a single block.

Lemma A.2. Let D D �. Nh/ be an s � s matrix over the finite field Fqm , q D 2�,
given by the signature Nh D .h0; : : : ; hs�1/, with s being a power of 2. Then:

D is singular ”
s�1X
iD0

hi D 0:

Proof. Since s is a power of 2, say 2j , we know D is of the following form:

D D

 
A B

B A

!

where A;B are dyadic submatrices of dimension 2j�1 defined, respectively, by
NhA D h0; : : : ; hs=2�1 and NhB D hs=2; : : : ; hs�1. All we need is to consider the
determinant of D that, thanks to an easy generalization of [13], we can claim (see
Appendix B) is equal to det.A2 C B2/.

Applying the argument recursively (and remembering that we are in character-
istic 2) we arrive at the conclusion that detD D .h0 C � � � C hs�1/2

j

. Now, D is
singular” detD D 0” .h0C� � �Chs�1/

2j

D 0” h0C� � �Chs�1 D 0,
which terminates the proof.
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Thanks to Lemma A.2 it is now easy to give a description of how to select the
first row. We call a row vector v good if the set of s vectors consisting of v and its
dyadic rearrangements is linearly independent, and we call v bad if it is not good.
Now, for every choice of s � 1 field elements, the sum will still be a field element;
hence, for each block we have qs�1 signatures that sum to 0, and overall .qs�1/r0

bad sequences. It is then sufficient to subtract this number from the total possible
choices qr , and we obtain that the number of good choices for the first row vector
is

qr � .qs�1/r0 D qr � qr0.s�1/ D qr � qr�r0 D qr�r0.qr0 � 1/:

Let’s call G the set of all good rows. As a last precaution, we need to determine
how many linear combinations of the rows in a size-s set produce a row which is
still in G , so that we can exclude them at the moment of choosing the next one.

This is easy for the first set.

Lemma A.3. Let v.1/; : : : ; v.s/ be the first s row vectors of a quasi-dyadic matrix,
and suppose the first row is good. Then for every v D

Ps
iD1 aiv

.i/:

v 2 G ”

sX
iD1

ai ¤ 0:

Proof. Let’s analyze, without loss of generality, the first block and write

v1 C v2 C � � � C vs

D
�
a1v

.1/
1 C a2v

.2/
1 C � � � C asv

.s/
1

�
C
�
a1v

.1/
2 C a2v

.2/
2 C � � � C asv

.s/
2

�
C � � � C

�
a1v

.1/
s C a2v

.2/
s C � � � C asv

.s/
s

�
D
�
a1v

.1/
1 C a1v

.1/
2 C � � � C a1v

.1/
s

�
C
�
a2v

.2/
1 C a2v

.2/
2 C � � � C a2v

.2/
s

�
C � � � C

�
asv

.s/
1 C asv

.s/
2 C � � � C asv

.s/
s

�
D a1

sX
iD1

v
.1/
i C a2

sX
iD1

v
.2/
i C � � � C as

sX
iD1

v
.s/
i :

Now, each of these sums is exactly the sum of the elements of each row, which
because of the dyadicity is constant, say equal to ˛, and by hypothesis different
from 0; hence we can write ˛.a1C � � � C as/ D 0” a1C � � � C as D 0, which
terminates the proof.

According to Lemma A.3 then, qs�1.q � 1/ linear combinations of the rows in
the first set produce a row in G . Unfortunately the same reasoning doesn’t work
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when we consider the next sets, as the rows in the next set will sum in principle
to a different element (say ˇ;  etc.). Hence, we can just obtain a lower bound, by
excluding all the qs linear combinations. However, it is reasonable to think that
very few linear combinations produce a bad row, so our lower bound is not far
from the real value.

Theorem A.4. Let H be an r � n parity-check matrix over Fq as in step 6, with
r D mst D r0s. Then the row-reduction to the systematic form for H succeeds
with probability at least

p D

r0�1Y
iD0

�
1 �

1

qr0
�

1

q.r0�i/s

�
:

Proof. Follows directly from our last considerations: we get

p D

Qr0�1
iD0 .q

r � qr�r0 � qis/

qr0r
:

This is a product of r0 terms and since qr0r D .qr/r0 we can divide each term by
qr and obtain the conclusion.

Experimental results suggest this number looks roughly like .q � 1/=q.

B Determinant of block matrices

We state the following result, which we will need to prove Lemma A.2:

Lemma B.1. Let D be an n � n block-symmetric matrix over a finite field F of
characteristic 2, i.e. D is in the form

D D

 
A B

B A

!

where A and B are themselves block-symmetric matrices of dimension n=2. Then
detD D det.A2 C B2/.

Proof. We know from [13] that

det

 
A B

0 C

!
D det

 
A 0

B C

!
D detA detC:
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Now, consider the product

M D

 
A B

B A

! 
A 0

B I

!
:

Since A and B are both symmetric, A D AT , B D BT and AB D .AB/T , hence
we can rewrite the product as

M D

 
A B

BT A

! 
AT 0

B I

!
D

 
A2 C B2 B

BTAT C AB A

!

D

 
A2 C B2 B

.AB/T C AB A

!
D

 
A2 C B2 B

0 A

!
:

Looking at determinants and applying the hypothesis, we read

detM D detD detA D det.A2 C B2/ detA

which implies in particular .detD C det.A2 C B2// detA D 0 and the result
follows immediately if we assume detA ¤ 0. However, we don’t even need this
assumption if we use the following trick: instead of working over F, let’s do our
calculations over the corresponding polynomial ring FŒx� by definingAx D ACxI

and Dx D
�
A B
B Ax

�
.

We obtain .detDx C det.AAx C B2// detAx D 0 but now this time we are
considering a product of polynomials and detAx D det.AC xI/ is certainly not
the zero polynomial, hence the left-hand side must be.

Thus detDx D det.AAx C B2/ follows, from which it is enough to put x D 0
to get our result.

C Note on the choice of !

In this section we point out some considerations about the choice of the offset !
during the key generation process.

The usual decoding algorithm for alternant codes, for example as in [6], relies
on the special form of the parity-check matrix .Hij D yjx

i�1
j /. The first step is

to recover the error locator polynomial �.x/, by means of the euclidean algorithm
for polynomial division; then it proceeds by finding the roots of � . There is a one-
to-one correspondence between these roots and the error positions: in fact, there
is an error in position i if and only if �.1=xi / D 0.

Of course, if one of the xi is equal to 0, it is not possible to find the root, and to
detect the error.
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Now, the generation of the error vector is random, hence we can assume the
probability of having an error in position i to be around st=2n; since the codes give
the best performance when mst is close to n=2, we can estimate this probability
as 1=4m, which is reasonably low for any nontrivial choice ofm; however, we still
argue that the code is not fully decodable and we now explain how to adapt the
key generation algorithm to ensure that all the xi are nonzero.

As part of the key generation algorithm we assign to each xi the value Li ,
hence it is enough to restrict the possible choices for ! to the set ¹˛ 2 Fqm j ˛ ¤

1=hiC1=h0; i D 0; : : : ; n�1º. In doing so, we considerably restrict the possible
choices for ! but we ensure that the decoding algorithm works properly.

Bibliography

[1] P. S. L. M. Barreto, P.-L. Cayrel, R. Misoczki and R. Niebuhr, Quasi-dyadic CFS
signatures, in: Inscrypt, Lecture Notes in Comput. Sci. 6584, Springer (2010), 336–
349.

[2] T. P. Berger, P.-L. Cayrel, P. Gaborit and A. Otmani, Reducing key length of the
McEliece cryptosystem, in: AFRICACRYPT, Lecture Notes in Comput. Sci. 5580,
Springer (2009), 77–97.

[3] D. J. Bernstein, T. Lange and C. Peters, Smaller decoding exponents: Ball-collision
decoding, in: CRYPTO, Lecture Notes in Comput. Sci. 6841, Springer (2011), 743–
760.

[4] J.-C. Faugère, A. Otmani, L. Perret and J.-P. Tillich, Algebraic cryptanalysis of
McEliece variants with compact keys, in: EUROCRYPT, Lecture Notes in Comput.
Sci. 6110, Springer (2010), 279–298.

[5] J.-C. Faugère, A. Otmani, L. Perret and J.-P. Tillich, Algebraic cryptanalysis of
McEliece variants with compact keys – Towards a complexity analysis, in: SCC
’10: Proceedings of the 2nd International Conference on Symbolic Computation
and Cryptography, RHUL, 2010, 45–55.

[6] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,
North-Holland Math. Library 16, North-Holland, Amsterdam, 1977.

[7] R. McEliece, A public-key cryptosystem based on algebraic coding theory, NASA,
report, 1978.

[8] R. Misoczki and P. S. L. M. Barreto, Compact McEliece keys from Goppa codes,
in: Selected Areas in Cryptography, Lecture Notes in Comput. Sci. 5867, Springer
(2009), 376–392.

[9] H. Niederreiter, Knapsack-type cryptosystems and algebraic coding theory, Probl.
Control Inf. Theory 15 (1986), 159–166.



Compact McEliece keys 169

[10] C. Peters, Information-set decoding for linear codes over Fq , in: PQCrypto, Lecture
Notes in Comput. Sci. 6061, Springer (2010), 81–94.

[11] D. Sarwate, On the complexity of decoding Goppa codes, IEEE Trans. Inf. Theory
23 (1977), 515–516.

[12] S. Schechter, On the inversion of certain matrices, Math. Tables Aids Comput. 13
(1959), 73–77.

[13] J. R. Silvester, Determinants of block matrices, The Mathematical Gazette 84 (2000),
460–467.

Received March 24, 2011; revised November 27, 2011; accepted September 8, 2012.

Author information

Edoardo Persichetti, Department of Mathematics, University of Auckland, New Zealand.
E-mail: e.persichetti@math.auckland.ac.nz

mailto:e.persichetti@math.auckland.ac.nz

