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Abstract. Hardware devices can be protected against side-channel attacks by introducing
one random mask per sensitive variable. The computation throughout is unaltered if the
shares (masked variable and mask) are processed concomitantly, in two distinct registers.
Nonetheless, this setup can still be attacked if the side-channel is squared, because this
operation causes an interference between the two shares. This more sophisticated anal-
ysis is referred to as a zero-offset second-order correlation power analysis (CPA) attack.
When the device leaks in Hamming distance, the countermeasure can be improved by the
“leakage squeezing”. It consists in manipulating the mask through a bijection, aimed at
reducing the dependency between the shares’ leakage. Thus d th-order zero-offset attacks,
that consist in applying CPA on the d th power of the centered side-channel traces, can be
thwarted for d � 2 at no extra cost. We denote by n the size in bits of the shares and
call F the transformation function, that is, a bijection of Fn2 . In this paper, we explore the
functions F that thwart zero-offset high-order CPA (HO-CPA) of maximal order d . We
mathematically demonstrate that optimal choices for F relate to optimal binary codes (in
the sense of communication theory). First, we exhibit optimal linear F functions. They are
suitable for masking schemes where only one mask is used throughout the algorithm. Sec-
ond, we note that for values of n for which non-linear codes exist with better parameters
than linear ones, better protection levels can be obtained. This applies to implementations
in which each mask is randomly cast independently of the previous ones. These results are
exemplified in the case n D 8, where the optimal F can be identified: it is derived from
the optimal rate 1=2 binary code of size 2n, namely the Nordstrom–Robinson .16; 256; 6/
code. This example provides explicitly with the optimal protection that limits to one mask
of byte-oriented algorithms such as AES or AES-based SHA-3 candidates. It protects
against all zero-offset HO-CPA attacks of order d � 5. Eventually, the countermeasure
is shown to be resilient to imperfect leakage models, where the registers leak differently
than the sum of their toggling bits.

Keywords. First-order masking countermeasure (CM), high-order correlation power
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1 Introduction

Hardware implementations of block-oriented cryptographic functions are vulner-
able to side-channel attacks. Yet their lack of algebraic structure makes them hard
to protect efficiently. Additive Boolean masking is one answer to secure them,
because it can be adapted to any function implemented. Early masking schemes
involved only one mask per data needed to be protected [2]. Nonetheless, straight-
forward implementations of this “first-order” countermeasure (CM) happened to
be vulnerable to zero-offset “second-order” attacks [29,45]. We call a “first-order”
CM an implementation where one single mask protects the sensitive data. Us-
ing more masks per sensitive data yields CM of higher-order, only provided the
masking scheme is sound [32, §2.3]. Zero-offset attacks use one sample of side-
channel trace, and are thus monovariate. They apply when the masked variable and
the mask are consumed simultaneously by the implementation, which is common-
place in hardware. Indeed, this architectural strategy allows to keep the throughput
unchanged. Zero-offset second-order attacks consider not the plain observations
themselves, but their variance instead. The variance of the leakage function, that
involves its squaring (second-order moment), does depend strongly on the sensi-
tive data, which allows for an attack. Consequently, a branch of the research on
masking CMs has evolved towards masking schemes with multiple masks [35].

Besides, another direction for improvements consists in the adaptation of the
first-order CMs to resist attacks that use high-order moments of one single side-
channel observation (commonly referred to as zero-offset HO-CPA, of order
d > 1). Such result can be obtained by transforming the mask before it is latched
in register [10]. Concretely, a bijection F is applied to the mask, in a view to re-
duce the dependency of its leakage with that of the masked data. This optimization
of straightforward masking is called “leakage squeezing”. It is of no effect in the
hypothetical cases when the device completely leaks the shares (identity leakage
function); however, it is useful in the realistic cases when the device leaks a non-
injective function of the shares (e.g., the Hamming distance leakage model). The
goal of this article is to find bijections F that protect against zero-offset attacks of
order d as high as possible. This article is based on the results presented in [21],
notably by extending the part about the choice of F using the coding theory.

A proof of concept about leakage squeezing has already been studied in [23].
This article provides overhead figures as well as a qualitative estimation of the
security gain offered by the CM. An extremely close CM has been introduced
recently in [4]: it consists in encoding the mask and mapping the sensitive data
to vectors that are not codewords, as if it was noise. In another article a vectorial
Boolean function is used to ensure that one share does not leak whereas the other
one leaks the perfectly masked sensitive data [24]. This CM is known as a “first-
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order leak-free”; its main drawback is that it is not resilient to any leakage model
imperfections.

The rest of the paper is structured as follows. In Section 2, the first-order mask-
ing scheme that involves the bijection F is described, and its leakage is explained
under the Hamming distance model. We also prove that if the masks are refreshed
deterministically, then F must be linear. As a positive side effect, the protection
now covers not only the Hamming distance leakage model, but also the Hamming
weight leakage model. In Section 3, the best zero-offset HO-CPA is derived for
all orders d ; also, a necessary and sufficient condition on F for the CM to resist
all zero-offset HO-CPA of orders 1; 2; : : : ; d is formulated. Based on this for-
mal statement of the problem, optimal solutions for F are researched and given
in Section 4. The characterization of some optimal bijections F is conducted in
Section 5, where both a security analysis against zero-offset HO-CPA and a leak-
age analysis with an information theoretic metric are conducted. This analysis
is carried out both with a perfect and an imperfect leakage model. The conclu-
sions are in Section 6. To ease the reading of the article, some long proofs, some
detailed computations, some secondary results (such as the leakage statistical mo-
ments) and some simulation graphs (such as the information leakage in the imper-
fect model) are given in Appendices A–E. The article is self-contained without
those appendices; however, they bring interesting insights to support the article’s
body.

2 Studied implementation and its leakage

2.1 Additive boolean masking

In side-channel analysis, an attacker is able to recover noisy information from a
sensitive data, denoted byX . It is of small size (n bit, where n is typically equal to
4; : : : ; 8), and depends on the secret key. In a masking CM, the leaked information
is randomized via the usage of a mask M “entangled” with the functional compu-
tation. The two shares manipulated in a Boolean first-order CM are .X ˚M;M/.
Provided the mask is uniformly distributed, neither share leaks information about
X . Of course, the joint leakage .X˚M;M/ does depend onX . Concretely speak-
ing, the dependence can be obtained by combining the leakage of X ˚M on the
one hand and M on the other, when the shares are used at different dates. When
the shares are manipulated simultaneously, the trace can be raised at the power
d D 2 to have the shares interfere in the leakage.

It is worthwhile to precise that additive Boolean masking schemes are designed
to withstand chosen plaintext attacks. Indeed, each share X ˚ M and X must
be uniformly distributed, which is equivalent to saying that the mask M is uni-
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Figure 1. Setup of the first-order masking countermeasure with bijection F .

formly distributed; but no assumption is needed on the distribution of the sensitive
variable X . For instance, the security of additive Boolean masking schemes is
unaltered if X is for instance fixed to a given value, or somehow biased.

2.2 Leakage squeezing for additive boolean masking

In the “leakage squeezing” CM we study, a bijection F is applied on the mask
share. Thus, the shares are now .X˚M;F.M//. In [23], this CM is called leakage
squeezing. The schematic of this scheme is illustrated in Figure 1. The variables
X and X 0 are the two consecutive values of the sensitive variable. Similarly, M
and M 0 are the two consecutive values of the mask. This figure highlights two
registers able to hold one n-bit word each. The left register hosts the masked data,
X˚M , whereas the register on the right holds F.M/, the maskM passed through
the bijection F . In this article, we are concerned with the leakage from those two
registers only. Indeed, they are undoubtedly the resource that leaks the most. Also,
the rest of the logic can be advantageously hidden in tables, thereby limiting their
side-channel leakage [36]. It is referred to as “tabulated round logic” in Figure 1.
This figure provides an abstract description of the round, since it usually splits
nicely into independent datapaths of smaller bitwidth. Typically, an AES can be
pipelined to manipulate only bytes (refer to Section 2.5 for a description of the
architecture). However, in practice, article [26] (resp. [33]) shows how to handle
AES substitution box with 4-bit (resp. 2-bit) non-linear data transformations.

The computation of the bijection F shall not leak. Actually, F can be merged
into memories, hence being totally dissolved. Therefore, the two shares .X ˚M;
F.M// remain manipulated concomitantly only once, namely at the clock rising
edge. For the sake of illustration, we provide a typical functionality of this combi-
national logic hidden in memory. If we denote by C the round function and by R
the mask refresh function, then the table implements:

� a0 D C.a˚ F�1.b//˚R.F�1.b// and
� b0 D F.R.F�1.b///.
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Figure 2. Detail of the function implemented in the tabulated round logic shown in
Figure 1.

In the rest of the article, we assume that the mask refresh function R is bijective,
so as to maintain the entropy of the mask throughout the computation. The detail
of the tabulated round logic is represented in Figure 2. The memory is recomputed
statically: at address .a; b/, the memory is programmed to return .a0; b0/, as de-
fined above. So, irrespective of the technology (ASIC, FPGA, etc.) the memory
size (2n � 2n) is unchanged. The combinational logic is nonetheless a bit more
complex, because the masking must be transformed initially by F and finally by
F�1. For example, it is reported in [23] that a regular masking scheme for AES re-
quires 366 adaptative logic modules (ALM) in an Altera Stratix II FPGA, whereas
the same architecture with leakage squeezing requires 408 ALMs.

In the context of a side-channel attack against a block cipher, either the first
round or the last round is targeted. Thus either the input (plaintext) or the output
(ciphertext) is known by the attacker. Hence either X or X 0 is the sensitive data.
We make the assumption that the device leaks in the Hamming distance model.
This model is realistic and customarily assumed in the literature related to side-
channel analysis [3, 40]. Therefore, the sensitive variable to protect is X ˚ X 0,
denoted by Z. The leakage of the studied hardware (Figure 1) is thus

HD.X ˚M;X 0 ˚M 0/C HD.F.M/; F.M 0//

D HW.Z ˚M ˚M 0/C HW.F.M/˚ F.M 0//: (2.1)

In this equation, the Hamming distance operator HD and the Hamming weight op-
erator HW are defined as HD.w;w0/ D HW.w ˚ w0/

:
D
Pn
iD1.w ˚ w

0/i . The
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function F is a constant bijection that will contribute to increase the security of
the CM. In addition, F is a public information which we assume to be known
by any attacker. It is worthwhile noting that the leakage squeezing CM requires
the leakage to be a Hamming distance, like in (2.1), since the optimal bijections
will be built based on this assumption. Besides, we insist that it is sane to know,
to some extent, how the hardware behaves. Indeed, if the hardware is totally un-
trusted, no CM can be proved secure. For instance, a hardware Trojan that logs the
demasked sensitive data could well be hidden in the circuit. This Trojan will then
leak the sensitive information through a functional channel, thereby breaking the
overall security. In this context, assuming a Hamming distance model is a minor
hypothesis:

� for an ASIC designer, for instance, it is easy to build a circuit that behaves as
the model, and

� for an FPGA designer, the CM can be programmed, then potential unbal-
ances are profiled and eventually patched (and this process can be repeated
iteratively until the leakage function is as expected).

2.3 Hamming distance vs Hamming weight leakage models

A recent experimental paper [27] has shown that some devices, such as FPGAs,
leak mainly in the Hamming distance model, but also – albeit to a lesser extent –
in the Hamming weight model. This observation is used to effectively defeat one
implementation protected by a masking scheme [24] that assumes a leakage in
distance (such as the Hamming distance) but not a leakage in values (such as the
Hamming weight). One can thus consider that it is relevant to protect also an
implementation against attacks that exploit the Hamming weight. It happens that
the leakage squeezing protects as well in both Hamming distance and Hamming
weight contexts, if the bijection F is linear. Indeed, in this case, (2.1) is equal to

HW.Z ˚M 00/C HW.F.M 00// (2.2)

(with M 00 :
D M ˚ M 0). This leakage model has the same expression as the

Hamming weight leakage at the input, namely HW.X˚M/CHW.F.M//, and as
the Hamming weight leakage at the output, namely HW.X 0˚M 0/CHW.F.M 0//;
simply, the dummy variable name Z is assigned to either the value X or X 0, and
M 00 to either M or M 0. In other words, the expression in (2.2) is an equation and
not an equality between values.

Still, it must be ensured that M , M 0 and M 00 are uniformly distributed. The
maskM is indeed chosen uniformly at random at every new encryption. The mask
M 0 D R.M/ is also uniformly distributed provided the mask refresh function



Leakage squeezing: Optimal implementation and security evaluation 255

R is surjective, i.e. bijective, given the equal cardinality of R input and output
sets. The difference of masks M 00 D M ˚ R.M/ is uniformly distributed if and
only if I ˚ R is bijective. Many possible such functions exist: they are called
orthomorphic permutations (orthomorphic meaning that I ˚ R is bijective). For
instance, the linear function R generated by the matrix

R D

0BBBBBBBBBBBB@

1 0 0 1 1 1 1 0

0 1 0 0 1 1 1 1

1 1 0 0 1 1 0 0

0 1 1 0 0 1 1 0

0 0 1 1 0 0 1 1

1 1 1 1 0 0 1 0

0 1 1 1 1 0 0 1

1 1 0 1 0 1 1 1

1CCCCCCCCCCCCA
is an orthomorphic permutation. Concluding, when F is linear, it is mathemati-
cally equivalent to say that the implementation resists attacks of order i 2 N in
Hamming distance and in Hamming weight. Therefore, provided F is linear and
R is an orthomorphic permutation, the leakage squeezing scheme does not need to
follow a specific architecture.

In addition, this means that the leakage squeezing used with a linear bijection
is able to protect against any combination of Hamming weight and Hamming dis-
tance model attacks.

2.4 Impact of the countermeasure design on leakage scenarios and
implications on the linearity (or not) of F

In the rest of the article, we consider two leakages scenarios.

First scenario: Design with a deterministic mask refresh function R

For the design that has been the running example of Section 2, the maskM 0 is ob-
tained deterministically from mask M via an orthomorphic permutation R (recall
Figure 2). We have seen in the previous Section 2.3 that it is advantageous to take
F linear, so as to support leakage models in Hamming weight and distance. This
is our first leakage scenario.

Second scenario: Design with a non-deterministic mask refresh mechanism

Generally speaking, it is customary in the implementation of masking schemes to
employ different masks each time the sensitive variables are updated. This means
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in particular that

� the variable X is masked with M as X ˚M , and

� after the application of the round function C , the random variable X 0 D
C.X/ is masked with a new mask M 0, as X 0 ˚M 0. This new mask M 0 is
preferentially independent from the previous value of the mask M .

Many design options can lead to the independence between M and M 0. For
instance, it is possible to add in the schematic of Figure 2 a third input that would
beM 0 (independent fromM ). Alternatively, a heuristic method to obtain a similar
effect is to use a tactic explained by Güneysu and Moradi [18]. While sticking
at the schematic of Figure 2, the R W Fn2 ! Fn2 orthomorphic permutation is
updated on a frequent basis, with a new one randomly chosen. Technically speak-
ing, this can be achieved for instance by using a double-bank memory instead of
only one. While one bank is used for the functional computation, the other bank
is reprogrammed with a new fresh orthomorphic permutation R. Now, any other
implementation that leaks as per (2.1) is eligible.

In such case, any function F can be used (linear or not). If the scheme is derived
from that of Figure 2, then R must always be a orthomorphic permutation.

2.5 Architecture of AES based on byte updates

This section describes how a full-fledged AES can be computed from the “vari-
able update” scheme presented in Figure 1. The term “variable update” (or “byte
update” for n D 8) is related to the distance computed between one register cur-
rent value and its future value. AES has been designed to work on machines using
bytes (8-bit registers) as well as words (32-bit registers).

On 32-bit machines, the substitution box (S-box, named SubBytes) is not com-
puted alone, but already combined with the diffusion layer (linear operation on
columns, named MixColumns). This demands the computation of so-called
T-boxes [14] (there are four of them, one for each column). For example, in en-
cryption mode, the first T-box computes

A 2 F82 7! .xtime.A/; A;A; xtime.A/˚ A/:

Such T-box fits in a memory of 256 words. The xtime operation computes the
multiplication by X in the field F28 � F2ŒX�=X8 CX4 CX3 CX C 1.

On 8-bit machines, SubBytes and xtime are typically computed sequentially,
i.e. one after the other. The memory requirement is then only two memories of
256 bytes, at the expense of a slower computation.
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So, in particular, the AES block cipher can be computed by a sequence of

(i) byte updates, and

(ii) byte moves (from register to register).

As mentioned, byte updates are operations like

� X  SubBytes.X/,

� X  xtime.X/

(cf. the definition in the AES standard [28]). Both operations can be captured by
the byte update operation, by setting C to SubBytes or xtime in Figure 2.

The XOR between two different shared values .X1 ˚M1; F .M1// and .X2 ˚
M2; F .M2// can be done independently on each share, if F is linear.

Concluding, the setup presented in Figure 1 can serve as building block for a
construction of AES.

3 Optimal function in zero-offset dth-order CPA

3.1 Optimal prediction function fopt definition

Prouff et al. have shown in [31] that an attacker can optimize a CPA [3] against
a device leaking L by computing the correlation between the random variables L
and fopt.Z/, where Z is the sensitive variable. The function fopt. � / is called the
“optimal prediction function”, and is defined as fopt.z/ D EŒL � EŒL� j Z D z�.
This function depends on the leakage model L which is thus assumed to be known
(even imperfectly) by the attacker. Put differently, the optimal prediction function
is device-specific. In this definition, the capital letters denote random variables,
and E is the expectation operator. If z 7! fopt.z/ is constant (i.e. fopt.Z/ is
deterministic), then [31] shows that the correlation coefficient of the attack is null,
which means that the attack fails.

This result can be applied on the studied leakage function of (2.1), without
F (i.e. with F equal to the identity function Id). The leakage function therefore
simplifies in HW.Z ˚M 00/ C HW.M 00/, where M 00 :D M ˚M 0 is a uniformly
distributed random variable in Fn2 .

� In a zero-offset first-order attack, the attacker uses

fopt.Z/ D E
�
HW.Z ˚M 00/C HW.M 00/ � n j Z

�
D 0;

which is deterministic,
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� whereas in a zero-offset second-order attack, the attacker uses

fopt.Z/ D E
�
.HW.Z ˚M 00/C HW.M 00/ � n/2 j Z

�
D n � HW.Z/;

which depends on Z. This result is easily obtained by developing the square.
The only non-trivial term in this computation is EŒHW.z˚M 00/�HW.M 00/�,
which is proved to be equal to n2Cn

4
�
1
2

HW.z/ in [31, (19)].

In summary, without F , a first-order attack is thwarted, but a second-order zero-
offset attack will succeed. In the sequel, when mentioning HO-CPA attacks, we
implicitly mean “zero-offset HO-CPA”, i.e. a mono-variate attack that uses a high-
order moment of the traces instead of the raw traces. Nonetheless, as explained
in [45], this second-order attack requires more traces than a first-order attack on
an unprotected version that do not use any mask. Indeed, the noise is squared and
thus its effect is exacerbated. More generally, the higher the order d of a HO-CPA
attack, the greater the impact of the noise. Thus, attacks are still possible for small
d , but get more and more difficult when d increases. Therefore, our objective is to
improve the masking CM so that the zero-offset HO-CPA fails for orders J1; dK,
with d being as high as possible. This translates in terms of fopt.Z/ by having

E
�
.HW.Z ˚M ˚M 0/C HW.F.M/˚ F.M 0// � n/d j Z

�
deterministic (i.e. independent of random variable Z) for the highest possible val-
ues of the integer d . Thus, when developing the sum raised at the power d , we are
led to study terms of the form

TermŒp; q�.fopt/.z/
:
D E

�
HWp.z ˚M ˚M 0/ � HWq.F.M/˚ F.M 0//

�
; (3.1)

where p and q are two positive integers. If either p or q is null, then trivially,
TermŒp; q�.fopt/ is constant. We are thus interested more specifically in p and q
values that are strictly positive. We note that in order to resist d th order zero-
offset HO-CPA, TermŒp; q�.fopt/.z/ must not depend on z for all p and q that
satisfy p C q � d .

Equation (3.1) can be rewritten as follows:

TermŒp; q�.fopt/.z/ D E
�
HWp.z˚M 00/�HWq.F.M/˚F.M ˚M 00//

�
: (3.2)

Indeed:

(i) In the first scenario of Section 2.4, M 0 D R.M/ and F is linear, so M 00 D
.I˚R/.M/ is a random variable that is balanced (owing to the orthomorphic-
ity ofR and to the balancedness ofM ). The expectation is taken only onM 00,
sinceM cancels due to the linearity of F : F.M/˚F.M ˚M 00/ D F.M 00/.

(ii) In the second scenario,M andM 0 are independent and uniformly distributed,
hence so is M 00 DM ˚M 0.
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Incidentally, we notice that the same condition would hold if the two shares
were

� F0.X˚M/ and F1.M/, where F0 and F1 are two bijections, with F0 linear,

� instead of merely X ˚M and F.M/, as in Figure 2.

This new setting is more general, since by choosing F0 D Id (linear bijection) and
F1 D F (arbitrary bijection), it comes down to that of Figure 2. Because F0 is
linear, the generalization of (3.2) is

E
�
HWp.F0.z ˚M ˚M

0// � HWq.F1.M/˚ F1.M
0//
�

D E
�
HWp.F0.z/˚ F0.M/˚ F0.M

0// � HWq.F1.M/˚ F1.M
0//
�

D E
�
HWp. Qz ˚ QM ˚ QM 0/ � HWq

�
F1.F

�1
0 . QM//˚ F1.F

�1
0 . QM 0//

��
; (3.3)

where Qz :
D F0.z/, QM

:
D F0.M/ and QM 00

:
D F0.M

00/. The random variable
QM (resp. QM 00) is uniformly distributed, because M (resp. M 00) is also uniformly

distributed and F0 (resp. F1) is a bijection. Thus, the more general setting is secure
if (3.3) does not depend on Qz for all p C q � d , which is equivalent to having the
setting of Figure 2 secure with F D F1ıF�10 . For this reason, we simply consider
in the sequel that only one bijection is applied to the mask – the masked sensitive
data being manipulated plain.

3.2 Sequential leakage

If the sharesZ˚M and F.M/ are manipulated at different dates (i.e. not simulta-
neously as in Figure 2), then the attacker could typically attempt to combine their
leakage. The paper [31] precisely covers this topic: it proves that the best com-
bination tool is the centered product. Thus, the attacker’s strategy remains in line
with that discussed on parallel leakage: terms such as TermŒp; q�.fopt/.z/ (recall
their definition in (3.2)) are checked for dependence in z. So, the results discussed
in this paper also apply to “software” implementations that handle the shares se-
quentially. Indeed, the central processing unit (CPU) executes the cryptographic
code with masking instruction by instruction, and thus processes one share after
the other.

3.3 Condition on F for the resistance against 2nd-order CPA

In a zero-offset second-order CPA, the attacker squares the side-channel leakage
of (2.1) and considers its correlation with Z. Thus, to resist this attack, the term in
(3.2) must be constant for pCq � 2. As just mentioned, the cases .p; q/ D .2; 0/
and .0; 2/ are trivial. This subsection thus focuses on the case where p D q D 1.
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The term F.m/˚F.m˚m00/ is also known as the value at m of the derivative
of F in the direction m00, and is denoted by Dm00F.m/. This notion is for instance
defined in [7, §8.2.2, Definition 8.2]. When F is linear (first scenario presented in
Section 2.4), we have Dm00F.m/ D F.m00/ irrespective of m. It can be observed
that (3.2) can also be written as a convolution product:

TermŒp; q�.fopt/.z/ D
1

2n

�
HW˝ EŒHW.D.�/F.M//�

�
.z/:

In this expression, EŒHW.D.�/F.M//� designates the function

EŒHW.D.�/F.M//� W Fn2 ! Z;

m00 7! EŒHW.Dm00F.M//� D
1

2n

X
m

HW.Dm00F.m//:

The Fourier transform of a function f W Fn2 ! Z is defined as

Of W Fn2 ! Z; z 7!
X
y2Fn

2

f .y/.�1/y�z :

An appealing property of this Fourier transform is that it turns a convolution into
a product. So, we have1:

fopt.z/ D cst ” bfopt.a/ / ı.a/

” bHW.a/ �bEŒHW ıD.�/F.M/�.a/ D .n � 2n�1/2 � ı.a/

” 8a ¤ 0;bHW.a/ D 0 or bEŒHW ıD.�/F.M/�.a/ D 0; (3.4)

where / means “is proportional to” and ı. � / is the Kronecker symbol.
To prove the second line, we note that on the one hand

bHW.0/ D
X
z

HW.z/ � .�1/0�z D
n

2
2n

and on the other hand
bEŒHW ıD.�/F.M/�.0/ D

X
z

EŒHW.DzF.M//.�1/0�z�

D E
hX
z

HW.F.M/˚ F.M ˚ z//
i

D E
hX
z0

HW.z0/
i
D E

hn
2
2n
i
D
n

2
2n:

The third equality holds because z 7! F.m/˚ F.m˚ z/ is bijective for all m.
1 The letters a and b used in the sequel are elements of Fn2 that do not represent the input ports

of the ROM in Figure 1 and 2.
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Now, if we denote by ei the lines of the identity matrix In of size n � n, then

bHW.a/ D
X
z

1

2

nX
iD1

�
1 � .�1/zi

�
.�1/a�z

D n � 2n�1ı.a/ �
1

2

X
z

nX
iD1

.�1/.a˚ei /�z

D

8̂<̂
:
n � 2n�1 if a D 0;
�2n�1 if there exists i 2 J1; nK such that a D ei ,
0 otherwise:

(3.5)

Thus, the problem comes down to finding a function F such that

bEŒHW ıD.�/F.M/�.a/ D 0 for all a D ei :

This condition can be rewritten asX
z;m

HW
�
F.m/˚ F.m˚ z/

�
.�1/a�z D 0 for all a D ei : (3.6)

Let a ¤ 0. ThenX
z;m

HW
�
F.m/˚ F.m˚ z/

�
.�1/a�z

D

X
z;m

1

2

nX
iD1

�
1 � .�1/Fi .m/˚Fi .m˚z/

�
.�1/a�z

D���
���XXXXXXn22n�1ı.a/ �

1

2

nX
iD1

X
z;m

.�1/Fi .m/˚Fi .m˚z/˚a�z

D �
1

2

nX
iD1

X
m

.�1/Fi .m/
X
z

.�1/a�z˚Fi .m˚z/

D �
1

2

nX
iD1

X
m

.�1/Fi .m/
X
z

.�1/a�.z˚m/˚Fi .z/ .z  z ˚m/

D �
1

2

nX
iD1

X
m

.�1/a�m˚Fi .m/
X
z

.�1/a�z˚Fi .z/

D �
1

2

nX
iD1

�X
m

.�1/a�m˚Fi .m/
�2
D �

1

2

nX
iD1

�2
.�1/Fi .a/

�2
:
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Thus, this quantity is null if and only if

2
.�1/Fi .a/ D 0 for all i 2 J1; nK:

Thus, if we generalize the Fourier transform on vectorial Boolean functions (by
applying the transformation component-wise), and use the notation f� for the sign
function of f (also component-wise), then (3.6) is equivalent to cF�.a/ D 0 for
all a D ei . The Fourier transform of a sign function is also known as the Walsh–
Hadamard transform. (Both notions are linked through the relationship cF�.a/ D
2nı.a/�2bF .a/ for all a.) Now, as F is balanced (since bijective), cF�.a/ D 0 also
holds for a D 0. By definition, a Boolean function g is d -resilient if its Walsh–
Hadamard transform bg�.a/ is null for all a such as HW.a/ � d . Thus every
coordinate of F is 1-resilient. Constructions for such functions exist, as explained
in [6, Section 8.7].

In the next subsection, we use P -resilient functions F : according to the defini-
tion, they are balanced when up to P input bits are fixed.

3.4 Condition on F for the resistance against dth-order CPA

A generalization of the previous result for arbitrary p; q 2 N? :
D Nn¹0º is pre-

sented in this section. We have the following theorem, whose proof is given in
Appendix A.

Theorem 3.1. Let P and Q be two positive integers, and F a bijection of Fn2 .
Equation (3.2) is constant for all p 2 J0; P K and q 2 J0;QK if and only if

2.b � F /�.a/ D 0 (3.7)

whatever a; b 2 Fn2 with 0 < HW.a/ � P and 0 � HW.b/ � Q.

An .n;m/-function is defined as a vectorial Boolean function from Fn2 to Fm2 .

Proposition 3.2. The condition expressed in (3.7) of Theorem 3.1 can be reformu-
lated as follows. Every restriction of the bijective .n; n/-function F to Q compo-
nents is an .n;Q/-function that is P -resilient.

4 Existence of bijections meeting the condition expressed in (3.7)

In this section, we find bijections that meet (3.7).
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4.1 Three conditions on optimal bijections F

Condition in terms of Walsh–Hadamard transform

The condition expressed in (3.7) can be rewritten as follows:

2.b � F /�.a/ D 0 (4.1)

for all b 2 Fn2
? :
D Fn2 n¹0º and a 2 Fn2 with HW.a/ � d � HW.b/.

Condition in terms of correlation-immunity

Given any .n; n/-function F , let C :
D ¹.x; F.x//I x 2 Fn2 º be the graph of F .

The indicator 1C of C is the Boolean function

1C W � 2 F2n2 7!

´
1 if � 2 C;
0 otherwise:

The condition on F given in (4.1) is satisfied if and only if the indicator of the
graph C of F is d th order correlation-immune (see definition in [5]); this result
comes from the characterization of correlation-immune functions by their Fourier
transform available in [46].

By the definition of correlation-immune functions, we also have this character-
ization on F . For all subsets I of ¹1; : : : ; 2nº of cardinality jI j at most d , and
for all a 2 FI2 , there are jC j

2jI j
codewords of C whose coordinates of indices i 2 I

coincide with those of a. This means that, by fixing some coordinates of x and
some coordinates of F.x/, it is impossible to bias C D ¹.x; F.x//I x 2 Fn2 º if
the number of fixed coordinates does not exceed d .

Condition in terms of code

Given any .n; n/-function F , we define the weight enumerator of the code C by

WC .X; Y /
:
D

X
x2Fn

2

X2n�HW.x;F .x//Y HW.x;F .x//

and the distance enumerator by

DC .X; Y /
:
D

1

jC j

X
x;y2Fn

2

X2n�HW.x˚y;F .x/˚F.y//Y HW.x˚y;F .x/˚F.y//:

We have

WC .XCY;X �Y / D
X

a;b2Fn
2

� X
x2Fn

2

.�1/b�F.x/Ca�x
�
X2n�HW.a;b/Y HW.a;b/
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and

DC .XCY;X �Y / D
1

jC j

X
a;b2Fn

2

� X
x2Fn

2

.�1/b�F.x/˚a�x
�2
X2n�HW.a;b/Y HW.a;b/:

Hence d C 1 is exactly the minimum value of the non-zero exponents of Y with
non-zero coefficients in DC .X C Y;X � Y /, called the dual distance of C in the
sense of Delsarte [11, 20].

In summary, our goal can be restated as follows: we seek to find a bijection F
such that the code C equal to the graph of F has the largest possible dual distance.

4.2 Optimal linear bijections

The bijection F can be chosen linear. This choice suits both design scenarios
presented in Section 2.4. All linear .n; n/-functions are of the form

F.x/ D .x � v1; : : : ; x � vn/;

where vi are elements of Fn2 . F is bijective if and only if .v1; : : : ; vn/ is a basis of
Fn2 . We have

2.b � F /�.a/ D 0 ”
X
x

.�1/b�F.x/˚x�a D 0

”

X
x

.�1/
Ln

iD1 bi .x�vi /˚x�a D 0

”

X
x

.�1/x�
Ln

iD1.bivi /˚x�a D 0

”

X
x

.�1/x�.
Ln

iD1.bivi /˚a/ D 0

”

nM
iD1

bivi ¤ a:

As this is true for all a such that HW.a/ � d � HW.b/, we have the following
necessary and sufficient condition for all b ¤ 0:

HW
� nM
iD1

bivi

�
> d � HW.b/: (4.2)

We notice that the set of ordered pairs

C 0
:
D

°�
b;

nM
iD1

bivi

�
I b 2 Fn2

±
forms a vector subspace of F2n2 . Therefore, it defines a Œ2n; n; ı� binary linear
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code, where ı is its minimum (direct) distance. Because of (4.2), the necessary
and sufficient condition becomes merely ı > d .

The codes C and C 0 have rate 1=2; and F being bijective, each of these codes
admits the two information sets J1; nK and JnC1; 2nK (recall that a set of indices I
is called an information set of a code if every possible tuple occurs in exactly one
codeword within the specified coordinates xi ; i 2 I ). More generally, a rate 1=2
code which admits two complementary information sets is called a “complemen-
tary information set” code, or CIS code in short. These codes are studied in [8, 9].
From any such linear CIS code, it is possible to deduce a linear bijection F . In-
deed, by permuting the coordinates, these two information sets can be respectively
available at coordinates of indices J1; nK and Jn C 1; 2nK in the codewords. The
Œ2n; n; ı� binary linear code can thus be spawned by a generator matrix .A B/,
where A and B are two n � n invertible matrices. A left-hand side multiplication
by the inverse of A turns the generic generator matrix into the systematic repre-
sentation of the code, namely .In G/, where G :

D A�1 � B . This corresponds
to a code ¹.x; F.x//I x 2 Fn2 º where F is bijective because G is invertible (in
the general case of 1=2 rate codes, the systematic representation can also be writ-
ten as .In G/, but G in not necessarily invertible). It also corresponds to a code
C 0 D ¹.b;

Ln
iD1 bivi /I b 2 Fn2 º giving a bijection F .

Now, Œ2n; n; ı� binary linear codes have been well studied. They are also
referred to as 1=2-rate codes in the literature. Their greatest minimal distance
ımax.n/ is known for all lengths 2n up to 36 (see the BKLC function of Magma
[41]). From the condition ı > d , we deduce that the best achievable d using a
linear bijection F is ımax.n/ � 1. Consequently, d � n, and this bound is met
if and only if C is maximum distance separable (MDS), which is equivalent to
saying that F is a multipermutation [42]. However, binary MDS codes exist only
if the code dimension is equal to 0, 1, the code length or the code length minus 1.
Thus, they do not exist if n > 1, hence the bound d � n � 1.

The greatest minimal distance ımax.n/ of rate 1=2 binary linear codes is known
(see, e.g., [17]); corresponding codes are called “optimal”. For some practical
values of n, they are recalled in Table 1. For instance, when n D 4, the optimal
code is the Hamming code Œ8; 4; 4�, and when n D 8, the optimal code is Œ16; 8; 5�,
a subcode of the BCH (Bose–Chaudhuri–Hocquenghem) code Œ17; 9; 5�.

In particular, this result proves that with linear F , it is possible to protect2

� DES against all zero-offset HO-CPA of order d � 3, and

� AES against all zero-offset HO-CPA of order d � 4.

2 The block cipher MISTY1 is special in that it has in its design both substitution boxes of input
size 7 and 9 bits; hence, at minima, it protects against all zero-offset HO-CPA attacks of order
d � min¹4; 6º D 4, i.e. as good as the weakest substitution box.
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Sboxes of
Algorithm [19]

DES,
CAST-128,

HIGHT

n/a n/a MISTY1 AES,
Camellia,

SEED

MISTY1

Value of n 4 5 6 7 8 9

Value of 2n 8 10 12 14 16 18

Value of ımax.n/ 4 4 4 4 5 6

Table 1. Minimal distance of some binary optimal linear rate 1=2 codes.

Indeed, there exist optimal linear codes that also enjoy the CIS property; as men-
tioned in [9], this notion is not trivial, since for instance there exists a Œ34; 17; 8�
code which is not CIS. Now, for n D 4, the matrix G D G30 is shown to be in-
vertible in (5.4) (notice that I4

�1
D I4). For n D 8, the matrix G D B4 is shown

to be invertible in Appendix B.
For n D 4, the bound d � n� 1 is met, but not for n D 8, since the best d D 4

is at distance 3 from n � 1 D 7.
We recall that the leakage squeezing (hence the announced security) applies to

the leakage model given in (2.1) that corresponds to the leakage of the state regis-
ter. The rest of the algorithm consists in the round logic that shall be implemented
in such a way it does not leak sensitive information. In this article, we suggest to
tabulate the round logic (as for instance explained in [13] for AES). By chance, it
happens that this strategy leads to efficient implementations in FPGAs. On ASICs,
the use of memories in lieu of combinational logic is more costly but definitely se-
cure against glitches (that are known to reduce the security order [25]).

We note that C 0 is a permuted code of the dual C? of C , obtained by swapping
the leftmost half of the codewords (i.e. b) with the rightmost half (i.e.

Ln
iD1 bivi ).

Indeed, C and C 0 have the same dimension n, hence C? and C 0 have the same
dimension n, and the scalar product between .

Ln
iD1 bivi ; b/ and .x; F.x// is

equal to � nM
iD1

bivi

�
� x ˚ b � F.x/ D b � F.x/˚ b � F.x/ D 0:

Thus, finding the largest dual distance of C is equivalent to finding the largest
minimal distance of C 0.

Incidentally, when no bijection is used (as, e.g., for the genuine masking [45]),
F is the identity (hence a linear function) and C 0 is the repetition code. This code
is autodual (C 0? D C 0) and furthermore C D C 0, because the generating matrix
.In In/ is invariant under left-right halves exchange. Its minimal distance is ı D 2,
and thus the maximal resistance order is d D 2 � 1 D 1, as expected.
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Now, the minimal order d for leakage squeezing with CIS codes (linear or not)
is ı D 2. Indeed the distance between two different codewords .x; F.x// and
.y; F.y// is HW.x˚ y/CHW.F.x/˚F.y// � 1C 1 D 2, because the code has
two complementary information sets. As a consequence, the minimal order d for
CIS codes is ımin � 2. As it is equal to 2 for the identity, the protection order is
exactly at least 1. This worst case for the security is thus attained when the leakage
squeezing is not used, which positively motivates for its usage.

4.3 Optimal non-linear bijections

We recall that the bijection F can be chosen non-linear when the leakage model
in Hamming distance involves two independent masks M and M 0 (second sce-
nario of Section 2.4). Under some circumstances, a non-linear bijection F allows
to reach better performances. There is no non-linear code for n D 4 that has a
better dual distance than linear codes of the same length and size, but there are
some for n D 8. A non-linear optimal code for n D 8 is the Nordstrom–Robinson
.16; 256; 6/ code (that is also CIS, as discussed in details in [9, Example III.4]).
With these parameters, this code coincides with Preparata and Kerdock codes
[38] and has same minimum distance and dual distance (namely d D d? D 6).
Some codewords, as obtained from Golay code in standard form [15], are listed in
Table 2.

It happens that the code cannot be trivially split into two halves that each fill
exactly Fn2 . Indeed, if the codewords are partitioned with bits J15; 8K on the one
hand, and bits J7; 0K on the other, then

� .11111111/2 (also denoted by 0xff in the sequel) is present (at least) twice
in the first half (from the high byte of codewords x D 3 and x D 7), and

� .00000000/2 (also denoted by 0x00 in the sequel) is present (at least) twice
in the second half (from the low byte of codewords x D 0 and x D 7).

We tested all the
�
16
8

�
partitionings. For 2760 of them, the code can be cut into two

bijections Fhigh and Flow of F82 . This means that if x 2 F82 denotes the codewords’
index in Table 2, the Nordstrom–Robinson .16; 256; 6/ code can be written as
Fhigh.x/ kFlow.x/. The codewords can be reordered according to the first column,
so that the code can be rewritten as x k Flow.F

�1
high.x//; see [9]. So the bijection

F can be chosen equal to Flow ı F
�1
high. For example, when Fhigh consists in bits

J15; 9K [ ¹7º of the code (and Flow in bits ¹8º [ J6; 0K), F takes the values tab-
ulated in Appendix C. Thus byte-oriented cryptographic implementations can be
protected with this code against all zero-offset HO-CPA of order d � 5.
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Bit index 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x D 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
x D 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
x D 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
x D 4 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
x D 5 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x D 6 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
x D 7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
x D 8 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

x D 254 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 1
x D 255 0 1 0 0 0 0 1 0 0 1 1 1 0 0 0 1

Table 2. Some codewords of the Nordstrom–Robinson .16; 256; 6/ code.

4.4 Optimality in terms of cost of the leakage squeezing

The leakage squeezing CM can be generalized to any injective .n;m/-function F ,
where m � n. The corresponding hardware architecture is depicted in Figure 3.
For instance, the first-order leakage-free CM presented in [24] also uses a mask
size greater than that of the sensitive variable to protect.

In terms of codes, relaxing F from a bijection to an injection means that codes
of rates smaller than 1=2 are also eligible. For linear codes (i.e. linearF functions),
this is tantamount to saying that there exists an information set I such that the
restriction of the code to the complement of I is of same dimension as the code.

Unfortunately, this strategy does not bring any improvement. Indeed, codes
¹.x; F.x//I x 2 Fn2 º � FnCm2 can have a greater minimal distance when m in-
creases (for instance by padding the code with new columns), but in the meantime
their dual distance decreases. Consequently the cost of the CM increases with m,
while the security of the masking scheme decreases.

The best situation is thus to havemminimal, i.e.m D n. The leakage squeezing
CM initially presented (in Figure 2) is thus optimal.

5 Security and leakage evaluations of the optimal linear and
non-linear bijections

As argued in [39], the robustness evaluation of a CM encompasses two dimen-
sions: its resistance to specific attacks, and its amount of leakage irrespective of
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Figure 3. Generalization of the leakage squeezing countermeasure to any injective
function n! m.

any attack strategy. Indeed, a CM could resist some attacks, but still be vulnerable
to others. For instance, in our study, we have focused on zero-offset HO-CPA, but
we have disregarded other attacks, such as mutual information analysis (MIA [1])
or attacks based on generic side-channel distinguishers [44]. Therefore, in addi-
tion to a security evaluation conducted in Section 5.1, we will also estimate the
leakage of the CM in Section 5.2.

5.1 Verification of the security for n D 8

In this section, we illustrate the efficiency of the identified bijection from a zero-
offset HO-CPA point of view. We focus more specifically on the n D 8 bit case,
because of its applicability to AES. We compute the values of fopt.z/ for the cen-
tered leakage raised at power 1 � d � 6 for four linear bijections (denoted by
F1, F2, F3 and F4) and the non-linear bijection given in Section 4.3 (denoted by
F5). The linear functions are defined from their matrix:

� G1 is the identity I8, i.e. the Boolean masking function without F ;

� G2 is a matrix that allows second-order resistance and is found without
method;

� G3 is the circulant matrix involved in the AES block cipher;

� G4 is non-systematic half of the Œ16; 8; 5� code matrix (see Appendix B).
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The G2, G3 and G4 matrices are:

G2 D

0BBBBBBBBBBBB@

0 0 0 0 0 1 1 1

0 0 0 1 1 0 1 1

1 0 1 0 0 0 1 1

0 0 1 1 1 0 0 0

1 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1

1 0 1 0 1 1 0 0

0 1 0 1 0 1 1 0

1CCCCCCCCCCCCA
; G3 D

0BBBBBBBBBBBB@

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

1CCCCCCCCCCCCA
;

G4 D

0BBBBBBBBBBBB@

1 0 0 1 1 1 1 0

0 1 0 0 1 1 1 1

1 1 0 0 1 1 0 0

0 1 1 0 0 1 1 0

0 0 1 1 0 0 1 1

1 1 1 1 0 0 1 0

0 1 1 1 1 0 0 1

1 1 0 1 0 1 1 1

1CCCCCCCCCCCCA
:

It can be checked that they are invertible. Namely, their inverses are

G2�1 D

0BBBBBBBBBBBB@

0 1 1 1 0 0 0 0

1 1 1 0 0 1 0 0

1 0 0 1 1 1 0 0

0 0 1 0 1 1 1 0

1 0 1 0 0 0 1 0

0 1 0 0 1 1 0 0

1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

1CCCCCCCCCCCCA
; G3�1 D

0BBBBBBBBBBBB@

0 0 1 0 0 1 0 1

1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1

1 0 1 0 0 1 0 0

0 1 0 1 0 0 1 0

0 0 1 0 1 0 0 1

1 0 0 1 0 1 0 0

0 1 0 0 1 0 1 0

1CCCCCCCCCCCCA
;

G4�1 D

0BBBBBBBBBBBB@

1 1 1 0 1 0 1 1

1 0 0 1 1 1 1 0

0 1 0 0 1 1 1 1

1 1 0 0 1 1 0 0

0 1 1 0 0 1 1 0

0 0 1 1 0 0 1 1

1 1 1 1 0 0 1 0

0 1 1 1 1 0 0 1

1CCCCCCCCCCCCA
:
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Table 4, in Appendix D, reports some values of the optimal functions. The lines
represented in gray are those for which the fopt.z/ are the same for all the values
of the sensitive variable z 2 Fn2 . For the sake of clarity, we represent only nC 1
values of z, i.e. one per value of HW.z/. But we are aware that unlike in the case
where F D Id, the optimal functions are not invariant in the bits reordering of x.
If the line d is represented in gray, then a d th order zero-offset HO-CPA cannot
succeed. The table shows that amongst the linear functions, F4 W x 7! G4 � x is
indeed the best, since it protects against zero-offset HO-CPA of orders 1, 2, 3 and
4. It can also be seen that the non-linear function F5 further protects against 5th
order zero-offset HO-CPA, as announced in Section 4.3.

5.2 Verification of the leakage of the identified bijections

As a complement to the security analysis carried out in Section 5.1, the leakage of
the CM using the bijections F1, F2, F3, F4 and F5 is computed. It consists in
the mutual information metric (MIM), defined as

IŒHW.Z ˚M 00/C HW.F.M/˚ F.M ˚M 00// � nCN IZ�:

The random variable N is an additive noise that follows a normal law of variance
�2. The result of the MIM computation is shown in Figure 4. In the ordinate, the
smaller the MIM, the more secure the CM. Now, there are at least two ways to
interpret the abscissa:

(i) In terms of attacker budget: an attacker who is able to develop advanced
denoising filters and who can buy accurate side-channel probes will be placed
in the low noise areas (i.e. at the left-hand side of the graph).

(ii) In terms of defender budget: the designer can integrate more logic so as to
increase the algorithmic noise, or he can even add artificial noise sources
[18]; but the more noise the designer wishes to inject in a view to obscure the
leakage (i.e. at the right-hand side of the graph), the more area and power are
required.

It appears that the leakage agrees with the strength of the CM against HO-CPA:
the greater the order of resistance against HO-CPA, the smaller the mutual infor-
mation, at least for a reasonably large noise � � 1. This simulated characterization
validates (in the particular scheme of Figure 2) the relevance of choosing F based
on a HO-CPA criterion. The explanation for this observation is given in [22, §2.3].
Basically, the idea is that in the MIM expression, the mutual information can be
decomposed as a Taylor series in the cumulants of the conditional leakage that are
equal to zero if and only if an HO-CPA does not succeed.
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Figure 4. Mutual information of the leakage with the sensitive variable Z for n D
8 bit.

Furthermore, Figure 4 represents the leakage of a similar CM, where more
than two shares would be used. More precisely, the shares would be the triple
.x ˚ m1 ˚ m2; m1; m2/, where the independent masks mi are not transformed
by bijections. This CM is obviously more costly than our proposal of keeping
one single mask, but passed through F . We notice that all the proposed bijections
(suboptimal F2 and F3, optimal linear F4 and optimal non-linear F5) perform
better, in that they leak less irrespective of � . Therefore, in the context of the
Hamming distance leakage model, the leakage squeezing is proven to have both a
smaller implementation and a smaller leakage than the d th-order masking scheme
that makes use of d distinct shares.

5.3 Results in imperfect models

Masking schemes randomize more or less properly the leakage. In the straight-
forward example studied in this paper (equation (2.1) with F D Id), when the
sensitive variable z has all its bits equal to ‘1’ (i.e. Z D 0xff), then the mask has
no effect whatsoever on the leakage. Indeed, this is due to a well-known property
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of the Hamming weight function:

HW.0xff˚M 00/C HW.M 00/ D HW.M 00/C HW.M 00/ D n

for all M 00 2 Fn2 . To avoid this situation, the proposed CM based on the bijection
F consists in tuning the leakage, so that the masks indeed dispatch randomly the
leakage for most (if not all [24]) values of the sensitive data. The working factor
of this improvement is the introduction of a specially crafted Boolean function F
aiming at weakening the link between the data to protect and the leakage function.

This technique has been shown to be very effective in the previous sections.
Now, the analysis assumes a perfect leakage model. But the Hamming distance
leakage model is in practice an idealization of the reality. Indeed, the assump-
tion that all the bits leak identically, and without interfering, does not hold in real
hardware [43]. Also, it has been shown that with specific side-channel capturing
systems the attacker can distort the measurement. For instance, in [30], Peeters,
Standaert and Quisquater show that with a home-made magnetic coil probing the
circuit at a crucial location, the rising edges can be forced to dissipate 17% more
than the falling edges.

Therefore, we study how the CM is resilient to imperfections of the leakage
model. To do so, we define a general model that depends on random variables.
The variability is quantified in units of the side-channel dissipation of a bit-flip.
The model is affected by small imperfections (due to process variation, or small
cross-coupling) when the variability is about 10%. We also consider the 20%
case, that would reflect a distortion of the leakage due to measurements in weird
conditions. Eventually, the cases of a 50% and of a 100% deviation indicate that
the designer has few or no a priori knowledge about the device leakage’s model.

More precisely, the leakage model is written as a multivariate polynomial in
RŒX1; : : : ; Xn; X 01; : : : ; X

0
n� of degree less than or equal to � 2 J1; 2nK, where

X D .Xi2J1;nK/ andX 0 D .X 0
i2J1;nK/ are the initial and final values of the sensitive

variable. It takes the form

L
:
D P.X1; : : : ; Xn; X

0
1; : : : ; X

0
n/ D

X
.u;v/2Fn

2�Fn
2 ;

HW.u/CHW.v/��

A.u;v/ �

nY
iD1

X
ui

i X
0vi

i ; (5.1)

where the A.u;v/ are real coefficients. This leakage formulation is similar to that
of the high-order stochastic model [34]. For example, it is shown in [31, (3)]
that P.X1; : : : ; Xn; X 01; : : : ; X

0
n/ is equal to HW.X ˚ X 0/ when the coefficients
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A.u;v/
:
D aHD

.u;v/
satisfy

aHD
.u;v/ D

8̂<̂
:
C1 if HW.u/C HW.v/ D 1,
�2 if HW.u/ D 1 and v D u,
0 otherwise.

(5.2)

This property is derived from the equality

HW.X ˚X 0/ D HW.X/C HW.X 0/ � 2HW.X ^X 0/:

In the following experiments, we compute the mutual information between L and
Z D X ˚X 0 when � � 1; 2; 3 and when the coefficients A.u;v/ deviate randomly
from those of (5.2) or are completely random (i.e. deviate from a NULL model).
More precisely, the coefficients A.u;v/ are respectively drawn at random from one
of these laws:

AHD
.u;v/ � a

HD
.u;v/ CU

�h
�
ı

2
;C
ı

2

i�
; ANULL

.u;v/ � 0CU
�h
�
ı

2
;C
ı

2

i�
: (5.3)

The randomness lays in the uniform law U.Œ� ı
2
;C ı

2
�/ that we parametrize by the

deviation ı 2 ¹0:1; 0:2; 0:5; 1:0º. The exact choice of the random law is actually
irrelevant for our simulations; rather, the variance of the law (ı2=12 in our case3)
is interesting as it quantifies the amount of imperfection. The mutual informa-
tion IŒLIZ� is computed ten times for ten different randomized models. Four bit
variables (case useful for DES) are considered because the computation time for
the MI would have been too long for n D 8. The study is conducted on three
bijections:

F10: the identity (Id) that acts as a reference,

F20: one bijection that cancels the first-order leakage but not the second-order,

F30: another bijection that cancels both first- and second-orders.

They are linear, that is, we can write F i 0.x/ D Gi 0 � x, where the generating

3 The variance of a uniform law of amplitude ı is indeed equal to Var.U.Œ�ı=2;Cı=2�// D
1
ı

RCı=2
�ı=2

.u � 0/2 du D
�
u3

3ı

�uDCı=2
uD�ı=2

D
ı2

12 .
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matrices Gi 0 are

G10 D I4 D

0BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1CCCA ; G20 D

0BBB@
0 0 1 1

0 1 0 1

1 1 1 0

1 0 0 1

1CCCA ;

G30 D I4 D

0BBB@
0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

1CCCA :
(5.4)

In this section, we use bijections F i 0 from F42 to F42 (written with a prime)
to mark the difference with the bijections F i W F82 ! F82 that were studied in
Section 5.1 and 5.2.

The results are plotted in Tables 5, 6 and 7 for the randomized HD model and
in Tables 8, 9 and 10 for the randomized NULL model. In all those tables, the left
columns show the leakage of the proposed countermeasure (leakage squeezing),
whereas the right columns show the leakage of the leak-free countermeasure (see
[25]). Notice that the smaller the mutual information, the better the countermea-
sure. The curves are represented for a noise standard deviation � living in the
interval Œ0; 5�. We insist that the comparison between the different curves shall
only be done when the noise is larger than the leakage of one sensitive bit, i.e.
for � � 1. This recommendation also applies to the interpretation of Figure 4.
Indeed, a noise that is too low is not realistic in practice. Furthermore, if it was
indeed technologically feasible to record measurements with low � , the attacker
would not compute statistics on the conditional distributions of the leakage (as in
this paper). Instead, she would directly analyze the distributions, and for example,
spot the apparition of particular values. One simple example can better explicit
this point. Assume a sensitive bit X 2 Fn2 is masked with a uniformly distributed
mask M 2 F2. In the absence of noise, the leakage is L D HW.X ˚M;M/.

� When X D 0, L takes two values, namely 0 and 2, with probability 1
2

;

� when X D 1, L is deterministic, actually always equal to 1.

So, it is trivial for an attacker to discover the value x ofX by a single measurement
of l of L; the deduction is the following: if l D 0 or l D 2, then x D 0, otherwise
x D 1. In terms of information theory, this means that the mutual information
betweenL andX is maximal, i.e. equal to HŒX� D 1 bit. Of course, in the presence
of noise, it becomes more chancy to distinguish singularities in distributions based
on a single leakage value; indeed, there is little information to be recovered on x
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when l D 1=2 or l D 3=4. Thus, the attacker would rather compute statistics. The
means of L j X D 0 and L j X D 1 are the same, but not their variance. From
this point we see that the attack criteria defined in Section 3 makes sense.

In Tables 5, 6 and 7, it can be seen that despite the HD model degradation, the
leakage of the CM remains

� ordered (F30 leaks less than F20, and F20 in turn leaks less than F10), as
well as

� low, irrespective of ı.

The average leakage is unchanged, and the leakage values are simply getting
slightly scattered. In particular, this means that if the leakage model is not the
Hamming weight but a linear combination of the shares’ bits, then the leakage
squeezing continues to improve the security at its specified order. The reason for
this resilience comes from the rationale of the leakage squeezing CM: the masked
value and the mask are decorrelated as much as possible. The dispatching is guided
by a randomized pigeon-hole of the values in the image of the leakage function.
The CM thus looses efficiency only in the case where two different values of leak-
age become similar due to the imperfection. This can happen for some variables,
but it is very unlikely that it occurs coherently for all variables at the same time.
Rather, given the way the imperfect model is built (see (5.3)), it is almost as likely
that two classes get nearer or further away. This explains why, in average, the
leakage is not affected: the model noise acts as a random walk that has an impact
on the variance but not on the average. Of course, some samples (with a degraded
model) will be weaker than the others (because the variance of the MIA increases
with the variance ı2=12 of the model).

It is interesting to contrast the leakage squeezing with the first-order leak-free
CM presented in [24]. This CM aims at leaking no information when the HD
leakage model is perfect. A study for model imperfection has also been conducted
(see the right column of Tables 5, 6 and 7). It appears that this CM is much less
robust to deviations from the ideal model. Indeed, the working factor of the CM is
to have one share that leaks nothing. But as soon as there is some imperfection, the
very principle of the CM is violated, and it starts to function less well. Concretely
the leaked information increases with the model variance, up to a point where the
CM is less efficient than the straightforward first-order Boolean masking (starting
from ı > 50%).

For the sake of comparison, we also computed the same curves when the un-
noised model is a constant one (called NULL model in (5.3)). The simulation re-
sults are shown in Tables 8, 9 and 10. The reference leakage (when ı D 0) is null;
consequently only the noisy curves are shown. It is noticeable that despite this
NULL leakage model is random, the different CMs have clearly distinguishable
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efficiencies. This had already been noticed by Doget et al. in [12]. In particular,
it appears that our CM (the leakage squeezing) continues to work (F3 leaks less
than F2, and F2 in turn leaks less than F1), at least for large enough noise stan-
dard deviations � . At the opposite, the leak-free CM is not resilient to this random
model: it leaks more than the straightforward masking (i.e. with F1).

Eventually, the impact of the leakage degree � can be studied. Results are com-
puted for � � �max, with �max 2 ¹1; 2; 3º. In all the cases, � does not impact the
general conclusions.

Regarding the deviation from the HD model, the greater the multivariate degree
� , the more possible deviations from the genuine ideal model. Indeed, the number
of random terms in (5.1) is increasing with � (and is equal to

P�
tD0

�
2n
t

�
). This

explains the greatest variability in the mutual information results. In the meantime,
the argumentation for the robustness of the CM against the model deviation still
holds, which explains why the average leakage is roughly unchanged. Nonethe-
less, as the order � of the imperfection increases, some combinations are already
done within the leakage model before any attack. This explains why the slope of
the mutual information versus noise standard deviation � becomes slightly less
steep when � is higher. In the NULL model, the greater � , the less singularities
in the leakage. This explains why the mutual information curves get smoother
despite the additional noise. But with the greater � , the more leaking sources (be-
cause the more non-zero terms in the polynomial), which explains why the leaked
mutual information increases in average with � .

6 Conclusions

Masking is a CM against side-channel attacks that consists in injecting some ran-
domness in the execution of a computation. The sensitive value is split in several
shares; altogether, they allow to reconstruct the sensitive data by an adequate com-
bination [16]. In this article, we focus on a first-order Boolean masking CM that
uses two shares, computed concomitantly. Zero-offset HO-CPA attacks can defeat
this CM. They consist in computing a correlation with the centered side-channel
traces, raised at the power d 2 N?. We show that when we know that the de-
vice leaks in Hamming distance, the highest order d of a successful zero-offset
attack can be increased significantly thanks to the “leakage squeezing”. Its princi-
ple is to store F.m/ (the image of m by a bijection F ) instead of m in the mask
register. Typically, when the data to protect are bytes, the state-of-the-art imple-
mentations with one mask could be attacked with HO-CPA of order d D 2. We
show how to find an optimal linear F that protects against zero-offset HO-CPA
of orders 1, 2, 3 and 4. We also show that optimal non-linear functions F pro-
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h D 0 h D 1 h D 2 h D 3 h D 4

p D 0 16 0 0 0 0

p D 1 32 �8 0 0 0

p D 2 80 �32 8 0 0

p D 3 224 �116 48 �12 0

p D 4 680 �416 224 �96 24�

::: > 0 < 0 > 0 < 0 > 0

Table 3. Some values of H.n D 4; p; h/.

tect against zero-offset HO-CPA of orders 1, 2, 3, 4 and 5. The implementations
that can benefit from the protection conveyed by such non-linear bijection F are
those for which the masks used at each clock cycle are independent and uniformly
distributed. This security increase also translates into a leakage reduction. An
information-theoretic study reveals that the mutual information between the leak-
age and the sensitive variable is lower than the same metric computed on a similar
CM without F but that uses two masks (instead of one).

A Proof of Theorem 3.1

A.1 First intermediate result for the proof of Theorem 3.1

Theorem A.1. For all a 2 Fn2 and p 2 N,

bHWp.a/ D 0 ” HW.a/ > p:

For n 2 N?, p 2 N and h 2 J0; nK, let us define the function

H.n; p; h/
:
D

X
z2Fn

2

HWp.z/.�1/z�
Lh

iD1 ei :

It is tabulated for n D 4 in Table 3. The value H.n; n; n/, indicated by the dagger
symbol � in the table, is equal to .�1/nnŠ.

As the order of the bits of the dummy variable z is indifferent in the termP
z HWp.z/.�1/a�z , we have bHWp.a/ D H.n; p;HW.a//.

Lemma A.2.

H.n; p; n/

8̂<̂
:
D 0 if p < n,
> 0 if p � n and n is even,
< 0 if p � n and n is odd.
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Proof. We have

H.n; p; n/ D
X
z

HWp.z/.�1/z�
Ln

iD1 ei D

X
z

HWp.z/.�1/HW.z/

D

nX
jD0

 
n

j

!
jp.�1/j D .�1/n

nX
jD0

 
n

j

!
jp.�1/n�j

D .�1/nnŠ

´
p

n

µ
;

where
®
p
n

¯
is a Stirling number of the second kind [37]. More precisely, it is

the number of ways of partitioning a set of p elements into n non-empty sets.
Consequently,

®
p
n

¯
D 0 if n > p, because otherwise at least one set would be

empty. Also,
®
p
n

¯
> 0 if n � p. Now, the sign of H.n; p; n/ depends on the

parity of n if n � p. It is positive (resp. negative) if n is even (resp. odd).

Lemma A.3.

H.n; p; h/

8̂<̂
:
D 0 if p < h,
> 0 if p � h and h is even,
< 0 if p � h and h is odd.

Proof. This lemma has already been proved in Lemma A.2 if h D n. Thus, we
assume in the remainder of this proof that h < n. For z 2 Fn2 , we write z D
.zL; zH /, where zL 2 Fh2 and zH 2 Fn�h2 . Then

H.n; p; h/ D
X

.zL;zH /

HWp..zL; 0/˚ .0; zH //.�1/
.zL�

Lh
iD1 ei /˚.zH �0/

D

X
.zL;zH /

.HW.zL/C HW.zH //
p.�1/zL�

Lh
iD1 ei

D

X
.zL;zH /

pX
jD0

 
p

j

!
� HWj .zL/ � HWp�j .zH /.�1/

zL�
Lh

iD1 ei

D

pX
jD0

 
p

j

!X
zL

HWj .zL/.�1/
zL�

Lh
iD1 ei �

X
zH

HWp�j .zH /

D

pX
jD0

 
p

j

!
�H.h; j; h/ �H.n � h; p � j; 0/: (A.1)
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Now, given Lemma A.2, we have H.h; j; h/ D 0 for all j < h. Thus, if p < h,
then all the terms H.h; j; h/ involved in (A.1) are null, since j 2 J0; pK is strictly
inferior to h.

Besides, for all j 2 J0; pK,
�
p
j

�
and H.n � h; p � j; 0/ are strictly positive. If

p � h, the terms H.h; j; h/ for j � p are

� either all strictly positive if h is even,

� or all strictly negative if h is odd.

Hence, so is the sum in (A.1).

Proof of Theorem A.1. As already noticed, bHWp.a/ D H.n; p;HW.a//. Accord-
ing to Lemma A.3, this quantity is null if and only if p < HW.a/.

A.2 Second intermediate result for the proof of Theorem 3.1

For every X 2 Fn2 , we have

� nX
iD1

.�1/X �ei

�j
D

X
i1;:::;ij2J1;nKj

jY
lD1

.�1/X �eil

D

X
i1;:::;ij2J1;nKj

.�1/X �
Lj

lD1
eil

D

X
.k1;:::;kn/2Nn;
k1C���CknDj

 
j

k1; : : : ; kn

!
.�1/X �.

Ln
iD1 kiei /; (A.2)

where each vector kiei in
Ln
iD1 kiei is either ei if ki is odd or 0 otherwise. The

term
� j
k1;:::;kn

�
is a multinomial coefficient. Actually, under the form in the second

line of (A.2) some terms appear multiple times.
Then, we haveX

z;m

HWq.F.m/˚ F.m˚ z//.�1/a�z

D
1

2q

X
z;m

�
n �

nX
iD1

.�1/Fi .m/˚Fi .m˚z/
�q
.�1/a�z

D
1

2q

X
z;m

qX
jD0

 
q

j

!
nq�j .�1/j

� nX
iD1

.�1/Fi .m/˚Fi .m˚z/
�j
.�1/a�z
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D
1

2q

qX
jD0

 
q

j

!
nq�j .�1/j

X
k1C���CknDj

 
j

k1; : : : ; kn

!

�

X
z;m

.�1/.F .m/˚F.m˚z//�.
Ln

iD1 kiei /.�1/a�z

D
1

2q

qX
jD0

 
q

j

!
nq�j .�1/j

�

X
k1C���CknDj

 
j

k1; : : : ; kn

!�8�� nM
iD1

kiei

�
�F
�
�
.a/

�2
: (A.3)

See (A.2) for the third line of (A.3).

A.3 Complete proof of Theorem 3.1

As requested by Theorem 3.1, we introduce two positive integers P and Q, and a
bijection F of Fn2 . With a reasoning close to that of (3.4) for the case p D q D 1,
we get the following equivalences for all p 2 J0; P K, q 2 J0;QK and a 2 Fn2

?:

the function fopt defined in (3.2) is constant

” bHWp.a/ D 0 or 1EŒHWq
ıD.�/F.M/�.a/ D 0

” either HW.a/ > p (see Theorem A.1) or (A.3) of Section A.2 is zero

” HW.a/ � p H) equation (A.3) is zero

” HW.a/ � p H)

8̂̂̂̂
<̂
ˆ̂̂:
8b;HW.b/ � 1 H) 2.b � F /�.a/ D 0 if q D 1,

8b;HW.b/ � 2 H) 2.b � F /�.a/ D 0 if q D 2,
:::

8b;HW.b/ � Q H) 2.b � F /�.a/ D 0 if q D Q.

We provide an explanation for the last part. The terms of (A.3) corresponding to
a given j are squares (weighted by quantities of the same sign). Thus, if those
terms for j < q are null, then the ones for j D q must also be null, because the
complete sum (of squares) is null by hypothesis.
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B Optimal linear solution for n D 8

As shown in Section 4.2, the optimal linear function in the case n D 8 is generated
by the non-identity half of the systematic matrix of Œ16; 8; 5� code. This matrix is40BBBBBBBBBBBB@

1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0

0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0

0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 0

0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 0

0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 0

0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0

0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0

0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1

1CCCCCCCCCCCCA

L1

L2

L3

L4

L5

L6

L7

L8:

It is already in row echelon form. Therefore, it can be turned into systematic form
with a Gauss–Jordan elimination. It involves the following linear operations on
the rows:

L01  L1 ˚ L2 ˚ L4 ˚ L7

L02  L2 ˚ L3 ˚ L5 ˚ L8

L03  L3 ˚ L4 ˚ L6

L04  L4 ˚ L5 ˚ L7

L05  L5 ˚ L6 ˚ L8

L06  L6 ˚ L7

L07  L7 ˚ L8

L08  L8

whose execution yields0BBBBBBBBBBBB@

1 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0

0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1

0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0

0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0

0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 0

0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1

1CCCCCCCCCCCCA

L01 D 0x80 k 0x9e
L02 D 0x40 k 0x4f
L03 D 0x20 k 0xcc
L04 D 0x10 k 0x66
L05 D 0x08 k 0x33
L06 D 0x04 k 0xf2
L07 D 0x02 k 0x79
L08 D 0x01 k 0xd7

4 As already mentioned in Section 4.2, this code is a subcode of the BCH Œ17; 9; 5� code. For
more details, we refer to www.math.colostate.edu/~betten/research/codes/BOUNDS/
sub_16_8_5-7_2.code.

www.math.colostate.edu/~betten/research/codes/BOUNDS/sub_16_8_5-7_2.code
www.math.colostate.edu/~betten/research/codes/BOUNDS/sub_16_8_5-7_2.code
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having the expected form .I8 B4/. The bijection F4 W x 7! B4� x is the optimal
linear bijection for n D 8.

C Optimal non-linear solution for n D 8

The function F5, whose construction is given in Section 4.3, takes the values®
F.x/I x 2 F82

¯
D

®
0x00; 0xb3; 0xe5; 0x6a; 0x2f; 0xc6; 0x5c; 0x89;
0x79; 0xac; 0x36; 0xdf; 0x9a; 0x15; 0x43; 0xf0;
0xcb; 0x1e; 0xb8; 0x51; 0x72; 0xfd; 0x97; 0x24;
0xd4; 0x67; 0x0d; 0x82; 0xa1; 0x48; 0xee; 0x3b;
0x9d; 0x74; 0xd2; 0x07; 0xe8; 0x5b; 0x31; 0xbe;
0x4e; 0xc1; 0xab; 0x18; 0xf7; 0x22; 0x84; 0x6d;
0xa6; 0x29; 0x7f; 0xcc; 0x45; 0x90; 0x0a; 0xe3;
0x13; 0xfa; 0x60; 0xb5; 0x3c; 0x8f; 0xd9; 0x56;
0x57; 0xd8; 0x8e; 0x3d; 0xb4; 0x61; 0xfb; 0x12;
0xe2; 0x0b; 0x91; 0x44; 0xcd; 0x7e; 0x28; 0xa7;
0x6c; 0x85; 0x23; 0xf6; 0x19; 0xaa; 0xc0; 0x4f;
0xbf; 0x30; 0x5a; 0xe9; 0x06; 0xd3; 0x75; 0x9c;
0x3a; 0xef; 0x49; 0xa0; 0x83; 0x0c; 0x66; 0xd5;
0x25; 0x96; 0xfc; 0x73; 0x50; 0xb9; 0x1f; 0xca;
0xf1; 0x42; 0x14; 0x9b; 0xde; 0x37; 0xad; 0x78;
0x88; 0x5d; 0xc7; 0x2e; 0x6b; 0xe4; 0xb2; 0x01;
0xfe; 0x4d; 0x1b; 0x94; 0xd1; 0x38; 0xa2; 0x77;
0x87; 0x52; 0xc8; 0x21; 0x64; 0xeb; 0xbd; 0x0e;
0x35; 0xe0; 0x46; 0xaf; 0x8c; 0x03; 0x69; 0xda;
0x2a; 0x99; 0xf3; 0x7c; 0x5f; 0xb6; 0x10; 0xc5;
0x63; 0x8a; 0x2c; 0xf9; 0x16; 0xa5; 0xcf; 0x40;
0xb0; 0x3f; 0x55; 0xe6; 0x09; 0xdc; 0x7a; 0x93;
0x58; 0xd7; 0x81; 0x32; 0xbb; 0x6e; 0xf4; 0x1d;
0xed; 0x04; 0x9e; 0x4b; 0xc2; 0x71; 0x27; 0xa8;
0xa9; 0x26; 0x70; 0xc3; 0x4a; 0x9f; 0x05; 0xec;
0x1c; 0xf5; 0x6f; 0xba; 0x33; 0x80; 0xd6; 0x59;
0x92; 0x7b; 0xdd; 0x08; 0xe7; 0x54; 0x3e; 0xb1;
0x41; 0xce; 0xa4; 0x17; 0xf8; 0x2d; 0x8b; 0x62;
0xc4; 0x11; 0xb7; 0x5e; 0x7d; 0xf2; 0x98; 0x2b;
0xdb; 0x68; 0x02; 0x8d; 0xae; 0x47; 0xe1; 0x34;
0x0f; 0xbc; 0xea; 0x65; 0x20; 0xc9; 0x53; 0x86;
0x76; 0xa3; 0x39; 0xd0; 0x95; 0x1a; 0x4c; 0xff

¯
:
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D Computation of the optimal function z 7! fopt.z/ for some
bijections F

Some fopt.z/ have been computed in Table 4 for centered traces raised at power
d 2 J1; 6K, for some representative bijections, including the optimal linear (F4)
and non-linear (F5) ones. The last column shows the optimal correlation coeffi-
cient �opt that an attacker can expect (see the definition in [31, (15)]). It can be
seen that the first non-zero �opt approximately decreases with the CM strength: it
is about 25% for F1, about 4% for F2 and F3, and about 2% for F4 and F5.

E Information leakage in the imperfect model

The information leakage plots are plotted in Tables 5, 6 and 7 for the randomized
HD model and in Tables 8, 9 and 10 for the randomized NULL model.
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z 0x00 0x01 0x03 0x07 0x0f 0x1f 0x3f 0x7f 0xff

Bijection F D F1 (reference F1 W x 7! I8 � x D x)

d D 1 0 0 0 0 0 0 0 0 0 0:000000

d D 2 8 7 6 5 4 3 2 1 0 0:258199

d D 3 0 0 0 0 0 0 0 0 0 0:000000

d D 4 176 133 96 65 40 21 8 1 0 0:235341

d D 5 0 0 0 0 0 0 0 0 0 0:000000

d D 6 5888 3787 2256 1205 544 183 32 1 0 0:197908

Bijection F D F2 (linear F2 W x 7! G2 � x)

d D 1 0 0 0 0 0 0 0 0 0 0:000000

d D 2 4 4 4 4 4 4 4 4 4 0:000000

d D 3 �1:5 �1:5 �1:5 �1:5 0 0 0 0 1:5 0:036509

d D 4 49 49 49 49 49 46 49 46 46 0:015548

d D 5 �120 �75 �37:5 �30 7:5 22:5 15 22:5 67:5 0:051072

d D 6 1399 1061 949 971:5 971:5 821:5 971:5 821:5 979 0:027247

Bijection F D F3 (linear F3 W x 7! G3 � x)

d D 1 0 0 0 0 0 0 0 0 0 0:000000

d D 2 4 4 4 4 4 4 4 4 4 0:000000

d D 3 0 0 0 0 0 0 0 0 0 0:000000

d D 4 70 61 52 43 40 37 40 43 46 0:043976

d D 5 0 0 0 0 0 0 0 0 0 0:000000

d D 6 2584 1684 1144 694 544 484 544 694 664 0:067175

Bijection F D F4 (linear F4 W x 7! G4 � x)

d D 1 0 0 0 0 0 0 0 0 0 0:000000

d D 2 4 4 4 4 4 4 4 4 4 0:000000

d D 3 0 0 0 0 0 0 0 0 0 0:000000

d D 4 46 46 46 46 46 46 46 46 46 0:000000

d D 5 �90 �37:5 �15 15 7:5 �22:5 7:5 7:5 0 0:023231

d D 6 1339 956:5 799 799 866:5 821:5 776:5 821:5 844 0:016173

Bijection F D F5 (non-linear F tabulated in Section 4.3)

d D 1 0 0 0 0 0 0 0 0 0 0:000000

d D 2 4 4 4 4 4 4 4 4 4 0:000000

d D 3 0 0 0 0 0 0 0 0 0 0:000000

d D 4 46 46 46 46 46 46 46 46 46 0:000000

d D 5 0 0 0 0 0 0 0 0 0 0:000000

d D 6 2104 1159 844 799 664 799 844 1159 844 0:023258

Table 4. Computation of fopt.z/ (columns 2–10) for centered traces raised at several
powers d , and optimal correlation coefficient �opt (column 11).
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Table 5. Leakage comparison in the imperfect HD leakage model, where imperfec-
tions are of multivariate degree � � 1.
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Table 6. Leakage comparison in the imperfect HD leakage model, where imperfec-
tions are of multivariate degree � � 2.
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Table 7. Leakage comparison in the imperfect HD leakage model, where imperfec-
tions are of multivariate degree � � 3.
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Table 8. Leakage comparison in the imperfect NULL leakage model, where imper-
fections are of multivariate degree � � 1.
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Table 9. Leakage comparison in the imperfect NULL leakage model, where imper-
fections are of multivariate degree � � 2.
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Table 10. Leakage comparison in the imperfect NULL leakage model, where imper-
fections are of multivariate degree � � 3.
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