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1 Introduction
KASUMI is a 64-bit block cipher with 128-bit key size which is used for the con�dentiality and integrity algo-
rithms of the Third Generation Partnership Project (3GPP) for mobile communications [7]. KASUMI is based
on the MISTY1 block cipher [15] and is carefully designed to resist conventional di�erential and linear crypt-
analysis [1]. It has been shown that the four-round KASUMI-type permutation is pseudorandom and that
the six-round KASUMI-type permutation is super-pseudorandom under an adaptive distinguisher model [11].
Furthermore, as shown in [6], KASUMI is susceptible to a related key attack using four related keys, which
however is not a security threat for the use of KASUMI in GSM and UMTS applications. Recent further crypt-
analysis results about KASUMI can be found in [12, 19].

In this paperwe present several new results on group theoretic properties of the KASUMI round functions
and component functions. For any block cipher, it is desirable to exclude possible structural defects for the
group generated by the round functions, such as an insu�cient diversity of occurring permutations or im-
primitivity. Because of the widespread use for 3GPPmobile communications, the exclusion of such structural
weaknesses appears particularly relevant for the KASUMI block cipher. As shown by Paterson [17], there are
DES-like block ciphers which possess a certain resistance to linear and di�erential cryptanalysis, but can be
easily broken since the round functions generate a group which acts imprimitively on the message space. A
further purpose for the analysis of group theoretic properties of a block cipher stems from the fact that, if
the round functions of the cipher generate the alternating group on the message space, then general security
proofs for the cipher are possible with respect to the Markov cipher approach to classical di�erential crypt-
analysis (cf. [2, 10, 16]). For the DES [4], AES [22], and other ciphers, several results on the cyclic and group
theoretic structure of their components have already been found (see [3, 5, 8, 13, 21, 23, 24]).

The paper is organized as follows. In Section 2 we provide some notions and facts from the theory of per-
mutation groups which are used in this paper. In Section 3 we give a description of the KASUMI block cipher.
In Section 4 we investigate cyclic properties of the internal components of the KASUMI round functions and
prove an unexpected property of the FO-functions of KASUMI. In Section 5 we show that the groups gener-
ated by the KASUMI round functions for odd and even round type are equal to the alternating group on the
message space {0, 1}64. In Section 6we show that also the KASUMI two-round functions aswell as the KASUMI
encryption functions generate the alternating group on the set {0, 1}64 under the assumption of independent
round keys. In Section 7 we �nish the paper with some concluding remarks.
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2 Group theoretical facts
For anynonempty �nite setX, the group of bijectivemappings ofX onto itself is denoted by SX. If n is a natural
number andX = {1, . . . , n}, we also write Sn instead of SX. Every subgroup of SX is called a permutation group
onX. Let ℓ be a natural number with 0 < ℓ ≤ |X|. A permutation group G ≤ SX is called ℓ-transitive if, for any
pair of ℓ-tuples (a1, . . . , aℓ), (b1, . . . , bℓ) ∈ Xℓ with ai ̸= aj, bi ̸= bj for i ̸= j, there is a permutation g ∈ G with
g(ai) = bi for i = 1, . . . , ℓ. A 1-transitive permutation group is simply called transitive. If G is a permutation
group on a setX and a ∈ X, the subgroup of all g ∈ G with g(a) = a is denoted by Ga.

For multiple transitivity we have the following proposition (cf. [25]).

Proposition 2.1. Let G be a transitive permutation group on a �nite setX, ℓ a natural number with 0 < ℓ < |X|,
and a ∈ X. Then G is (ℓ + 1)-transitive onX if and only if Ga is ℓ-transitive onX \ {a}.

LetG ≤ SX be a permutation groupwith |X| = n. A subsetB ⊆ X is called a block ofG if g(B) = B or g(B)∩B = 0
for every g ∈ G. A block B ⊆ X is said to be trivial if B ∈ {X, 0} or B = {x} where x ∈ X. A complete nontrivial
block system for G is a partition {X1, . . . , Xt} of X into disjoint subsets Xi of equal size s with 1 < s < n, such
that for every permutation g ∈ G and every blockXi there is a blockXj with g(Xi) = Xj for i, j ∈ {1, . . . , t}. Let
G ≤ SX be transitive. G is called imprimitive if there is a nontrivial block B ⊂ X of G. Otherwise, G is said to
be primitive. Every 2-transitive permutation group is primitive, but not conversely. A permutation g ∈ SX is a
transposition if g interchanges two elements x, y ∈ X and �xes all the other elements of X. A permutation g
is called even (odd) if g can be represented as a product of an even (odd) number of transpositions. The set
of all even permutations g ∈ Sn forms a group which is called the alternating group on the set {1, . . . , n} and
which is denoted by An.

For any permutation on a�nite set of even cardinality, the number of cycles of odd length in its disjoint cy-
cle decompositionmust be even. Since the cycles of even length are odd permutations, we have the following
result.

Proposition 2.2. A permutation on a �nite set with even cardinality is even if and only if its cycle representation
contains an even number of cycles (including the cycles of length 1).

The degree of a permutation group G on a �nite set X is de�ned as the number of elements of X that are
moved by at least one permutation of G. The degree of a permutation is de�ned as the degree of the cyclic
group generated by this permutation.

We need the subsequent results which provide su�cient conditions for a permutation group to be the
alternating or symmetric group.

Theorem 2.3 (cf. [25, Theorem 13.10]). Let p be a prime and G a primitive permutation group of degree n =
qp + k, which contains an element of order p and degree qp, but which is neither the alternating nor symmetric
group.
(a) If q ≤ 7 and p ≥ 11, then k ≤ 8.
(b) If q ≥ 8 and p ≥ 2q − 1, then k ≤ 4q − 4.

Proposition 2.4. Let G be a primitive permutation group on the set {0, 1}2n with n > 2. Suppose there is an
element g ∈ G which contains in its cycle representation a cycle with a prime factor p > 2n+1 and for r =
22n mod p we have

r > max(8, 4 ⋅ (22n − r)/p − 4).

Then G is the alternating or the symmetric group on {0, 1}2n.

Proof. Suppose G is neither the alternating nor symmetric group. Using an appropriate exponentiation of g,
we obtain a permutation with q cycles of length p, where 1 ≤ q < 2n−1. Hence G contains an element of order
p and degree pq, where pq ≤ 22n − r. Then p ≥ max(11, 2q − 1), but

22n − pq ≥ r > max(8, 4 ⋅ (22n − r)/p − 4) ≥ max(8, 4q − 4)

which is a contradiction to Theorem 2.3.
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Remark 2.5. As an alternative to Theorem 2.3 and Proposition 2.4, it is also possible to use the theorems
[18, Theorem A] or [14, Theorem 1.1] to derive similar su�cient conditions for a permutation group to be the
alternating or symmetric group.

Theorem 2.6 (cf. [20, Corollary 10.2.2]). Let G be a transitive permutation group on a �nite setX with |X| > 7.
If there is an element g ∈ G which contains in its cycle representation a cycle of prime number length p with
|X|/2 < p < |X| − 2, then G is the alternating or the symmetric group onX.

3 Description of KASUMI
For every x = (x1, . . . , x2n) ∈ {0, 1}2n we write xL for (x1, . . . , xn) and xR for (xn+1, . . . , x2n). The all-zero bit-
vector in the set {0, 1}n is denoted by 0n and elements of ({0, 1}m)n are identi�ed with elements in {0, 1}mn by
concatenation. We write rotk for the left rotation of 16-bit words by k bit positions and pr for the projection
of 9-bit words w to the seven right-most bits of w. Let S7 and S9 denote the S-boxes of KASUMI, which are
nonlinear permutations on {0, 1}7 and {0, 1}9, respectively [7]. Furthermore, let

ì(v, w) = (S7(v) ⊕ v ⊕ pr(S9(w)), (02, v) ⊕ S9(w))

for every (v, w) ∈ {0, 1}7 × {0, 1}9 and òk(x) = x ⊕ k for every k ∈ {0, 1}16 and x ∈ {0, 1}16. For every z ∈ {0, 1}16,
the mapping FIz is de�ned as

FIz = ì ∘ òz ∘ ì ∘ rot9 .

Obviously, rot9, ì, òz, and FIz are permutations on {0, 1}16 for every z ∈ {0, 1}16. For all z, z� ∈ {0, 1}16 and
x ∈ {0, 1}32, let fz,z� (x) = (xR, FIz� (xL ⊕ z) ⊕ xR). For every k = (z1, . . . , z6) ∈ {0, 1}

96 with z1, . . . , z6 ∈ {0, 1}
16, the

nonlinear permutation FOk on {0, 1}32 is de�ned as

FOk = fz3 ,z6 ∘ fz2 ,z5 ∘ fz1 ,z4 .

Let fand and for denote the Boolean AND-function and the Boolean OR-function on {0, 1}16, respectively. For
every l ∈ {0, 1}32, the linear mixing permutation FL l on {0, 1}32 is de�ned as

FL l(x) = (xL ⊕ rot1(for(a, lR)), a)

for every x ∈ {0, 1}32, where a = xR ⊕ rot1(fand(xL, lL)). For every (k, l) ∈ {0, 1}96 × {0, 1}32, let

F(1)
k,l = FOk ∘ FL l and F(2)

k,l = FL l ∘ FOk.

The round functions of KASUMI for odd resp. even round type are de�ned as

R(t)
k,l(x) = (xR ⊕ F

(t)
k,l (xL), xL)

for every x ∈ {0, 1}64, (k, l) ∈ {0, 1}96 × {0, 1}32, and t = 1 resp. t = 2. Finally, the KASUMI encryption function
fenc is de�ned as

fenc = (R
(2)
k8 ,l8
∘ R(1)

k7 ,l7
) ∘ ⋅ ⋅ ⋅ ∘ (R(2)

k2 ,l2
∘ R(1)

k1 ,l1
)

for (k1, l1), . . . , (k8, l8) ∈ {0, 1}96 × {0, 1}32.
The key schedule of KASUMI is de�ned as follows. Firstly, the 128-bit key is divided into eight consecutive

16-bit valuesKj, j = 0, . . . , 7. Secondly, an array of eight 16-bit valuesK�
j, j = 0, . . . , 7, is de�ned by

K�
j = Kj ⊕ cj, j = 0, . . . , 7,

where

c0 = 0x0123, c1 = 0x4567, c2 = 0x89ab, c3 = 0xcdef ,

c4 = 0xfedc, c5 = 0xba98, c6 = 0x7654, c7 = 0x3210.
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For i = 1, . . . , 8, let

zi,1 = rot5(Ki mod 8), zi,2 = rot8(K(i+4) mod 8), zi,3 = rot13(K(i+5) mod 8), zi,4 = K
�
(i+3) mod 8,

zi,5 = K
�
(i+2) mod 8, zi,6 = K

�
(i+6) mod 8, li,1 = rot1(Ki−1), li,2 = K

�
(i+1) mod 8.

Finally, the round key (ki, li) ∈ {0, 1}
96 × {0, 1}32 for round i is de�ned as ki = (zi,1, . . . , zi,6) and li = (li,1, li,2) for

i = 1, . . . , 8.

Remark 3.1. For every (k, l) ∈ {0, 1}96 × {0, 1}32 and every i ∈ {1, . . . , 8} there is a KASUMI round key (ki, li) ∈
{0, 1}96 × {0, 1}32 such that (k, l) = (ki, li).

4 Properties of the round function components
For t ∈ {1, 2}, letH(t) denote the group generated by the set of permutations

{F(t)
k,l : k ∈ {0, 1}

96, l ∈ {0, 1}32}.

In this section we �rst prove several cyclic properties for the component functions of KASUMI and show
that the groupsH(1) and H(2) are equal to the alternating group on the set {0, 1}32. Furthermore, we prove an
unexpected property for the family of FO-permutations.

Lemma 4.1. (a) For every x, y ∈ {0, 1}16 there is an element z ∈ {0, 1}16 with FIz(x) = y.
(b) For every x, y ∈ {0, 1}32 there is an element k ∈ {0, 1}96 with FOk(x) = y.

Proof. (a) For x, y ∈ {0, 1}16, de�ne z ∈ {0, 1}16 as z = ì(rot9(x)) ⊕ ì−1(y).
(b) Let a, b ∈ {0, 1}32 and z1, z2 ∈ {0, 1}

16. We can choose elements z�1, z
�
2 ∈ {0, 1}

16 such that FIz�1 (aL ⊕ z1) =
aR ⊕ bL and FIz�2 (aR ⊕ z2) = bL ⊕ bR. Then fz1 ,z�1 (a) = (aR, FIz�1 (aL ⊕ z1) ⊕ aR) = (aR, bL), hence

fz2 ,z�2 (fz1 ,z�1 (a)) = fz2 ,z�2 (aR, bL) = (bL, FIz�2 (aR ⊕ z2) ⊕ bL) = b.

Thus, for any x, y ∈ {0, 1}32 and z1, z2, z3, z
�
3 ∈ {0, 1}

16, there are z�1, z
�
2 ∈ {0, 1}

16 such that

fz3 ,z�3(fz2 ,z�2 (fz1 ,z�1 (x))) = y.

Corollary 4.2. The groupsH(1) andH(2) are transitive.

Lemma 4.3. (a) FOk is an even permutation for every k ∈ {0, 1}96.
(b) FL l is an even permutation for every l ∈ {0, 1}32.

Proof. (a) Every FO-function is a three-fold composition of permutations of the form

fz,z� (x) = (xR, FIz� (xL ⊕ z) ⊕ xR),

where x ∈ {0, 1}32 and z, z� ∈ {0, 1}16. For every z, z� ∈ {0, 1}16 we have

fz,z� = ÷4 ∘ ÷3 ∘ ÷2 ∘ ÷1,

where ÷1(x) = (xR, xL), ÷2(x) = (xL, xR ⊕ z), ÷3(x) = (xL, FIz� (xR)), and ÷4(x) = (xL, xL ⊕ xR) for all x ∈ {0, 1}32.
Then ÷1 is an even permutation by [8, Lemma 1], and ÷2 and ÷4 are even by [8, Lemma 2]. Finally, ÷3 is an
even permutation by Proposition 2.2 because the number of cycles of ÷3 is a multiple of 216.

(b) Every function FL l, l = {0, 1}32, is a composition FL l = ℎl ∘ gl, where

gl(x) = (xL, xR ⊕ rot1(fand(xL, lL))) and ℎl(x) = (xL ⊕ rot1(for(xR, lR)), xR)

for all x ∈ {0, 1}32. If l ∈ {0, 1}32 with lL = 016, then gl = id. Otherwise, gl has 232−wt(lL) �xed points and
(232 −232−wt(lL))/2 cycles of length 2, wherewt(lL) denotes the Hamming weight of lL. If l ∈ {0, 1}32 with lR ̸= 0

16,
the mapping ℎl has 231 cycles of length 2. Otherwise, ℎl has 216 �xed points and (232 −216)/2 cycles of length 2.
Thus, gl and ℎl are even permutations for every l ∈ {0, 1}32 by Proposition 2.2.
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Proposition 4.4. H(1) andH(2) are equal to the alternating group on the set {0, 1}32.

Proof. By Corollary 4.2,H(1) andH(2) are transitive groups. For

k = (0xbbb0, 0x12de, 0xe1b1, 0x84cd, 0x6e33, 0xbd61) and l = (0x2e2e, 0x8fd1),

the F(1)
k,l -cycle starting at 0x5ac292d0 is of length c = 3 669 513 383 (here, the round key and the cycle have been

found by a random search). By de�nition, the cycle representation of F(2)
k,l must contain a cycle with the same

length. Since c is a prime number with
231 < c < 232 − 2

and the groupsH(1), H(2) contain only even permutations, the result follows by Theorem 2.6.

For any subsetM ⊆ {0, 1}n, let ⟨M⟩ denote the linear hull ofM in the vector space Fn2.
In the following section we will prove that the groups generated by the KASUMI round functions of odd

andeven round typeare 2-transitive. For theproofweneed the following result thatwas veri�edbya computer
search withm = 64 for t = 1 andm = 62 for t = 2.

Lemma 4.5. Let t ∈ {1, 2}. There arem ≥ 32, k1, . . . , km ∈ {0, 1}96, and l1, . . . , lm ∈ {0, 1}
32 such that F(t)

ki ,li
(032) = 032

for i = 1, . . . , m, and ⟨F(t)
ki ,li

(x) : i = 1, . . . , m⟩ = F322 for every x ∈ {0, 1}32 \ {032}.

Contrary to the preceding result, the mappings FOk, k ∈ {0, 1}96, have the following unexpected property.

Proposition 4.6. Let a ∈ {0, 1}32. For all m ≥ 32 and k1, . . . , km ∈ {0, 1}
96 with FOki (0

32) = a for i = 1, . . . , m, we
have ⟨FOki (x) : i = 1, . . . , m⟩ ̸= F322 for every x ∈ {025} × {0, 1}7.

Proof. Let k, k� ∈ {0, 1}96 with FOk(0
32) = FOk� (0

32), x ∈ {025} × {0, 1}7, and î = FOk(x) ⊕ FOk� (x). We will show
that

îL ⊕ îR ∈ {0, 1}
7 × {02} × {0, 1}7.

Let k = (z1, . . . , z6) with z1, . . . , z6 ∈ {0, 1}
16, and y = fz2 ,z5 (fz1 ,z4 (x)), where

yL = FIz4 (xL ⊕ z1) ⊕ xR and yR = FIz5 (xR ⊕ z2) ⊕ yL.

Let further u = fz3 ,z6 (y) = FOk(x), where uL = yR and uR = FIz6 (yL ⊕ z3) ⊕ yR. Then

uL ⊕ uR = FIz6(FIz4 (xL ⊕ z1) ⊕ z3 ⊕ xR).

Similarly, for k� = (z�1, . . . , z
�
6) with z�1, . . . , z

�
6 ∈ {0, 1}

16, and u� = FOk� (x), we obtain

u�L ⊕ u
�
R = FIz�6(FIz�4 (xL ⊕ z

�
1) ⊕ z

�
3 ⊕ xR).

By assumption we have
FIz6(FIz4 (xL ⊕ z1) ⊕ z3) = FIz�6(FIz�4 (xL ⊕ z

�
1) ⊕ z

�
3).

Then, by Proposition A.3 in the Appendix, it follows that

îL ⊕ îR = uL ⊕ uR ⊕ u
�
L ⊕ u

�
R ∈ {0, 1}

7 × {02} × {0, 1}7.

5 Group theoretic properties of the KASUMI round functions
In this section we show that the KASUMI round functions for odd and even rounds generate the alternating
group on {0, 1}64.

Proposition 5.1. Let s, t ∈ {1, 2}. For every x, y ∈ {0, 1}64 there are k, k� ∈ {0, 1}96 and l, l� ∈ {0, 1}32 such that
(R(t)

k�,l� ∘ R
(s)
k,l )(x) = y.
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Proof. Let x, y ∈ {0, 1}64. By Lemma 4.1 there are k, k� ∈ {0, 1}96 and l, l� ∈ {0, 1}32 such that

F(s)
k,l (xL) = xR ⊕ yR and F(t)

k�,l� (yR) = xL ⊕ yL.

Then

R(t)
k�,l�(R

(s)
k,l (xL, xR)) = (xL ⊕ F

(t)
k�,l�(xR ⊕ F

(s)
k,l (xL)), xR ⊕ F

(s)
k,l (xL)) = (xL ⊕ F

(t)
k�,l� (yR), yR) = (yL, yR).

For t ∈ {1, 2}, let G(t) denote the group generated by the set of functions

{R(t)
k,l : k ∈ {0, 1}

96, l ∈ {0, 1}32}.

Proposition 5.2. G(1) and G(2) are 2-transitive permutation groups.

Proof. By Proposition 5.1, G(1) and G(2) are transitive permutation groups. Let t ∈ {1, 2} and z = 064. We have

((R(t)
kn ,ln
)−1 ∘ R(t)

k�n ,l�n
) ∘ ⋅ ⋅ ⋅ ∘ ((R(t)

k1 ,l1
)−1 ∘ R(t)

k�1 ,l
�
1
)(a, b) = (a, b ⊕ F(t)

k1 ,l1
(a) ⊕ F(t)

k�1 ,l
�
1
(a) ⊕ ⋅ ⋅ ⋅ ⊕ F(t)

kn ,ln
(a) ⊕ F(t)

k�n ,l�n
(a)),

(R(t)
kn ,ln
∘ (R(t)

k�n ,l�n
)−1) ∘ ⋅ ⋅ ⋅ ∘ (R(t)

k1 ,l1
∘ (R(t)

k�1 ,l
�
1
)−1)(a, b) = (a ⊕ F(t)

k1 ,l1
(b) ⊕ F(t)

k�1 ,l
�
1
(b) ⊕ ⋅ ⋅ ⋅ ⊕ F(t)

kn ,ln
(b) ⊕ F(t)

k�n ,l�n
(b), b)

for all n ≥ 1, (k1, l1), (k�1, l
�
1), . . . , (kn, ln), (k

�
n, l

�
n) ∈ {0, 1}

96 × {0, 1}32, and a, b ∈ {0, 1}32. Hence, by Lemma 4.5, for
every c, d, c�, d� ∈ {0, 1}32 there are functions f, g ∈ G(1)

z with

f(c, d) = (c, d�) and g(c, d�) = (c�, d�).

Thus, G(1)
z is transitive on {0, 1}64 \ {z} and, by the same arguments, also G(2)

z is transitive on {0, 1}64 \ {z}. Then
G(1) and G(2) are 2-transitive permutation groups by Proposition 2.1.

A permutation F : {0, 1}2n → {0, 1}2n, n > 0, is said to be of Feistel-type if there is a mapping f : {0, 1}n → {0, 1}n

with F(x, y) = (y, x ⊕ f(y)) for all (x, y) ∈ {0, 1}n × {0, 1}n.
The average cycle length of a random permutation on the set {0, 1}2n is approximately equal to 22n/ ln 22n

(see [9, pp. 257–258]). It can be shown that for every Feistel-type permutation F on {0, 1}2n, n ≥ 4, the cycle
representation of F contains at least 2n−1 cycles (see [5, Lemma 3]). Since the KASUMI round functions are
inverse Feistel-type permutations, the average cycle length for every KASUMI round function is not greater
than 233. Thus, it is feasible to use Proposition 2.4 for the proof of the following result.

Theorem 5.3. The groups generated by the KASUMI round functions of odd and even round type are equal to
the alternating group on the set {0, 1}64.

Proof. G(1) and G(2) are primitive by Proposition 5.2 and contain only even permutations by [8, Corollary 2].
The following two large cycles for the �rst resp. second KASUMI round function have been obtained by a
random search.

For the �rst KASUMI round function de�ned by the cipher key

k = 0xe18d9e90077d5b�59c9c9f1d3e22403,

the cycle starting at 0x0211f74b7527ce8b is of length c = 18 375 676 469.
For the second KASUMI round function de�ned by the cipher key

k� = 0x294635be4374a0fe1b3ae978e199ee18,

the cycle starting at 0x85346017c65edd91 is of length c� = 13 535 443 601. Since c and c� are primes with c, c� >
233 satisfying the condition of Proposition 2.4, the groupsG(1) andG(2) are both equal to the alternating group
on the set {0, 1}64.

Remark 5.4. Since the KASUMI key scheduling maps the set of possible keys onto the set of round keys, the
actual KASUMI round functions both for odd and even rounds generate the alternating group on {0, 1}64.
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6 The KASUMI two-round functions generate the alternating group
Let G∗ denote the group generated by the set of KASUMI two-round functions

{R(2)
k�,l� ∘ R

(1)
k,l : k, k

� ∈ {0, 1}96, l, l� ∈ {0, 1}32},

where independent round keys are assumed. In this section,we show thatG∗ is equal to the alternating group
on the set {0, 1}64. Then it follows that also the KASUMI encryption functions with independent round keys
generate the alternating group on the message space (cf. Theorem 6.7).

Proposition 6.1. The group G∗ is 2-transitive, hence primitive.

Proof. The group G∗ is transitive by Proposition 5.1, and we have

(R(1)
k1 ,l1
)−1 ∘ R(1)

k2 ,l2
= (R(2)

k3 ,l3
∘ R(1)

k1 ,l1
)−1 ∘ (R(2)

k3 ,l3
∘ R(1)

k2 ,l2
),

R(2)
k1 ,l1
∘ (R(2)

k2 ,l2
)−1 = (R(2)

k1 ,l1
∘ R(1)

k3 ,l3
) ∘ (R(2)

k2 ,l2
∘ R(1)

k3 ,l3
)−1

for all (k1, l1), (k2, l2), (k3, l3) ∈ {0, 1}96 × {0, 1}32. Then, similar to the proof of Proposition 5.2, it follows that G∗

is a 2-transitive group.

Remark 6.2. Similar to the preceding proof we can show that the group Genc generated by the KASUMI en-
cryption functionsfenc with independent round keys is 2-transitive. ThusGenc acts primitively on themessage
space.

We say a Feistel-type permutation F with F(x, y) = (y, x ⊕ f(y)) for all (x, y) ∈ {0, 1}n × {0, 1}n is proper if
f−1(0n) ̸= 0. We �rst provide a useful lower bound for the number of cycles of compositions consisting of
a proper Feistel-type permutation on {0, 1}2n and a more general type of permutation, which shows that the
average cycle length of such compositions is not greater than 2n+1. Since G∗ is primitive, this opens up the
possibility to use Proposition 2.4 for the proof that G∗ equals the alternating group on the message space
(cf. Theorem 6.6).

Theorem 6.3. Let n ≥ 1 and è(x, y) = (y, x) for all (x, y) ∈ {0, 1}n × {0, 1}n. Let further ÿ : {0, 1}2n → {0, 1}2n be a
permutation with ÿ ∘ è = è ∘ ÿ−1. Then for every proper Feistel-type permutation F : {0, 1}2n → {0, 1}2n the cycle
representation of ÿ ∘ F contains at least 2n−1 cycles.

Proof. Let f : {0, 1}n → {0, 1}n be a mapping with f−1(0n) ̸= 0 and F(x, y) = (y, x ⊕ f(y)) for all (x, y) ∈
{0, 1}n × {0, 1}n. We show that every cycle of ÿ ∘ F contains no more than two elements from the set

S = {(x, y) ∈ {0, 1}n × {0, 1}n : f(y) = 0n}.

Let (a, b) ∈ S. Then F(a, b) = è(a, b) and ÿ(F(a, b)) = è(ÿ−1(a, b)) = è(F((ÿ ∘ F)−1(a, b))). Induction yields

(ÿ ∘ F)i(a, b) = è(F((ÿ ∘ F)−i(a, b)))

for every integer i > 0. Let i0 > 0 be the smallest integer such that (ÿ ∘ F)i0 (a, b) ∈ S or (ÿ ∘ F)−i0 (a, b) ∈ S. In the
�rst case

F((ÿ ∘ F)i0 (a, b)) = è((ÿ ∘ F)i0 (a, b)) = F((ÿ ∘ F)−i0 (a, b)).

In the second case we have
F((ÿ ∘ F)−i0 (a, b)) = è((ÿ ∘ F)−i0 (a, b)),

hence (ÿ ∘F)−i0 (a, b) = è(F((ÿ ∘F)−i0 (a, b))) = (ÿ ∘F)i0 (a, b). Thus, (a, b) and (ÿ ∘F)i0 (a, b) are the only elements
of S occurring in the cycle starting from (a, b). Since |S| ≥ 2n, the cycle representation of ÿ ∘F contains at least
2n−1 cycles.

Corollary 6.4. Let F, F� : {0, 1}2n → {0, 1}2n be two Feistel-type permutations, where F is proper. Then the cycle
representation of F� ∘ F contains at least 2n−1 cycles.
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The average cycle length of a random permutation on the set {0, 1}64 is a number greater than 258 (see
[9, pp. 257–258]). Since the KASUMI round functions are the inverses of proper Feistel-type permutations, we
have the following result.

Corollary 6.5. The average cycle length for every KASUMI two-round function is not greater than 233.

Theorem 6.6. The group G∗ generated by the KASUMI two-round functions with independent round keys is
equal to the alternating group on the message space.

Proof. The group G∗ is primitive by Proposition 6.1 and contains only even permutations by [8, Corollary 2].
The KASUMI cipher key

k = 0x6205b5d9ee63edf11f1acea14477d5a9

with the following property has been obtained by random search. The composition of the �rst two KASUMI
round functions de�ned by the cipher key k has the cycle

(0x445b1b948ce25f49 ⋅ ⋅ ⋅ 0x3e72cc3296b66829)

of length c = 28 737 645 371, where c is a prime with c > 233 satisfying the condition of Proposition 2.4. Hence
G∗ is equal to the alternating group on the set {0, 1}64.

Theorem 6.7. The group generated by the KASUMI encryption functions with independent round keys is equal
to the alternating group on the message space.

Proof. The group generated by the KASUMI encryption functions with independent round keys is a normal
subgroup ofG∗ (see [10]). Since the alternating group on {0, 1}64 is simple, the result follows fromTheorem6.6.

7 Conclusions
Possible structural defects of the groups generated by the KASUMI round functions and two-round functions,
such as imprimitivity or an insu�cient diversity of occurring permutations, can be excluded by the results
provided in the paper.

Furthermore, by Theorem 6.6, for all Markov ciphers corresponding to KASUMI two-round functions, the
Markov chains of di�erences are irreducible and aperiodic [10]. If the hypothesis of stochastic equivalence
holds for the Markov ciphers corresponding to KASUMI two-round functions, then these ciphers are secure
against classical di�erential cryptanalysis after the application of su�cientlymany two-round functions [10].

Finally, it appears that themethods used here to prove themain results cannot be employed to show that
the KASUMI round functions without the linear mixing permutations generate the alternating group on the
message space (cf. Proposition 4.6).

A Properties of the FI-permutations
We provide here some properties of the permutations ì(v, w) = (S7(v) ⊕ v ⊕ pr(S9(w)), (02, v) ⊕ S9(w)) for
(v, w) ∈ {0, 1}7 × {0, 1}9 and FIz = ì ∘ òz ∘ ì ∘ rot9 for z ∈ {0, 1}16. These properties are used for the proof of
Proposition 4.6, but might also be of interest on their own.

For every mapping f : {0, 1}n → {0, 1}n and a ∈ {0, 1}n, letDaf : {0, 1}n → {0, 1}n denote the derivative of f
with respect to a de�ned by

Daf(x) = f(x) ⊕ f(x ⊕ a)

for all x ∈ {0, 1}n. For the derivatives of the permutation ìwith respect to elements of the form a ∈ {0, 1}7 × {09}
we have the following two properties.
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Proposition A.1. Daì(v, w) ∈ {0, 1}
7 × {02} × {0, 1}7 for all (v, w) ∈ {0, 1}7 × {0, 1}9 and a ∈ {0, 1}7 × {09}.

Proposition A.2. Daì(v, w) ⊕ Daì(v
�, w�) ∈ {0, 1}7 × {09} for every (v, w), (v�, w�) ∈ {0, 1}7 × {0, 1}9 and a ∈

{0, 1}7 × {09}.

Proof. Let (v, w), (v�, w�) ∈ {0, 1}7 × {0, 1}9 and a = (b, 09) ∈ {0, 1}7 × {09}. Then

ì(v� ⊕ b, w�) ⊕ ì(v�, w�) = (S7(v� ⊕ b) ⊕ S7(v�) ⊕ b, 02, b) = ì(v ⊕ b, w) ⊕ ì(v, w) ⊕ (c, 09)

with c = S7(v� ⊕ b) ⊕ S7(v�) ⊕ S7(v ⊕ b) ⊕ S7(v).

Proposition A.3. Lety, y�, z, z� ∈ {0, 1}16 withFIz(y) = FIz� (y�). ThenFIz(y⊕x)⊕FIz� (y�⊕x) ∈ {0, 1}7×{02}×{0, 1}7

for every x ∈ {09} × {0, 1}7.

Proof. Let y = (w, v), y� = (w�, v�) with v, v� ∈ {0, 1}7, w,w� ∈ {0, 1}9 and x = (09, b) with b ∈ {0, 1}7. If
z, z� ∈ {0, 1}16 with FIz(w, v) = FIz� (w

�, v�), we have òz(ì(v, w)) = òz� (ì(v�, w�)). Let a = (b, 09). By the preceding
result we have

Daì(v, w) ⊕ Daì(v
�, w�) = (c, 09)

with c ∈ {0, 1}7. Then

òz(ì(v ⊕ b, w)) ⊕ òz�(ì(v
� ⊕ b, w�)) = òz(ì(v, w)) ⊕ òz�(ì(v

�, w�)) ⊕ (c, 09) = (c, 09).

Thus,

FIz(y ⊕ x) ⊕ FIz� (y
� ⊕ x) = ì(òz(ì(v ⊕ b, w))) ⊕ ì(òz�(ì(v

� ⊕ b, w�))) ∈ {0, 1}7 × {02} × {0, 1}7.
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