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Abstract: The concept of the semigroup action problem (SAP)was first introduced byMonico in 2002.Monico

explained in his paper that the discrete logarithm problem (DLP) can be generalized to SAP. After defining

the action problem in a semigroup, the concept was extended using differentmathematical structures. In this

paper, we discuss the concept of SAP and present a detailed survey of the work which has been done using it

in public-key cryptography.
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1 Introduction
Before 1976, secret key cryptography was used to achieve the security for communication over an open

communication channel. In 1976, Diffie and Hellman [4] gave a completely different and new direction to

cryptographyby introducing the concept of public key cryptography. Since then it becameanoticeable area of

research, and a lot of researchmade public key cryptographymore advanced. The security of public key cryp-

tography relies on the intractability of some computationally hard problems, like integer factorization [15],

discrete logarithm problems (DLP) [4, 6] and many others. DLP forms the basis for many cryptographic pro-

tocols.

In 2002,Monico generalized the concept of DLP andproposed a semigroup action problem (SAP) [13]. He

defined the Diffie–Hellman key exchange protocol and ElGamal cryptosystem using this new computational

problem SAP. After defining a semigroup action on an abelian group, the same concept was transferred to the

action of a semiring on a semimodule in [10–12] and to the action of a quotient semiring on a semimodule

in [1, 5]. In [5, 10, 11], the ElGamal cryptosystem was defined whose security depends on the hardness of

finding a control sequence which steers the initial vector to the final vector. The idea of two-sided matrix

action over a semiring was proposed in [9], which seems to be intractable if a simple semiring is used and

the size of the matrices used to define the action are chosen appropriately. The use of simple semiring avoids

the chances of Pohlig–Hellman type reduction attack [14]. In [7, 23], the idea of getting simple semiring was

classified, and in [23], a classification of proper finite simple semiringswith zerowas given,whichwas further

investigated in [7] to explain computational aspects of finite simple semiring.

Stolbunov presented the reductionist security argument for public-key cryptographic schemes based on

groupaction in [21]. Some signature schemeswere also proposed in [16–18],whoseunderlyinghardproblem

comes from monoid and semiring action problems.
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The paper is organized in the following manner. In Section 2, mathematical preliminaries are given. In

Section 3, the semigroup action in public-key cryptography is explained. In Section 4, the security of the SAP

and cryptosystems based on it is discussed with a heuristic approach and with the help of a formal security

model. In Section 5, the work based on action of algebraic structure is explained. In Section 6, the future

scope of SAP is discussed. Finally, in Section 7, we conclude the paper.

2 Mathematical preliminaries
In this section some basic definitions are given which are required for the understanding of paper.

Definition 2.1 (Group action). Let (G, ⋅ ) be a group and let S be a non-empty set. Then G is said to act on S if
there exist a function ϕ : G × S → S, with ϕ(a, x) = ax, such that a(bx) = (ab)x and ex = x (e is the identity
element of G) for all a, b ∈ G, x ∈ S. This mapping ϕ is called the group action of G on S.

Definition 2.2 (Semigroup action). Let S be a finite set. Then the (left) action of the semigroup (G, ⋅ ) on S is
defined as ϕ : G × S → S, with ϕ(g, s) = gs, such that (gh)s = g(hs) for all g, h ∈ G. This action is semigroup

action on the set S. (A right action is similarly defined.)

Definition 2.3 (Semiring). A non-empty set R equipped with two binary operations ( ⋅ ) and (+), termed as

multiplication and addition, respectively, is called a semiring if it has following three properties:

(a) (R, +) is an abelian semigroup,

(b) (R, ⋅ ) is a semigroup,

(c) ⋅ is distributive over +.

Definition 2.4 (Congruence simple semiring (or c-simple semiring)). A semiring R that does not possess any

congruence relation (except the trivial relations idR and R × R) is said to be congruence simple semiring

or c-simple semiring. A congruence relation is an equivalence relation ∼ on R that satisfies the following

properties:
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Definition 2.5 (Semimodule). Let R be a semiring. A (left) semimodule is a commutative monoid (M, +)with
the neutral element 0 ∈ M such that for all a, b ∈ M and r, s ∈ R, the following conditions are satisfied:
(a) r0 = 0, 0a = 0,
(b) r(a + b) = ra + rb,
(c) (r + s)a = ra + sa,
(d) (rs)a = r(sa).
If the elements of R act on right we call it a (right) semimodule.

Definition 2.6 (Partitioning ideal). An ideal I of a semiring R is called a partitioning ideal (or Q-ideal) if there
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Definition 2.8 (Discrete logarithm problem). Given a prime p, a generator α of Z∗p and an element β ∈ Z∗p , find
an integer x, 0 ≤ x ≤ p − 2 such that αx ≡ β (mod p).

Definition 2.9 (Diffie–Hellman problem). Given a prime p, a generator α of Z∗p , and elements αa mod p,
βb mod p, find αab mod p.

3 Semigroup action in public key cryptography
In 2002, Monico presented the semigroup action problem by considering DLP as a special instance of an

action by a semigroup. He defined the key-exchange protocol and the extended ElGamal cryptosystemwhose

security relies on the intractability of SAP.

Definition 3.1 (Semigroup action problem (SAP)). Let G be a semigroup acting on a set S. Then, for given
x ∈ S and y ∈ Gx, find g ∈ G such that g ∗ x = y where, ∗ is the operation between the elements of G and S.¹

Definition 3.2 (Semigroup action problem on two sides matrix action). Let R be a semiring (not necessarily

commutative) with 0 and 1. If M ∈ G = Matm×m(R), then C[M] (where C is the center of R) is the multiplica-

tively commutative sub-semiring generated by M. Let M
1
,M

2
∈ G. Then the following action is linear as

explained in [9] and [11]:

(C[M
1
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action problem defined on this action is defined as follows: For given M
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.

Definition 3.3 (Computational Diffie–Hellman group action problem (CDHAP)). Let G be an abelian semi-

group acting on the set S and let x, y, z ∈ S, where, y = ax, z = bx and a, b are chosen randomly from G.
Then, for this tuple (x, ax, bx), find cx, where c = ab.

Definition 3.4 (Decisional Diffie–Hellman group action problem (DDHAP)). Let G be an abelian semigroup

acting on the set S. Then for given triplet (ax, bx, cx), decide whether c = ab or not, where a, b and c are
randomly chosen from G and x is a fixed element of S.

Definition 3.5 (DDHAP assumption). Let A be the polynomial time DDHAP distinguisher and PrDDHAPA is the

probability of returning the correct solution for DDHAP. Then the advantage of polynomial time DDHAP

distinguisherA is given by

Adv

DDHAP

A =
Pr

DDHAP

A −
1

2

.

Now, according to DDHAP assumption [21], the advantage Adv

DDHAP

A is negligible function of k for any

polynomial-time distinguisherA, where k(= log ♯(Gx)) is the security parameter.

3.1 Applications of SAP to public-key cryptography

After the proposal of SAP, cryptographic protocols have been designed using SAP as trapdoor in different

algebraic structures.

1 For convenience we represent this operation as simple multiplication throughout the paper.
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3.1.1 Key exchange protocols based on SAP using different algebraic structures

The key-agreement protocol whose security relies on the intractability of SAP and proposed byMonico in [13]

is defined as follows.

Key exchange protocol using action of semigroup over finite set.
(i) Domain parameters: Let (S, G, φ, s) be the domain parameters used to define the key exchange protocol.

Here, the abelian semigroup G is acting over a finite set S under the mapping φ and s ∈ S.
(ii) Key exchange algorithm: Alice secretly chooses a ∈ G, computes as and sends it to Bob. Similarly, Bob

chooses b ∈ G, computes bs and sends it to Alice. The common secret key is then

a(bs) = (ab)s = (ba)s = b(as).

An interesting example is presented in [13] using the action of the semigroup Matm(ℤ) over aℤ-module

H = Sm = S × S × ⋅ ⋅ ⋅ × S, where (S, ⋅ ) is a finite abelian semigroup and for which the SAP may be considered

hard. The cryptosystem defined over this action is discussed as follows.

Key exchange protocol using matrix action.
(i) Domain parameters: Let (S,Matm(ℤk), X,ℤk[X], φ, s) be the domain parameters used to define the key

exchange protocol. Here S is a finite abelian group of order k, Matm(ℤk) is the semigroup ofm × mmatri-

ces overℤk , X ∈ Matm(ℤk), ℤk[X] is abelian sub-semigroup of Matm(ℤk), φ is the mapping defining the

restricted action ofℤk[X] = {φ(X)|φ(x) ∈ ℤk[x]} over Sm and s = (s
1
, . . . , sm).

(ii) Key exchange algorithm: Alice secretly chooses A ∈ ℤk[X], computes As and sends it to Bob. Similarly,

Bob chooses B ∈ ℤk[X], computes Bs and sends it to Alice. The common secret key is then

A(Bs) = (AB)s = (BA)s = B(As).
In [11] Maze, Monico and Rosenthal extended the action of a semigroup over a semiring by defining the

action of a simple ring over a simple module. The security of this system depends on the problem of steering

the state of some dynamical system from an initial vector to some final position [11]. However, this system

breaks down in the case where the rings and modules used for the system are more general as explained

in [10]. Therefore, for security purposes, simple semirings are preferred. The system is defined as follows.

Key exchange protocol using action of semiring over semimodule.
(i) Domainparameters: Let (R,M, G,Mm

, A, C[A], s)be thedomainparameters,whereR is a semiring (finite

or infinite),M is a finite semimodule overR,G is the set of allm × mmatrices overR,M = M ×M × ⋅ ⋅ ⋅ ×M,

A is an element of G and C[A] = {p(A) : p(t) ∈ C[t]}, where C is the center of R and C[t] is the polynomial

ring in the indeterminate in t.
(ii) Key exchange algorithm: Alice chooses a matrix X ∈ C[A] and sends to Bob the vector Xs(∈Mm). Bob

chooses a matrix Y ∈ C[A] and sends to Alice the vector Ys. The common key is then the vector XYs.
In [5], Ebrahimi Atani et al. extend the semigroup action to the actions of quotient semirings on semimod-

ule. The security of this system also depends on the problem of steering the state of some dynamical system

from an initial vector to some final position. However, this system breaks down in some cases, for example,

when

R
I = M = F, a finite field, i.e., if the quotient semiring is a field, then the system can be easily solved

using [11, Theorem 3.1].

Key exchange protocol using action of quotient semirings over semimodule.
(i) Domain parameters: Let (R, I,M, G,Mm

, A, R∗, x) be the domain parameters, where R is the semiring,

I is a Q-ideal of R such that qq = qq for all q, q ∈ Q, M is the semimodule over the quotient ring

R
I ,

G is the set of all m × m matrices with entries in

R
I , M

m = M ×M × ⋅ ⋅ ⋅ ×M, A is an element of G and

R∗[A] = {p∗(A) : p∗(t) ∈ R∗[t]}, where R∗ = R
I = {q + I : q ∈ Q} = {q

∗
: q ∈ Q}, R∗[t] is the polynomial

semiring in the indeterminate t and x ∈Mm
.

(ii) Key exchange algorithm: Alice chooses p∗(t) ∈ R∗[t], computes p∗(A)x and sends the result to Bob. Simi-

larly, Bob chooses q∗(t) ∈ R∗[t], computes q∗(A)x and sends the result to Alice. The common key is then

k = p∗(A)q∗(A)x.
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the state of some dynamical system from an initial vector to some final position [11]. However, this system

breaks down in the case where the rings and modules used for the system are more general as explained

in [10]. Therefore, for security purposes, simple semirings are preferred. The system is defined as follows.

Key exchange protocol using action of semiring over semimodule.
(i) Domainparameters: Let (R,M, G,Mm

, A, C[A], s)be thedomainparameters,whereR is a semiring (finite

or infinite),M is a finite semimodule overR,G is the set of allm × mmatrices overR,M = M ×M × ⋅ ⋅ ⋅ ×M,

A is an element of G and C[A] = {p(A) : p(t) ∈ C[t]}, where C is the center of R and C[t] is the polynomial

ring in the indeterminate in t.
(ii) Key exchange algorithm: Alice chooses a matrix X ∈ C[A] and sends to Bob the vector Xs(∈Mm). Bob

chooses a matrix Y ∈ C[A] and sends to Alice the vector Ys. The common key is then the vector XYs.
In [5], Ebrahimi Atani et al. extend the semigroup action to the actions of quotient semirings on semimod-

ule. The security of this system also depends on the problem of steering the state of some dynamical system

from an initial vector to some final position. However, this system breaks down in some cases, for example,

when

R
I = M = F, a finite field, i.e., if the quotient semiring is a field, then the system can be easily solved

using [11, Theorem 3.1].

Key exchange protocol using action of quotient semirings over semimodule.
(i) Domain parameters: Let (R, I,M, G,Mm

, A, R∗, x) be the domain parameters, where R is the semiring,

I is a Q-ideal of R such that qq = qq for all q, q ∈ Q, M is the semimodule over the quotient ring

R
I ,

G is the set of all m × m matrices with entries in

R
I , M

m = M ×M × ⋅ ⋅ ⋅ ×M, A is an element of G and

R∗[A] = {p∗(A) : p∗(t) ∈ R∗[t]}, where R∗ = R
I = {q + I : q ∈ Q} = {q

∗
: q ∈ Q}, R∗[t] is the polynomial

semiring in the indeterminate t and x ∈Mm
.

(ii) Key exchange algorithm: Alice chooses p∗(t) ∈ R∗[t], computes p∗(A)x and sends the result to Bob. Simi-

larly, Bob chooses q∗(t) ∈ R∗[t], computes q∗(A)x and sends the result to Alice. The common key is then

k = p∗(A)q∗(A)x.
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In [5], amore generalized form is also defined using the action ofmatrix quotient semirings over semimodule.

The key exchange protocol using the semigroup action problem as two-sided matrix action [11] is defined as

follows.

Key exchange protocol using two-sided matrix action.
(i) Domain parameters: Let (R, C, G,M

1
,M

2
, S) be the domain parameters which are defined in Defini-

tion 3.2.

(ii) Key exchange algorithm: Alice chooses polynomials pa , qa ∈ C[t], computes A = pa(M1
) ⋅ S ⋅ qa(M2

) and
sends the result to Bob. Bob chooses polynomials pb , qb ∈ C[t], computes B = pb(M1

) ⋅ S ⋅ qb(M2
) and

sends the result to Alice. The common key is then

pa(M1
)Bqa(M2

) = pa(M1
)pb(M1
)Sqb(M2

)qa(M2
) = pb(M1

)Aqb(M2
).

3.1.2 ElGamal cryptosystem based on SAP

The ElGamal cryptosystem based on SAP [13] is defined as follows.

ElGamal cryptosystem using action of semigroup over finite group.
(i) Domain parameters: Let (S, G, φ, s) be the domain parameters used to define the cryptosystem. Here, the

abelian semigroup G is acting over a finite group S under the mapping φ and s ∈ S.
(ii) Key-generation: This algorithm, using domain parameters, generates the key pair (sk, pk), where sk = b

is the secret key and pk = bs is the public key of Bob.
(iii) Encryption: Alice wants to send the message m ∈ S. Using Bob’s public key pk = bs and her private key

a ∈ G, Alice calculates the ciphertext c = (as, (abs) ∘ m) = (c
1
, c

2
) and sends it to Bob.

(iv) Decryption: On receiving c, Bob decipher m as (bc
1
)−1 ∘ c

2
= m.

Example 3.6. Monico presented an example in [13] on SAP using the following parameters: Let E : y2 =
x3 + x + 47 be an elliptic curve over F

71
with group of rational points E(71) ≅ Z

5
⊕ Z

15
having the iden-

tity element O. Let P
1
= (1; 7), P

2
= (51; 11) and P

3
= (49; 58) be three points which do not lie in a common

cyclic subgroup:

⟨P
1
⟩ = {(1; 7), (43; 52); (43; 19); (1; 64); (O)},

⟨P
2
⟩ = {(51; 11), (70; 20), (70, 51); (51; 60); (O)},

⟨P
3
⟩ = {(49; 58), (60; 57), (60; 14), (49; 13), (O)}.

Let G be the subgroup generated by these three points, i.e., G = ⟨P
1
, P

2
, P

3
⟩ and Mat

3
(ℤ

5
) is a group of 3 × 3

matrices overℤ
5
. Now, using these parameters, the key exchange protocol is defined as follows:

(i) Domain parameters: Let (G, H, φ, A, x) be the domain parameters used to define the cryptosystem. Here,

φ is the mapping used to define the action of H over G, where G = G × G × G, H = ℤ
5
[A], for

A =(
3 1 1

2 2 4

1 2 3

) ∈ Mat
3
(ℤ

5
) and x =(

(1, 7)
(51, 11)
(49, 58)

) ∈ G.

(ii) Key exchange algorithm: Using the domain parameters Alice and Bob follow the following algorithm to

exchange the common secret key:

(a) Alice chooses

Ma =(
3 4 1

3 0 2

1 1 2

) ∈ H

and computes α = Max. Alice’s private key is Ma and her public key is α.
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(b) Bob chooses

Mb =(
3 2 4

4 2 4

4 2 2

) ∈ H

and computes β = Mbx. Bob’s private key is Mb and his public key is β.
(c) Their common secret key is then

Maβ = Mbα.

4 Security of SAP and cryptographic protocols based on SAP
The security of SAP and cryptographic protocols based on SAP is explained in this section.

4.1 Security of SAP and cryptographic protocols against brute force attack

To break SAP using Brute force attack, the attacker will try all possible gi ∈ G, 0 ≤ i ≤ |G| to get an appropriate
gi which satisfies gis = gs, where G is an abelian semigroup acting over a finite set S and s ∈ S. Therefore,
the size of the abelian semigroup G should be chosen in such a way that it is computationally hard for the

attacker to find gi (see [10, 11]).
When G is a cyclic group instead of an abelian semigroup, then the total number of operations required

to break SAP using square root attack are O√|G|. If G is not a cyclic group, then the overall complexity of

applying Pollard’s rho attack is O(√|Os|), where Os is the orbit of s ∈ S.
If the semigroup G has a large subgroup G

1
, it may be partitioned in the form G = G∘ ∪ G1

, where

G
1
= {g ∈ G : g−1 exists} and G∘ = G \ G1

. Now, the attacker will try to find the solution of the equation y = gs
in G∘ using an exhaustive search algorithm. If no solution is found in G∘, the attacker will restrict the SAP to
G
1
and apply Pollard’s square root attack. The overall complexity of applying this attack is |G∘| + O(√|G1

s|)
(see [10]), where G

1
s = {gs|g ∈ G

1
}.

In case when G is not a group and not a set theoretic union of a small number of cyclic sub-semigroups,

then the attacks applicable to DLP are not applicable to SAP. It is suggested in [11] that when G is a group

where no attack is applicable except the square root attack, then 160 bit orbit size is sufficient for achieving

practical security. Also in the case where no attack is not possible, 80 bit orbit size is sufficient for achieving

practical security.

Now, we analyze the security of the two-sided matrix multiplication action discussed in Definition 3.2

and Section 3.1.1. For the security of the two-sidedmatrixmultiplication action, the c-simple semirings of the

type Rm = Matm({0, 1},max,min) had been used in [9], where Matm({0, 1},max,min) is a max-min algebra.

The use of these types of semirings makes the two-sided matrix multiplication action secure against Pohlig–

Hellman attack and square-root attacks.

If R
1
(for m = 1) is used as semiring, then the brute force complexity of the two-sided matrix mul-

tiplication action defined in Section 3.1.1 will be O(|R
1
[M

1
]| ⋅ |R

1
[M

2
]|). According to the consequence

of [9, Assumption 5.19], the complexity of the two-sided matrix multiplication action can be reduced to

O((ord(M
1
)ord(M

2
))d) for some d ∈ ℕ. This bound can also be given in terms of the size of the matrix

Z, where Z = p(M
1
)Sq(M

2
) and p, q, S are defined in Definition 3.2 and Section 3.1.1. If the input size of

Z is m2

(= N say) bits, then the expected running time of the algorithm in terms of the key size will be

O(exp(√2d + o(1))N1/4√ln(N)). But this bound is not good comparative to the bound of the best known

algorithm used to solve DLP, which is O(exp(1.92 + o(1))N1/3
𝔽𝔽p (ln(N𝔽𝔽p )

2/3)). However, by applying some

restrictions on the parameters, a competitive bound can be achieved. For this, M
1
,M

2
and S are considered

to be permutation matrices and it is assumed that the polynomials p, q have l monomials. Then the matrix

Z can be encoded with Nα = ml log
2
(m) bits and according to [9, Proposition 5.21], the expected running

time complexity of the algorithm will be O(exp(μ + o(1))√Nα), where μ = √2d√ln(2)l . This bound is assumed to

be competitive to the bound of the best known algorithm used to solve DLP.
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In [5], amore generalized form is also defined using the action ofmatrix quotient semirings over semimodule.

The key exchange protocol using the semigroup action problem as two-sided matrix action [11] is defined as

follows.

Key exchange protocol using two-sided matrix action.
(i) Domain parameters: Let (R, C, G,M

1
,M

2
, S) be the domain parameters which are defined in Defini-

tion 3.2.

(ii) Key exchange algorithm: Alice chooses polynomials pa , qa ∈ C[t], computes A = pa(M1
) ⋅ S ⋅ qa(M2

) and
sends the result to Bob. Bob chooses polynomials pb , qb ∈ C[t], computes B = pb(M1

) ⋅ S ⋅ qb(M2
) and

sends the result to Alice. The common key is then

pa(M1
)Bqa(M2

) = pa(M1
)pb(M1
)Sqb(M2

)qa(M2
) = pb(M1

)Aqb(M2
).

3.1.2 ElGamal cryptosystem based on SAP

The ElGamal cryptosystem based on SAP [13] is defined as follows.

ElGamal cryptosystem using action of semigroup over finite group.
(i) Domain parameters: Let (S, G, φ, s) be the domain parameters used to define the cryptosystem. Here, the

abelian semigroup G is acting over a finite group S under the mapping φ and s ∈ S.
(ii) Key-generation: This algorithm, using domain parameters, generates the key pair (sk, pk), where sk = b

is the secret key and pk = bs is the public key of Bob.
(iii) Encryption: Alice wants to send the message m ∈ S. Using Bob’s public key pk = bs and her private key

a ∈ G, Alice calculates the ciphertext c = (as, (abs) ∘ m) = (c
1
, c

2
) and sends it to Bob.

(iv) Decryption: On receiving c, Bob decipher m as (bc
1
)−1 ∘ c

2
= m.

Example 3.6. Monico presented an example in [13] on SAP using the following parameters: Let E : y2 =
x3 + x + 47 be an elliptic curve over F

71
with group of rational points E(71) ≅ Z

5
⊕ Z

15
having the iden-

tity element O. Let P
1
= (1; 7), P

2
= (51; 11) and P

3
= (49; 58) be three points which do not lie in a common

cyclic subgroup:

⟨P
1
⟩ = {(1; 7), (43; 52); (43; 19); (1; 64); (O)},

⟨P
2
⟩ = {(51; 11), (70; 20), (70, 51); (51; 60); (O)},

⟨P
3
⟩ = {(49; 58), (60; 57), (60; 14), (49; 13), (O)}.

Let G be the subgroup generated by these three points, i.e., G = ⟨P
1
, P

2
, P

3
⟩ and Mat

3
(ℤ

5
) is a group of 3 × 3

matrices overℤ
5
. Now, using these parameters, the key exchange protocol is defined as follows:

(i) Domain parameters: Let (G, H, φ, A, x) be the domain parameters used to define the cryptosystem. Here,

φ is the mapping used to define the action of H over G, where G = G × G × G, H = ℤ
5
[A], for

A =(
3 1 1

2 2 4

1 2 3

) ∈ Mat
3
(ℤ

5
) and x =(

(1, 7)
(51, 11)
(49, 58)

) ∈ G.

(ii) Key exchange algorithm: Using the domain parameters Alice and Bob follow the following algorithm to

exchange the common secret key:

(a) Alice chooses

Ma =(
3 4 1

3 0 2

1 1 2

) ∈ H

and computes α = Max. Alice’s private key is Ma and her public key is α.
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(b) Bob chooses

Mb =(
3 2 4

4 2 4

4 2 2

) ∈ H

and computes β = Mbx. Bob’s private key is Mb and his public key is β.
(c) Their common secret key is then

Maβ = Mbα.

4 Security of SAP and cryptographic protocols based on SAP
The security of SAP and cryptographic protocols based on SAP is explained in this section.

4.1 Security of SAP and cryptographic protocols against brute force attack

To break SAP using Brute force attack, the attacker will try all possible gi ∈ G, 0 ≤ i ≤ |G| to get an appropriate
gi which satisfies gis = gs, where G is an abelian semigroup acting over a finite set S and s ∈ S. Therefore,
the size of the abelian semigroup G should be chosen in such a way that it is computationally hard for the

attacker to find gi (see [10, 11]).
When G is a cyclic group instead of an abelian semigroup, then the total number of operations required

to break SAP using square root attack are O√|G|. If G is not a cyclic group, then the overall complexity of

applying Pollard’s rho attack is O(√|Os|), where Os is the orbit of s ∈ S.
If the semigroup G has a large subgroup G

1
, it may be partitioned in the form G = G∘ ∪ G1

, where

G
1
= {g ∈ G : g−1 exists} and G∘ = G \ G1

. Now, the attacker will try to find the solution of the equation y = gs
in G∘ using an exhaustive search algorithm. If no solution is found in G∘, the attacker will restrict the SAP to
G
1
and apply Pollard’s square root attack. The overall complexity of applying this attack is |G∘| + O(√|G1

s|)
(see [10]), where G

1
s = {gs|g ∈ G

1
}.

In case when G is not a group and not a set theoretic union of a small number of cyclic sub-semigroups,

then the attacks applicable to DLP are not applicable to SAP. It is suggested in [11] that when G is a group

where no attack is applicable except the square root attack, then 160 bit orbit size is sufficient for achieving

practical security. Also in the case where no attack is not possible, 80 bit orbit size is sufficient for achieving

practical security.

Now, we analyze the security of the two-sided matrix multiplication action discussed in Definition 3.2

and Section 3.1.1. For the security of the two-sidedmatrixmultiplication action, the c-simple semirings of the

type Rm = Matm({0, 1},max,min) had been used in [9], where Matm({0, 1},max,min) is a max-min algebra.

The use of these types of semirings makes the two-sided matrix multiplication action secure against Pohlig–

Hellman attack and square-root attacks.

If R
1
(for m = 1) is used as semiring, then the brute force complexity of the two-sided matrix mul-

tiplication action defined in Section 3.1.1 will be O(|R
1
[M

1
]| ⋅ |R

1
[M

2
]|). According to the consequence

of [9, Assumption 5.19], the complexity of the two-sided matrix multiplication action can be reduced to

O((ord(M
1
)ord(M

2
))d) for some d ∈ ℕ. This bound can also be given in terms of the size of the matrix

Z, where Z = p(M
1
)Sq(M

2
) and p, q, S are defined in Definition 3.2 and Section 3.1.1. If the input size of

Z is m2

(= N say) bits, then the expected running time of the algorithm in terms of the key size will be

O(exp(√2d + o(1))N1/4√ln(N)). But this bound is not good comparative to the bound of the best known

algorithm used to solve DLP, which is O(exp(1.92 + o(1))N1/3
𝔽𝔽p (ln(N𝔽𝔽p )

2/3)). However, by applying some

restrictions on the parameters, a competitive bound can be achieved. For this, M
1
,M

2
and S are considered

to be permutation matrices and it is assumed that the polynomials p, q have l monomials. Then the matrix

Z can be encoded with Nα = ml log
2
(m) bits and according to [9, Proposition 5.21], the expected running

time complexity of the algorithm will be O(exp(μ + o(1))√Nα), where μ = √2d√ln(2)l . This bound is assumed to

be competitive to the bound of the best known algorithm used to solve DLP.
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One particular example of two-sided matrix multiplication action is given in [11], in which the size of

the matrices M
1
,M

2
is taken greater than 420, and a particular semiring is used, which gives the maximum

possible size of Z. With these choice of parameters, Alice has more than 2

420

choices to select the polyno-

mial p for which p(M
1
) can be computed with at most 420 matrix multiplications and additions. However,

Alice may restrict the choice of p to reduce the number of multiplications and additions. If the degrees of

p, q are restricted in the range of 50, then the complexity of brute force attack will depend on the size of the

set A = {p(M
1
)Sq(M

2
) : deg p ≤ 50, deg q ≤ 5}. The upper bound for the size of this set is 2100 and the least

value is 2

25

. The cryptanalysis of this example has been done in [20] and the choice of the above parame-

ters is considered insufficient for practical use. According to the cryptanalysis discussed in [20], if the above

parameters are used, then a complete session key can be recovered easily. Therefore, the parameters choices

prescribed in [11] is not suggested for practical use and further research is required to achieve a good bound

with better choice of parameters.

4.2 Formal security model of cryptographic schemes based on SAP

In [21] Stolbunov presented the security model of the key-exchange protocol and the ElGamal encryption

scheme based on SAP. For defining the security of the key-exchange protocol, he used the security model

proposed by Canetti and Krawczyk in [2].

The security of the ElGamal encryption scheme is defined using the indistinguishability of encryptions

in chosen plain-text attack. The computational Diffie–Hellman group action problem (CDHAP), decisional

Diffie–Hellman group action problem (DDHAP) and DDHAP assumption are presented in the paper for defin-

ing the security of scheme (defined in Section 3).

The following two theorems are proved in the paper [21] for defining the security of the key-exchange

protocol and the ElGamal encryption scheme.

Theorem 4.1. If the DDHAP assumption holds for a finite abelian group G acting on the set S, then the key
agreement protocol is semantic secure in the adversarial model.

Theorem 4.2. If the DDHAP assumption holds for a finite abelian group G acting on the set S and the hash
family H is entropy smoothing, then the public-key encryption scheme is secure against IND–CPA.

5 Some work based on action of algebraic structure
In [17] Sakaluskas proposed a signature scheme based on the semiring action problem. To define this scheme

he used twohard problems in his paper, which can be treated as one-way function, one is themultiple factor’s

search problem (MFSP) and the other is the operator and operand search problem (OOPS). He also used two

operand searchproblemsas anone-way function, denoted as∗ and⊕. It is proved in thepaper that the scheme

has provable security. He postulated three kind of attacks in his paper covering other possible attacks on the

proposed signature scheme.

In [18] a digital signature scheme is defined using the action of infinite ring over module. The scheme is

defined to be secure against data forgery, signature repudiation and existential forgery.

In [16] a digital signature scheme is defined using the Gaussian monoid. The proposed scheme is based

ondifferent hard problemswhich are linked to an oneway function. The scheme is proved to be secure against

existential forgery, data implied forgery and data implied forgery in module action level.

In [22] a bi-semigroup action problem (BSAP) is proposed and using this computational hard problem a

new key exchange protocol is defined. In [8] some properties of semigroups are discussed which are useful

for designing the public key cryptosystem. In [3] an efficient quantum algorithm is described by using Shor’s

algorithm [19] for computing discrete logarithms in semigroups. It is shown that some generalizations of DLP
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are hard in semigroups but easy in groups. It is discussed in the paper how SAP for a cyclic semigroup action

can be considered as an instance of shifted DLP.

6 Future scope of SAP
It is explained in the previous sections how SAP can be considered the generalization of DLP. The semigroup

action problem (SAP) is considered to be more secure because the structures used to define it do not contain

invertible elements, and the semirings used to define the extension of SAP are simple, which reduces the

probability of applying the Pohlig–Hellman attack. Therefore, using such algebraic structures, SAP can be

used to define other public-key cryptographic schemes also, like authentication scheme, zero knowledge

undeniable signature scheme, signcryption scheme etc.

7 Conclusion
In this paper, we have explained the SAP and summarized the work related to it. It is explained that how

SAP is extended on different algebraic structures like semirings, semimodule, quotient semirings, quotient

semimodule etc. To the best of our knowledge, in our paper we have covered almost all the work proposed in

the literature related to cryptography based on SAP.
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are hard in semigroups but easy in groups. It is discussed in the paper how SAP for a cyclic semigroup action

can be considered as an instance of shifted DLP.

6 Future scope of SAP
It is explained in the previous sections how SAP can be considered the generalization of DLP. The semigroup

action problem (SAP) is considered to be more secure because the structures used to define it do not contain

invertible elements, and the semirings used to define the extension of SAP are simple, which reduces the

probability of applying the Pohlig–Hellman attack. Therefore, using such algebraic structures, SAP can be

used to define other public-key cryptographic schemes also, like authentication scheme, zero knowledge

undeniable signature scheme, signcryption scheme etc.

7 Conclusion
In this paper, we have explained the SAP and summarized the work related to it. It is explained that how

SAP is extended on different algebraic structures like semirings, semimodule, quotient semirings, quotient

semimodule etc. To the best of our knowledge, in our paper we have covered almost all the work proposed in

the literature related to cryptography based on SAP.
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