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Abstract: A block is an n-bit string, and a (possibly keyed) block-function is a non-linear mapping that maps
one block to another, e.g., a block-cipher. In this paper, we consider various symmetric key primitives with ℓ
block inputs and raise the following question: what is the minimum number of block-function invocations
required for a mode to be secure?We begin with encryption modes that generate ℓ󸀠 block outputs and show
that at least (ℓ + ℓ󸀠 − 1) block-function invocations are necessary to achieve the PRF security. In presence
of a nonce, the requirement of block-functions reduces to ℓ󸀠 blocks only. If ℓ = ℓ󸀠, in order to achieve SPRP
security, the mode requires at least 2ℓmany block-function invocations. We next consider length preserving
r-block (called chunk) online encryption modes and show that, to achieve online PRP security, each chunk
should have at least 2r − 1 many and overall at least 2rℓ − 1 many block-functions for ℓmany chunks. More-
over, we show that it can achieve online SPRP security if each chunk contains at least 2r non-linear block-
functions. We next analyze affine MAC modes and show that an integrity-secure affine MAC mode requires
at least ℓ many block-function invocations to process an ℓ block message. Finally, we consider affine mode
authenticated encryption and show that in order to achieve INT-RUP security or integrity security under
a nonce-misuse scenario, either (i) the number of non-linear block-functions required to generate the cipher-
text is more than ℓ or (ii) the number of extra non-linear block-functions required to generate the tag depends
on ℓ.
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1 Introduction
The common application of cryptography is to implement a secure communication between two parties Alice
and Bob, who want to exchange information over an insecure channel. In the symmetric key setting, it is
assumed that Alice and Bob have a secret shared key, either a one-time shared key or through some key-
exchange protocols. They use this key to encrypt or authenticate a message using efficient symmetric-key
algorithms such as encryption and message authentication codes or MAC. The encryption provides privacy
or confidentiality (hiding the sensitive message) resulting in a ciphertext, whereas a MAC provides integrity
or authenticity (authenticating the transmitted message M) by generating a tag.

For encryption, the sender takes a message m and the secret key κ, calls the encryption algorithm
E(κ,m) to produce a ciphertext c and sends it to the receiver. The receiver now executes the decryption algo-
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rithm D(κ, c) that takes as input the ciphertext c and the secret key κ to recover the plain-text m. Since κ
is known only to the sender and the receiver, no one else can succeed in decrypting c with non-negligible
probability.

In message authentication codes, the sender takes a plain-text m and the secret key κ and executes the
message authentication code algorithm F(κ,m) to generate a fixed length output called a tag t. The sender
sends thepair (m, t) to the receiver. On receiving amessage tagpair (m, t), the receiver uses theMACalgorithm
F(κ,m) to generate a tag t󸀠 and verify whether t󸀠 is same as the received tag t. If so, the receiver is convinced
about the authenticity of the message m. Again, the secrecy of the key κ ensures that no one other than the
sender or the receiver can succeed in generating a valid tag t, with non-negligible probability.

An authenticated encryption (AE) scheme combines the above two algorithms (encryption andMAC) and
provides the privacy as well as the authenticity or data integrity of a plain-text m. Along with the plain-text
it can also take associated data (e.g., size and header information) d and guarantees only the integrity of d.
The authenticated encryption algorithm AE.Ek(n∗, d,m) takes as input a plain-text m, a nonce n∗ and an
associateddata d (optional) and returns a ciphertext c alongwith a tag t. Sometimesweuse thenotion tagged-
ciphertext to refer to (c, t), the ciphertext-tag pair together. The decryption algorithm AE.Dκ(n∗, d, (c, t))
takes a nonce n∗, an associated data d and the tagged-ciphertext (c, t). It returns the corresponding plain-
text m if the tagged-ciphertext is valid or an abort symbol ⊥ (meaning the tagged-ciphertext is not valid).

1.1 Affine mode of operation

An affine mode of operation is defined by an oracle algorithm which interacts with block-functions (usually
keyed) as oracles such that all inputs to the block-functions are computed through some public affine func-
tions (determined by the design) of the message and previous obtained responses of the block-functions.
Finally, the output is also computed through another public affine function of the message and all the block-
functionoutputs. This class covers awide rangeof encryption,MACandauthenticated encryption algorithms.

Popular symmetric key enciphering schemes like Luby–Rackoff (LR) [17], Feistel type encryption schemes
[3, 11], CMC [9], EME [7, 10] HCTR [6, 24], TET [8], HEH [23] etc. belong to affinemodes of operation. Online
constructions likeHCBC [1],MHCBC [18], TC3 [22] etc. are also examples of affinemodes of operation. Almost
all the MAC functions (e.g., CBC-MAC [2], PMAC [4], TMAC [16], OMAC [12], DAG-based constructions [14],
a sub-class of affine domain extension or ADE [19] etc.) are also covered by this approach. Moreover, most of
the popular AE schemes like CCM, GCM, OCB or ELmD also use the affine modes. Thus, the affine modes of
operation includes a wide class of symmetric key algorithms.

1.2 Our contribution

In Section 3, we begin with the affine mode encryption schemes and show that a PRF secure affine mode
encryption requires at least ℓ + ℓ󸀠 − 1 many non-linear computations that process an ℓ block message and
produces ℓ󸀠 block (ℓ󸀠 ≥ ℓ) ciphertext. Moreover, if the construction is nonce based, then the number of block-
functions required to achieve PRP comes down to only ℓ󸀠. If we consider length-preserving encryption (i.e.
ℓ󸀠 = ℓ) and we want SPRP security, then at least 2ℓmany block-functions are necessary.

Then we consider r-block affine online modes in Section 4. A sequence of r consecutive blocks are called
chunks. Informally, an r-block affine online mode has the chunk-wise online property, meaning if two mes-
sages are identical up to the i-th chunk, then their i-th ciphertext chunks will be identical. In this work, we
show that an r-block online encryption mode can achieve online PRP security if for any message of ℓ chunks
it uses at least 2rℓ − 1 many block-function invocations. Moreover, each chunk requires at least 2r − 1 many
block-functions and any two chunks with 2r − 1 many block-functions must have at least one chunk with
more than 2r many block-functions in between. We also show that in order to achieve the online SPRP secu-
rity, each chunk requires at least 2r many non-linear computations, and hence to process a message of ℓ
chunks, at least 2rℓmany non-linear computations are necessary.
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Next, in Section 5, we consider linear MAC modes and show that an integrity-secure linear MAC mode
requires at least ℓ many non-linear computations to process a message of ℓ-blocks. For all these cases, we
have shown tightness of the bound.

Finally, we consider authenticated encryption modes in Section 6 and show that in order to achieve INT-
RUP security and integrity security under a nonce-misuse scenario, either (i) the number of non-linear block-
functions required to generate the ciphertext is more than ℓ or (ii) the number of additional non-linear block-
functions required to generate the tag depends on ℓ.

1.3 Published and new contents

In [20], Nandi proved that a length preserving PRF (PRP) secure linear mode encryption requires at least
2ℓ − 1 many (respectively 2ℓ many) non-linear computations to process an ℓ block message. We have
extended the results from linear modes to affine modes and from length preserving encryptions to length
preserving as well as extending encryptions.

Section 4 is dedicated to find the optimal number of non-linear computations to process an ℓ chunk
(a chunk is a sequence of r-blocks) messages for r-online affinemodes. Section 5 considers affineMACmodes
and we find the optimal number of non-linear computations to process ℓ blocks of MACmodes. These results
are fresh and not published.

In Section 6, we mainly focus on finding the optimal number of non-linear computations to process an ℓ
block message for an affine mode authenticated encryption scheme. The main result of the chapter is the
insecurity of rate-1 authenticated encryptions in INT-RUP as well as in a nonce-misuse scenario. This result
was published in [5].

2 Preliminaries

2.1 Notations

Let n be a positive integer. A block is defined as an element of the set 𝔹 := {0, 1}n. Any element x ∈ 𝔹ℓ is
an ℓ-tuple (x1, . . . , xℓ). The number of blocks in x is denoted by ℓ := ‖x‖. We represent a tuple of blocks
(xa , . . . , xb) by xa...b and (x1, . . . , xa) by x...a. For any two ℓ-tuples x = (x1, . . . , xℓ) and y = (y1, . . . , yℓ), we
denote by x ⊕ y the ℓ-tuple (x1 ⊕ y1, . . . , xℓ ⊕ yℓ).

Let𝕄a×b be an a × bmatrix with elements from𝔹. Then we denote the element in the i-th block-row and
the j-th block-column byM[i, j]. ByM[i, ∗] andM[∗, j], we denote the i-th row and j-th column, respectively.
For 1 ≤ i ≤ j ≤ a, we also writeM[i . . . j ; ∗] to mean the sub-matrix consisting of all rows between i and j. We
simply write M[. . . j ; ∗] and M[i . . . ; ∗] to denote M[1 . . . j ; ∗] and M[i . . . a ; ∗], respectively. We define
similar notation for columns. Suppose𝕄n(a, b) denotes the set of all partitionedmatricesMa×b (of size a × b
as a block partitioned matrix and of size an × bn as a binary matrix), where M[i, j] is a block-matrix for all
i ∈ {1 . . . a} and j ∈ {1 . . . b}. Let M and N be two matrices with the same number of rows. Then the concate-
nation of M and N is denoted by [M : N]. We use the notation x‖y to denote the concatenation of two bit
strings x and y. For a set S, we let S+ = ⋃∞i=1 Si, S≤n = ⋃

n
i=1 Si and S∗ = S+ ∪ {λ}, where λ is the empty string.

The usual choice of S is {0, 1}. Let vtr denote the transpose of a vector v.

2.2 Security definitions

In this section, we discuss various security notions of keyed functions. We call an oracle algorithm A

a (t󸀠, q󸀠)-algorithm if it makes at most q󸀠 queries and runs in time t󸀠. For notational simplicity, we skip
the time parameter t󸀠 which is irrelevant in this paper. We also simply write Func(ℓ, ℓ󸀠) and Perm(ℓ) to denote
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the set of all functions from 𝔹ℓ to 𝔹ℓ󸀠 and permutations over 𝔹ℓ, respectively. Throughout this paper, we
assumeK to be the key-space.

Definition 2.1 (PRF). Let F : K × 𝔹ℓ → 𝔹ℓ󸀠 be a (keyed) function. We say that F is (qe , ϵ)-PRF if for any
qe-algorithmA the prf-distinguishing advantage

AdvprfF (A) :=
󵄨󵄨󵄨󵄨Pr[A

Fκ = 1; κ $
← K] − Pr[AG = 1;G $

← Func(ℓ, c)]󵄨󵄨󵄨󵄨

is at most ϵ. We call a randomly chosen G to be the (uniform) random function.

Definition 2.2 ((S)PRP). A keyed permutation F over 𝔹ℓ is a function F : K × 𝔹ℓ → 𝔹ℓ such that for all keys
κ ∈ K one has Fκ := F(κ, ⋅) ∈ Perm(ℓ). A keyed permutation F is called (qe , ϵ)-PRP if for any qe-algorithm A

the prp-distinguishing advantage

AdvprpF (A) :=
󵄨󵄨󵄨󵄨Pr[A

Fκ = 1; κ $
← K] − Pr[AΠ = 1; Π $

← Perm(ℓ)]󵄨󵄨󵄨󵄨

is at most ϵ. We call a randomly chosen Π to be the (uniform) random permutation. Similarly, a keyed permu-
tation F is called (qe , ϵ)-SPRP if for any qe-algorithmA the sprp-distinguishing advantage

AdvsprpF (A) :=
󵄨󵄨󵄨󵄨Pr[A

Fκ ,F−1
κ = 1; κ $

← K] − Pr[AΠ,Π−1
= 1; Π $
← Perm(ℓ)]󵄨󵄨󵄨󵄨

is at most ϵ.

Definition 2.3 (Integrity or authenticity). A keyed function F is called (qe , qf , ϵ)-forgeable if for any (qe , qf )-
algorithm A (an algorithm that makes q many queries and qf many forging attempts) the integrity (INT)
advantage

AdvintF (A) :=
󵄨󵄨󵄨󵄨Pr[A

Fκ forges; κ $
← K]󵄨󵄨󵄨󵄨

is at most ϵ. We say that A forges ifA can produce a validmessage and tag pair (m∗, fκ(m∗)) without query-
ing m∗ during the encryption queries.

Definition 2.4 (Integrity of ciphertext (INT-CTXT)). A length extending keyed function F is called (qe , qf , ϵ)-
forgeable if for any (qe , qf )-algorithmA the integrity of ciphertext (INT-CTXT) advantage

Advint_ctxtF (A) := 󵄨󵄨󵄨󵄨Pr[A
Fκ forges; κ $

← K]󵄨󵄨󵄨󵄨

is at most ϵ. We say thatA forges ifA can produce a valid ciphertext FK(m∗)without queryingm∗ during the
encryption queries.

Definition 2.5 (Integrity of ciphertext under released unverified plaintext). Let Dκ be the decryption algo-
rithm without verification that outputs the plaintext without verification. A length extending keyed func-
tion F is called (qe , qd , qf , ϵ)-forgeable if for any (qe , qd , qf )-algorithmA (an algorithm that makes qe many
encryption, qd many unverified decryption and qf many forging queries) the integrity of ciphertext under
release of unverified plaintext (INT-RUP) advantage

Advint_rupF (A) := 󵄨󵄨󵄨󵄨Pr[A
Fκ ,Dκ forges; κ $

← K]󵄨󵄨󵄨󵄨

is at most ϵ. The definition of forging is the same as used in INT-CTXT notion.

2.3 Useful properties of matrices

It is well known that the maximum numbers of linearly independent (binary) rows and columns of a matrix
A ∈ 𝕄n(s, t) are the same, and this number is called the rank of the matrix, denoted by rank(A). It is easy
to see that rank(A) ≤ min{ns, nt}. Consider a system of solvable linear equations A ⋅ x = b or w ⋅ A = b. One
can solve the equation for some x or w, respectively, (not necessarily unique) using the Gaussian elimination
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method, denoted by solve and solve∗, respectively:

x = solve(A, b), w = solve∗(A, b).

By convention, whenever a non-zero solution exists, it returns a non-zero solution. Note that if

wtr = solve(Atr, btr),

then w ⋅ A = b (by applying the transpose). Now we state two important results.

Lemma 2.6. Let A ∈ 𝕄n(s, t) and r := rank(A).
(i) If r < ns (i.e. presence of row-dependency), then solve(Atr, 0) returns a non-zero solution.
(ii) Similarly, for r < nt (i.e. presence of column-dependency), solve(A, 0) returns a non-zero solution.
(iii) Finally, if r = nt (i.e. full column rank) and b := A ⋅ w, then solve(A, b) returns a unique solution.

Lemma 2.7. Suppose A ∈ 𝕄n(s, s) is a non-singular matrix, i.e. rank(A) = ns. Let t < s and

B = (
A[. . . t, ∗] 0

0 A[. . . t, ∗]
A[t + 1 . . . , ∗] A[t + 1 . . . , ∗]

) ,

where 0 denotes the zero matrix of appropriate size. Then rank(B) = n(s + t) (i.e. full row-rank).

As the results are straightforward, we skip the proofs.

3 Optimality for PRF and SPRP in affine modes
In this section, we find the tight lower bound on the number of invocations of building blocks for achieving
PRP and SPRP security as in Table 1.

To do so, we first provide the formal description of an affine mode encryption scheme.

3.1 Formal definition of affine mode encryption

An affine mode encryption scheme
Eℓ,ℓ󸀠 ,q,Π̃,κ󸀠 := (E1, E2),

parameterized by a family of q many permutations Π̃ = (π1, . . . , πq), takes an ℓ-block message m and an
optional nonce n∗ and returns an ℓ󸀠-block ciphertext c as follows:

ui = E1(v1, . . . , vi−1,m, κ, n∗), i = 1, . . . , q,
vi = πi(ui), i = 1, . . . , q,
c = E2(v1, . . . , vq ,m, κ, n∗).

Here ui and vi’s are the i-th non-linear input and output, respectively, and

κ = (1
κ󸀠
) ,

where κ󸀠 := (κ1, . . . , κk−1) is the set of masking keys used. The entry 1 ensures that the construction is affine.
It is easy to see that the functionEℓ,ℓ󸀠 ,q,Π̃,κ󸀠 can alternatively represented by a (q + ℓ󸀠) × (q + ℓ + k + 1) encryp-
tion co-efficient matrix E (with E11 strictly lower triangular) such that

(
u
c
) = (
(E11)q×q (E12)q×ℓ (E13)q×k (E14)q×1
(E21)ℓ󸀠×q (E22)ℓ󸀠×ℓ (E23)ℓ󸀠×k (E24)ℓ󸀠×1) ⋅(

v
m
κ
n∗
) ,
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Nonce Security Optimal number of block-functions Examples with tight bound

No PRF (ℓ + ℓ󸀠 − 1) 3 round LR
No SPRP 2ℓ CMC
Yes PRF ℓ󸀠 OCB

Table 1: Optimal block-functions required for affine mode encryption with ℓ blocks input and c blocks output (where ℓ󸀠 ≥ ℓ).

where πi(ui) = vi. The function needs to be decryptable, meaning there should exist a corresponding
(q + ℓ󸀠) × (q + ℓ + k + 1) decryption matrix D, α := (α1, . . . , αq) ∈ {1, −1}q and a permutation β on [1 . . . q]
such that

(
x
m
) = (
(D11)q×q (D12)q×ℓ (D13)q×k (D14)q×1
(D21)ℓ󸀠×q (D22)ℓ󸀠×ℓ (D23)ℓ󸀠×k (D24)ℓ󸀠×1) ⋅(

y
c
κ
n∗
) ,

where παiβ(i)(xi) = yi with the property

(ui , vi) =
{
{
{

(xβ(i), yβ(i)) if αi = 1,
(yβ(i), xβ(i)) if αi = −1.

Now consider a length-preserving encryption scheme Eℓ,ℓ󸀠 ,q,Π̃,K . Until and unless specified, we will
assume the encryption scheme does not use any nonce, i.e. E14 = E24 = D14 = D24 = 0. In the following
two subsections, we will show PRF and SPRP distinguishing attacks on this scheme if q ≤ (ℓ + ℓ󸀠 − 2) and
q ≤ (2ℓ − 1), respectively. The tightness of the bound is achieved by 3-round Luby–Rackoff (which uses three
block-functions to process two blocks and achieves PRP) and CMC (uses 2ℓ block-functions to process an ℓ
block message and achieves SPRP). Moreover, we will show that under distinct nonce the optimal number of
block-functions required to make Eℓ,t,q,Π̃,K secure drastically reduces to q = ℓ.

3.2 PRF distinguishing attack on Eℓ,ℓ󸀠 ,q,Π̃,κ󸀠 for q ≤ ℓ + ℓ󸀠 − 2
Here we provide the attack assuming q = (ℓ + ℓ󸀠 − 2). The attack can be trivially extended to all such con-
structions with q < (ℓ + ℓ󸀠 − 2).

Description of the PRF DistinguisherAprf.
(step 1) (Finding a suitable difference in a pair of plaintext queries): Find δ ∈ 𝔹ℓ:

δ = solve(E12[. . . (ℓ − 1) ; ∗], 0ℓ−1).

(step 2) (Make the queries with the difference obtained in (step 1)): Now the distinguishermakes two ℓ block
queries 0ℓ and δ and obtains corresponding responses c = E(0ℓ) and c󸀠 = E(δ). For simplicity, we
ignore the parameter set of E as it is clear from the context.

(step 3) (Find a nullifier of unknown intermediate values): Find δ󸀠 ∈ 𝔹ℓ󸀠 :
δ󸀠 = solve∗(E21[∗ ; ℓ . . . (ℓ + ℓ󸀠 − 2)], 0ℓ

󸀠−1).
(step 4) (The distinguisher event): If δ󸀠 ⋅ ∆c = δ󸀠 ⋅ E22 ⋅ δ, then it returns 1 (decision for the keyed construc-

tion), else it returns 0 (decision for uniform random permutation).

Brief explanation. In (step 1) and (step 3), we can find such a non-zero δ and δ󸀠, respectively, using
Lemma 2.6. Now let u1, v1, . . . , uℓ+ℓ󸀠−2, vℓ+ℓ󸀠−2 and u󸀠1, v

󸀠
1, . . . , u

󸀠
ℓ+ℓ󸀠−2, v󸀠ℓ+ℓ󸀠−2 be the intermediate inputs-

outputs for the two queries 0 and δ, respectively. From Lemma 2.7we have 1 ≤ i ≤ (ℓ − 1), ui = u󸀠i and vi = v
󸀠
i ,

i.e. ∆v1...(ℓ−1) = 0, and hence

δ󸀠 ⋅ ∆c = δ󸀠 ⋅ E21[∗ ; ℓ . . . (ℓ + ℓ󸀠 − 2)] ⋅ ∆vℓ...(ℓ+ℓ󸀠−2) + δ󸀠 ⋅ E22 ⋅ d = δ󸀠 ⋅ E22 ⋅ d.
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The distinguishing advantage of the above distinguisherAprf is at least 12 since for a random permutation the
event δ󸀠 ⋅ ∆c = δ󸀠 ⋅ E22 ⋅ d holds with probability 1

2 , whereas for the keyed construction it holds with proba-
bility 1.

AgeneralizeddistinguisherAgen
prf onEℓ,ℓ󸀠 ,q,Π̃,κ󸀠 . Nowwedefine a generalizeddistinguisher against thismode

assuming there exists an integer ℓ∗ such that

rank(E12[. . . ℓ∗ ; ∗]) < nℓ and rank(E21[∗ ; (ℓ∗ + 1) . . . q]) < nℓ󸀠.

Note that the above assumptions always hold for ℓ∗ = (ℓ − 1)when q ≤ (ℓ + ℓ󸀠 − 2). However, if q ≥ (ℓ + ℓ󸀠 − 1),
both conditions do not necessarily hold. Whenever the assumptions hold, we have the following similar dis-
tinguisher.

DistinguisherAgen
prf against Eℓ,ℓ,q,Π̃,κ󸀠 .

(step 1) Due to our assumptions, we can find δ ∈ 𝔹ℓ and δ󸀠 ∈ 𝔹ℓ󸀠 :
δ = solve(E12[. . . t ; ∗], 0ℓ−1), δ󸀠 = solve∗(E21[∗ ; (t + 1) . . . q], 0ℓ

󸀠−1).
(step 2) Then we make two queries 0 and δ and obtain responses c and c󸀠.
(step 3) The distinguisher returns 1 if δ󸀠 ⋅ ∆c = δ󸀠 ⋅ E22 ⋅ δ, else 0.
This distinguisher will be used later while describing SPRP distinguishers.

3.3 SPRP distinguishing attack on Eℓ,ℓ,q,Π̃,κ󸀠 with q ≤ 2ℓ − 1
Now we will show that if q = 2ℓ − 1, then we have an SPRP distinguisher. Again, the attack can be trivially
extended to all such constructions with q ≤ 2ℓ − 1.

A Rough Sketch of the Distinguisher. Here we provide a brief idea on how the distinguisher works. The
distinguisher first makes two queries so that the first (ℓ − 1) intermediate inputs and outputs are identical
for two encryption queries. Using the invertible property, we can actually obtain all the differences in the
intermediate values. As the computation of the decryption algorithm must use the same internal inputs and
outputs of the building blocks, we also know the differences of intermediate inputs and outputs if we decrypt
the first two encryption queries. Now we find another decryption query for which the first ℓ intermediate
input and output differences with one of the first two queries are fixed. So we can nullify the unknown (ℓ − 1)
differences and obtain a distinguishing event. The formal attack details are described below: For this attack,
we first assume the following:

E21[ℓ . . . (2ℓ − 1) ;∗] and D11[. . . ℓ ; ∗] are invertible.

Observe that, if rank(E21[ℓ . . . (2ℓ − 1) . . . ; ∗]) < nℓ or rank(D11[. . . ℓ ; ∗]) < nℓ, then the two assumptions
mentioned in the generalized distinguisherAgen

prf hold for t = ℓ − 1 andwe can run the PRF-distinguisherA
gen
prf .

So, we assume that E21[ℓ . . . (2ℓ − 1) ;∗] and D11[. . . ℓ ; ∗] are invertible. Now we provide the algorithmic
description of the distinguisher.

Description of the SPRP-distinguisherAsprp.
(step 1) (Find a suitable difference in a pair of plaintext queries): Find δ = solve(E12[. . . (ℓ − 1) ; ∗], 0ℓ−1).
(step 2) (Make the queries with the difference obtained in (step 1)): Now the distinguisher makes two

queries 0 and δ and obtains corresponding responses c = E(0ℓ) and c󸀠 = E(δ), respectively. Let
u1, v1, . . . , u2ℓ−1, v2ℓ−1 and u󸀠1, v

󸀠
1, . . . , u

󸀠
2ℓ−1, v

󸀠
2ℓ−1 respectively denote the intermediate block-

cipher inputs and outputs of the two queries. It is easy to see that 1 ≤ i ≤ (ℓ − 1), ui = u󸀠i , vi = v
󸀠
i

and
∆c := c + c󸀠 = E21[ℓ . . . (2ℓ − 1) ; ∗] ⋅ ∆vℓ... + E22 ⋅ δ.

(step 3) (Solve ∆u, ∆v for the 2-queries): Using the invertible property of E21[ℓ . . . (2ℓ − 1) ;∗], we can actu-
ally solve ∆vℓ... and hence ∆uℓ.... Thus, we know ∆u and ∆v.
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(step 4) (Find ∆x, ∆y for the 2-queries): Suppose we make two (redundant) decryption queries c and c󸀠

(whose responses must be 0 and d) and let x1, y1, . . . , x2ℓ−1, y2ℓ−1 and x󸀠1, y
󸀠
1, . . . , x

󸀠
2ℓ−1, y

󸀠
2ℓ−1

respectively denote the intermediate inputs and outputs for the two queries. Then by the defini-
tion of the decryption algorithmwe also know ∆x and ∆y, which are nothing but a (β, π)-reordering
of (∆u, ∆v).

(step 5) (Find a difference for the final decryption query): Now we find a difference δ󸀠 such that

(D11[. . . ℓ ;∗] D12[. . . ℓ ; ∗]) ⋅ (
δ󸀠

∆y1
) = (

∆x1
0ℓ−1
) .

We can solve the above equation for a non-zero δ󸀠, assuming that ∆x1 ̸= 0 (since otherwisewe do not
get a non-zero δ󸀠. Note that ∆x1 canbewritten as a function of c and c󸀠. So for a randompermutation,
a function of c and c󸀠 becoming zero has lowprobability).Moreover,we alreadyhave the assumption
that D11[. . . ℓ ;∗] is invertible.

(step 6) (Make the queries with the difference obtained in (step 5)): Now we make two decryption queries c̄
and c̄󸀠, where c̄󸀠 = c̄ + δ󸀠, with the first block-cipher input being x1 and x󸀠1, respectively. While we
set two queries, we should ensure that none of these have been obtained in the first two encryption
queries (these are also callednon-pointless or non-trivial queries). Let x1, y1, x̄2, ȳ2, . . . , x̄2ℓ−1, ȳ2ℓ−1
and x󸀠1, y

󸀠
1, x̄
󸀠
2, ȳ
󸀠
2, . . . , x̄

󸀠
2ℓ−1, ȳ

󸀠
2ℓ−1 respectively denote the intermediate inputs and outputs for

these two queries, and let M̄ and M̄󸀠 denote the corresponding responses. By the choice of δ󸀠, we
know that ∆ȳ2...ℓ = 0ℓ−1.

(step 7) (Find a nullifier of unknown intermediate values, same as PRP distinguisher): Find

δ∗ = solve∗(D21[∗, ℓ + 1 . . . ], 0ℓ−1).

(step 8) (The distinguisher event): If δ∗ ⋅ ∆M̄ = δ∗ ⋅ D22 ⋅ d󸀠, then it returns 1 (decision for the keyed con-
struction), else it returns 0 (decision for uniform random permutation).

3.4 PRF distinguishing attack on nonce-based Eℓ,ℓ󸀠 ,q,Π̃,κ󸀠 with q ≤ ℓ󸀠 − 1
Herewe provide the attack assuming q = ℓ󸀠 − 1. The attack can be trivially extended to all those constructions
with q < ℓ󸀠 − 1.

Description of the PRF-distinguisherAn_prf.
(step 1) (Finding a suitable difference in a pair of plaintext queries): Let δ󸀠 be an ℓ block non-zero vector.

Find δ = solve(E12[. . . ℓ󸀠 ; ∗], E14 ⋅ δ󸀠).
(step 2) (Make the querieswith the difference obtained in (step 1)): Now the distinguishermakes two queries

(n∗, 0ℓ) and (n∗ + δ󸀠, δ) and obtains corresponding responses c = E(n∗, 0ℓ) and c󸀠 = E(n∗ + δ󸀠, δ).
(step 3) (The distinguisher event): If ∆c = (E22 ⋅ δ + E24 ⋅ δ󸀠), then it returns 1 (decision for the keyed con-

struction), else it returns 0 (decision for uniform random function).

3.5 Optimal number of block-functions for affine mode enciphering schemes

Here we provide the optimal number of block-functions required for PRF and SPRP security for length pre-
serving encryption schemes and PRF security for length expanding encryption schemes.

Theorem 3.1. An affine mode encryption that takes a message of length ℓ blocks (and outputs ℓ󸀠 blocks),
requires at least 2ℓ − 1many block-functions to achieve PRP security. If we consider a length-preserving encryp-
tion (i.e. ℓ󸀠 = ℓ), then it requires at least 2ℓ block-function calls to achieve SPRP security.

Proof. The result follows from the description ofAprp andAsprp.
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Theorem 3.2. An affine mode encryption with nonce (non-repeating) that takes a message of length ℓ blocks
(and outputs ℓ󸀠 blocks) requires at least ℓ󸀠 many block-functions to achieve PRF security.

Proof. The result follows from the description ofAn_prf.

The optimality is achieved with a simple variant of 3-round Luby Rackoff (PRF with ℓ󸀠 = ℓ = 2), CMC (SPRP
with any ℓ) and OCB (nonce-based PRP with any ℓ and ℓ󸀠 = ℓ + 1).

4 Optimality for online PRF and online SPRP in affine modes
In this section, we concentrate on the affine mode online encryption. First, we provide the formal definition
of it, then we find some important properties and use them show the results in Table 2.

Security Optimal number of Optimal number of Examples with tight bound
total block-functions block-functions per chunk

online PRF 2rℓ − 1 2r − 1 A variant of HCBC-1
online SPRP 2rℓ 2r TC3

Table 2: Optimal block-functions required for length-preserving r-online encryption. Here we
consider the length of a message to be ℓmany r-blocks.

4.1 r-block online encryption mode

Tweak-updatable chunk-wise encryption. We call r-blocks a chunk. In this section, we describe tweak-
updatable chunk-wise encryption, the basic building block of r-block online affine mode. Given r, the basic
building block Eq,Π̃ := (E1, E2, E3) (parameterized by a family of q many permutations Π̃ = (π1, . . . , πq))
takes an r-block message m and a tweak value w of t blocks and returns an r-block ciphertext c and an
updated tweak w󸀠 as follows:

ui = E1(v1, . . . , vi−1,m, w, κ), i = 1, . . . , q,
vi = πi(ui), i = 1, . . . , q,
c = E2(v1, . . . , vq ,m, w, κ),

w󸀠 = E3(v1, . . . , vq ,m, w, κ).
It is easy to see that the function Eq,Π̃ can alternatively be represented by a (q + r + t) × (q + r + t + k) encryp-
tion co-efficient matrix E (with E11 strictly lower triangular) such that

(
u
c
w󸀠
) = (
(E11)q×q (E12)q×r (E13)q×t (E14)q×k
(E21)r×q (E22)r×r (E23)r×t (E24)r×k
(E31)t×q (E32)t×r (E33)t×t (E34)t×k

) ⋅(

v
m
w
κ

) ,

where πi(ui) = vi. The function needs to be decryptable, meaning there should exist a corresponding
(q + r + t) × (q + r + t + k) decryption matrix D, α := (α1, . . . , αq) ∈ {1, −1}q and a permutation β on [1 . . . q]
such that

(
x
m
w󸀠
) = (
(D11)q×q (D12)q×r (D13)q×t (D14)q×k
(D21)r×q (D22)r×r (D23)r×t (D24)r×k
(D31)t×q (D32)t×r (D33)t×t (D34)t×k

) ⋅(

y
c
w
κ

) ,

where παiβ(i)(xi) = yi with the property

(ui , vi) =
{
{
{

(xβ(i), yβ(i)) if αi = 1,
(yβ(i), xβ(i)) if αi = −1.
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M (1)

E1

q1,Π̃1

C(1)

M (2)

E2

q2,Π̃2

C(2)

W (1)W (0) W (2)
· · ·

W (l−1) W (l)

M (l)

E l
ql,Π̃l

C(l)

Figure 1: r-block linear online encryption mode.

r-block online encryptionmode. The r-block online encryption takes a tweak τ and amessageM of ℓ chunks
(each containing r blocks), and computes the ciphertext C of length ℓ as follows:

w(0) = τ,
(c(i), w(i)) = Eiqi ,Π̃i

(m(i), w(i−1)) for i = 1, . . . , ℓ.

It is easy to see that an r-block online encryption mode is defined by the sequence of Ei
qi ,Π̃i

matrices seen
in Figure 1.

Examples. HCBC [1], MHCBC [18] and TC3 [22] are some examples of linear online encryption modes with
r = 1.

4.2 Finding tweak difference ∆wi for two messages

Let Eiqi ,Π̃ be the i-th chunk-wise encryption. Suppose ∆wi−1 (the state difference for twomessagesm1 andm2
of (i − 1) chunks) is known. We will show that if ∆wi−1 = 0, then qi ≥ 2r − 1, and if ∆wi−1 is non-zero, then
qi ≥ 2r.

Lemma 4.1. Consider a chunk-wise encryption Ei
2r,Π̃

. Given a non-zero ∆wi−1 for two messages, one can find
two messages for which ∆wi is computable.

Proof. Given a non-zero ∆w, we find ∆m and calculate the corresponding ∆w󸀠 as follows:
(i) Find ∆m, a suitable difference in a pair of plaintext queries:

∆m = solve(Ei12[. . . r ; ∗], E
i
13 ⋅ ∆w).

We canfind sucha ∆m given Ei13 ⋅ ∆w is non-zero.Nowwe setm1 = 0r andm󸀠1 = ∆m andmakequeries toEi
2r,Π̃

.
Let the i-th ciphertext chunks be c1 and c󸀠1.

(ii) Find a nullifier δ∗ ∈ 𝔹r+1 of unknown intermediate values:

δ∗ = solve∗(E∗, 0r), where E∗ = (E
i
21[. . . r ; (r + 1) . . . 2r]
Ei31[1; (r + 1) . . . 2r]

) .

(iii) Find the updated tweak difference ∆w󸀠 from the equation

δ∗ ⋅ ( ∆c
∆w󸀠
) = δ∗ ⋅ (E

i
22

Ei32
) ⋅ ∆M + δ∗ ⋅ (E

i
23

Ei33
) ⋅ ∆w. (4.1)

Explanation. Let u1, v1, . . . , u2r , v2r and u󸀠1, v󸀠1, . . . , u󸀠2r , v󸀠2r respectively denote the intermediate inputs and
outputs for the two queries 0r and ∆m. Now we have 1 ≤ i ≤ r, ui = u󸀠i , vi = v

󸀠
i and

(
∆c
∆w󸀠
) = (

Ei21[. . . r ; (r + 1) . . . 2r]
Ei31[1; (r + 1) . . . 2r]

) ⋅ ∆v(r+1)... + (
Ei22
Ei32
) ⋅ ∆m + (E

i
23

Ei33
) ⋅ ∆w.

Multiplying both sides of the equation by δ∗, we obtain equation (4.1).
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Corollary 4.2. Consider a chunk-wise encryption Ei
2r−1,Π̃

. Given ∆w = 0, one can find ∆m for which ∆w󸀠 is com-
putable.

Proof. The proof is similar to the one of the previous lemma. For completeness, we provide the sketch of the
proof. First, we find

∆m = solve(Ei12[. . . (r − 1) ; ∗], 0
r−1)

and make queries with m1 = 0r and m2 = ∆m. Let the corresponding responses be c1 and c2. Then we find
the nullifier δ∗ ∈ 𝔹r+1 similar to the previous proof:

δ∗ = solve∗(E∗, 0r), where E∗ = (E
i
21[. . . r ; (r + 1) . . . 2r]
Ei31[1; (r + 1) . . . 2r]

) .

Now, one can find ∆w󸀠 from the equation

δ∗ ⋅ ( ∆c
∆w󸀠
) = δ∗ ⋅ (E

i
22

Ei32
) ⋅ ∆m.

4.3 Finding minimum number of block-functions for PRF security of the i-th tweak
updatable chunk-wise encryption

Lemma 4.3. Given a non-zero ∆w, the chunk-wise encryption Ei
2r−1,Π̃

is not PRF.

Proof. Here we describe an adversary A󸀠prf that distinguishes Ei2r−1,Π̃ from a random function, given a non-
zero tweak value difference ∆w.

Description of the PRF-distinguisherA󸀠prf.
(step 1) (Find the suitable difference in a pair of queries): Find ∆m ∈ 𝔹r:

∆m = solve(Ei12[. . . r ; ∗], E
i
13 ⋅ ∆w).

(step 2) (Make queries with the difference obtained in (step 1)): Now the distinguisher makes two queries
with m1 and (m1 + ∆m) and obtains corresponding responses c1 and c2.

(step 3) (Find the nullifier of the unknown intermediate values): By using Lemma 2.6, find δ∗ ∈ 𝔹r:

δ∗ = solve∗(Ei21[. . . r ; r . . . (2r − 1)], E
i
23 ⋅ ∆w).

(step 4) (The distinguisher event): If δ∗ ⋅ (c1 + c2) = δ∗ ⋅ Ei22 ⋅ ∆m + δ∗ ⋅ E
i
23 ⋅ ∆w, then it returns 1 (decision

for the keyed construction), else it returns 0 (decision for uniform random permutation).

By using a similar idea, one can also show the following proposition.

Proposition 4.4. Given ∆w = 0, the chunk-wise encryption Ei
2r−2,Π̃

is not PRF.

So, we observed that if a non-zero input tweak difference can be observed, then a tweak updatable chunk-
wise encryption requires at least 2rmany block-functions. Similarly, if only zero tweak difference is observed,
then it requires at least 2r − 1 many block-functions.

4.4 Finding the minimum number of block-functions for SPRP security of tweak
updatable chunk-wise encryption

Lemma 4.5. The chunk-wise encryption Ei
2r−1,Π̃

is not SPRP.

Proof. Here we describe an SPRP distinguisher for an r-online mode having one chunk-wise encryption
block Ei

2r−1,Π̃
. The idea is similar to the one used by Nandi in [20].
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Description of the SPRP-distinguisherA󸀠sprp.
(step 1) (Find a suitable difference in a pair of plaintext queries): Find δ ∈ 𝔹r:

δ = solve(Ei12[. . . r − 1 ; ∗], 0
r−1).

(step 2) (Make the querieswith the difference obtained in (step 1)): Now the distinguishermakes two queries
mi−1‖0r and mi−1‖δ and obtains corresponding responses

ci−1‖c = E(mi−1‖0) and ci−1‖c󸀠 = E(mi−1‖δ).

Let u1, v1, . . . , u2r−1, v2r−1 and u󸀠1, v
󸀠
1, . . . , u

󸀠
2r−1, v

󸀠
2r−1 respectively denote the intermediate inputs

and outputs for the i-th block of the two queries. It is easy to see that 1 ≤ i ≤ r − 1, ui = u󸀠i , vi = v
󸀠
i

and
∆c := c + c󸀠 = Ei21[r . . . (2r − 1) ; ∗] ⋅ ∆vr... + E

i
22 ⋅ δ.

(step 3) (Solve ∆u, ∆v for the 2-queries): Using the invertible property of Ei21[r . . . (2r − 1) ;∗], we can actu-
ally solve ∆vr... and hence ∆ur.... Thus, we know ∆u and ∆v.

(step 4) (Find ∆x, ∆y for the 2-queries): Suppose we make two (redundant) decryption queries ci−1‖c
and ci−1‖c󸀠 (whose responses must be mi−1‖0 and mi−1‖δ) and let x1, y1, . . . , x2r−1, y2r−1 and
x󸀠1, y
󸀠
1, . . . , x

󸀠
2r−1, y

󸀠
2r−1 respectively denote the intermediate inputs and outputs for the two queries.

Then by the definition of the decryption algorithm we also know ∆x and ∆y, which are nothing but
a (β, π)-reordering of (∆u, ∆v).

(step 5) (Find a difference for the final decryption query): Now we find a difference δ󸀠 such that

(Di
11[. . . r ;∗] D

i
12[. . . r ; ∗]) ⋅ (

δ󸀠

∆y1
) = (

∆x1
0r−1
) .

We can solve the above equation for a non-zero δ󸀠, assuming that ∆x1 ̸= 0 (see the remark below).
Here we assume that the matrix Di

11[. . . r ;∗] is invertible.
(step 6) (Make the queries with the difference obtained in (step 5)): Now we make two decryption queries

ci−1‖c̄ and ci−1‖c̄󸀠, where c̄󸀠 = c̄ + δ󸀠, with the first block-cipher input of the i-th chunk-wise encryp-
tion being x1 and x󸀠1. While we set two queries, we should ensure that none of these have been
obtained in the first two encryption queries (these are also called non-pointless or non-trivial
queries). Let x1, y1, x̄2, ȳ2, . . . , x̄2r−1, ȳ2r−1 and x󸀠1, y

󸀠
1, x̄
󸀠
2, ȳ
󸀠
2, . . . , x̄

󸀠
2r−1, ȳ

󸀠
2r−1 respectively denote

the intermediate inputs and outputs for these two queries, and let m̄ and m̄󸀠 denote the correspond-
ing responses. By the choice of δ󸀠, we know that ∆ȳ2...r = 0r−1.

(step 7) (Find a nullifier of unknown intermediate values, the same as the PRP distinguisher): Find a non-
zero binary vector δ∗ ∈ 𝔹r:

δ∗ = solve∗(Di
21[∗, r + 1 . . . ], 0

r−1).

(step 8) (The distinguisher event): If δ∗ ⋅ ∆m̄ = δ∗ ⋅ Di
22 ⋅ δ󸀠, then it returns 1 (decision for the keyed construc-

tion), else it returns 0 (decision for uniform random permutation).

Remark. In the above attack, we assume that ∆x1 ̸= 0 since otherwise we do not get a non-zero δ󸀠. Note
that ∆x1 can be written as a function of c and c󸀠, and for a random permutation the probability of the event
∆x1 = 0 is low.

4.5 Optimal number of block-functions for online PRP and SPRP

Theorem 4.6. An r-block online encryption mode of ℓ chunks requires (i) at least 2rℓ − 1many block-functions
with further restrictions that (ii) each chunk requires at least 2r − 1 many block-functions and (iii) two chunks
with 2r − 1 many block-functions must have at least one chunk with more than 2r many block-functions in
between.
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Proof. Condition (ii) follows directly from Proposition 4.4. Condition (iii) is obtained from the following
arguments:
∙ Let i be the chunk with (2r − 1) block-functions. From Proposition 4.2 we can query two messages m1

and m2, of i-chunks each (keeping the first (i − 1) chunks identical) such that ∆w(i) can be computed.
∙ Now using Lemma 4.3, we claim that Ei+1 requires at least 2r many block-functions.
∙ As ∆w(i) is known, if Ei+1, . . . , Ei+j use 2r many block-functions each, then, by applying Lemma 4.1

successively, one can compute ∆w(i+j). Hence according to Lemma 4.3, Ei+j also requires at least 2rmany
block-functions. So, for any 2 chunks having (2r − 1) block-functions there must be one chunk having
more than 2r many block-functions.
It is easy to see that conditions (ii) and (iii) imply condition (i), and hence the theorem follows.

Theorem 4.7. An r-block online encryption mode of ℓ chunks requires at least 2rℓ many block-functions with
each chunk requiring at least 2r many block-functions.

Proof. The proof follows from Lemma 4.5.

The optimality is achieved with a simple variant of HCBC-1 (online PRP with r = 1) and TC3 (online SPRP
with r = 1 and any ℓ).

5 Optimality for message authentication codes in affine modes
In this section, we first formally define affinemodemessage authentication codes and then show that ℓmany
block-function calls are required to process a message of length ℓ. A simple variant of PMAC is an example
with the tight bound.

5.1 Affine MAC modes

Given a parameter q and a family of qmany permutations Π̃ = (π1, . . . , πq), an affinemodemessage authen-
tication code Fℓ,q,Π̃,κ󸀠 := (F1,F2) takes a message m and returns a b-block tag t as follows:

ui = F1(v1, . . . , vi−1,m, κ), i = 1, . . . , q,
vi = πi(ui), i = 1, . . . , q,
t = F2(v1, . . . , vq ,m, κ).

It is easy to see that the function Fℓ,q,Π̃,κ󸀠 can alternatively be represented by a (q + b) × (q + ℓ + k) MAC
co-efficient matrix F (with F11 being strictly lower triangular) such that

(
u
t
) = (
(F11)q×q (F12)q×ℓ (F13)q×k
(F21)b×q (F22)b×ℓ (F23)b×k

) ⋅ (
v
m
κ
) ,

where πi(ui) = vi.

Examples. CBC-MAC [2], PMAC [4], TMAC [16], OMAC [12], DAG-based constructions [14], a sub-class of
affine domain extension or ADE [19] etc. are some examples of linear MAC modes.

5.2 Optimal number of block-functions for affine MAC mode

Theorem 5.1. A secure affinemodeMAC requires at least ℓmany block-functions to respectively process ames-
sage M of ℓ-blocks.
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Proof. Here we show an integrity attack on the affineMACmode Fℓ,ℓ−1,Π̃,K (i.e. an affineMACmode that uses
ℓ − 1 many block-functions). Assume ℓ > b and mount the attack as described below.

Description of the forgerAforge.
(step 1) (Find a suitable difference in a pair of plain-text queries): Find non-zero δ ∈ 𝔹ℓ:

δ = solve(F12, 0ℓ−1).

(step 2) (Make an encryption query): Make a query m1 of ℓ blocks. Let the corresponding tag be t1.
(step 3) (Make the forging query with the difference obtained in (step 1)): Compute m2 = m1 + δ and

t2 = t1 + F22 ⋅ δ. Forge with (m2, t2).
The theorem follows from the above attack.

The optimality is achieved by the affine mode construction PMAC, assuming an independent masking key
(not generated using block-function).

6 Optimality for authenticated encryption in affine modes
In this section, we consider affine mode authenticated encryption schemes based on four different types of
settings, depending on whether we have to respect nonce (i.e. nonce-respecting) or we can repeat nonce (i.e.
nonce-misuse) and whether we follow traditional AE settings or INT-RUP security settings. We recall that the
rate of an AE scheme denotes the number of message blocks processed per block-function call. We call an
AE scheme to be “rate-1” if the following holds: to process a message of ℓ blocks (i) exactly ℓ many block-
function calls are used to generate the ciphertext and (ii) a constant number (denoted by z) of additional
block-function calls are required to generate the tag. Instead of showing the exact number of block-functions
required, we will find the result in terms of the rate of the mode; see Table 3.

6.1 Rate-1 affine mode authenticated encryption scheme

We represent a “rate-1” affine mode authenticated encryption as

E ⋅ (

κ
m

y∗ = ( y
ytag
)
) =(

x∗ = ( x
xtag
)

c∗ = (c
t
)
) ,

where x = x∗[1 . . . ℓ], xtag = x∗[(ℓ + 1) . . . (ℓ + z)], y = y∗[1 . . . ℓ] and ytag = y∗[(ℓ + 1) . . . (ℓ + z)]. It is easy to
see that a “rate-1” affine mode AE scheme has the following structure of E:

E = (

(E11)ℓ×k (E12)ℓ×ℓ (E13)ℓ×ℓ (E14)ℓ×z
(E21)z×k (E22)z×ℓ (E23)z×ℓ (E24)z×z
(E31)ℓ×k (E32)ℓ×ℓ (E33)ℓ×ℓ (E34)ℓ×z
(E41)1×k (E42)1×ℓ (E43)1×ℓ (E44)1×z

) .

It is easy to check that E13 and E24 are strictly lower triangular matrices and E14 = E34 are zero matrices.
For the decryption, we have identical representations as we replace E by D, x by u, y by v, m by c, and c

by m:

D.(

κ
c

v∗ = ( v
vtag
)
) =(

u∗ = ( u
utag
)

(
m
t
)
) ,
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Nonce Security Optimal rate Examples

Respecting Traditional 1 OCB
Respecting INT-RUP < 1 OCB-IC
Misuse Traditional < 1 ELmD
Misuse INT-RUP < 1 OCB-IC

Table 3: Optimal rate of affine mode AE to achieve security in different settings.

where

u = u∗[1 . . . ℓ], utag = u∗[(ℓ + 1) . . . (ℓ + z)],
v = v∗[1 . . . ℓ], vtag = v∗[(ℓ + 1) . . . (ℓ + z)].

It is easy to see that D has the following structure:

D = (

(D11)ℓ×k (D12)ℓ×ℓ (D13)ℓ×ℓ (D14)ℓ×z
(D21)z×k (D22)z×ℓ (D23)z×ℓ (D24)z×z
(D31)ℓ×k (D32)ℓ×ℓ (D33)ℓ×ℓ (D34)ℓ×z
(D41)1×k (D42)1×ℓ (D43)1×ℓ (D44)1×z

) .

6.1.1 Important properties of the decryption matrix D

Lemma 6.1. If rank(D33) < (ℓ − k)n, then the AE construction does not preserve privacy.

Proof. We have the condition D31 ⋅ κ + D32 ⋅ c + D33 ⋅ v = m. As the combined rank of [D31 : D32 : D33] is full
(otherwise the scheme is not decryptable), we can find a row vector δ such that δ ⋅ D32 ̸= 0 but δ ⋅ D31 = 0 and
δ ⋅ D33 = 0. This gives a linear equation in c and m:

δ ⋅ D32 ⋅ c = δ ⋅ m.

By using this equation, one can distinguish this scheme from a random function making a single query and
checking whether the above equation holds or not.

Lemma 6.2. If rank(D12) < (ℓ − z)n, then the AE construction does not have integrity security.

Proof. Let the decryption matrix for an AE Scheme be D, with rank(D12) < (ℓ − z)n. Now, we describe an
integrity attacker (or forger) against the AE scheme as follows.

Description of the forgerAint.
(step 1) (Finding a suitable difference in a pair of queries): Find a non-zero ∆c = (∆c1, . . . , ∆cℓ) satisfying

D12 ⋅ ∆c = 0 and D22 ⋅ ∆c = 0. The rank of D12 ensures that we will find such a ∆c value for some ℓ.
(step 2) (Make an encryption query): Make an encryption query

(n∗,m = (m1,m2, . . . ,mℓ)).

Suppose c = (c1, c2, . . . , cℓ, t) to be the tagged ciphertext.
(step 3) (The forging event): Compute ∆t = D42 ⋅ ∆c, and forge with (n∗, c + ∆c, t + ∆t).

6.1.2 Some examples

Here we provide some popular examples of authenticated encryption schemes which are “rate-1” block-
cipher based, and for each of them we identify the underlying E matrix (considering complete block
messages).
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Example (iFeed [25]). iFeed is an example of a “rate-1” authenticated mode authenticated encryption con-
struction with z = 1, key index (π, (κ0, κ1, κ2)), ρμ = (π, . . . , π) and encryption matrix E given as follows:

E11 =(

0 22 1 0
0 23 1 0
...

...
...

...
0 2ℓ+1 1 0

) , E12 = (
(0) 0
Iℓ−1 (0)

) , E13 = E14 = (0),

E21 = (0 2 1 0), E22 = (0 0 . . . 0 1), E23 = E24 = (0),

E31 =(

0 23 1 0
0 24 1 0
...

...
...

...
0 2ℓ+2 1 0

) , E32 = Iℓ, E33 = Iℓ, E34 = (0),

E41 = (0 0 0 1), E42 = E43 = (0), E44 = 1.

Example (OCB [21]). OCB is another example of a “rate-1” authenticated encryption mode (which is not
a feedback-based construction) with z = 1, key index (π, κ0), ρμ = (π, . . . , π) and encryption matrix E given
as follows:

E11 =((

(

0 γ1 1
0 γ2 1
...

...
...

0 γℓ−1 1
< n > (γℓ + 2−1) 1

))

)

, E12 = (
Iℓ−1 (0)
(0) 0

) , E13 = E14 = (0),

E21 = (0 γℓ 1), E22 = (1), E23 = E24 = (0),

E31 =((

(

0 γ1 1
0 γ2 1
...

...
...

0 γℓ−1 1
0 γℓ 1

))

)

, E32 = (
0ℓ−1 (0)
(0) 1

) , E33 = Iℓ, E34 = (0),

E41 = E42 = E43 = (0), E44 = 1.

Here, Iℓ and 0ℓ denote identity and all zero squarematrices of dimension ℓ, respectively. We use (0) to denote
an all-zero sub-matrix of appropriate size. Furthermore, ⟨n⟩ is used to denote the field element corresponding
to the integer n (as we consider complete block messages).

6.2 INT-RUP attack on “rate-1” affine mode authenticated encryption

In this section, we prove the following theorem.

Theorem 6.3. Any “rate-1” block-cipher-based affine mode authenticated encryption scheme is INT-RUP
insecure.

Proof. Here we describe an INT-RUP attacker on generic “rate-1” affine domain authenticated encryption
schemes. The attack consists of one encryption and one unverified plaintext query. For any two vectors Aa

and Ab, we use the notation ∆Aab to denote the vector (Aa + Ab).

Description of the INT-RUP attackerAint_rup.
(step 1) (Make an encryption query): The adversary first makes an encryption query

(n∗,m0 = (m0
1,m

0
2, . . . ,m

0
ℓ )).

Let c0 = (c01, c
0
2, . . . , c

0
ℓ , t0) be the tagged ciphertext.
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(step 2) (Make an unverified plaintext query): Next, the adversary makes an unverified plaintext query
(n∗, c1 = (c11, c

1
2, . . . , c

1
ℓ )). Let m1 = (m1

1,m
1
2, . . . ,m

1
ℓ ) be the corresponding plaintext.

(step 3) (Find the v-difference of the two queries): Find ∆v01 from

∆v01 = D−133 ⋅ (∆m
01 + D32 ⋅ ∆c01).

(step 4) (Represent ∆c0f in terms of a non-zero vector δ): Given any non-zero binary vector δ = (δ1, . . . , δℓ),
represent ∆c0f in terms of δ as follows:

∆c0f = D−112 ⋅ D
∗ ⋅ δ,

where

D∗ =(

∆u011 + D
11
13 ⋅ ∆v

01
1 D12

13 ⋅ ∆v
01
2 ⋅ ⋅ ⋅ D1ℓ

13 ⋅ ∆v
01
ℓ

D21
13 ⋅ ∆v

01
1 ∆u012 + D

22
13 ⋅ ∆v

01
2 ⋅ ⋅ ⋅ D2ℓ

13 ⋅ ∆v
01
ℓ

...
...

. . .
...

Dℓ113 ⋅ ∆v
01
1 Dℓ213 ⋅ ∆v

01
2 ⋅ ⋅ ⋅ ∆u01ℓ + D

ℓℓ
13 ⋅ ∆v

01
ℓ

) .

(step 5) (Find a suitable δ that makes ∆u0ftag = 0): Solve the following set of equations to find a δ that implies
∆u0ftag = 0:

D22 ⋅ ∆c0f + D23 ⋅ ∆v0f = 0.

As ∆c0f and ∆v0f can be represented as linear combinations of δ, the above equality can be written
as (D22 ⋅ D−112 ⋅ D∗ + D23 ⋅ v∗) ⋅ δ = 0. It is easy to see that this equation has at least one solution as
long as ℓ > (z − 1)n. Let the solution be δ∗.

(step 6) (Compute the ciphertext and tag difference): Find ∆c0f and ∆t0f as we put δ = δ∗ in the following
equations:

∆c0f = D−112 ⋅ D
∗ ⋅ δ,

∆t0f = D42 ⋅ ∆c0f + D43 ⋅ ∆v∗ ⋅ δ.

(step 7) (Forging event): Forge with (n∗, cf := c0 + c0f , tf := t0 + t0f ).

Brief explanation. The adversarial goal is to construct a forging query (with the same nonce and associated
data) (n∗, cf = (cf1, c

f
2, . . . , c

f
ℓ), tf ), which realizes a δ = (δ1, . . . , δℓ) sequence. The ciphertext Cf realizes

a δ-sequence if, given a non-zero binary vector δ = (δ1, . . . , δℓ), ufi = u
δi
i for all i ≤ ℓ, and ufi = u

0
i for all i > ℓ.

Note that, by definition, ∆u0fi = δi ⋅ ∆u
01
i and ∆v0fi = δi ⋅ ∆v

01
i . So, one can write both ∆u0f and v0f as a linear

combination of δ, and hence represent ∆c0f in terms of δ:

∆c0f = D−112 ⋅ (∆u
0f + D32 ⋅ ∆v0f ) = D−112 ⋅ D

∗ ⋅ δ.

Now, the adversary chooses a δ (we term it as δ∗) such that the second condition (i.e. ufi = u
0
i for all i > ℓ)

gets satisfied. Finally, the adversary computes the ciphertext-difference ∆c0f and the tag-difference ∆t0f cor-
responding to δ∗ and mounts the attack.

Case when at least one of D12 and D33 does not have full rank. From Lemma 6.1 and 6.2 we already know
that rank(D12) and rank(D33) should be high. This ensures that if we set ℓ appropriately to a high value, we
will have an (n × n) sub-matrix which has full rank for both D12 and D33. More formally, from Lemmas 6.1
and 6.2 we know that rank(D12) > (ℓ − (k + 1))n and rank(D33) > (ℓ − z)n. It is easy to check that we can find
a value of ℓ such that both the sub-matrices D12[ℓ − n . . . , ℓ − n . . . ] and D33[ℓ − n . . . , ℓ − n . . . ] have full
rank. As k and z are small constants, one can ensure that we will find such an ℓ. Now one can easily modify
the previous attack and apply it here.

Remarks (Extension of the attack for any number of keys). In the definition of affine domain authenticated
encryption, we have assumed k, the number of keys, to be constant. Some constructions like IACBC [15]
and IAPM [13] use log ℓ many keys while encrypting ℓ block messages. It is easy to see that our INT-RUP
attack will be valid for these constructions as well. In general, this attack will be applicable for any “rate-1”



258 | A. Chakraborti et al., Optimality of non-linear computations for symmetric key primitives

authenticated encryption scheme for which D11 and D22 are invertible, even if the number of masking keys
it uses depends on the message length.

6.3 Integrity attack on “rate-1” affine mode authenticated encryption in
nonce-misuse scenario

Theorem 6.4. Any “rate-1” block-cipher-based AE scheme is not integrity secure against nonce-repeating
adversaries.

In this section, we describe a generic INT-CTXT attack under a nonce-misuse scenario on “rate-1” affine AE
schemes. The technique is similar to that for the previous attack, except wemake two encryption queries with
the same nonce instead of one encryption and one INT-RUP query.

Description of the INT-RUP attackerA󸀠int_rup.
(step 1) (Make first encryption query): Make an encryption query (n∗,m0 = (m0

1,m
0
2, . . . ,m

0
ℓ )). Let

c0 = (c01, c
0
2, . . . , c

0
ℓ , t

0)

be the tagged ciphertext.
(step 2) (Make second encryption query): Make another encryption query: (n∗,m1 = (m1

1,m
1
2, . . . ,m

1
ℓ )). Let

c1 = (c11, c
1
2, . . . , c

1
ℓ , t1) be the tagged ciphertext.

(step 3) (Make the forging): Forge with (cf = (cf1, c
f
2, . . . , c

f
ℓ), tf ), where cfi = c

0
i + ∆c

0f
i and tf = t0 + ∆t0f

with c0f and t0f being defined as in the previous attack.
Clearly, the main idea of the previously described attack is to find one valid plaintext-ciphertext-tag pair

(n∗,m0, (c0, t0)) and one plaintext-ciphertext pair (n∗,m1, c1) for any choice of n∗,m0 and c1. By twononce-
misusing queries we can get (n∗,m0, (c0, t0)) and (n∗,m1, (c1, t1)) for any choice of n∗,m0 andm1. Thus we
can follow the same procedure described in the last section and forge a valid ciphertext-tag pair.

6.4 On the optimality of “rate” for affine mode authenticated encryption

Theorem 6.5. In a traditional nonce-respecting scenario, the optimum rate of a secure affine mode authenti-
cated encryption is 1 (with z = 1). But if we consider a nonce-misuse setting or an INT-RUP model, then any
block-cipher-based affine mode authenticated encryption must have “rate < 1”.

Proof. From Theorem 3.2 we know that a block-cipher-based affine mode authenticated encryption (that
takes ℓ blocks and outputs ℓ + 1 many blocks) needs at least ℓ + 1 many block-functions to achieve PRF
security, assuming distinct nonce criteria. Now, the existing construction OCB (that uses ℓ + 1 many block-
functions) achieves that, and hence provides the optimal bound.

The second part of the theorem follows directly from Theorems 6.3 and 6.4.

7 Conclusion
In this paper, we have considered symmetric key affinemodes of operation and determined the optimal num-
ber of non-linear computations required to achieve (i) PRF security of encryption modes (with and without
nonce), (ii) SPRP security of length-preserving encryption modes, (iii) online PRF and online SPRP security
of r-online encryptionmodes and (iv) message authentication codes. The tightness of these bounds has been
shown through some known constructions achieving these bounds. Moreover, we have considered authenti-
cated encryptionmodes anddetermined themaximum rate of the construction to achieve security in different
settings. These are important theoretical results, which could be used as a guideline while designing new
symmetric key algorithms, minimizing the number of block-function invocations.
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