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Abstract: Composite order pairing setting has been used to achieve cryptographic functionalities beyond

what is attainable in prime order groups. However, such pairings are known to be significantly slower than

their prime order counterparts. Thus emerged a new line of research – developing frameworks to convert

cryptosystems from composite to prime order pairing setting. In this work, we analyse the intricacies of

efficient prime order instantiation of cryptosystems that can be converted using existing frameworks. To

compare the relative efficacy of these frameworks we mainly focus on some representative schemes: the

Boneh–Goh–Nissim (BGN) homomorphic encryption scheme, ring and group signatures as well as a blind

signature scheme. Our concrete analyses lead to several interesting observations. We show that even after

a considerable amount of research, the projecting framework implicit in the very first work of Groth–Sahai

still remains the best choice for instantiating the BGN cryptosystem. Protocols like the ring signature and

group signature which use both projecting and cancelling setting in composite order can be most efficiently

instantiated in the Freeman prime-order projecting only setting. In contrast, while the Freeman projecting

setting is sufficient for the security reduction of the blind signature scheme, the simultaneous projecting and

cancelling setting does provide some efficiency advantage.

Keywords: Pairing-based cryptography, projecting, cancelling, BGN encryption, ring signature,

blind signature
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1 Introduction

Bilinear pairing was initially proposed and used for cryptographic constructions [7, 24] in the prime order

groups. Boneh, Goh and Nissim [8] were the first to demonstrate a novel cryptographic application of pair-

ing defined over composite order groups. They constructed a partially homomorphic public key encryption

scheme. Subsequently, numerous other specialized cryptosystems like predicate encryption [9, 25, 36] and

signature schemes with additional properties [10, 11, 30, 35] were proposed in such a setting.
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The composite order pairing groups have two or more distinct subgroups. The corresponding pairing set-

ting has certain special features with respect to these subgroups which have been used to construct novel

cryptosystems. For example, the fact that pairing acts like an inner product on the subgroups was used for

designing the Katz–Sahai–Waters (KSW) predicate encryption scheme [25]. In the Boneh–Goh–Nissim (BGN)

cryptosystem [8], the message is masked with a suitable subgroup element. The compatibility of exponenti-

ation with the underlying pairing was used to obtain the desired homomorphic property in the BGN scheme,

while using the subgroup order as the private key allows chopping-off the masking factor in decryption. The

natural problem of distinguishing whether an element comes from the whole group or a distinguished sub-

group (the so-called subgroup decision problem) forms the basis of the semantic security of BGN crypto-

system or, for that matter, other cryptosystems in the composite order setting.

The subgroup decision problem necessarily requires that the factorization of the group order must be

hard which in turn makes composite order pairing a very costly object to compute [18, 22]. Freeman pro-

vides sample parameter sizes of bilinear groups for various security levels [18, Section 4] and mentions that

for 80-bit security level a composite order Tate pairing on a 1024-bit supersingular curve would be approxi-

mately 50 times slower than a prime order Tate pairing on a 170-bit MNT curve. In [22] it was reported that

a composite order pairing for 128-bit security level was approximately 254 times slower than its prime order

counterpart for the same security level.

This efficiency bottleneck motivated Freeman’s work [18]:

. . . for efficient implementationswe seek versions of protocols that use only prime-order elliptic curve

groups. Developing these protocols is themain goal of this paper. [emphasis added]

Freeman abstracted out two properties in the composite order setting: projecting and cancelling. He then

demonstrated how these properties can be achieved in structures built on prime order pairing groups. A pro-

jecting framework was used in [18] to convert the BGN cryptosystem [8] and it was noticed that Groth and

Sahai [21] used a similar setting for instantiating their non-interactivewitness indistinguishable (NIWI) proof

system. A cancelling framework was used to convert the predicate encryption scheme of Katz, Sahai and

Waters [25].

After Freeman, several researchers have worked on the composite-to-prime-order conversion theme.

In their ASIACRYPT 2010 paper, Meiklejohn, Shacham and Freeman [30] posit certain limitations of such

a conversion agenda. They designed a round optimal blind signature scheme in composite order setting

which would require a simultaneously projecting and cancelling framework for conversion and examined

the improbability of such a setting in prime order groups. However, in a follow-upwork at TCC 2012, Seo and

Cheon [34] introduced the so-called translating property and obtained a conversion of a slightly modified

Meiklejohn–Shacham–Freeman construction. They also proposed a setting that is simultaneously projecting

and cancelling using techniques which lie outside the restrictions of the Meiklejohn–Shacham–Freeman

impossibility result [30].

As noted by Freeman himself, certain cryptosystems were not amenable to his conversion framework.

A prominent example is the Lewko–Waters identity-based encryption (IBE) [29] which requires that the sub-

groups of the composite order group have relatively prime order. In her EUROCRYPT 2012 paper, Lewko [27]

used the setting of dual pairing vector space (DPVS) [31, 32] to achieve a conversion of Lewko–Waters IBE.

In their follow-up work of PKC 2015, Lewko and Meiklejohn [28] formalized the notion of parameter hiding.

They generalize the Seo–Cheon framework [34] in the DPVS setting to propose an abstract framework that is

simultaneously parameter hiding, cancelling and projecting.

The starting point for bilinear group constructions with some additional property like projecting, is an

atomic, prime order pairing setting. One then considers “vector spaces” over the groups. A pairing is suitably

defined over the augmented structure and distinguished subgroups are appropriately defined to achieve the

requisite property. Some researchers have studied the question of optimality of projecting pairing setting. In

his ASIACRYPT2012paper, Seo [33] investigated this question in both symmetric and asymmetric settings. In

their subsequent work, published in CRYPTO 2014, Herold, Hesse, Hofheinz, Ràfols and Rupp [23] proposed

a “polynomial” interpretation of the Freeman framework which enables them to circumvent the lower bound
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result of Seo in the symmetric setting, albeit based on some non-standard hardness assumptions. Whether

their polynomial interpretation can lead to a similar result in the asymmetric setting was left as an open

problem in [23].

1.1 Motivation and our contributions

Taking Freeman (or his predecessor Groth–Sahai) as benchmark, we feel it is worthwhile to investigate what

has been achieved on the problem of efficient prime order instantiation of converted cryptosystems. This nat-

urally requires a protocol-centric comparative analysis of conversion frameworks. In particular, we focus on

cryptosystems in projecting and simultaneously projecting and cancelling frameworks. Some protocols like

the BGN cryptosystem and round optimal blind signature have received significant attention in the previous

studies [18, 23, 30, 33, 34],whereas protocols such as the ring andgroup signature schemes from [10, 11, 35]

hardly received any attention. We have incorporated both type of cryptosystems in our analysis to shed some

more light on the concrete advances in the conversion agenda.

The BGN cryptosystemplays a flagship role in composite order pairing setting. Perhaps that explainswhy

the associated projecting setting is the most studied framework in the context of conversion to prime order

groups. After Freeman (and the implicit framework in Groth–Sahai), researchers have continuously strived

to improve upon the previous results (see [23, 33, 34]).

In Section 3, we undertake a comprehensive comparison of projecting frameworks vis-a-vis BGN crypto-

system. In the symmetric setting we compare the Groth–Sahai, Freeman, Seo and Herold–Hesse–Hofheinz–

Ràfols–Rupp frameworks and in the asymmetric, Freeman, Groth–Sahai and the polynomial asymmetric set-

ting, the last one after recasting theHerold–Hesse–Hofheinz–Ràfols–Rupp framework [23] in the asymmetric

pairing setting. In the symmetric setting Herold, Hesse, Hofheinz, Ràfols and Rupp [23] are able to circum-

vent the previous lower bound result through a polynomial interpretation of Freeman’s framework. However,

we observe that this interpretation does not yield any such benefit in the asymmetric setting. In fact, the

polynomial interpretation is effectively the same as the Groth–Sahai framework. We then compare the cost of

instantiating the BGN cryptosystem [8] in each of these settings. Comprehensive comparisons are provided

in Table 1 for the asymmetric and in Table 7 for the symmetric setting.

Recall that the question of (im)probability of a simultaneous projecting and cancelling setting has been

studied in the literature [30, 34] in the context of the blind signature scheme of [30]. There are other protocols

like the Shacham–Waters ring signature [35] that make use of both projecting and cancelling properties in

the composite order setting. Thus the question of whether we necessarily need a simultaneous projecting

and cancelling framework to convert such protocols forms the main focus of Section 4. We show that the

Shacham–Waters ring signature can be converted to the prime order setting using projecting property alone.

However, the underlying projection framework must allow a complete decomposition of the source groups.

We give an appropriate definition and show that it can be achieved in the existing projecting frameworks.

A similar conversion strategy works for the other candidates for a simultaneous projecting and cancelling

setting, namely the group signature protocols in [10, 11].

We revisit the case of round optimal blind signature in Section 5 and consider the two approaches for

security argument: Thefirst one reduces theone-moreunforgeability proof to theDiffie–Hellmanproblem.For

an efficient instantiation we introduce an “unbalanced” projecting setting in the asymmetric pairing setting.

The proof follows the Seo–Cheon strategy [34] formulated in the symmetric pairing setting. While Seo and

Cheon introduced the “translating”property,we show that onedoesnotneed suchanabstraction. The second

approach, used in [30], reduces one-more unforgeability to the security of Waters signature and uses a group

generator which is both projecting and cancelling. We compare efficiency of the scheme when instantiated

under the two approaches. Our analysis shows that KeyGen and signing (which includes User and Signer

computation time) aremore efficient in the projecting and cancelling settingwhile signature size is smaller in

the projecting setting. Even though, as observed in Section 4, there is indeed no need to resort to a projecting

and cancelling setting for the desired cryptographic functionality, one can still accrue some efficiency benefit

by doing so.
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In several cases our analysis requires recasting an existing framework and/or a security argument in the

asymmetric pairing setting. To improve readability and to focus on the main ideas, we relegate some of the

detailed security arguments to the Appendix. We recall some preliminary notions in Section 2. Definitions of

various hard problems referred to in this work are given in Appendix A.

2 Preliminary

Notations

As usual, we denote primes by p, q, etc. By source (resp. target) group, we mean the source (resp. target)

group of the pairing. By atomic pairing, we mean the prime order pairing which has been used to construct

the prime-power setting. By r-fold of a group 𝔾, we mean the group 𝔾r, which is a collection of r-tuples
endowedwith thenatural groupoperation. Thenotation [1, n]denotes the set {1, . . . , n}. Let x⃗ = (x

1
, . . . , xn)

be a vector over ℤp. We denote x⃗|k to be the k-th component of x⃗, for k ∈ [1, n]. For any group element g, gx⃗

denotes (gx1 , . . . , gxn ). For a non-empty set A, a $

←󳨀 A denotes the element a is chosen uniformly at random

from A. For an algorithm B and any x from the appropriate domain, B( ⋅ ) → x denotes that B takes some

input and outputs x. We use the notation ⊙ to denote the component-wise group operation. Let (g
1
, . . . , gr)

and (g󸀠
1

, . . . , g󸀠r) be from the group𝔾r; we set

(g
1
, . . . , gr) ⊙ (g󸀠

1

, . . . , g󸀠r) = (g1g󸀠1, . . . , grg
󸀠
r).

We denote tensor product operation by ⊗ and is defined as

(g
1
, . . . , gm) ⊗ (g󸀠

1

, . . . , g󸀠n) = (g1g󸀠1, . . . , g1g
󸀠
n , . . . , gmg󸀠1, . . . , gmg

󸀠
n)

for (g
1
, . . . , gm) and (g󸀠

1

, . . . , g󸀠n) from 𝔾m and 𝔾n, respectively. In the same way it can be extended for ma-

trices. Let A = (aij) be a matrix of order n, for (g
1
, . . . , gn) ∈ 𝔾n define

(g
1
, . . . , gn)A = (g

a
11

1

g
a
21

1

. . . g
an1
n , . . . , g

a
1n

1

g
a
2n

1

. . . g
ann
n ).

For any group G with identity element 1, kernel of a function f : G → G is defined as {g ∈ G : f(g) = 1} and
denoted as Ker(f).

We recall the definitions of bilinear group generator and projection and cancelling property [18].

Definition 1. A bilinear group generator G is an algorithm which takes as input a security parameter 1

λ

to output abelian groups G, H and GT together with subgroups G
1
⊂ G and H

1
⊂ H and a bilinear map

e : G × H → GT . The group descriptions allow efficient group operation and sampling. The properties of the

map e are as follows:
∙ Bilinearity: For all g, g󸀠 ∈ G and h, h󸀠 ∈ H, one has

e(g ⋅ g󸀠, h ⋅ h󸀠) = e(g, h) ⋅ e(g, h󸀠) ⋅ e(g󸀠, h) ⋅ e(g󸀠, h󸀠).

∙ Non-degeneracy: If a fixed g ∈ G satisfies e(g, h) = 1 for all h ∈ H, then g = 1 and similarly for elements

of H.
∙ Computability: The map is efficiently computable.

The groups involved in the above definition may be of prime or composite order. If G = H, then the pairing is
said to be symmetric, otherwise it is said to be asymmetric. Due to its simplicity, symmetric pairing has been

used inmanyconcrete protocols starting from Joux’s protocol andBoneh–Franklin’s IBE.However, symmetric

pairing over small characteristic fields are effectively broken due to recent advances in solving the discrete-

log problem (DLP) in some of these fields (see, for example, [1, 2]). The asymmetric pairing, on the other

hand, has several options in terms of the choice of curves and are significantly faster than their symmetric

counterparts at higher security levels. Hence, in this paper we will primarily focus on the asymmetric pairing

setting.
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Projecting property

As a property for aiding conversion, projection was first abstracted by Freeman [18], who used it to convert

the Boneh, Goh and Nissim [8] cryptosystem. We recall the definition from Freeman [18, Definition 3.1].

Definition 2. Let G be a bilinear group generator (Definition 1). Then G is said to be projecting if it outputs

subgroup G󸀠T ⊂ GT and non-trivial homomorphisms πG, πH and πT defined on G, H and GT to themselves

such that

∙ G
1
⊆ Ker(πG), H1

⊆ Ker(πH) and G󸀠T ⊆ Ker(πT),
∙ e(πG(g), πH(h)) = πT(e(g, h)), for all g ∈ G and h ∈ H.

Remark 1. Some variants of the projection property are available in the literature. For example, the non-

trivial condition in the definition was introduced by Seo and Cheon [34]. Seo’s definition [33, Definition 2]

requires that G󸀠T exists but it need not be explicitly output by the group generator. Herold, Hesse, Hofheinz,
Ràfols and Rupp [23, Definition 4] considered the projection property in symmetric setting, where the under-

lying pairing is multilinear. They assume that the kernel of the projection on the source group is equal to the

subgroup output by the bilinear group generator. Lewko andMeiklejohn [28, Definitions 2.1, 2.2, 2.3] define,

in addition to Freeman’s version of projecting, two other notions which they call weak and full projecting.

Weak projecting considers projectionmaps only on the source groups and not on the target groups. The com-

mutation condition also is not required to hold. Their full projection bilinear group generator outputs decom-

positions G = ⨁n
i=1 Gi, H = ⨁n

i=1 Hi and GT = ⨁n
i=1 GT,i and non-trivial maps πGi : G → Gi, πHi : H → Hi

and πGT,i : GT → GT,i such that e(πGi (g), πHi (h)) = πGT,i (e(g, h)), for all g ∈ G and h ∈ H.

Cancelling property

Weconsider a bilinear pairing ongroups (G, H, GT) of composite order, say,N = pq, where p and q are primes.

Anarbitrary element fromsubgroupGp ofG (resp.Hq ofH) canbe represented as gα1q (resp. hα2p) for some α
1
,

α
2
fromℤN . It is now easy to see that the pairing of an element of Gp and Hq would yield the trivial element.

This “orthogonality” of the two distinguished subgroups was abstracted by Freeman [18, Definition 3.5] as

cancelling property who used it to convert the Katz–Sahai–Waters predicate encryption scheme [25].

Definition 3. A bilinear group generator G is said to satisfy the r-cancelling property if, it in addition, outputs
groups Gi , Hi , i = 1, . . . , r, such that
∙ G ≅ G

1
× ⋅ ⋅ ⋅ × Gr and H ≅ H1

× ⋅ ⋅ ⋅ × Hr and

∙ e(gi , hj) = 1, whenever gi ∈ Gi, hj ∈ Hj and i ̸= j.

3 Projecting setting and BGN cryptosystem

Boneh, Goh and Nissim [8] were the first to use composite order pairing setting for cryptographic construc-

tion. Freeman [18] abstracted the projecting property to convert their homomorphic public key encryption

scheme intoprimeorder setting.He alsonoticed thatGroth andSahai [21] implicitly followa similar approach

for their NIWI proof system. Efficient implementation being the primary goal, Freeman focused solely on the

asymmetric pairing setting. Subsequently, other constructions were proposed [23, 33] to achieve the pro-

jecting property in the symmetric pairing setting. These later works aimed at achieving optimal construction

of symmetric projecting setting. The polynomial setting [23] achieves the most efficient construction and

extending this approach to asymmetric setting was left as an open problem.

In this section we provide a natural polynomial interpretation based construction of asymmetric project-

ing setting followed by a comparative analysis of Freeman, Groth–Sahai and polynomial construction with

a focus on the BGN homomorphic encryption scheme. A similar comparative analysis of the symmetric pro-

jection setting is provided in Appendix B.
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3.1 Asymmetric projecting frameworks

We discuss three candidate constructions for asymmetric projecting bilinear setting, namely, Freeman [18],

Groth–Sahai [21] and polynomial.

All of these constructions are defined on a 2-fold of the source atomic groups to the 4-fold of the target

group and require four atomic pairings. However, it is Groth–Sahai which is most efficient for BGN instantia-

tion due to its efficient subgroup representation and hence efficient projection maps.

Recall that the projectionmapwas defined by Freeman as operating from G to G (or H to H). Defining the
map from the two-fold of the atomic group to the atomic group (G → 𝔾

1
) can result in efficiency gain. The

commutation of the pairing with the projection map can be suitably redefined. This idea has been used by

Groth and Sahai [21]. We examine the efficiency gained due to this idea in BGN instantiation.

3.1.1 Freeman construction

Webriefly recall the Freeman projection framework (see [18, Example 3.3] for further details). LetP(1λ) be an
asymmetric prime order bilinear group generator, which outputs (𝔾

1
,𝔾

2
,𝔾T , ê). Let g be a generator of 𝔾1

and let h be that of𝔾
2
. Define the groups G = 𝔾2

1

, H = 𝔾2
2

and GT = 𝔾4T . The bilinear pairing e : G × H → GT
is defined as,

e((g
1
, g

2
), (h

1
, h

2
)) := (ê(g

1
, h

1
), ê(g

1
, h

2
), ê(g

2
, h

1
), ê(g

2
, h

2
))

for (g
1
, g

2
) ∈ G and (h

1
, h

2
) ∈ H.

Choose two pairs of linearly independent vectors {(a
1
, b

1
), (c

1
, d

1
)} and {(a

2
, b

2
), (c

2
, d

2
)} uniformly at

random from ℤ2p such that aidi − bici = 1, for i = [1, 2]. The subgroup G
1
is generated by (ga1 , gb1 ) and H

1

by (ha2 , hb2 ).
Consider the matrices

A := (
−b

1
c
1
−b

1
d
1

a
1
c
1

a
1
d
1

) and B := (
−b

2
c
2
−b

2
d
2

a
2
c
2

a
2
d
2

) . (3.1)

The projection map πG : G → G is defined as

πG(g1, g2) := (g1, g2)A = (g−b1c1
1

g
a
1
c
1

2

, g
−b

1
d
1

1

g
a
1
d
1

2

)

for (g
1
, g

2
) ∈ G. Similarly, πH : H → H is defined as

πH(h1, h2) := (h1, h2)B = (h−b2c2
1

h
a
2
c
2

2

, h
−b

2
d
2

1

h
a
2
d
2

2

)

for (h
1
, h

2
) ∈ H. Observe that G

1
⊆ Ker πG and H1

⊆ Ker πH .
Let g = (g

1
, g

2
) ∈ G, g

1
= (ga1 , gb1 ) ∈ G

1
, h = (h

1
, h

2
) ∈ H and h

1
= (ha2 , hb2 ) ∈ H

1
. Then the subgroup

G󸀠T of GT is generated by {e(g, h1), e(g1, h), e(g1, h1)}. The projection map πT : GT → GT is defined as

πT(T1, T2, T3, T4) = (T1, T2, T3, T4)A⊗B .

Observe that G󸀠T ⊆ Ker πT . Output (G, H, GT , G1
, H

1
, G󸀠T , e, πG , πH , πT).

Hardness of the subgroup decision problem (SDP) is proved under the SXDH assumption in the atomic

pairing setting. See [18, Proposition 3.4] for further details.

Remark 2. We comment on an alternative definition of the projecting property, which actually leads to some

efficiency gain. Recall that the projection maps were defined as operating from G to G. They may also be

defined as follows. Consider an atomic pairing ê : 𝔾
1
× 𝔾

2
→ 𝔾T . Let G = 𝔾2

1

. The projection map πG now

operates from G → 𝔾
1
. Themap πH : H → 𝔾

2
and πT : GT → 𝔾T are suitably defined. The commutation con-

dition now may be redefined as

πT(e(g, h)) = ê(πG(g), πH(h)), g ∈ G and h ∈ H.

We do not distinguish this definition from Freeman’s definition of projecting property hereafter.
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3.1.2 Groth–Sahai construction

We have already mentioned that the Groth–Sahai construction [21] of the projecting property predates the

Freeman construction. It was, however, not used in the context of conversion. This construction uses the

projection as defined inRemark 2.With the atomic pairing, groupsG andH andpairing as in Freeman setting,

we recall the Groth–Sahai construction here.

Choose α and β uniformly at random from ℤ∗p and define the subgroup G
1
which is generated by (g, gα)

and the subgroup H
1
is by (h, hβ). The projection map πG : G → 𝔾

1
is defined as

πG(g1, g2) := g−α
1

g
2

and the map πH : H → 𝔾
2
as

πH(h1, h2) := h
−β
1

h
2
.

The subgroup G󸀠T of GT is generated similarly as in Freeman’s projection construction. The projection

map πT : GT → 𝔾T is defined as
πT(T1, T2, T3, T4) = T

αβ
1

T−α
2

T
−β
3

T
4

for (T
1
, T

2
, T

3
, T

4
) ∈ GT . It is easy to see that G1

= Ker πG, H1
= Ker πH and G󸀠T = Ker πT . Finally, the bilinear

group generator outputs (G, H, GT , G1
, H

1
, G󸀠T , e, πG , πH , πT).

The SDP hardness can be proved under SXDH assumption in the atomic groups as in the Freeman case.

3.1.3 Polynomial framework

In Appendix B, we describe how Herold, Hesse, Hofheinz, Ràfols and Rupp [23] could obtain an improved

construction of projecting symmetric setting by using a univariate polynomial interpretation of vectors. They

asked whether a similar result can be obtained in asymmetric setting. We use the two variable polynomial-

based representation of vectors to obtain a projecting setting. However, based on SXDHassumptionwe obtain

similar parameters as that of Freeman and Groth–Sahai. In the exposition we use the atomic pairing, groups

and pairing definition as in Freeman’s projection description.

Choose the hidden parameters s, s󸀠 $

←󳨀 ℤp and define the subgroup of G as

G(s)
1

:= {(ga0 , ga1 ) ∈ G : ga0 (ga1 )s = 1, a
0
, a

1
∈ ℤp}

and the subgroup of H as

H(s
󸀠)

1

:= {(hb0 , hb1 ) ∈ H : hb0 (hb1 )s
󸀠
= 1, b

0
, b

1
∈ ℤp}.

Then define the projection map π(s)G : G → 𝔾
1
by

π(s)G (g
a
0

, ga1 ) := ga0 (ga1 )s

and the map π(s
󸀠)

H : H → 𝔾
2
by

π(s
󸀠)

H (h
b
0

, hb1 ) := hb0 (hb1 )s
󸀠
.

Observe that G(s)
1

= Ker π(s)G and H(s
󸀠)

1

= Ker π(s
󸀠)

H .

Now define the subgroup of GT as

G(s,s
󸀠)

T := {(gc0T , . . . , g
c
3

T ) ∈ GT : g
c
0

T (g
c
1

T )
s󸀠 (gc2T )

s(gc3T )
ss󸀠 = 1, c

0
, . . . , c

3
∈ ℤp}.

The projection map π(s,s
󸀠)

T : GT → 𝔾T is defined as

π(s,s
󸀠)

T (g
c
0

T , . . . , g
c
3

T ) := g
c
0

T (g
c
1

T )
s󸀠 (gc2T )

s(gc3T )
ss󸀠
.

Output (G, H, GT , e, G(s)
1

, H(s
󸀠)

1

, π(s)G , π(s
󸀠)

H , π(s,s
󸀠)

T ).
Using the proof idea similar to [18, Theorem2.5], one can show that SXDHassumption in the atomic pair-

ing setting implies the hardness of SDP in the polynomial projecting setting described above. In [23], Herold,

Hesse, Hofheinz, Ràfols and Rupp proved a more general result. In the symmetric multilinear setting, they

showed that hardness of SDP is implied by any matrix decisional Diffie–Hellman (MDDH) assumption [17].

That result can be extended to the asymmetric bilinear pairing setting using the above idea.
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3.1.4 Discussion

We note that the polynomial asymmetric framework is essentially a reformulation of the Groth–Sahai frame-

work. Instead of representing elements of G and H as abstract 2-vectors, they are respectively interpreted as

linear polynomials in X and Y. The tensor product of two vectors andmultiplication of two such polynomials

are the same. Subgroups are interpreted as the set of polynomials which vanish at a fixed hidden parame-

ter (different parameters for G and H). Nevertheless, polynomial interpretation does allow a slightly simpler

projection map computation in terms of polynomial evaluation.

For all the three asymmetric projecting frameworks, we have focused on the concrete case where the

source group G (resp. H) can be expressed as G
1
⊕ G

2
(resp. H

1
⊕ H

2
) – by allowing, if necessary, a complete

decomposition (see Definition 4).

In a typical cryptographic application (see BGN of Section 3.2 for a concrete example), G
1
and H

1
are

used as the “masking” subgroups while G
2
and H

2
act as the “unmasking” subgroup. In all the above con-

structions, both masking and unmasking subgroups are of rank one. There is no practical motivation to go

beyond rank one masking subgroup as it covers instantiation of all known protocols employing projecting

setting.¹ In this concrete setting, it is easy to see that polynomial asymmetric framework is equivalent to the

Freeman framework and hence, the Groth–Sahai framework.

Recall that Seo [33] came up with the following theorem.

Theorem 1 ([33, Theorem 3]). Under the assumption that for the atomic pairing the k-linear assumption holds,
the image of the asymmetric projecting pairing is at least (k + 1)2-tuple.

Since 1-linear assumption is the SXDH assumption, one concludes that Freeman as well as Groth–Sahai and

polynomial framework are optimal in terms of the target group size and number of atomic pairings. Hence,

unlike the symmetric setting, the polynomial interpretation due to [23] does not provide a more efficient

realization of the projecting framework.

3.2 BGN scheme

We recall the abstract description of the construction in asymmetric pairing setting. This will be in terms of

elements of the groups, group operations, projectionmaps andpairing computations.Weuse this description

to benchmark various projecting settings. The same model is used in the symmetric setting with obvious

interpretation.

∙ KeyGen(1λ): Let G(1λ) output the tuple (G, H, GT , e, G1
, H

1
, G󸀠T , πG , πH , πT), a asymmetric projecting

bilinear group. Let g $

←󳨀 G and h $

←󳨀 H be the random group elements and let g
1

$

←󳨀 G
1
and h

1

$

←󳨀 H
1
be the

random subgroup elements. Set the public key PK = (G, H, e, g, h, g
1
, h

1
) and the corresponding secret

key SK = (πG , πH , πT).
∙ Enc(PK,m): Choose r, s $

←󳨀 ℤp and compute the ciphertext as CT = (gm ⋅ gr
1

, hm ⋅ hs
1

).
∙ Multiply(PK, C, C󸀠): Let C ∈ G and C󸀠 ∈ H be from two ciphertexts. Choose r, s $

←󳨀 ℤp and output

e(C, C󸀠) ⋅ e(g
1
, h)r ⋅ e(g, h

1
)s ∈ GT .

∙ Add(PK, C, C󸀠): Choose r, s $

←󳨀 ℤp. Then do the following:
– If C, C󸀠 ∈ G, then output C ⋅ C󸀠 ⋅ gr

1

∈ G.
– If C, C󸀠 ∈ H, then output C ⋅ C󸀠 ⋅ hs

1

∈ H.
– If C, C󸀠 ∈ GT , then output C ⋅ C󸀠 ⋅ e(g1, h)r ⋅ e(g, h1)s ∈ GT .

1 Apart from BGN cryptosystem, examples of such protocols are the Groth–Sahai proof system [21], the Shacham–Waters ring

signature [35], the Boyen–Waters group signature [10, 11], Meiklejohn–Shacham–Freeman’s round optimal blind signature [30].

The only scheme in the asymmetric setting which requires a masking subgroup (H
1
) of rank two is our conversion of the round

optimal blind signature in Section 5.
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∙ Dec(SK, C): Check for membership of the ciphertext in various groups and decrypt as follows:

– If C ∈ G, then output m = dlogπG(g)(πG(C)).
– If C ∈ H, then output m = dlogπH (h)(πH(C)).
– If C ∈ GT , then output m = dlogπT (e(g,h))(πT(C)).

3.2.1 Correctness

Wedescribe correctnesswith respect to theGroth–Sahai framework, a similar argumentholds for theFreeman

setting. For any key pair (PK, SK) output by KeyGen algorithm and for any message M from the message

space, we have Dec(SK, Enc(PK,M))= M. Consider, for example, the case when the ciphertext is in G. The
group element g is represented as (gx1 , gx2 )whereas the subgroup element g

1
as (gr , grα). The projectionmap

πG evaluated on g outputs g−αx1+x2 and evaluation of πG on C = gMg
1
outputs gM(−αx1+x2). Thus the discrete

logarithm of πG(C) to the base πG(g) returns the message M.

3.2.2 Instantiation

We briefly describe several strategies for an efficient instantiation of BGN cryptosystem. To obtain the ci-

phertext component, say gM ⋅ gr
1

in G, the naive approach would be to compute gM. However, in the prime

order setting g is represented as (g
1
, g

2
) ∈ 𝔾2

1

. Rather than computing gM, for example in the Groth–Sahai

framework, a more efficient approach is to exponentiate (0,M)with g whence the decryption algorithm uses

projectionmap applied on g(0,1) = (1, g
2
) instead of g. A similar strategywas suggested in [23, Appendix F.2].

While instantiating BGN in the Freeman framework, one can encrypt either (M, 0) or (0,M). If (M, 0) is
used in encryption algorithm, then in decryption one uses the projection map on g(1,0) = (g

1
, 1). Recall that

decryption uses the projection map πG which is defined based on the matrix A (see equation (3.1)). Using

this technique, the projectionmap computes only the first component πG(g1, g2)|1 and outputs g−b1c1
1

⋅ ga1c1
2

.

A similar optimization works for H and GT . This strategy, first used in [33, Section 5.3], improves the perfor-

mance over the naive decryption method by a factor of two in G, H and a factor of four in GT .

After taking into account the above mentioned optimizations, we compare the performance of Freeman

versus Groth–Sahai/Polynomial framework for the instantiation of BGN cryptosystem [8]. The public key size

and ciphertext size are the same in both cases. In terms of computation cost, both incur the same cost for

encryption and homomorphic operations. However, the key generation is slightly faster in the Groth–Sahai

framework due to the fact that themasking subgroup generators are constructed with only one hidden secret

instead of two as in the Freeman framework. Similarly, decryption is faster in the Groth–Sahai framework,

because of the more efficient projection map computation. See Table 1 for a detailed comparison.

Recall that the Groth–Sahai NIWI proof system [21] also uses the projecting setting. However, the projec-

tion map is not used explicitly in the construction. Hence instantiating this proof system in the asymmetric

projecting setting results in the same efficiency in the above two frameworks.

4 Cryptosystems in projecting-and-cancelling setting

Meiklejohn, Shacham and Freeman [30] proposed a blind signature scheme which requires both projecting

and cancelling properties for the security argument. They also address the difficulty of getting a prime order

group generator satisfying both these properties and summarize by stating an improbability result under suit-

able assumptions [30, Theorem 6.5]. However, Seo and Cheon [34] constructed a projecting and cancelling

group generator which is outside the restrictions of this improbability result.

Wefirst briefly recall the Seo–Cheon construction and show that it canbe based on the SXDHassumption.

Then we revisit the cryptographic constructions such as the Shacham–Waters ring signature [35] and the
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Freeman Groth–Sahai/Polynomial

SK size 8|𝔽p | 2|𝔽p |
PK size 4|𝔾1| + 4|𝔾2|

CT size 2|𝔾1| + 2|𝔾2|
4|𝔾T |

KeyGen 4E𝔾1 + 4E𝔾2 3E𝔾1 + 3E𝔾2

Enc 𝔾1 2E𝔾1 + 1M𝔾1
𝔾2 2E𝔾2 + 1M𝔾2

Dec† 𝔾1 3E𝔾1 + 1M𝔾1 1E𝔾1 + 1M𝔾1
𝔾2 3E𝔾2 + 1M𝔾2 1E𝔾2 + 1M𝔾2
𝔾T 1ℙ + 5E𝔾T + 3M𝔾T 1ℙ + 3E𝔾T + 3M𝔾T

Add 𝔾1 2E𝔾1 + 4M𝔾1
𝔾2 2E𝔾2 + 4M𝔾2
𝔾T 8ℙ + 12M𝔾T + 4E𝔾

Multiply 12ℙ + 8M𝔾T + 4E𝔾

Table 1: BGN instantiation in asymmetric projection frameworks. (For any group X ∈ {𝔾1 ,𝔾2 ,𝔾T }, we denote by EX ,MX and |X|
the exponentiation, multiplication in X and the bit size of X, respectively, and ℙ denotes the atomic asymmetric pairing.
† Excluding the final discrete logarithm computation.)

Boyen–Waters group signature [10, 11] that also apparently require both these properties in the composite

order setting. To the best of our knowledge, the question of prime order instantiation of these cryptosystems,

which incidentally predate [30], was never seriously addressed in the literature.

4.1 Seo–Cheon framework

We describe in Algorithm 1 a variant of the Seo–Cheon construction for the case n = 2 which suffices for all

known instantiations of cryptosystems in theprojecting andcancelling setting. This framework is of relevance

in the context of round optimal blind signature also (see Section 5).

Seo and Cheon relied on a tailor-made assumption for the security of their framework [34, Definition 12].

Following the strategy outlined in [28], we show that the security can be based on SXDH assumption.

Theorem 2. If P satisfies the SXDH assumption, then GPC satisfies the subgroup decision assumption.

Proof. Given the DDH problem instance g, ga , gb , gc in𝔾
1
, the simulator’s goal is to decide whether gc is gab

or not. The simulator B randomly chooses the matrices Xi , Yj , D from GL
2
(ℤp) as described in the construc-

tion. ThenB embeds the DDH instance to construct 4-fold groups. In particular, the subgroup G
1
is generated

using g(χ11+a⋅χ21 ,χ12+a⋅χ22) and the subgroup H
1
is generated using h(δ11 ,δ12), where χij is the i-th row of Xj and

δij is the i-th row of Yj, for i, j ∈ [1, 2]. Now B sets g(χ21 ,χ22) to generate the subgroup G
2
and implicitly sets

h(δ21−d3d
−1
1

aδ
11
,δ

22
−d

4
d−1
2

aδ
12
)
to generate the subgroup H

2
(these subgroups description will not be given to the

SDP solver A). Hence this construction ensures that Gi is orthogonal to Hj for i ̸= j and i, j ∈ [1, 2]. Now B

sends the SDP instance (G, G
1
, H, H

1
, e, GT) along with the challenge term g(bχ11+cχ21 ,bχ12+cχ22) to A. When-

ever gc is gab, then the above challenge term belongs to the subgroup G
1
, otherwise it belongs to the group G.

Similarly we can reduce the DDH problem in𝔾
2
to the SDP problem in H.

4.2 Shacham–Waters ring signature

A ring signature enables a user to anonymously sign a message on behalf of a group of users called a “ring”

formed in an ad-hocmanner. The key security attributes are anonymity and unforgeability. Informally speak-

ing, anonymity (against full key exposure) ensures that the adversary cannot distinguish between two target



S. Chatterjee et al., Composite to prime order conversion of cryptosystems | 169

Algorithm 1. Bilinear group generator GPC in the Seo–Cheon setting.
Input: The security parameter 1

λ
.

Output: (G, H, GT , e, {Gi , Hi , GT,i , πG,i , πH,i , πT,i}2i=1, Ω).
11 Run P(1λ) → (p,𝔾

1
,𝔾

2
,𝔾T , ê) to obtain prime order bilinear groups. Let g, h be the random generators

of𝔾
1
and𝔾

2
, respectively.

2 Choose X
1
, X

2
, D $

←󳨀 GL
2
(ℤp). For each i = 1, 2, define Di ∈ Mat2(ℤp) to be a diagonal matrix having the

i-th column vector D as its diagonal and define Yi = Di(X−1i )
⊤
.

3 For each i = 1, 2, let χij be the i-th row of Xj and let δij be the i-th row of Yj for j ∈ [1, 2]. Let χi = (χi1, χi2)
and δi = (δi1, δi2). Now define Gi = ⟨gχi⟩ to be a cyclic subgroup of 𝔾4

1

. Similarly define Hi = ⟨hδi⟩ to be

a cyclic subgroup of𝔾4
2

. Note that the order of Gi and Hi is p.
4 Define G := G

1
⊕ G

2
, H := H

1
⊕ H

2
and GT := 𝔾2T . Then the bilinear map e : G × H → GT is defined as

e(gΓ , hΛ) := (ê(gα11 , hβ11 ) ê(gα12 , hβ12 ), ê(gα21 , hβ21 ) ê(gα22 , hβ22 ))

for any vectors Γ = (α
11
, α

12
, α

21
, α

22
) and Λ = (β

11
, β

12
, β

21
, β

22
) fromℤ4p.

5 Let {δ
3
, δ

4
} be a random basis of ⟨χ

1
, χ

2
⟩⊥. Similarly let {χ

3
, χ

4
} be a random basis of ⟨δ

1
, δ

2
⟩⊥. Let

Ω := {ê, {gχ3 , gχ4 }, {hδ3 , hδ4 }}.
6 The subgroup GT,1 is generated using ê(g, h)(d1 ,d2) and GT,2 is generated using ê(g, h)(d3 ,d4), where (d1, d2)
and (d

3
, d

4
) are the first and second row of the matrix D.

7 The projection maps are defined as natural projection maps, i.e., πG,i(g) := gM
−1UiM

and πH,i(h) := hN
−1UiN

for g ∈ G, h ∈ H, where M (resp. N) is the matrix of order 4 whose j-th row is χj (resp. δj) and Ui is the

booleanmatrix of order 4 whose (i, i)-th entry is 1 and the other entries are zero for i ∈ [1, 2] and j ∈ [1, 4].
8 The projection map πT,i : GT → GT,i is defined as πT,i(gT) := gD

−1ViD
T for gT ∈ GT , where Vi is a matrix of

order 2 whose (i, i)-th entry is 1 and all other entries are zero.

signers even when she/he is given all the private keys in the ring. Unforgeability (with respect to insider cor-

ruption), on the other hand, ensures that the adversary cannot forge a signature on behalf of an uncorrupted

user. See Bender, Katz and Morselli [5] for formal definition and security properties of ring signature.

We start with an abstract description of the ring signature scheme in the asymmetric pairing setting.

This is in terms of a bilinear group generator G which outputs (G, H, GT , e, {Gi , Hi , GT,i}i∈[1,2], πG , πH , πT).
Here |G| = |H| = |GT | = n, and Gi , Hi and GT,i are distinguished subgroups of G, H and GT , respectively, and

πG , πH , πT are projection maps defined in G, H and GT , respectively. Setting G = H and n = pq, for primes p
and q, one gets the original construction [35] in composite order symmetric pairing setting.

4.2.1 Scheme construction

RS-Global-Setup(1λ). The setting up authority runs the bilinear group generator G to obtain

(G, H, GT , e, {Gi , Hi , GT,i}i∈[1,2], πG , πH , πT).

The authority chooses g $

←󳨀 G, g
1

$

←󳨀 G
1
and h $

←󳨀 H, h
1

$

←󳨀 H
1
, a, b

0

$

←󳨀 ℤn and setsAG = ga,AH = ha, BG = gb0 ,
BH = hb0 and AG,1 = ga

1

. The authority also choosesU
0
,U

1
, . . . ,Uk as theWaters hash generators from G. Let

H : {0, 1}∗ → {0, 1}k be a collision resistant hash function (CRHF). Finally, the authority publishes the system
parameters

(G, H, GT , e, g, h, g1, h1, {Uj}kj=0,H, AG,1, AG , BG , AH , BH).

Anyone can check that (AG , AG,1, AH) is properly formed by checking

e(AG , h)
?

= e(g, AH) and e(AG,1, h)
?

= e(g
1
, AH).

A similar check can be performed for BG and BH .

RS-KeyGen(PP). The user chooses b $

←󳨀 ℤn and computes pkG = gb and skG = Ab
G in G and pkH = hb in H.

The user sets pk = (pkG , pkH) and sk = skG.
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RS-Sign(pk, sk, R,M). The signer first ensures that there is no repetition in R and pk ∈ R. Let l = |R|; the
signer parses R as (pkG,i , pkH,i) ∈ G × H, i ∈ [1, l]. Let i∗ be such that (pkG,i∗ , pkH,i∗ ) = pk. Now for each

i ∈ [1, l]define fi such that fi∗ = 1 and fi = 0 for all i ̸= i∗. The signer then computes (m
1
, . . . ,mk) ← H(M, R).

For each i ∈ [1, l], she/he chooses ti , si , ri,1, ri,2
$

←󳨀 ℤn and computes

CG,i = (pkG,i/BG)figti
1

, CH,i = (pkH,i/BH)fihsi
1

(4.1)

and

ΘG,i,1 = (pkG,i/BG)(fi−1)sig
ri,1
1

, ΘH,i,1 = ((pkH,i/BH)fihsi
1

)tih−ri,1
1

,

ΘG,i,2 = (pkG,i/BG)fisig
ri,2
1

, ΘH,i,2 = ((pkH,i/BH)fi−1hsi
1

)tih−ri,2
1

.

(4.2)

Finally, the signer chooses r $

←󳨀 ℤn and computes

SG,1 = sk(U0

k
∏
j=1

U
mj
j )

r

At
G,1, SG,2 = gr and SH,2 = hr ,

where t = ∑li=1 ti. The output is

σ = ({CG,i , CH,i , ΘG,i,1, ΘG,i,2, ΘH,i,1, ΘH,i,2}li=1, SG,1, SG,2, SH,2).

RS-Verify(R,M, σ). Let l = |R|; parse R as (pkG,i , pkH,i) ∈ G × H, i ∈ [1, l]. Ensure that there is no repetitions
in R. Compute (m

1
, . . . ,mk) ← H(M, R). Parse the signature σ as

({CG,i , CH,i , ΘG,i,1, ΘG,i,2, ΘH,i,1, ΘH,i,2}li=1, SG,1, SG,2, SH,2).

For every i ∈ [1, l] verify that

e(CG,i/(pkG,i/BG), CH,i)
?

= e(ΘG,i,1, h1)e(g1, ΘH,i,1),

e(CG,i , CH,i/(pkH,i/BH))
?

= e(ΘG,i,2, h1)e(g1, ΘH,i,2).

If any of the above verification fails, output reject. Otherwise, compute CG = ∏l
i=1 CG,i and verify that

e(BGCG , AH)
?

=e(SG,1, h)e(U0

k
∏
j=1

U
mj
j , S−1H,2) and e(SG,2, h)

?

= e(g, SH,2). (4.3)

If any of the above verification fails, output “reject”; otherwise output “accept”.

The ring signature basically consists of the Waters signature under the actual signer’s public key pk and the
Groth–Sahai NIWI proof components which convince a verifier that one of the signing keys corresponding to

the ring of public keys R is used to produce the signature. In the asymmetric setting one can use a variant of

the Waters signature (termed as Waters-3b in [12]). The correctness of the scheme can easily be verified from

equation (4.3). Observe that neither projection nor cancelling property is used in the construction.

4.2.2 Necessity of cancelling in composite order

Recall that in the original construction [35], G = H and is of order n = pq. The subgroup G
1
(resp. G

2
) is the

order-p subgroup Gp (resp. order q subgroup Gq). Only the unforgeability proof of the Shacham–Waters ring

signature needs the cancelling property alongwith projecting. The proof basically considers two complemen-

tary events (termed as Type II and Type III forgery). In the former the adversary outputs a forgery for which

either more than one or no member of the ring signed the message and in the latter only one member signed

the message.

In the Type II case, the reduction solves an instance of the CDH problem, say g
2
, gα

2

, gβ
2

∈ Gq. The sim-

ulator chooses a random r
2
from ℤp and sets AG = gr2

1

gα
2

, where g
1
is the generator of Gp. As the simulator

has no way to compute gα
1

, she/he sets AG,1 = gr2/r1
1

, g = gr1
1

g
2
for some random r

1
from ℤp. Thus, unlike in

the scheme description, AG and AG,1 do not share a common exponent in the simulation. However, the can-
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celling property will ensure the well-formedness of AG and AG,1.² The simulator embeds gβ
2

to construct BG
and generates the key pairs for eachmember of the ring. So she/he can answer all the corruption queries and

signatures are generated as in the construction. Once the forger outputs a valid forgery, the simulator uses

the projection map to retrieve the CDH solution gαβ
2

in Gq.

For a Type III forgery, the reduction produces a forgery of the Waters signature defined in Gq. Given the

Waters public key components gα
2

, gβ
2

from Gq, the simulator uses gα
2

to construct AG, as in the case of Type II

forgery above, and also AG,1. Again, the cancelling property is used to ensure that AG , AG,1 are well-formed.

The simulator suitably combines gβ
2

with some random Gp element to construct the public key of the target

user in G. For all other users, key-pairs are generated as in the scheme construction, so both corruption and

signing queries can easily be answered for these users. For any signing query made on the target user, the

simulator passes the same to the Waters signature challenger. Given the signature with components in Gq,

the simulator cannot form a proper signature in G, because she/he cannot compute gα
1

. However, she/he

can manipulate the ring signature in such a way that it passes the verification in equation (4.3). Once again

the cancelling property is crucial for this pairing based verification to go through. Finally, given a valid ring

signature forgery, the simulator uses the projection map to retrieve the Waters signature forgery in Gq.

To summarize, in both Type II and Type III forgeries, the cancelling property seems necessary in the

composite order setting to establish well-formedness of AG, AG,1, and in Type III to pass the signature verifi-

cation. The projecting property, on the other hand, is used in both cases to extract the desired solution from

the forged ring signature.

4.3 Ring signature in prime order

We show that the cancelling property is not necessary to argue the security in the prime order setting. The

crux of the matter is the following. In the composite order setting the unforgeability proof is based on the

hardness of CDH in Gq and the simulator is provided with G
1
= Gp, G2

= Gq. In contrast, in the prime order

setting one can start with a hard problem in the prime order groups 𝔾
1
and 𝔾

2
and then the simulator can

appropriately construct the subgroupsG
1
andG

2
. This, however, requires aminormodification in the original

definition of projection because the subgroups G
2
and H

2
were not explicitly defined in [18].

Definition 4. Let G be a bilinear group generator (Definition 1). Then G is said to be projecting with source

group decomposition if it additionally outputs subgroups G
2
, H

2
and GT,1, GT,2 and non-trivial homomor-

phisms πG, πH and πT defined on G, H and GT to themselves such that

∙ G ≅ G
1
⊕ G

2
, H ≅ H

1
⊕ H

2
,

∙ G
1
⊆ Ker(πG), H1

⊆ Ker(πH) and GT,1 ⊆ Ker(πT),
∙ e(πG(g), πH(h)) = πT(e(g, h)), for all g ∈ G and h ∈ H.

In the definition above, we allow a complete decomposition of the underlying source groups. Further, instead

of defining projectionmaps for each decomposition (as in [28, Definition 2.3]), we definemaps whose kernel

containsmasking subgroups. Using the proof idea of [18, Theorem 2.5], one can show that the above bilinear

group generator G satisfies the (n, k)-subgroup decisional assumption if the k-linear assumption holds in the

atomic group. In particular, the additional output, such as the description of G
2
, H

2
and GT,2, does not affect

the security of the bilinear group generator G.

4.3.1 Freeman framework

It is easy to check that the Freeman construction of Section 3.1.1 satisfies Definition 4. The ring signature

scheme described in Section 4.2.1 can be instantiated in this framework without any modification. The

2 Well-formedness is checked by verifying e(AG , g1)
?

= e(AG,1 , g). Further, as noted in [35], the adversary does not know g
2
and

hence cannot distinguish AG from gr2/r1 = gr2
1

gr2/r1
2

.
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anonymity proof does not require projecting or cancelling and essentially follows [35]. Here we provide an

intuitive justification of why the unforgeability proof requires only the projection property. See Appendix C

for the security argument.

Consider, for example, the case of Type II forger. The proof strategy is similar to the original scheme. The

simulator chooses key pairs for each user in the system and thus can answer for both signing and corruption

queries. After a polynomial number of signing and corruption queries, the adversary outputs a valid ring

signature forgery. By applying the projection map on this forgery simulator obtains the solution for the co-

DHP+ problem in the subgroups G
2
.

Recall that the only place where cancelling was used in [35] is to ensure that AG and AG,1 are correctly

formed. In the prime order setting, the simulator is given the co-DHP+ problem instance g, h, gα , gβ , hα , hβ in

𝔾
1
and𝔾

2
. As the simulator runs the bilinear group generator in the Freeman setting, we observe that she/he

has all the necessary information to compute AG = gα , AG,1 = gα
1

and AH = hα, which are properly formed.

Finally, the Type II forger outputs a ring signature forgerywhich contains aWaters-3b signature in G2 × H
from which the simulator has to extract gαβ. After ensuring that this is a valid forgery, she/he applies the

appropriate projectionmap on the first components of the signature to obtain an element of G
2
. One can show

that this will be of the form gαβ
2

, where g
2
= g(x21 ,x22) for some x

21
, x

22
∈ ℤp, which the simulator pickedwhile

running the bilinear group generator during the system setup.

A similar argument shows that in the Type III case alsowe can avoid the cancelling property by leveraging

a complete decomposition of the source groups as in Definition 4.

4.3.2 Seo–Cheon framework

One can use the Seo–Cheon construction of Section 4.1 to instantiate the Shacham–Waters ring signature.

Since the setting satisfiesboth theprojectingandcancellingproperties, it is relatively straightforward to adapt

the original security argument of [35].

Note that the Seo–Cheon setting also satisfies Definition 4. Let G󸀠PC be the corresponding bilinear group

generator in Seo–Cheon setting. On input the security parameter 1

λ
, G󸀠PC outputs

(G, H, GT , e, {Gi , Hi , GT,i}2i=1, πG , πH , πT).

The construction of G󸀠PC is similar to the construction of GPC (see Algorithm 1) with πG := πG,2, πH := πH,2
and πT := πT,2. The only difference with GPC is that G

󸀠
PC does not define the projection maps πG,1, πH,1 and

πT,1 and hence it does not output the description of these maps.

Thus in the Seo–Cheon setting the security argument for unforgeability will go through without using

the cancelling property. Anonymity can be established under the (2, 1)-SDP assumption in G and H. Both
security arguments are similar to the Freeman framework instantiation and hence omitted.

4.3.3 Comparison

The size of the source groups (and hence the corresponding group operations) will be double in the

Seo–Cheon setting as compared to Freeman’s setting. Hence public key size, signature size and time taken by

the signing algorithm improve by a factor of two in Freeman’s instantiation as compared to the Seo–Cheon

instantiation. The verification time is also slightly better in Freeman’s instantiation as compared to the

Seo–Cheon instantiation.

4.4 Group signature

Group signature provides a mechanism for any member of a group to sign on a message without revealing

the signer’s identity. Unlike ring signature, group signature requires a distinguished entity called groupman-
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ager to enroll new members, revoke an existing member or to trace a signature to a particular entity. See

Bellare, Micciancio, and Warinschi [4] for a formal definition and security properties of group signature

such as full-anonymity and full-traceability. Informally speaking full-anonymity means an adversary cannot

obtain signer’s identity even if she/he is given a secret key of all the users in the system. Full-traceability, on

the other hand, ensures that an adversary is unable to produce a valid forgery which cannot be traced to one

of the users in the group.

Boyen and Waters used the symmetric composite order pairing setting to propose two group signatures

– one with signature size logarithmic in the number of members [10] and the other with constant size sig-

nature [11]. Both schemes are constructed using a similar strategy. For example, the constant size group

signature is obtained by suitably composing a constant size NIWI proof system with a two-level hierarchical

signature scheme. The Boneh–Boyen signature [6] is used at the first level to generate the private key of the

group members. The second level is the Waters signature [37] which corresponds to signature by one of the

users in the group.

Group signatures in [10, 11] use the projection map to trace the signer if necessary. Full-anonymity is

proved under the hardness of the SDPproblem,which requires neither the projecting nor the cancelling prop-

erty. Full-traceability, on the other hand, requires both projecting and cancelling properties. In particular, the

cancelling property is used to check the well-formedness of the private key of the users (at first level) and the

group signature (at second level) and the projection map is used to obtain the Waters signature forgery from

group signature forgery.

Wehave converted both schemes and their security arguments to the asymmetric prime order setting. The

strategy is quite similar to the ring signature conversion described above. For example, in the constant size

group signature [11], the converted scheme uses an asymmetric variant of a constant size NIWI proof system

and a two-level hierarchical signature scheme. A group signature consists of a (two level) signature Σ under

the signer’s identifier sID and an NIWI proof components Ω. The signer identity can be revealed by applying

the appropriate projection map on a component of Σ.

Full-anonymity can be directly proved under the hardness of the SDP problem as similar to the original

scheme [11]. Full-traceability is proved under the unforgeability of a two-level hierarchical signature scheme,

which is defined in the atomic groups𝔾
1
and𝔾

2
. As in the case of ring signature in Section 4.2, all the sub-

group generators are constructed by the simulator and hence she/he can translate the hierarchical signature

defined in 𝔾
1
and 𝔾

2
to the group signature defined in 2-fold groups G and H. Also simulator can compute

the projection maps, as she/he knows all subgroup generator exponents. This helps the simulator to retrieve

the users identity and convert the group signature forgery defined in G and H to two-level hierarchical signa-

ture forgery defined in 𝔾
1
and 𝔾

2
. The well-formedness of the group signature and private key of the users

are ensured without using cancelling property.

5 Round optimal blind signature

This section revisits the round optimal blind signature (ROBS) cryptosystem of Meiklejohn, Shacham and

Freeman [30]. Recall that the scheme was proposed as a concrete example whose security argument requires

both projecting and cancelling properties. Later Seo and Cheon [34] provided an alternative proof in the sym-

metric prime order setting which avoided the cancelling property but made use of the so-called translating

property, also introduced in [34].

We investigate the question of secure and efficient instantiation of the scheme in asymmetric prime order

setting. We observe that a Freeman-type projecting setting satisfying Definition 4 is sufficient for the security

reduction. The translating property introduced in [34] specifically for this purpose does not require a separate

treatment as it is trivially achieved in such a setting.

We also provide a Seo–Cheon setting instantiation and perform a detailed efficiency comparison in the

two settings. One may expect, like the cryptosystems discussed in Section 4, that a projecting and cancelling

instantiation of ROBS is unlikely to outperform a projecting only setting. However, we show (in Table 5) that
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while signature size and verification time are comparatively less in the projecting setting, key generation and

signing (both user and signer side computations) can be performedmore efficiently in the Seo–Cheon setting.

This is because, unlike the Seo–Cheon projecting and cancelling setting (see Section 4.1), the SXDH based

instantiation of the projecting setting (see Section 3.1.1) seems not to be sufficient for the security argument

to go through. We, thus, introduce an unbalanced Freeman-type projecting setting to instantiate the scheme,

albeit with some additional cost.

Thus our concrete analysis brings one back to the projecting and cancelling setting for the ROBS crypto-

system. But the reason now is efficiency and not functionality/security as envisaged in [30].

5.1 An unbalanced projecting setting

Ghadafi, Smart and Warinschi [20] discussed (and attributed to Groth) an instantiation of the Groth–Sahai

proof system in the Type 2 pairing setting [19]. The construction uses DDH in 𝔾
1
and DLIN in 𝔾

2
. Applying

the technique suggested by Chatterjee andMenezes [13, 14], we convert this NIWI proof system to the Type 3

pairing setting. This gives the unbalanced projecting bilinear group generator in the asymmetric pairing set-

ting detailed in Algorithm 2. We argue the security of this construction in Theorem 6 of Appendix D.

Algorithm 2. Bilinear group generator G
UP

in the unbalanced projecting setting.

Input: The security parameter 1

λ
.

Output: (G, H, GT , e, G1
,ℍ

1
,ℍ

2
, G󸀠T , πG , πH , πT).

11 Theatomic, primeorder pairing is generatedby runningP(1λ) → (𝔾
1
,𝔾

2
,𝔾T , ê, g, h),where ê : 𝔾1×𝔾2 →

𝔾T is a bilinear map and𝔾
1
= ⟨g⟩,𝔾

2
= ⟨h⟩ andℍ = ⟨(g, h)⟩.

2 Choose linearly independent vectors x⃗
1
, x⃗

2

$

←󳨀 ℤ2p and y⃗
1
, y⃗

2
, y⃗

3

$

←󳨀 ℤ3p. Define the subgroups Gi = ⟨gx⃗i⟩ of
𝔾2
1

andℍj = Ȟj × Hj ofℍ3, where Ȟj = ⟨gy⃗j⟩ is a subgroup of𝔾3
1

and Hj = ⟨hy⃗j⟩ is a subgroup of𝔾3
2

for all

i ∈ [1, 2] and j ∈ [1, 3].
3 Define G := G

1
⊕ G

2
≅ 𝔾2

1

, H := H
1
⊕ H

2
⊕ H

3
≅ 𝔾3

2

and GT := 𝔾6T . The bilinear pairing e : G × H → GT is

defined for any (g
1
, g

2
) ∈ G and (h

1
, h

2
, h

3
) ∈ H as

e((g
1
, g

2
), (h

1
, h

2
, h

3
)) := (ê(g

1
, h

1
), ê(g

1
, h

2
), ê(g

1
, h

3
), ê(g

2
, h

1
), ê(g

2
, h

2
), ê(g

2
, h

3
)).

4 Let M be a matrix of order 2 whose i-th row is x⃗i and U be a matrix of order 2, whose (2, 2)-th entry is 1

and all other entries are zero. The projection map πG : G → G is defined as πG(g1, g2) = (g1, g2)M
−1UM

for

(g
1
, g

2
) ∈ G. Let N be amatrix of order 3whose j-th row is y⃗j and let V be amatrix of order 3whose (3, 3)-th

entry is 1 and all other entries are zero. The projection map πH : H → H is defined as

πH(h1, h2, h3) = (h1, h2, h3)N
−1VN

for (h
1
, h

2
, h

3
) ∈ H.

5 Let us denote g
1
= gαx⃗1 and hi = hαi y⃗i for α, αi ∈ ℤ∗p with i ∈ [1, 2]. Define the subgroup G󸀠T ⊆ GT , where

G󸀠T = ⟨e(g1, h), e(g, h1), e(g, h2)⟩ for g
$

←󳨀 G and h $

←󳨀 H. The projection map πT : GT → GT is defined as

πT(T1, . . . , T6) = (T1, . . . , T6)(M
−1UM)⊗(N−1VN)

for (T
1
, . . . , T

6
) ∈ GT .

5.2 Prime order instantiation

We give a unified description of the blind signature scheme in the asymmetric pairing setting. The concrete

structure of common reference string (CRS), NIWI commitment and proofs as well as their verification will

dependupon the choice of bilinear groupgenerator. Table 2 (resp. Table 3) provides the correspondingdetails

for the Seo–Cheon (resp. projecting) framework.
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Setup(1λ). First the atomic bilinear group generator is run. Let g and h be the generator of 𝔾
1
and 𝔾

2
,

respectively. Then either the group generator for the unbalanced projecting or the Seo–Cheon framework

is executed. Based on the output of the corresponding group generator, the authority prepares the CRS. The

output of the group generator and details of CRS computation are in Table 3 (resp. Table 2) for the projecting

(resp. Seo–Cheon) framework.

KeyGen(CRS). Choose g󸀠 $

←󳨀 G and define the public key PK := e(g󸀠, h) = A and the secret key SK := g󸀠. Then
output (PK, SK).

User(CRS, PK, info,M). Let info = b
1
. . . bm

0

be a bit string of length m
0
and let M = bm

0
+1 . . . bm be a bit

string of length (m − m
0
). For each i ∈ [m

0
+ 1,m], the user constructs req, which comprises of the NIWI

commitments (CG,i, CH,i) and corresponding proofs. (See Table 3 (resp. Table 2) for the projecting (resp.

Seo–Cheon) framework.) Let ti be the random choice of the user in the construction of CG,i which are saved
as state = {ti}i∈[m

0
+1,m]. The user sends req to the signer.

Signer(CRS, SK, info, req). The signer parses the req and info and, for each i ∈ [m
0
+ 1,m], verifies that CG,i

and CH,i are commitments of bi = 0 or bi = 1. (See the details of the proof verification in Table 3 (resp. Table 2)
for the projecting (resp. Seo–Cheon) framework.) If the above checks fail, the signer aborts and outputs ⊥.
Otherwise, the signer chooses r $

←󳨀 ℤp and computes

CG := UG,0( ∏
i∈[1,m

0
]

U
bi
G,i)( ∏

i∈[m
0
+1,m]

CG,i)

and

KG,1 := g󸀠CrG , KG,2 := g−r , KH,2 := h−r , KG,3 := g−r
1

.

The signer then sends the blinded signature

BSig = (KG,1, KG,2, KH,2, KG,3)

to the user and outputs success and info.

User(state, (KG,1, KG,2, KH,2, KG,3)). The user verifies that

e(KG,2, h)
?

= e(g, KH,2) and e(KG,3, h)
?

= e(g
1
, KH,2).

If any of the above equations fail to hold, the user aborts and outputs ⊥. Otherwise, the user unblinds the
signature by computing

S󸀠G,1 := KG,1( ∏
i∈[m

0
+1,m]

Kti
G,3), S󸀠G,2 := KG,2 and S󸀠H,2 := KH,2.

The user then checks the validity of the signature (S󸀠G,1, S
󸀠
G,2, S
󸀠
H,2) by running the Verify algorithm as

described below. If the output is reject, then the user aborts and outputs⊥. Otherwise, the user re-randomizes

the signature by choosing z $

←󳨀 ℤp and computing

SG,1 := S󸀠G,1(UG,0 ∏
i∈[1,m]

U
bi
G,i)

z
, SG,2 := S󸀠G,2g

−z
and SH,2 := S󸀠H,2h

−z
.

Finally, the user outputs σ = (SG,1, SG,2, SH,2), info and success.

Verify(CRS, PK, info,M, σ). The verifier parses info, M and σ and checks that

e(SG,1, h) e(UG,0 ∏
i∈[1,m]

U
bi
G,i , SH,2)

?

= A and e(SG,2, h)
?

= e(g, SH,2).

If the above two equalities hold, then outputs accept, otherwise reject.
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GPC(1λ) (G, H, GT , e, {Gi , Hi , GT,i , πG,i , πH,i , πT,i}2i=1 , Ω)

CRS The authority chooses g $
←󳨀 G, h $

←󳨀 H and chooses g1
$
←󳨀 G1 and h1

$
←󳨀 H1. It chooses

UG,i
$
←󳨀 G for i ∈ [0,m]. It also chooses ̄vj

$
←󳨀 ℤ4p and computes VH,j := h ̄vj for j ∈ [1,m],

then CRSSC = (G, H, GT , e, g, h, g1 , h1 ,UG,0 , {UG,i ,VH,i}i∈[1,m]).

Commitment, CG,i := U
bi
G,ig

ti
1 , CH,i := V

bi
H,ih

si
1

NIWI proofs ΘG,i,1 := U
(bi−1)si
G,i gri,11 , ΘH,i,1 := (V

bi
H,ih

si
1 )

tih−ri,11

ΘG,i,2 := U
bisi
G,i g

ri,2
1 , ΘH,i,2 := (V

bi−1
H,i hsi1 )tih

−ri,2
1 for i ∈ [m0 + 1,m]

Verification e(CG,i/UG,i , CH,i)
?
= e(ΘG,i,1 , h1) e(g1 , ΘH,i,1)

e(CG,i , CH,i/VH,i)
?
= e(ΘG,i,2 , h1) e(g1 , ΘH,i,2) for i ∈ [m0 + 1,m]

Table 2: Instantiation specifics in the Seo–Cheon setting.

GUP(1λ) (G, H, GT , e, G1 ,ℍ1 ,ℍ2 , G󸀠T , πG , πH , πT )

CRS The authority chooses g $
←󳨀 G, h $

←󳨀 H and chooses g1
$
←󳨀 G1, hℍ,1

$
←󳨀 ℍ1, hℍ,2

$
←󳨀 ℍ2. It then chooses

UG,i
$
←󳨀 G, i ∈ [0,m]. It also chooses elements ̄vj

$
←󳨀 ℤ3p and computes Vℍ,j = (V𝔾1 ,j ,VH,j) := (g ̄vj , h ̄vj )

for j ∈ [1,m], then CRS is given by CRSFUP = (G, H, GT , e, g, h, g1 , hℍ,1 , hℍ,2 ,UG,0 , {UG,i ,Vℍ,i}mi=1).

Commitment, CG,i := U
bi
G,ig

ti
1 , CH,i := V

bi
H,ih

si,1
1 hsi,22

NIWI proofs ΘG,i,1 := U
(bi−1)si,1
G,i gri,11 , ΘH,i,1 := (V

bi
H,ih

si,1
1 hsi,22 )

tih−ri,11 h−ri,22

ΘG,i,2 := U
(bi−1)si,2
G,i gri,21 , ΘH,i,2 := (V

bi−1
H,i hsi,11 hsi,22 )

tih−ri,31 h−ri,42

ΘG,i,3 := U
bisi,1
G,i gri,31 , Θ̃𝔾1 ,i,1 := (V

bi
𝔾1 ,ih

si,1
𝔾1 ,1h

si,2
𝔾1 ,2)

tih−ri,1𝔾1 ,1h
−ri,2
𝔾1 ,2

ΘG,i,4 := U
bisi,2
G,i gri,41 , Θ̃𝔾1 ,i,2 := (V

bi−1
𝔾1 ,i h

si,1
𝔾1 ,1h

si,2
𝔾1 ,2)

tih−ri,3𝔾1 ,1h
−ri,4
𝔾1 ,2

Θ̄G,i = (ΘG,i,1 , . . . , ΘG,i,4), Θ̄ℍ,i = (Θℍ,i,1 , Θℍ,i,2)
where Θℍ,i,j = (Θ̃𝔾1 ,i,j , ΘH,i,j) for i ∈ [m0 + 1,m] and j ∈ [1, 2]

Verification e(CG,i/UG,i , CH,i)
?
= e(ΘG,i,1 , h1) e(ΘG,i,2 , h2) e(g1 , ΘH,i,1)

e(CG,i , CH,i/VH,i)
?
= e(ΘG,i,3 , h1) e(ΘG,i,4 , h2) e(g1 , ΘH,i,2)

ê(g, (ΘH,i,j)|k)
?
= ê((Θ̃𝔾1 ,i,j)|k , h) for i ∈ [m0 + 1,m], j ∈ [1, 2] and k ∈ [1, 3]

Table 3: Instantiation specifics in the unbalanced projecting setting.

5.3 Security arguments

A blind signature scheme must satisfy two security attributes, namely blindness and one-more unforgeabil-

ity (OMU). Informally speaking, blindness assures that the signer does not learn any information about the

underlyingmessage. OMUassures the conservation of signature – an adversary shouldnot be able to generate

any additional signature based on the signatures generated. Refer to [30] for the formal definitions.

Theblindnessproof is relatively straightforwardas it dependson theNIWI security anddoesnot explicitly

use projecting or cancelling property. The case for unbalanced setting is discussed in Theorem 7 of Appen-

dix D. The unforgeability proof in the Seo–Cheon projecting and cancelling setting follows the line of argu-

ment in [30]. Whereas the unforgeability proof in the unbalanced asymmetric projecting setting to a large

extent follows the strategy used in [34] with one exception.

For this reduction Seo and Cheon abstracted the translating property [34, Definition 9]. We are not aware

of any other application of the translating property in composite to prime order conversion literature. In fact,

it is easy to see that, unlike projecting or cancelling, there is no composite order analogue of this property.

Also, the original definition [34, Definition 9] requires some modification. As stated, an application of τi,j
followed by τj,i will render the CDH problem easy in the subgroup G

1
. This issue, however, can be resolved

easily if the map is evaluated with respect to the fixed generators as defined below.
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Definition 5. Let G be a bilinear group generator. We say that G is (i, j)-translating, for i ̸= j, if there exist
computable maps τi,j : Gi → Gj such that τi,j : gai 󳨃→ gaj , where gi and gj are fixed generators of Gi and Gj,

respectively, and τi,j : Hi → Hj such that τi,j : hai 󳨃→ haj , where hi and hj are fixed generators of Hi and Hj,

respectively. In the symmetric case, Gi = Hi for all i and hence τi,j = τi,j.

However, as shown in Claim 1, in the projecting setting of Definition 4, the translating property essentially

boils down to few group exponentiations. Our security reduction does not use this abstraction.

Claim 1. For a bilinear group generator satisfying projectingwith source group decomposition as inDefinition 4,
translating maps may be computed easily between any two subgroups of the same group.

Proof. We give the proof for the Freeman projecting setting with n = 2 (see Section 3.1.1). A similar proof

can be extended for any projecting setting and any n > 1. Recall that the bilinear group generator out-

puts subgroups G
1
= ⟨g(a1 ,b1)⟩, G

2
= ⟨g(c1 ,d1)⟩, H

1
= ⟨h(a2 ,b2)⟩ and H

2
= ⟨h(c2 ,d2)⟩, where g generates 𝔾

1

and h generates 𝔾
2
. Observe that gc1 = ga1⋅(c1/a1) and gd1 = gb1⋅(d1/b1). Note that the bilinear group gen-

erator can compute, say, the translating map τ
1,2

: G
1
→ G

2
. Let (g

1
, g

2
) ∈ G

1
be given. Then g

1
= ga1⋅θ

and g
2
= gb1⋅θ for some θ ∈ ℤp. Observe that gc1/a1

1

= gc1⋅θ and gd1/b1
2

= gd1⋅θ are simple group exponenti-

ations. This is possible because the bilinear group generator knows the exponents (a
1
, b

1
) and (c

1
, d

1
),

which are the exponents of the respective generator of the subgroups G
1
and G

2
. Now, it is easy to see that

τ
1,2

: (g
1
, g

2
) 󳨃→ (gc1/a1

1

, gd1/b1
2

) is a valid translation map, with generators of G
1
and G

2
as described above.

Similarly the above claim can be proved for any pairs of the subgroups of H.

Now we outline the one-more unforgeability proof of blind signature under the co-DHP

∗
assumption.

Theorem 3. The blind signature scheme instantiated in the unbalanced projecting setting is one-more unforge-
able if P satisfies the co-DHP∗ assumption.

Proof. The simulatorS is givenwith a co-DHP∗ instance g, h, ga , ha , gb alongwith (𝔾
1
,𝔾

2
,𝔾T , ê);S interacts

with a forger F in the one-more unforgeability game as follows. The simulator S constructs a unbalanced

setting as described in Algorithm 2. This involves choosing linearly independent vectors {x⃗i} from ℤ2p and
{y⃗j} from ℤ3p and setting ĝi := gx⃗i and ĥℍ,j = (ĥ𝔾

1
,j , ĥj) = (gy⃗j , hy⃗j ) for i ∈ [1, 2], j ∈ [1, 3]. The groups G, H

and GT , subgroups Gi , Hj , Ȟj and the pairing maps are defined as in the unbalanced setting. Also, S defines

R ∈ G and S ∈ H. The simulator S chooses ζ, ζ
1
, ζ

2

$

←󳨀 ℤp and defines the random subgroup elements g
1
:= ĝζ

1

,

hℍ,i = (h𝔾
1
,i , hi) = (ĥ

ζi
𝔾

1
,i , ĥ

ζi
i ) for i ∈ [1, 2].

As in the unforgeability proof of Waters signatures [37], S defines functions F(M) and Jj(M), j ∈ [1, 2].
Using the co-DHP

∗
problem instance, S computes for i ∈ [1, 2] and j ∈ [1, 3],

AG,i := (ga)x⃗i = ĝai , BG,i := (gb)x⃗i = ĝbi and Aℍ,j = (A𝔾
1
,j , AH,j) = ((ga)y⃗j , (ha)y⃗j ) = (ĥa𝔾

1
,j , ĥ

a
j )

The simulator S constructs the Waters hash generators UG,0 and UG,i, Vℍ,i = (V𝔾
1
,i ,VH,i) for i ∈ [1,m],

chooses a󸀠 $

←󳨀 ℤp, computes the public key as A = e(ĝa󸀠
1

BG,2, AH,1AH,2AH,3) and sends the public parameters

along with the public key to F. See Appendix D for details about the computation of these parameters.

The forger Fmakes signing queries to S by sending blinded message in terms of commitment (CG,i , CH,i)
and NIWI proofs (Θ̄G,i , Θ̄ℍ,i). The simulator S processes the committed message and proof given by F to

infer that they indeed have the intended structure. This can be proved by a variant of [34, Lemma 5] in the

asymmetric pairing setting which we state as Lemma 8 in Appendix D.

The simulator S applies the projection map to extract the message M and then constructs the unblinded

signature (SG,1, SG,2, SH,2) (see Appendix D for details). From this, S constructs a blinded signature compo-

nents KG,2 := SG,2, KH,2 := SH,2 and KG,3 := g−r
1

Aζ/F(M)
G,1 , where r is the randomizer used in the construction of

the Waters signature.

To construct KG,1, S needs to compute gti
1

and gati
1

without the knowledge of a and ti, for i ∈ [m0
+ 1,m].

Since CG,i = Ubi
G,ig

ti
1

, S can compute gti
1

as CG,i/Ubi
G,i by using the knowledge of bi. Now, S computes

hati𝔾
1
,3

= Ati
𝔾

1
,3

=
{
{
{

(Θ̃N−1VN
𝔾

1
,i,1 )

1/w̄
3i
, if bi = 1,

(Θ̃N−1VN
𝔾

1
,i,2 )
−1/w̄

3i
, if bi = 0,
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where N is a matrix of order 3 whose j-th row is y⃗j and V is a matrix of order 3 whose (3, 3)-th element is 1

and all other elements are zero. The simulator S computes gati
1

as follows:

(hati𝔾
1
,3

)N
−1UM = (gati y⃗3 )N

−1UM = (gati(0,0,1)N)N
−1UM = gati(0,0,1)UM

= gati(1,0)M = gati x⃗1 = gati
1

.

Here U is a boolean matrix of order 3 × 2 whose (3, 1)-th entry is 1 and all other entries are zero. Recall that
M is a matrix of order 2 whose i-th row is x⃗i. Finally, S computes

KG,1 := SG,1
m
∏

i=m
0
+1

(gti
1

)r(gati
1

)−
1

F(M)
.

The well-formedness of the above (blinded) signature can be verified using bilinear map, which does not

require the cancelling property.

The simulator S stores all the queried messages in a list called L. After receiving the forgery list from F,

S finds at least one message, say M∗, which is not in L. Let (S∗G,1, S
∗
G,2, S
∗
H,2) be the corresponding signature

on M∗. Then S checks whether F(M∗) = 0; if not, S aborts the game. Otherwise, S computes

ĝab
2

= πG(S∗G,1(S
∗
G,2)

J
2
(M∗))

and checks that it indeed belongs to the subgroup G
2
. Since S had chosen x⃗

2
, she/he can easily compute gab

from ĝab
2

and return as a solution for the co-DHP

∗
problem.

Remark 3. Webriefly commentwhywe need the DLIN assumption inℍ and thuswork in the unbalanced set-
ting. The structure of theGroth–Sahai proof system in the asymmetric pairing settingmandates that ΘH,i,j ∈ H
for j ∈ [1, 2] be provided as part of the NIWI proof. On the other hand, S needs the corresponding Θ̃𝔾

1
,i,j ∈ 𝔾3

1

to extract gati
1

. This is achieved by providing the NIWI proof components Θℍ,i,j ∈ ℍ (see Table 3). Recall that

ℍ = ⟨(g, h)⟩, whichmeans the underlying elements of𝔾
1
and𝔾

2
will share the same exponent. In particular,

the unknown value (ati)will be in the exponent of𝔾1 and𝔾2. In other words, DDH and hence the subgroup

decision problem will be easy inℍ and we cannot use the projecting settings of Section 3.1.

5.4 Comparison

We compare the two frameworks in Table 4 based on size of group elements and various operations. In the

following, for a group X we use EX, MX and IX to denote respectively group exponentiation, multiplication

and inversion in X; ℙ (resp. P) is used to denote a pairing in atomic (resp. prime power) setting.

Recall that m
0
(resp. k) denotes the bit-length of common information (resp. hash digest of the actual

message) whence m = k + m
0
is the total message length. The size of various parameters like CRS and σ and

the computational complexity of the algorithms are compared in Table 5.

As described in Table 4, the elements of G, H and GT aswell as various operations involving these groups

can be described in terms of the atomic groups. Based on the concrete analysis at the 128-bit security level

from [12, Table 2], we work out the relative performance of the two frameworks. In [12], all the operations

Framework Unbalanced Seo–Cheon

1|G|, 1|H|, 1|GT | 2|𝔾1|, 3|𝔾2|, 6|𝔾T | 4|𝔾1|, 4|𝔾2|, 2|𝔾T |

1EG , 1EH , 1EGT 2E𝔾1 , 3E𝔾2 , 6E𝔾T 4E𝔾1 , 4E𝔾2 , 2E𝔾T
1MG , 1MH , 1MGT 2M𝔾1 , 3M𝔾2 , 6M𝔾T 4M𝔾1 , 4M𝔾2 , 2M𝔾T
1IG , 1IH , 1IGT 2I𝔾1 , 3I𝔾2 , 6I𝔾T 4I𝔾1 , 4I𝔾2 , 2I𝔾T
1P 6ℙ 4ℙ + 2M𝔾T

Table 4: Comparison of the unbalanced projecting and Seo–Cheon’s projection and cancelling framework.
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(A) Unbalanced framework (B) Seo–Cheon framework Ratio (A/B)†

|CRS| (5m + 12)|𝔾1| + (3m + 9)|𝔾2| (4m + 16)|𝔾1| + (4m + 12)|𝔾2| 0.92
|Key| 2|𝔾1| + 6|𝔾T | 4|𝔾1| + 2|𝔾T | 2.16
|req| 16k|𝔾1| + 9k|𝔾2| 12k(|𝔾1| + |𝔾2|) 0.94
|BSig| 6|𝔾1| + 3|𝔾2| 12|𝔾1| + 4|𝔾2| 0.6
|σ| 4|𝔾1| + 3|𝔾2| 8|𝔾1| + 4|𝔾2| 0.62

Setup (5m + 10)E𝔾1 + (3m + 7)E𝔾2 (4m + 16)E𝔾1 + (4m + 12)E𝔾2 0.91

KeyGen 6ℙ + 2E𝔾1 4ℙ + 2M𝔾T + 4E𝔾1 1.4

User 48ℙ + 6M𝔾T + [34k + 4]E𝔾1 40ℙ + 24M𝔾T + [14k + 24]E𝔾1 1.51
+[28k + 4m0 + 4]M𝔾1 +[18k + 8m0 + 16]M𝔾1
+[18k + 3](E𝔾2 + M𝔾2 ) +[10k + 12]E𝔾2 + [6k + 4]M𝔾2

Signer 52kℙ + 24kM𝔾T + 6E𝔾1 [24k + 8]ℙ + [16k + 6]M𝔾T 1.88
+[4k + 2m0 + 2]M𝔾1 + 3E𝔾2 +[12k + 16]E𝔾1 + [20k + 4m0]M𝔾1
+3kM𝔾2 +[12k + 8]E𝔾2 + [16k − 4]M𝔾2

Verify 24ℙ + 6M𝔾T + 2mM𝔾1 24ℙ + 16M𝔾T + 12E𝔾1 + [4m + 4]M𝔾1 + 8E𝔾2 0.88

Table 5: Comparison of blind signature instantiation in the two frameworks. († The ratio A/B is computed for m0 = 100 and
k = 256 using [12, Table 2].)

such as group exponentiation and pairing computation are expressed in terms of field multiplications. Thus,

using that result, one can easily calculate the ratio A/B for different values of m
0
and k. As expected, the

ratio remains more or less the same for various concrete values of the message digest k and common infor-

mation m
0
.

In the above table we have computed the ratio for m
0
= 100 and k = 256. The target group size is 1024

bits and size of the first and second source groups are 257-bits and513-bits, respectively. Form =m
0
+k = 356

bits, the CRS size for Seo–Cheon and unbalanced settings turn out to be respectively 1,013,045 and

1,106,748 bits and the ratio is approximately 0.92. The size of the other components are calculated in

a similar way. Similarly, the running time of various algorithms in the blind signature scheme are obtained

using [12, Table 2]. In particular, pairing computation takes 15,175 field multiplications and addition in the

first, second and target group respectively take 11, 30 and 54 field multiplications and exponentiation in the

first and second source group respectively take 1533 and 3052 field multiplications. Note that User, Singer

and Verify algorithms need to perform a group membership test. In the Seo–Cheon setting, group member-

ship is checked using pairing based batch verification (see [34, Appendix E]) under the SXDH assumption.

Thus the cost of this check is also incorporated in Table 5. Chatterjee, Hankerson, Knapp and Menezes [12]

mentioned that membership test in the second source group takes 3,052 field multiplications, whereas the

cost is ignored for the first source group as it takes very few field multiplications. By applying these values

in each algorithm (such as Setup, KeyGen, User, Signer and Verify), we obtain the appropriate ratio A/B as

described in our Table 5.

6 Concluding remarks

For the projecting property, several frameworks have been proposed in the symmetric pairing setting with

each one improving upon the previous proposal. However, in the asymmetric setting, which really matters

for efficient instantiation, the Freeman and its predecessor Groth–Sahai construction still remain the best.

We have several interesting observations in the context of a simultaneously projecting and cancelling

setting. Ring and group signatures [10, 11, 35] that also require the cancelling property in composite order

can be converted to prime order in a projecting alone setting. This is because, unlike in the composite order

setting where subgroups are given, a prime order projecting setting allows the simulator to construct the
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subgroups. We are not aware of any other cryptosystem that uses both projecting and cancelling properties

in the composite order setting, and hence requires a projecting and cancelling framework in the prime order

setting for functionality and/or security.

In this context it is worth to briefly comment on two recent works. Herold, Hesse, Hofheinz, Ràfols and

Rupp [23] proposed a polynomial interpretation based projecting and cancelling framework in the symmetric

setting (but did not propose any concrete application). We extended their projecting and cancelling frame-

work to the asymmetric pairing setting and observed that a pairing computation in their framework will

require nine atomic pairing as opposed to four in the Seo–Cheon framework. Lewko and Meiklejohn [28]

used their simultaneously parameter hiding, cancelling and projecting framework to instantiate two crypto-

systems in the prime order setting – a leakage resilient variant of BGN and an IBE with CCA1 security. How-

ever, neither of the two cryptosystems have any composite order counterpart. In fact, it is difficult to conceive

of a natural counterpart of the two cryptosystems in the composite order setting. Thus the relevance of the

above two frameworks in the context of composite-to-prime order conversion is yet to be established.

Finally, our concrete analysis of the blind signature indicates that even though a projecting and can-

celling setting may not be necessary for functionality and/or security of a cryptosystem, still that may be

a preferred choice from the view point of efficiency.

A Relevant hard problems

We recall the definitions of major hard problems used in this work.

Definition 6. Let Ψ = (n,𝔾, g) be the output of a group generator G(1λ). A PPT algorithm A is said to have

advantage Adv
CDH𝔾 [A, G] in solving the computational Diffie–Hellman problem (CDH), where the advantage

is defined as

Pr[A(Ψ, ga , gb) → gab : Ψ $

←󳨀 G; g $

←󳨀 𝔾; a, b $

←󳨀 ℤp].

Further, G is said to satisfy the CDH assumption in 𝔾 if Adv
CDH𝔾 [A,P] is negligible in λ for any PPT algo-

rithmA.

Definition 7. Let Ψ = (𝔾
1
,𝔾

2
,𝔾T , e) be the output of a prime order bilinear group generatorP(1λ). Let k ≥ 1.

AnalgorithmA taking (2k + 2) elements from𝔾
1
as inputs has advantageAdvk-Lin𝔾

1

[A,P]defined to be equal
to

󵄨󵄨󵄨󵄨Pr[A(Ψ, g1, . . . , gk , g
r
1

1

. . . , grkk , g0, g
r
1
+⋅⋅⋅+rk

0

) = 1 : Ψ

$

←󳨀 P, g
1
, . . . , gk , g0

$

←󳨀 𝔾
1
; r

1
, . . . , rk

$

←󳨀 ℤp]

− Pr[A(Ψ, g
1
, . . . , gk , gr1

1

. . . , grkk , g0, g
s
0

) = 1 : Ψ

$

←󳨀 P, g
1
, . . . , gk , g0

$

←󳨀 𝔾
1
; r

1
, . . . , rk , s

$

←󳨀 ℤp]
󵄨󵄨󵄨󵄨

in solving the k-linear problem (k-Lin) on𝔾
1
. The group generatorP is said to satisfy the k-linear assumption

in𝔾
1
if Advk-Lin𝔾

1

[A,P] is negligible in λ for any PPT algorithmA (similar definition in𝔾
2
).

The decisional Diffie–Hellman (DDH) assumption is the 1-linear assumption. The decisional linear (DLin)
assumption is the 2-linear assumption. When the DDH assumption holds in both 𝔾

1
and 𝔾

2
, the symmetric

external Diffie–Hellman assumption (SXDH) is said to hold.

Definition 8. Let G be a bilinear group generator (of non-prime order). Consider the following distribution:

Ψ = (G, G
1
, H, H

1
, GT , e)

$

←󳨀 G(1λ), T
0

$

←󳨀 G, T
1

$

←󳨀 G
1
.

The advantage of a PPT algorithm A in solving the SDP problem on the left is denoted by Adv
SDPL [A, G] and

defined as

|Pr[A(Ψ, T
0
) = 1] − Pr[A(Ψ, T

1
) = 1]|.

Then G is said to satisfy the subgroup decision on the left if the above advantage is negligible in λ. A similar

definition holds for subgroup decision on the right. Consequently, G is said to satisfy the subgroup decision

assumption if both the corresponding problems on the left and the right are hard.
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Further, if G is an n-fold group and the subgroup G
1
is generated using the k-linearly independent group

element, then we say that G satisfies the (n, k)-subgroup decision assumption [18] in G. Similarly we can

define in H.

Definition 9. Let Ψ = (𝔾
1
,𝔾

2
,𝔾T , e) ← P(1λ). An algorithmA has advantage Adv

co-DHP

∗
defined to be equal

to

Pr[A(Ψ, g, ga , gb , h, ha) → gab : Ψ $

←󳨀 P, g $

←󳨀 𝔾
1
, h $

←󳨀 𝔾
2
; a, b $

←󳨀 ℤp]

in solving the co-DHP

∗
problem [12] on both𝔾

1
and𝔾

2
. Then P is said to satisfy the co-DHP

∗
assumption if

the above advantage is negligible in λ for anyA.

Definition 10. Let Ψ = (𝔾
1
,𝔾

2
,𝔾T , e) ← P(1λ). An algorithm A has advantage Adv

co-DHP+ defined to be

equal to

Pr[A(Ψ, g, ga , gb , h, ha , hb) → gab : Ψ $

←󳨀 P, g $

←󳨀 𝔾
1
, h $

←󳨀 𝔾
2
; a, b $

←󳨀 ℤp]

in solving the co-DHP+ problem on both𝔾
1
and𝔾

2
. Then P is said to satisfy the co-DHP+ assumption if the

above advantage is negligible in λ for anyA.

Ghadafi, Smart andWarinschi [20] proposed a variant of the DLIN problem in the asymmetric pairing setting.

In the following we will define the problem in terms of h ∈ ℍ, whereℍ = ⟨(g, h)⟩.

Definition 11. Let Ψ = (𝔾
1
,𝔾

2
,𝔾T , e) ← P(1λ). An algorithmA has advantage Adv

DLinℍ defined to be equal

to

󵄨󵄨󵄨󵄨Pr[A(Ψ, h, h
z
1

, hz2 , hz1z3 , hz2z4 , hz3+z4 ) = 1 : Ψ

$

←󳨀 P, h = (g, h) $

←󳨀 ℍ; z
1
, z

2
, z

3
, z

4

$

←󳨀 ℤp]

− Pr[A(Ψ, h, hz1 , hz2 , hz1z3 , hz2z4 , hz5 ) = 1 : Ψ

$

←󳨀 P, h = (g, h) $

←󳨀 ℍ; z
1
, z

2
, z

3
, z

4
, z

5

$

←󳨀 ℤp]
󵄨󵄨󵄨󵄨

in solving the DLin problem on ℍ. Then P is said to satisfy the DLin assumption if the above advantage is

negligible in λ for anyA.

B Symmetric projecting frameworks

While Freeman considered only an asymmetric version of projecting setting, it is easy to adapt his strategy

in the symmetric setting as shown, for example, in [34]. In this section, we compare the various symmetric

projecting frameworks with an eye on the instantiation of BGN cryptosystem. Our discussion also narrates

how researchers have been able to progressively improve the parameters for symmetric projecting frame-

works [23, 33, 34].

As we mentioned in Section 2 symmetric pairings over small characteristic fields are effectively broken

due to recent advances in solving the DLP in some of the fields. However, those results do not affect sym-

metric pairings defined over large characteristic fields. Also note that pairing over an embedding degree one

curve [15] has been proposed in recent times. This can be a conservative choice as recent advances in the

efficiency of NFS and its variants for solving the medium prime discrete log [26] have cast some doubt on the

concrete security of asymmetric pairing defined over BN curves [3]. Pairing over embedding degree one as

well as embedding degree two curves (for example, [16]) can be used to instantiate cryptosystems that are

built on symmetric pairing. Hence, the question of efficient instantiation in the symmetric prime order setting

still merits some discussion.

B.1 Groth–Sahai framework

Consider a symmetric prime order bilinear group generator Ps(1λ) which outputs (𝔾,𝔾T , ê), where 𝔾 and
𝔾T are cyclic groups of prime order and e : 𝔾 × 𝔾 → 𝔾T is the atomic symmetric pairing. Define G = 𝔾3
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and GT = 𝔾9T . The pairing map e : G × G → GT is defined using the tensor product

e(gx⃗ , gy⃗) = ê(g, g)
1

2

(x⃗⊗y⃗)+ 1
2

(y⃗⊗x⃗)
,

where g ∈ 𝔾, x⃗, y⃗ ∈ ℤ3p. Note that, the way pairing is defined makes it commutative.

Choose two random elements α, β from ℤ∗p and set x⃗1 = (α, 0, 1) and x⃗
2
= (0, β, 1). The subgroup G

1
is

generated by gx⃗1 = (gα , 1, g) and gx⃗2 = (1, gβ , g). The projection map π : G → 𝔾 is defined as

π(g
1
, g

2
, g

3
) = g−1/α

1

g
−1/β
2

g
3

for any (g
1
, g

2
, g

3
) ∈ G. Observe that G

1
= Ker π. Similarly the subgroup G󸀠T is generated using e(g

x⃗
1

, g) and
e(gx⃗2 , g) and the projection map πT : GT → 𝔾T is defined as

πT(
z
11

z
12

z
13

z
21

z
22

z
23

z
31

z
32

z
33

) = (z
33
z−1/α
13

z−1/β
23

)(z
31
z−1/α
11

z−1/β
21

)−1/α(z
32
z−1/α
12

z−1/β
22

)−1/β

for any (z
11
, . . . , z

33
) ∈ GT . Observe that G󸀠T = Ker πT and the projection maps π, πT commute with the pair-

ing. Finally, the bilinear group generator outputs (G, GT , e, G1
, G󸀠T , π, πT).

B.2 Seo framework

In the Groth–Sahai framework, the symmetric property of the pairing leads to six distinct subgroups of GT
even though GT is a 9-fold of𝔾T . This was observed by Seo and Cheon [34], who gave a symmetric variant of

the Freeman asymmetric framework. In a follow-up work, Seo [33] further optimized the projecting setting

by using a 6-fold target group for pairing definition.

The underlying groups G and GT are as in the Groth–Sahai framework of Section B.1. Let {x⃗i}i∈[1,3] be
linearly independent vectors from ℤ3p. The subgroup G

1
is generated using gx⃗1 and gx⃗2 . The projection map

π : G → G is defined as

π(g
1
, g

2
, g

3
) = (g

1
, g

2
, g

3
)M

−1U
3
M
,

whereM is a matrix of order 3 whose i-th row is x⃗i and U3
is a matrix of order 3 whose (3, 3)-th entry is 1 and

the remaining entries are zero. Observe that G
1
⊆ Ker π. The bilinear map e : G × G → GT is defined as

e(gx⃗ , gy⃗) := (ê(gx1 , gy1 ), ê(gx1 , gy2 )ê(gx2 , gy1 ), ê(gx2 , gy2 ),
ê(gx1 , gy3 )ê(gx3 , gy1 ), ê(gx2 , gy3 )ê(gx3 , gy2 ), ê(gx3 , gy3 )) (B.1)

for any gx⃗ = (gx1 , gx2 , gx3 ), gy⃗ = (gy1 , gy2 , gy3 ) ∈ G. The above pairing exponent can be viewed as a 6-tuple vec-
tor (x⃗ ⊗ y⃗)B, for the booleanmatrix B is of order 9 × 6 (see [33, Example 2]). The projectionmap πT : GT → GT
is defined as

πT(T1, . . . , T6) := (T1, . . . , T6)D
−1VD

for (T
1
, . . . , T

6
) ∈ GT . Here V is a diagonal matrix of order 6 with 1 in the entry (1, 1) and zeros else-

where. The matrix D is defined as D = ZB, where Z is the 6 × 9 matrix such that its l-th row is x⃗i ⊗ x⃗j
for l = 1

2

(4 − i)(3 − i) + 4 − j and 1 ≤ i ≤ j ≤ 3. The security of this framework is proved under the DLin

assumption [33, Theorem 1]. Finally, the bilinear group generator outputs (G, GT , e, G1
, π, πT). Note that the

description of G
1
and e suffice to describe G󸀠T , which is not provided explicitly.

B.3 Polynomial framework

In 2014,Herold, Hesse, Hofheinz, Ràfols andRupp [23] introduced their framework using a polynomial inter-

pretation. This framework can be seen as an optimized version of the Groth–Sahai construction.



S. Chatterjee et al., Composite to prime order conversion of cryptosystems | 183

Elements of G are represented by the polynomial f(X
1
, X

2
) = −X

2
− X

1
+ X

1
X
2
, where X

1
, X

2
are the

indeterminates. The pairing map is defined as in equation (B.1) which is interpreted as a product of f with
itself. Thus the elements of GT are represented using the polynomial

fT(X1, X2) = X2
2

+ 2X
1
X
2
+ X2

1

− 2X
1
X2
2

− 2X2
1

X
2
+ X2

1

X2
2

.

Twohiddenparameters s
1
, s

2
are chosenuniformly at random fromℤ∗p . The subgroupG

(s
1
,s

2
)

1

is definedusing

the generators (gs1 , 1, g) and (1, gs2 , g) for g ∈ 𝔾. The projection map π(s1 ,s2) : G → 𝔾 is defined as

π(s1 ,s2)(g
1
, g

2
, g

3
) = g−s2

1

g
−s

1

2

g
s
1
s
2

3

for (g
1
, g

2
, g

3
) ∈ G. The map π(s1 ,s2) is interpreted as evaluation of the polynomial f at X

1
= s

1
and X

2
= s

2
.

The subgroupG󸀠 (s1 ,s2)T is generated using e((gs1 , 1, g), g) and e((1, gs2 , g), g) for fixed g = (g
1
, g

2
, g

3
) ∈ G. The

projection map π(s1 ,s2)T : GT → 𝔾T is defined using evaluation of the polynomial fT at X
1
= s

1
and X

2
= s

2
.

Observe that G(s1 ,s2)
1

= Ker π(s1 ,s2) and G󸀠 (s1 ,s2)T = Ker π(s1 ,s2)T . It is also shown that, if Ps satisfies the DLin

assumption, then the above bilinear group generator satisfies the (3, 2)-subgroup decision assumption

[23, Theorem 1, Example 2]. We denote this framework as “Polynomial-I”.

This work also proposed a more efficient construction using univariate polynomial representation under

the seemingly stronger 2SCasc assumption. A single hidden parameter s is chosen uniformly at random from

ℤ∗p to define the subgroups and projectionmaps. The elements of G (resp. GT) are represented by the polyno-

mial f(X) = 1 + X + X2 (resp. fT(X) = 1 + X + X2 + X3 + X4). The pairing e : G × G → GT is defined as

e((g
1
, g

2
, g

3
), (g󸀠

1

, g󸀠
2

, g󸀠
3

)) := (ê(g
1
, g󸀠

1

), ê(g
1
, g󸀠

2

)ê(g
2
, g󸀠

1

), ê(g
1
, g󸀠

3

)ê(g
2
, g󸀠

2

)ê(g
3
, g󸀠

1

),

ê(g
2
, g󸀠

3

)ê(g
3
, g󸀠

2

), ê(g
3
, g󸀠

3

))

for (g
1
, g

2
, g

3
), (g󸀠

1

, g󸀠
2

, g󸀠
3

) ∈ G. The subgroup G(s)
1

is defined using the generators (g−s , g, 1) and (1, g−s , g).
The projection map π(s) : G → 𝔾 is defined for (g

1
, g

2
, g

3
) ∈ G as

π(s)(g
1
, g

2
, g

3
) := g

1
gs
2

gs
2

3

.

Similarly, the subgroup G󸀠 (s)T is defined using the generators e((g−s , g, 1), g) and e((1, g−s , g), g) for g ∈ G.
The projection map π(s)T : GT → 𝔾T is defined as

π(s)T (T1, . . . , T5) := T1T
s
2

Ts2
3

Ts3
4

Ts4
5

for (T
1
, . . . , T

5
) ∈ GT . It is easy to see that G(s)

1

= Ker π(s) and G󸀠 (s)T = Ker π
(s)
T . Observe that both projection

maps can be interpreted as (respective) polynomial evaluation at X = s. This framework allows representing

GT in terms of five elements of𝔾T . It is also shown that, ifPs satisfies the 2SCasc assumption, then the above

bilinear group generator satisfies the (3, 2)-subgroup decision assumption [23, Theorem 1, Example 1]. We

denote this framework as “Polynomial-II”.

B.4 Comparison

We compare the above mentioned symmetric projecting frameworks in Table 6 based on the following met-

rics: size of the target group, number of pairing and cost of computing the projection maps. We also compare

the performance of these frameworks when used to instantiate BGN cryptosystem and tabulated the cost in

Table 7. One can apply an efficient encryption method (as described in Section 3.2) to optimize the BGN

instantiation using the above described frameworks. But the efficient decryption technique, as described in

the asymmetric setting, is applicable only in Seo’s framework.

Remark 4. Recall that the Groth–Sahai NIWI proof system does not explicitly use the projectionmap. In their

instantiation of the proof system,Herold, Hesse, Hofheinz, Ràfols andRupp [23] used the implicit representa-

tion of GT where the pairing computation uses the “evaluate-multiply” method in the polynomial projecting

setting. However, the BGN scheme uses the projection map πT in the Dec algorithm, which requires the
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Scheme Groth–Sahai Seo Polynomial-I Polynomial-II
Assumption DLin 2SCasc
Size of GT 9|𝔾T | 6|𝔾T | 5|𝔾T |
1P 9ℙS + 3M𝔾T + 6E𝔾 9ℙS + 3M𝔾T 6ℙS + 32M𝔾T + 18M

†
𝔾 5ℙS + 28M𝔾T + 20M

†
𝔾

Projection πG 2E𝔾 + 2M𝔾 3E𝔾 + 2M𝔾 3E𝔾 + 2M𝔾 2E𝔾 + 2M𝔾
Projection πT 8E𝔾T + 8M𝔾T 6E𝔾T + 5M𝔾T 6E𝔾T + 5M𝔾T 4E𝔾T + 4M𝔾T

Table 6: Comparing symmetric projection frameworks. († We use the evaluate-multiply-interpolate method to compute the pair-
ing as opposed to [23] which uses the evaluate-multiply method.)

Scheme Groth–Sahai Seo Polynomial-I Polynomial-II
SK size 2|𝔽p | 9|𝔽p | 2|𝔽p | 1|𝔽p |
PK size 6|𝔾| 9|𝔾| 6|𝔾| 5|𝔾|

CT size 3|𝔾|
9|𝔾T | 6|𝔾T | 5|𝔾T |

KeyGen 5E𝔾 9E𝔾 5E𝔾 4E𝔾

Enc 3E𝔾+1M𝔾 6E𝔾+4M𝔾 3E𝔾+1M𝔾 4E𝔾+2M𝔾

Dec‡ 𝔾 2E𝔾+2M𝔾 4E𝔾+2M𝔾 2E𝔾+2M𝔾
𝔾T 1ℙS+8E𝔾T +8M𝔾T 1ℙS+6E𝔾T +5M𝔾T +3E𝔾+2M𝔾 1ℙS+4E𝔾T +4M𝔾T

Add 𝔾 3E𝔾+6M𝔾 6E𝔾+9M𝔾 3E𝔾+6M𝔾 4E𝔾+7M𝔾
𝔾T 9ℙS+21M𝔾T +9E𝔾 9ℙS+15M𝔾T +6E𝔾+3M𝔾 6ℙS+44M𝔾T +3E𝔾+18M𝔾 5ℙS+40M𝔾T +4E𝔾+21M𝔾

Multiply 18ℙS+15M𝔾T +15E𝔾 18ℙS+12M𝔾T +6E𝔾+3M𝔾 12ℙS+70M𝔾T +3E𝔾+36M𝔾 10ℙS+62M𝔾T +4E𝔾+41M𝔾

Assumption DLin 2SCasc

Table 7: Comparing BGN in symmetric projection frameworks. (For any group X ∈ {𝔾,𝔾T }, we denote by EX ,MX and |X| the
exponentiation, multiplication in X and the bit size of X, respectively, and ℙS denotes the atomic symmetric pairing
computation time. ‡ Excluding the final discrete logarithm computation.)

explicit representation of GT elements. Hence the pairing computation here uses the “evaluate-multiply-

interpolate” method. The latter is marginally slower than the former, as the interpolation involves additional

multiplications in the target group (see Table 6).

C Ring signature security

Shacham and Waters [35] assume a trusted global setup by an authority. Security is defined in terms of two

games. As stated earlier, anonymity (against full key exposure) informally ensures that the adversary cannot

distinguish between two target signers even when she/he is given all the private keys in the ring. Whereas

unforgeability (with respect to insider corruption) ensures that the adversary cannot forge a signature for an

uncorrupted user. See [35] for the formal definitions. Barring a few details in terms of the underlying alge-

braic structure, the security arguments remain the same for Freeman and Seo–Cheon frameworks.Whenever

necessary we give those details for the Freeman construction.

Theorem 4. The ring signature scheme instantiated in the prime order setting is anonymous against full key
exposure attack if the corresponding bilinear group generator GP satisfies the (2, 1)-subgroup decision assump-
tion.

Proof. The argument essentially mimics the original proof of [35] in the asymmetric pairing setting. We pro-

vide a sketch below.

Given theSDPchallenge instance (G, H, GT , e, g1, h1), the simulatorS chooses g,UG,i for i ∈ [0, k] fromG
and h from H uniformly at random. Then S constructs AG = ga, AH = ha, BG = gb, BH = hb and AG,1 = ga

1

for
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a, b uniformly at random fromℤp. The simulator S gives the public parameter to adversaryA. S runs the key

generation algorithm to obtain public-secret key pairs and answers for signing oracle queries.

WhenAmakes a challenge query with two indices i
0
, i
1
, then S chooses a bit β uniformly at random and

constructs a ring signature on behalf of iβ and gives to A. When A outputs a guess β󸀠, S outputs 1 ⊕ β ⊕ β󸀠.
When {g

1
, h

1
} ∈ G

1
× H

1
, one can show that the game is same as the anonymity game defined in [35]. Hence

A wins with the same advantage as in the anonymity game.

When {g
1
, h

1
} are the random elements from G × H, then one can show that the NIWI proof components

given as a part of the challenge signature perfectly hides the signer information. Let the secret signing key

used to generate the challenge is skiβ = g
abiβ

, for some biβ ∈ ℤp. Hence, one can express the Waters-3b sig-

nature components as

SG,1 = gabiβ(U0

k
∏
j=1

U
mj
j )

r

gat
1

, SG,2 = gr and SH,2 = hr .

Obviously SG,2 and SH,2 do not contain any information about iβ. Hence the only possibility forA to retrieve

the signer information is from SG,1. Suppose thatA is unbounded and hence can compute the discrete loga-

rithm; A can retrieve gabiβ gat
1

from SG,1. However, the hiding property of GS-commitment ensures that even

an unbounded adversary cannot extract ti from CG,i and henceA cannot compute t = ∑i ti or gat1 . Since g1 is
a random group element, the term gabiβ gat

1

is uniformly random irrespective of the choice of iβ. This ensures
that in this caseA cannot win the game with a probability better than

1

2

.

Theorem 5. The ring signature scheme instantiated in the prime order setting is existential unforgeable with
respect to insider corruption ifH is a collision resistant hash function and P satisfies the co-DHP+ assumption.

Proof. The overall proof strategy is analogous to [35]. However, giving a direct reduction to a hard prob-

lem defined in the atomic groups 𝔾
1
,𝔾

2
and the knowledge of the exponents used to define the subgroups

{Gi , Hi}2i=1 allow us to avoid the cancelling property as detailed below.

Like in the original proof [35, Appendix A] we classify the forger in three types. The Type I forger out-

puts two different message-ring pairs (M, R) and (M󸀠, R󸀠) such that H(M, R) = H(M󸀠, R󸀠) and thus breaks

the collision resistance property ofH.

The Type II forger F outputs a forgery with either fi = 0 for all i or ∑i fi > 1. The simulator S is given

a co-DHP+ problem instance g, gα , gβ , h, hα , hβ in 𝔾
1
,𝔾

2
. Then S chooses linearly independent random

{x⃗
1
, x⃗

2
} and {y⃗

1
, y⃗

2
} from ℤ2p and constructs the Freeman projection setting as described in Section 3.1.1.

The simulator S defines g
1
:= gzx⃗1 , g

2
:= gx⃗2 , g := gzx⃗1+x⃗2 and h

1
:= hz

󸀠 y⃗
1

, h
2
:= hy⃗2 , h := hz

󸀠 y⃗
1
+y⃗

2

for random

z, z󸀠 from ℤp. Further, the simulator S uses (gα , hα) to construct AG := (gα)zx⃗1+x⃗2 = gα, AG,1 := (gα)zx⃗1 = gα
1

,

AH := (hα)z
󸀠 y⃗

1
+y⃗

2 = hα and (gβ , hβ) to construct BG := (gβ)zx⃗1+x⃗2 = gβ, BH := (hβ)z
󸀠 y⃗

1
+y⃗

2 = hβ. Well-formedness

of these components can be checked using pairing and, unlike the composite order setting, without using

the cancelling property. The simulator S chooses uj uniformly at random from ℤp to define the Waters hash

generatorUj := g(zx⃗1+x⃗2)uj = guj for j ∈ [0, k]. Note that S knows the discrete logarithm ofUj with respect to g.

Finally, S selects a CRHFH : {0, 1}∗ → {0, 1}k and gives the system parameters to F.

For each user S runs the key generation algorithm which outputs public and secret key pairs. Hence

S can answer for all the signing and corruption queries. Finally, F returns a valid ring signature forgery

(denoted as (S∗G,1, S
∗
G,2, . . .)) on the message (m∗

1

, . . . ,m∗k ). As in the original proof of [35], S retrieves f∗i
from GS-commitment C∗G,i or C

∗
H,i using appropriate projection maps. From the forged signature components

(S∗G,1, S
∗
G,2), S can apply the projection map to compute

ĝ
2
= πG(S∗G,1(S

∗
G,2)
(u

0
+∑ki=1 uim∗

i )A∑
l∗
i=1 bi f∗i

G )
1

1−f
,

where bi is the random exponent of i-th user’s public key and f = ∑i f∗i . The simulator S verifies that ĝ
2

indeed belongs to G
2
and an easy but tedious calculation shows that ĝ

2
= gαβ

2

. Recall that g
2
= gx⃗2 , where x⃗

2

is chosen by S. Hence S can extract gαβ from gαβ
2

.

The Type III forger F outputs a forgery with exactly one of {fi} equal to 1. The simulator S is given

a co-DHP+ problem instance g, gα , gβ , h, hα , hβ in 𝔾
1
and 𝔾

2
. Similar to the Type II case, S constructs the
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Freeman projection setting with complete decomposition of the source groups by choosing {x⃗i , y⃗i} from ℤ2p
for i ∈ [1, 2]. The simulator S defines g

1
, g

2
, g, h

1
, h

2
and h in exactly the same way as in the Type II case.

Similarly, S defines AG = gα, AG,1 = gα
1

and AH = hα using the co-DHP+ problem instance but chooses b
fromℤp and defines BG = gb and BH = hb.

Let q be the upper bound of singing queries. As in the security argument of the Waters signature [37],

S chooses ai , bi fromℤp for i ∈ [0, k] and defines the functions

F(M) = a
0
− ̃tq +

k
∑
i=1

aimi and J(M) = b
0
+

k
∑
i=1

bimi ,

where
̃t is chosen uniformly at random from [0, k] and M = (m

1
, . . . ,mk). The Waters hash parameters

are defined as UG,0 = [(gβ)a0−
̃tqgb0 ]zx⃗1+x⃗2 and UG,i = [(gβ)aigbi ]zx⃗1+x⃗2 . It is easy to see that the above con-

structed public parameters are properly distributed. The simulator S randomly chooses one of the users

(indexed as i∗) and uses (gβ , hβ) from the co-DHP+ instance to construct the corresponding public key

as pki∗ = ((gβ)zx⃗1+x⃗2 , (hβ)z
󸀠 y⃗

1
+y⃗

2 ) = (gβ , hβ). This implicitly sets ski∗ as gαβ which is unknown to S. For the

remaining users, S runs the key generation algorithm to obtain public-secret key pairs. Then S sends public

parameters along with all the users public key to the forger. Note that S can answer for all the corruption

queries except for the target user index i∗.
Suppose that F makes signing query on the message M = (m

1
, . . . ,mk) with user index s in the ring R.

If s ̸= i∗, then S can easily respond by using the corresponding secret key. For s = i∗, S follows the strategy
used in the proof of Waters signature security [37]. In particular, S evaluates F(M) and aborts if F(M) = 0.
Otherwise, S computes the ring signature as follows: construct the GS-commitment and proof components

as defined in equation (4.1) and equation (4.2) by choosing ti , si uniformly at random fromℤp. Then compute

the signature components which will be of the form

SG,1 := (gα)−
J(M)
F(M)(U

0

k
∏
i=1

U
mi
i )
̃r

(gα
1

)t , SG,2 := g ̃r(gα)−
1

F(M)
, SH,2 := h ̃r(hα)−

1

F(M)
,

where ̃r = r + α
F(M) for r chosen uniformly at random fromℤp and t = ∑i ti. The well-formedness of the above

signature can be verified without using the cancelling property. The simulator S sends the above signature

components along with GS-commitment and NIWI proof components to F. Finally, F outputs a valid ring

signature forgery of the form (σ∗,M∗, R∗). At this point S checks whether the forgery is for target user i∗. If
not S aborts the game, otherwise, S evaluates F(M∗). If F(M∗) ̸= 0, then S aborts the game, else retrieves the

co-DHP+ solution as follows. From the valid ring signature forgery, the simulator computes by

ĝ
2
= πG(S∗G,1(S

∗
G,2)
−J(M∗)).

As in the case of the Type II forger, one can show that ĝ
2
= gαβ

2

from which S can extract gαβ.

D Blind signature security

D.1 Unbalanced projecting setting

Theorem 6. Suppose that P satisfies the DDH assumption in 𝔾
1
and the DLin assumption inℍ. Then G

UP
sat-

isfies the (2, 1)-SDP assumption in G and the (3, 2)-SDP assumption inℍ3 ⊆ 𝔾3
1

× H.

Proof. The proof is divided into two parts.
Given a polynomial time algorithmA

1
for the (2, 1) subgroup decision problem in G with non-negligible

advantage ε
1
, we construct a polynomial time solverB

1
for the DDH problem in𝔾

1
. Given the DDH instance

g, ga , gb , gc from 𝔾
1
for a, b $

←󳨀 ℤp, B1
’s goal is to decide whether gc is gab or not. The solver B

1
defines

the groups G as 𝔾2
1

, H as 𝔾3
2

and GT as 𝔾6T . Then B
1
defines the bilinear map e : G × H → GT as in Algo-

rithm 2. The solver B
1
defines the subgroup G

1
of G such that it is generated by (gα , gaα) for some α $

←󳨀 ℤ∗p .
Further, B

1
chooses γ, r

1
, r

2

$

←󳨀 ℤp and defines the subgroups ℍ
1
and ℍ

2
such that they are generated
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by (gr1γ , 1, gγ)×(hr1γ , 1, hγ) and (1, gr2γ , gγ)×(1, hr2γ , hγ), respectively. NowB
1
uses the DDH instance to con-

struct a (2, 1)-SDP instance (G, H, GT , e, G1
,ℍ

1
,ℍ

2
, (gbα , gcα)) and sends to A

1
. From our initial assump-

tion, A
1
decides whether (gbα , gcα) belongs to G

1
or the whole group G with non-negligible advantage ε

1
.

The solver B
1
outputs 1, only when A

1
outputs 1, otherwise B

1
outputs 0. Hence Adv

DDH
≤ Adv

SDPG = ε1,
which is non-negligible.

Given a polynomial time algorithmA
2
for the (3, 2) subgroupdecision problem inℍ3withnon-negligible

advantage ε
1
, we construct a polynomial time solver B

2
for the DLin problem in ℍ. The solver B

2
is given

the description of the groups 𝔾
1
,𝔾

2
,𝔾T and the pairing map ê along with the DLin problem instance

(g, h), (gz1 , hz1 ), (gz2 , hz2 ), (gz1z3 , hz1z3 ), (gz2z4 , hz2z4 ), (gz5 , hz5 ) from ℍ for z
1
, . . . , z

4

$

←󳨀 ℤp. Then B
2
’s goal

is to decide whether (gz5 , hz5 ) = (gz3+z4 , hz3+z4 ) or not. The solver B
2
constructs the groups G, H, GT and the

bilinear map e as in the previous reduction. ThenB
2
chooses β $

←󳨀 ℤp and constructs the subgroupsℍ1 and
ℍ

2
of ℍ3 such that they are generated by (gz1β , 1, gβ) × (hz1β , 1, hβ) and (1, gz2β , gβ) × (1, hz2β , hβ), respec-

tively. In addition, B
2
chooses a, α $

←󳨀 ℤp and constructs the subgroup G
1
of G such that it is generated by

(gα , gaα). Finally,B
2
constructs a (3, 2)-SDP instance

(G, H, GT , e, G1
,ℍ

1
,ℍ

2
, (gz1z3β , gz2z4β , gz5β) × (hz1z3β , hz2z4β , hz5β))

and sends to A
2
. From our initial assumption A

2
decides the subgroup membership of above instance with

non-negligible advantage ε
2
. The solver B

2
outputs 1, only when A

2
outputs 1, otherwise B

2
outputs 0.

Hence Adv
DLinℍ ≤ AdvSDP = ε2, which is non-negligible.

D.2 Blindness

Seo and Cheon [34] established the blindness property in the symmetric prime order setting using a hybrid

argument through a series of m + 1 games. The argument does not make use of the projecting, cancelling

or translating property. One can recast their argument in the asymmetric setting. However, we avoid the m
intermediate games and give a tight reduction by using the random self-reducibility of DDH and DLin (see,

for example, [17, Lemma 1]).

Theorem 7. The blind signature scheme instantiated in the unbalanced projecting setting satisfies the blindness
property assuming the underlying NIWI proof system is secure.

Proof (Sketch). The CRS of the NIWI proof system is given to the simulator S, which includes u
1
, u

2
from

G = 𝔾2
1

, vℍ,i = (v𝔾
1
,i , vi) from ℍ3, where v𝔾

1
,i is from 𝔾3

1

and vi is from H = 𝔾3
2

for i ∈ [1, 3] along with

(G, H, GT , e). The goal of S is to distinguish between the binding and hiding settings. The simulator S con-

structs the subgroup G
1
of G generated by u

1
, the subgroup Ȟi of 𝔾3

1

generated by v𝔾
1
,i and Hi of H by vi

for i ∈ [1, 2]. The simulator S defines uG := u
2
⊙ (1, g) and vℍ = (v𝔾

1

, vH), where v𝔾
1

:= v𝔾
1
,3
⊙ (1, 1, g) and

vH := v
3
⊙ (1, 1, h). Using the randomself-reducibility of DDHandDLin,S chooses αi , βj uniformly at random

fromℤp and defines the Waters hash generatorsUG,i := uαiG and Vℍ,j = (V𝔾
1
,j ,VH,j) = (v

βj
𝔾

1

, vβjH ) for i ∈ [0,m]
and j ∈ [1,m]. Then S chooses g (resp. h) uniformly at random from the group G (resp. H). Also S chooses

ζ, ζi uniformly at random from ℤp and defines g1 := u
ζ
1

, hℍ,i = (h𝔾
1
,i , hi) = (v

ζi
𝔾

1
,i , v

ζi
i ) for i ∈ [1, 2]. Finally,

S sends the public parameter to the adversaryA.WhenAmakes a challenge query by sending (info,M
0
,M

1
),

S chooses one of the messages randomly and interacts withA. The successful interaction outputs a valid sig-

nature, say σb. Similarly S uses the other message and interacts with A. Again the successful interaction

outputs a valid signature σ
1−b. Now A is given with both signatures σ

0
and σ

1
. The simulator S outputs 1 if

A correctly guesses, otherwise outputs 0.

Now we briefly analyse the above experiment under the security of the Groth–Sahai NIWI proof system

from [20] in terms of two games. If S is given a binding key, then we call it Game-0. In Game-0, the elements

{UG,i}mi=0 and {Vℍ,j}
m
j=1 are from the respective groups G andℍ3. This is the actual blindness security game

and henceA has a non-negligible advantage. If S is given a hiding key, then we are in Game-1. Here {UG,i}mi=0
and {Vℍ,j}mj=1 are from the respective subgroups G

1
andℍ

1
⊕ℍ

2
, whereℍl = (Ȟl , Hl), for l ∈ [1, 2]. One can

show that even for an unboundedA the advantage in Game-1 will be zero. The argument essentially mimics
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the symmetric setting proof of Seo andCheon [34, Lemma4]. There are three possibilities forA to obtain infor-

mation about the secret bit b. The first one is users commitment and NIWI proof components. Since we are in

hiding key setting, one can see that commitment and NIWI proof components do not reveal any information

about the message. The second one is the user (pretend as S) response. When A returns the blinded signa-

ture (KG,1, KG,2, KH,2, KG,3), S performs two pairing based verification. It is easy to see thatA can perform the

same verification without any involvement of S. Thus this step does not provide any additional information

about b from S. The third possibility is to infer b from the output of two unblinded signatures. However,

re-randomization of the signatures will ensure the uniform distribution of randomness. Hence A cannot

obtain any additional information about the message. Thus the advantage ofA in Game-1 will be zero.

D.3 More details for the unforgeability proof

Subgroup descriptions. The subgroups Gi , Hj , Ȟj are generated by ĝi , ĥj and ĥ𝔾
1
,j, respectively, for i ∈ [1, 2]

and j ∈ [1, 3]. Then S defines the group element R := ĝ
1
ĝ
2
in G and S := ĥ

1
ĥ
2
ĥ
3
in H.

Waters signature. Let q
info

be the number of signing queries for the common information info and let q be
the sum of all q

info
for all info issued by the forger. Now the simulator sets l = 4q and chooses k $

←󳨀 [0,m],
z󸀠, zi

$

←󳨀 [0, l − 1], w󸀠j , wji
$

←󳨀 ℤp. Let M = b1, b2, . . . , bm, define

F(M) := (p − lk) + z󸀠 + ∑
i∈[1,m]

bizi and Jj(M) := w󸀠j + ∑
i∈[1,m]

biwji

for i ∈ [1,m], j ∈ [1, 2].

Some computation details. Set

UG,0 := ĝ
w󸀠
1

1

ĝw
󸀠
2

2

B(p−lk+z
󸀠)

G,2 , UG,i := ĝw1i
1

ĝw2i
2

Bzi
G,2,

and

Vℍ,i = (V𝔾
1
,i ,VH,i) = (ĥw̄1i

𝔾
1
,1

ĥw̄2i
𝔾

1
,2

Aw̄
3i
𝔾

1
,3

, ĥw̄1i
1

ĥw̄2i
2

Aw̄
3i

H,3),

where w̄ji
$

←󳨀 ℤp for i ∈ [1,m] and j ∈ [1, 3]. The public key is A = e(ĝa󸀠
1

BG,2, AH,1AH,2AH,3), which can be

re-written as e(Aa󸀠
G,1 ĝ

ab
2

, S). The corresponding secret key is g󸀠 = Aa󸀠
G,1 ĝ

ab
2

which is unknown to S.

To construct the signature, S first checks whether F(M) ̸= 0; if not S aborts the game. Otherwise, S con-

structs the unblinded signature

SG,1 = A
a󸀠− J1(M)

F(M)
G,1 A

− J2(M)
F(M)

G,2 (UG,0 ∏
i∈[1,m]

U
bi
G,i)

r
, SG,2 = R−r(AG,1AG,2)

1

F(M)
, SH,2 = S−r(AH,1AH,2AH,3)

1

F(M)
.

Extraction of message bits by using the projection map. Consider the commitment of bi, CG,i = Ubi
G,ig

ti
1

as

described in Table 3. From the definition of the projection map, we know that G
1
⊆ Ker(πG). Hence applying

πG on CG,i will kill the G1
component. Since UG,i ∈ G = G1

⊕ G
2
, gti

1

∈ G
1
, we obtain that πG(CG,i) = 1 if and

only if bi = 0, otherwise bi = 1.

Lemma 8. If the commitments CG,i , CH,i and proofs Θ̄G,i , Θ̄ℍ,i satisfy the verification equations described in
Table 3, then they can be uniquely expressed as

CG,i := Ubi
G,ig

ti
1

, CH,i := Vbi
H,ih

si,1
1

hsi,2
2

,

ΘG,i,1 := U
(bi−1)si,1
G,i gri,1

1

, ΘH,i,1 := (V
bi
H,ih

si,1
1

hsi,2
2

)tih−ri,1
1

h−ri,2
2

,

ΘG,i,2 := U
(bi−1)si,2
G,i gri,2

1

, ΘH,i,2 := (V
bi−1
H,i hsi,1

1

hsi,2
2

)tih−ri,3
1

h−ri,4
2

,

ΘG,i,3 := U
bisi,1
G,i gri,3

1

, Θ̃𝔾
1
,i,1 := (V

bi
𝔾

1
,ih

si,1
𝔾

1
,1

hsi,2𝔾
1
,2

)tih−ri,1𝔾
1
,1

h−ri,2𝔾
1
,2

,

ΘG,i,4 := U
bisi,2
G,i gri,4

1

, Θ̃𝔾
1
,i,2 := (V

bi−1
𝔾

1
,i h

si,1
𝔾

1
,1

hsi,2𝔾
1
,2

)tih−ri,3𝔾
1
,1

h−ri,4𝔾
1
,2

for some bi ∈ {0, 1} and ti , si,1, si,2, ri,1, . . . , ri,4 ∈ ℤp.

The proof will mimic that of [34, Lemma 5] in the asymmetric pairing setting and we omit the details.
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