
J. Math. Cryptol. 2019; 13(2): 69–80

Research Article

Shizuo Kaji, Toshiaki Maeno, Koji Nuida* and Yasuhide Numata

Polynomial expressions of p-ary
auction functions
https://doi.org/10.1515/jmc-2018-0016
Received April 5, 2018; accepted March 25, 2019

Abstract: One of the common ways to design secure multi-party computation is twofold: to realize secure
fundamental operations and to decompose a target function to be securely computed into them. In the set-
ting of fully homomorphic encryption, as well as some kinds of secret sharing, the fundamental operations
are additions and multiplications in the base field such as the field 𝔽2 with two elements. Then the second
decompositionpart,whichwe study in this paper, is (in theory) equivalent to expressing the target function as
a polynomial. It is known that any function over the finite prime field𝔽p has a unique polynomial expression
of degree at most p − 1 with respect to each input variable; however, there has been little study done con-
cerning such minimal-degree polynomial expressions for practical functions. This paper aims at triggering
intensive studies on this subject, by focusing on polynomial expressions of some auction-related functions
such as the maximum/minimum and the index of the maximum/minimum value among input values.

Keywords: Secure multi-party computation, polynomial expression of functions, finite fields

MSC 2010: 94A60, 68R05, 12Y05

1 Introduction
Secure multi-party computation (or simply secure computation) is a cryptographic technology that enables
two or more parties to jointly compute some function value(s) from their local inputs in a way that, during a
computation, each party can know the party’s local output value but cannot learn anything about the other
parties’ local inputs/outputs. Among several existing frameworks to realize secure computation, some of
the major directions in this area are those based on fully homomorphic encryption (FHE) [5] and on secret
sharing (SS) [8]. In FHE-based secure computation (e.g., [2, 4]), the primitive data type is usually the binary
field 𝔽2, and a target function to be securely computed has to be implemented by combining the addition
and multiplication in 𝔽2 (each being equivalent to bit operations XOR and AND, respectively). On the other
hand, in SS-based secure computation (e.g., [1]), a major primitive data type is again𝔽2 and a target function
has also to be implemented by combining the addition and multiplication. We note that there is also an FHE
scheme that can directly handle the finite prime field𝔽p for small prime p > 2 aswell [7]; and the basic idea of

*Corresponding author: Koji Nuida, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo;
and National Institute of Advanced Industrial Science and Technology (AIST), Japan, e-mail: nuida@mist.i.u-tokyo.ac.jp.
https://orcid.org/0000-0001-8259-9958
Shizuo Kaji, Institute of Mathematics for Industry, Kyushu University, Fukuoka; and Japan Science and Technology Agency (JST)
PRESTO Researcher, Japan, e-mail: skaji@imi.kyushu-u.ac.jp. https://orcid.org/0000-0002-7856-6536
Toshiaki Maeno,Meijo University, Nagoya, Japan, e-mail: tmaeno@meijo-u.ac.jp
Yasuhide Numata, Department of Mathematics, Shinshu University, Matsumoto, Nagano, Japan,
e-mail: nu@math.shinshu-u.ac.jp. https://orcid.org/0000-0002-1228-7067

70 | S. Kaji et al., p-ary auction functions

SS-based secure computation can be extended straightforwardly to the primitive data type 𝔽p instead of 𝔽2.
Regarding this, in this paper we treat 𝔽p for a general prime p (not just 𝔽2) as the base field of the argument.

In the two frameworks for secure computation mentioned above, a target function is supposed to be
decomposed into a combination of addition and multiplication in the field 𝔽p; this is (in theory) equivalent
to expressing the function as a polynomial over the field 𝔽p. Moreover, the multiplication in 𝔽p is signifi-
cantlymore expensive than the addition in𝔽p when realized as secure computation. Indeed, in theFHE-based
framework, the multiplication increases the “noise” of the ciphertexts (to be cancelled later by an inefficient
“bootstrapping” procedure)muchmore rapidly than the addition; while in the SS-based framework, themul-
tiplication requires communication between the parties, in contrast to the addition which can be done by
local computation at each party only. Hence, we may naively expect that an expression of the target function
as a low degree polynomial would involve less multiplications, and thus yield efficient secure computation
for the function. On the other hand, it is known that any function over the prime field 𝔽p can be expressed,
in a uniquemanner, as a polynomial over 𝔽p having degree at most p − 1with respect to each input variable.
We refer to such a polynomial as theminimal polynomial of the function.

However, suchminimal polynomial expressions for practical functions were not studied well in the liter-
ature. One of the aims of this paper is to trigger intensive studies on this subject. We emphasize that, though
the existence of the minimal polynomial expression of any function over 𝔽p is theoretically guaranteed, it
is still a non-trivial task to concretely compute the minimal polynomial expression. Among the rare studies
of the minimal polynomials in the literature, the most successful and theoretically interesting result to the
authors’ best knowledge is the one by Sturtivant and Frandsen [9, Theorems 9.1 (a) and 11.2]; they showed
that the carry function in multiplication of p-ary integers has a polynomial expression consisting of signifi-
cantly fewer monomials, which uses number-theoretic objects such as the Bernoulli numbers and Wilson’s
quotient. (See also [6] for a different approach to the result and also for an expression of the carry function
in the case of addition of p-ary integers.)

In this paper, we study minimal polynomial expressions of a certain kind of functions specified below.
These functions are expected to be useful in some practical procedures such as auction and voting; here we
refer to those functions as “auction functions”. The types of auction functions considered in this paper and
our results are summarized as follows.

In Section 3, we deal with the maximum function max(x) for inputs x = (x0, x1, . . . , xn−1) ∈ (𝔽p)n. We
provide a general (but less concrete) formula for theminimal polynomial formax(x) for any prime p, and also
give more concrete minimal polynomial expressions of max(x) for p = 2, 3. Similar results are also given for
the minimum function min(x).

In Section 4, we deal with the function argmax(x) that returns the least index i satisfying xi = max(x).
More precisely, to handle the integer-valued function argmax(x), we consider each, say r-th, digit argmax(r)(x)
of the p-ary expression of the value argmax(x). We provide a general formula for the minimal polynomial for
argmax(r)(x) for any r ≥ 0 and any prime p, and also write down the formula for the special cases p = 2, 3.
Similar results are also given for the function argmin(x) that returns the least index i satisfying xi = min(x).

In Section 5, we focus on the case of two inputs, x = (x0, x1), and provide minimal polynomial expres-
sions of argmax(x0, x1) = argmax(0)(x0, x1) andmax(x0, x1) for any p. (We note that, only the cases for small
p such as p = 2, 3 for the function max(x) are discussed in Section 3.)

In Section 6, we briefly study two other functions ismax(y; x) and nummax(x), where ismax(y; x) for
y ∈ 𝔽p and x = (x0, . . . , xn−1) ∈ (𝔽p)n returns 1 if y = max(x) and returns 0 otherwise, and nummax(x)
returns the number of indices i satisfying xi = max(x). We also discuss the cases for small p such as p = 2, 3
in slightly more detail.

Finally, in Section 7, we discuss about the possible extension of our results on the auction functions with
single-digit inputs xi ∈ 𝔽p to the case ofmulti-digit inputs such as xi = (xi,0, xi,1, . . . , xi,ℓ−1) ∈ (𝔽p)ℓ which is
regarded as an integer xi,0 + xi,1p + ⋅ ⋅ ⋅ + xi,ℓ−1pℓ−1. While leavingmost of the cases as future research topics,
in Section 7we provide as an example a general formula for themulti-digit version of the function argmax(x)
and write down the minimal polynomial expression for the smallest case p = ℓ = 2. We also give the minimal
polynomial expression for the multi-digit version of the function ismax(y; x) for the smallest case p = ℓ = 2
as well.

S. Kaji et al., p-ary auction functions | 71

2 Notation and Basic functions
In this section, we fix some notations used throughout the paper. Let p be a prime. A vector (x0, x1, . . . , xn−1)
of length n over the field 𝔽p is often denoted by x. We introduce a linear ordering < on 𝔽p by naturally
identifying 𝔽p with the (naturally ordered) subset {0, 1, . . . , p − 1} of ℤ. We define an involution on 𝔽p by
x̄ = p − 1 − x for x ∈ 𝔽p, and extend it coordinate-wisely on (𝔽p)n. We denote by ei(x) the i-th elementary
symmetric polynomial of x0, x1, . . . , xn−1 so that∏n−1

i=0 (1 + xi) = ∑
n
i=0 ei(x). For an integer k ≥ 0, its r-th digit

in the p-ary expansion is denoted by k(r); that is, k = ∑∞r=0 k(r)pr with k(r) ∈ {0, 1, . . . , p − 1} for each r.
Given any logical proposition P(x) for an object x, we define its truth function by

χP(x) =
{
{
{

1 (P(x) is true),
0 (otherwise),

which is often abbreviated as χP(x) = χ(P). We frequently use the same symbol for a function and its polyno-
mial expression; see below for some examples.

Example 2.1. For t ∈ 𝔽p and a variable x, Fermat’s little theorem implies that theminimal polynomial for the
delta function δt(x) = χ(x = t) is given by

δt(x) = 1 − (x − t)p−1 = −
p−1
∏
i=1
(x − t + i)

(the last equality follows from Wilson’s theorem: (p − 1)! ≡ −1 (mod p)). Similarly, the minimal polynomial
for the low-pass function Lt(x) = χ(x < t) is given by

Lt(x) = ∑
0≤k<t

δk(x) = ∑
0≤k<t
(1 − (x − k)p−1).

Fornotational convenience,weextend thedefinitionof the low-pass function Lt(x) to the case t = p, by setting
Lp(x) = 1 (note that the relation x < p as integers holds for any x ∈ 𝔽p).

3 Polynomial expressions of the max and the min functions
For a vector x = (x0, x1, . . . , xn−1) ∈ (𝔽p)n, let max(x) (respectively, min(x)) denote the maximum (respec-
tively, minimum) among the n values x0, x1, . . . , xn−1.

First, we note that for each a ∈ 𝔽p, the condition a ≥ t is satisfied for precisely a of the p − 1 values
t = 1, . . . , p − 1. Based on this fact and using the functions in Example 2.1, we obtain the minimal poly-
nomial of max(x) as follows.

Proposition 3.1. The minimal polynomial ofmax is given by

max(x) = ∑
1≤t≤p−1

χ(xi ≥ t for some i) = ∑
1≤t≤p−1
(1 −

n−1
∏
i=0

Lt(xi)).

In particular, when p = 2 this simplifies (by noticing L1(xi) = 1 + xi):

Corollary 3.2. When p = 2, the minimal polynomial ofmax(x) is given by

max(x) =
n−1
∏
i=0
(1 + xi) − 1 =

n
∑
i=1

ei(x).

However, when p > 2, the general expression in Proposition 3.1 consists of a lot of terms.We compute amore
concise expression for p = 3 later.

72 | S. Kaji et al., p-ary auction functions

On the other hand, we note that max(x) + 1 = 0 if xi = p − 1 for some xi. This implies that the minimal
polynomial of max(x) + 1 has 1 + xi as a factor for every i. Therefore, we have

max(x) = fn(x)
n−1
∏
i=0
(1 + xi) − 1 = fn(x)

n
∑
i=0

ei(x) − 1

for some polynomial fn(x) in which each variable xi has degree at most p − 2. In particular, this observation
yields another proof of Corollary 3.2 (where p = 2).

Now we give the following result for the case p = 3.

Proposition 3.3. When p = 3, a minimal polynomial expression formax(x) is given by

max(x) =
⌊n/2⌋
∑
i=0

e2i(x)
n
∑
i=0

ei(x) − 1.

Proof. Write the right-hand side as P(x). As theminimality condition on the degree is satisfied for P(x), it suf-
fices to verify max(x) = P(x) for any x ∈ (𝔽p)n. First note that ∏n−1

i=0 (1 − xi) = ∑
n
i=0 ei(−x) = ∑

n
i=0(−1)iei(x),

where we write −x = (−x0, −x1, . . . , −xn−1), therefore ∏n−1
i=0 (1 + xi) +∏

n−1
i=0 (1 − xi) = 2∑

⌊n/2⌋
i=0 e2i(x). This

implies (since 2−1 = 2 in 𝔽3)

P(x) =
⌊n/2⌋
∑
i=0

e2i(x)
n
∑
i=0

ei(x) − 1 = 2(
n−1
∏
i=0
(1 + xi)2 +

n−1
∏
i=0
(1 − x2i)) − 1.

When max(x) = 2, there exists an index i with xi = 2, and we have 1 + xi = 0 and 1 − x2i = 0 for such i. This
implies that P(x) = −1 = 2 in this case. Whenmax(x) = 1, we have∏n−1

i=0 (1 + xi)2 = 1 as xi ∈ {0, 1} for every i,
and ∏n−1

i=0 (1 − x2i) = 0 as xi = 1 for at least one i. This implies that P(x) = 2 − 1 = 1 in this case. Finally,
when max(x) = 0, we have ∏n−1

i=0 (1 + xi)2 = 1 and ∏n−1
i=0 (1 − x2i) = 1 as xi = 0 for every i. This implies that

P(x) = 2 ⋅ 2 − 1 = 0 in this case. Hence, the claim holds.

To obtain aminimal polynomial expression formin(x), we exploit the followingduality between the functions
max and min: min(x) = max(x̄) for any x ∈ (𝔽p)n. Thus, a minimal polynomial expression for max converts
to that of min and vice versa. For example, Corollary 3.2 and Proposition 3.3 imply the following.

Corollary 3.4. When p = 2, a minimal polynomial expression formin(x) is given by

min(x) =
n−1
∏
i=0

xi = en(x).

When p = 3, a minimal polynomial expression formin(x) is given by

min(x) =
n−1
∏
i=0

x2i +
n−1
∏
i=0

xi(1 − xi) = en(1 +
n
∑
i=1
(−1)iei + en).

For the next case p = 5, minimal polynomial expressions of max(x) for small values of n in terms of elemen-
tary symmetric polynomials can be determined by direct calculation:

Example 3.5. When p = 5, the following are minimal polynomial expressions:

max(x0, x1) = (1 + e1 + e2)(1 + 2e21e2 + 4e1e2 + e2) − 1,
max(x0, x1, x2) = (1 + e1 + e2 + e3)(1 + 2e21e2 + e1e2e3 + 2e1e

2
3 + e

2
2e3

+ 2e2e23 + 4e1e2 + 3e1e3 + e2e3 + 3e
2
3 + e2) − 1.

However, it seems to be difficult to obtain a general formula (such as Proposition 3.3) for p ≥ 5. The function
max(x) with n = 2 for any p will be revisited in Section 4.

Remark 3.6. The function max(x) is a symmetric function (in the variables x0, x1, . . . , xn−1), and satisfies
max(x, 0) = max(x) and an “associativity” in the following sense:

max(x0, x1, . . . , xn−1, xn) = max(max(x0, . . . , xn−1), xn) = max(x0,max(x1, . . . , xn)).

S. Kaji et al., p-ary auction functions | 73

By using this property recursively, a minimal polynomial expression of the function max with two variables
(i.e., for n = 2) yields a polynomial expression of the function max with any number of variables (i.e., for
any n). However, the polynomial thus obtained is not the minimal polynomial for max(x) in general.

4 Polynomial expressions of the argmax function
Let argmax(x)be the least integer i ≥ 0with xi =max(x). Note that argmax(x) takes a value in {0, 1, . . . , n − 1};
to handle this function as a function over 𝔽p, we define, for r ≥ 0,

argmax(r) : (𝔽p)n → 𝔽p , argmax(r)(x) = argmax(x)(r),

where argmax(x)(r) is the r-th digit in the p-ary expansion of argmax(x).
We note that argmax(x) is equal to the number of integers 0 ≤ i ≤ n − 2 such that xj < max(x) for every

0 ≤ j ≤ i; indeed, the latter condition is satisfied if and only if 0 ≤ i ≤ argmax(x) − 1. This implies (since
argmax(x) = 0 if max(x) = 0) that

argmax(x) =
p−1
∑
t=1
(χ(max(x) = t)

n−2
∑
i=0
∏
j≤i

χ(xj < t)) =
p−1
∑
t=1

n−2
∑
i=0

χ(max(x) = t)∏
j≤i

χ(xj < t),

which is considered as an integer rather than an element of 𝔽p. We note moreover that, conditioned on the
case where xj < t for every j ≤ i, we have max(x) = t if and only if xj < t + 1 for every j > i and xj = t for some
j > i. Now the equality above implies

argmax(x) =
p−1
∑
t=1

n−2
∑
i=0
(∏

j≤i
χ(xj < t)∏

j>i
χ(xj < t + 1) −

n−1
∏
j=0

χ(xj < t)), (4.1)

again as an integer rather than an element of 𝔽p. Considering the right-hand side of (4.1) in 𝔽p yields the
minimal polynomial of argmax(0)(x). Now we also have the following fact implied directly by the definition
of argmax(r)(x):

argmax(r)(x) = argmax(0)(max(x0, x1, . . . , xpr−1), . . . ,max(xi⋅pr , xi⋅pr+1, . . . , x(i+1)⋅pr−1), . . .), (4.2)

where, in the right-hand side, the tuple x = (x0, . . . , xn−1) is divided into blocks of pr consecutive components
(the last block may consist of less than pr elements). Let S(r, n) be the set of indices for the last elements of
all but the last blocks in x, namely,

S(r, n) = {h ⋅ pr − 1 | 1 ≤ h ≤ ⌊(n − 1)/pr⌋}.

Then, by combining (4.2) with (4.1), we have (in 𝔽p)

argmax(r)(x) =
p−1
∑
t=1
∑

i∈S(r,n)
(∏

j≤i
χ(xj < t)∏

j>i
χ(xj < t + 1) −

n−1
∏
j=0

χ(xj < t))

where we used the fact (for any h, h, and s) that max(xh , xh+1, . . . , xh) < s if and only if xj < s for every
h ≤ j ≤ h. Since |S(r, n)| ≡ (n − 1)(r) (mod p), the equality above can be rewritten as

argmax(r)(x) =
p−1
∑
t=1
(∑

i∈S(r,n)
∏
j≤i

χ(xj < t)∏
j>i

χ(xj < t + 1) − (n − 1)(r) ⋅
n−1
∏
j=0

χ(xj < t)).

Hence, we have the following result.

Proposition 4.1. Let S(r, n) = {h ⋅ pr − 1 | 1 ≤ h ≤ ⌊(n − 1)/pr⌋}. Then for x = (x0, . . . , xn−1), theminimal poly-
nomial for argmax(r)(x) is given by

argmax(r)(x) =
p−1
∑
t=1
(∑

i∈S(r,n)

i
∏
j=0

Lt(xj)
n−1
∏
k=i+1

Lt+1(xk) − (n − 1)(r) ⋅
n−1
∏
j=0

Lt(xj)).

74 | S. Kaji et al., p-ary auction functions

Remark 4.2. Let argmin(x) be the function that returns the least index i with min(x) = xi. A minimal poly-
nomial expression of the function argmin is obtained from that of the function argmax via the duality
argmin(x) = argmax(x̄), similar to the case of the function min discussed in Section 3.

Below we write down the general formula in Proposition 4.1 for the case p ∈ {2, 3}.

Example 4.3. We consider the case p = 2. Now the set S(r, n) is S(r, n) = {h ⋅ 2r − 1 | 1 ≤ h ≤ ⌊(n − 1)/2r⌋},
and the relations L1(xj) = 1 + xj and L2(xj) = 1 hold. Then Proposition 4.1 implies (since the characteristic
of 𝔽p is now 2)

argmax(r)(x) = ∑
i∈S(r,n)

i
∏
j=0

L1(xj) + χ((n − 1)(r) = 1) ⋅
n−1
∏
j=0

L1(xj).

Moreover, by setting S(r, n) = S(r, n) if (n − 1)(r) = 0 and S(r, n) = S(r, n) ∪ {n − 1} if (n − 1)(r) = 1, we have
the following minimal polynomial expression of argmax(r):

argmax(r)(x0, x1, . . . , xn−1) = ∑
i∈S(r,n)
(1 + x0)(1 + x1) ⋅ ⋅ ⋅ (1 + xi).

Example 4.4. We consider the case p = 3. Now the set S(r, n) is S(r, n) = {h ⋅ 3r − 1 | 1 ≤ h ≤ ⌊(n − 1)/3r⌋},
and the relations L1(xj) = 1 − x2j , L2(xj) = (1 + xj)

2 and L3(xj) = 1 hold. Then Proposition 4.1 yields the fol-
lowing minimal polynomial expression of argmax(r):

argmax(r)(x0, x1, . . . , xn−1) = ∑
i∈S(r,n)

i
∏
j=0
(1 − x2j)

n−1
∏
k=i+1
(1 + xk)2 − (n − 1)(r) ⋅

n−1
∏
j=0
(1 − x2j)

+ ∑
i∈S(r,n)

i
∏
j=0
(1 + xj)2 − (n − 1)(r) ⋅

n−1
∏
j=0
(1 + xj)2,

or, equivalently,

argmax(r)(x0, x1, . . . , xn−1) = ∑
i∈S(r,n)
(

i
∏
j=0
(1 − x2j)

n−1
∏
k=i+1
(1 + xk)2 +

i
∏
j=0
(1 + xj)2)

− (n − 1)(r)(
n−1
∏
j=0
(1 − x2j) +

n−1
∏
j=0
(1 + xj)2).

Finally, we also mention the following recursive relation:

argmax(r)(x0, . . . , xn−1, xn) = argmax(r)(x0, . . . , xn−1) ⋅ (1 − argmax(0)(max(x0, . . . , xn−1), xn))
+ n(r) ⋅ argmax(0)(max(x0, . . . , xn−1), xn),

implied by the definition of argmax(r) and the following fact:

argmax(x0, . . . , xn−1, xn) =
{
{
{

argmax(x0, . . . , xn−1) if max(x0, . . . , xn−1) ≥ xn ,
n if max(x0, . . . , xn−1) < xn .

This formula yields a (in general, not minimal) polynomial expression of argmax(r)(x) from those of
argmax(0)(x0, x1) and max(x).

5 Polynomial expressions of max and argmax functions
for two variables

First we note that x0 < x1 if and only if we have (as integers) x0 + x1 ≥ p, that is, argmax(0)(x0, x1) is equal to
the carry to the next digit by the p-ary addition of two single-digit values x0 and x1. A minimal polynomial
expression of this carry function, denoted by φ1, has been determined in [6, 7].

S. Kaji et al., p-ary auction functions | 75

Lemma 5.1 ([6, 7]). For y0, y1 ∈ 𝔽p, we have

φ1(y0, y1) =
p−1
∑
d=1
(−1)dd−1y0(y0 − 1) ⋅ ⋅ ⋅ (y0 − d + 1)y1(y1 − 1) ⋅ ⋅ ⋅ (y1 − (p − d) + 1),

where the d−1 in the right-hand side means the inverse of d as an element of 𝔽p.

Combining this with argmax(0)(x0, x1) = φ1(x0, x1), we obtain the following proposition.

Proposition 5.2. When n = 2, a minimal polynomial expression of argmax(0)(x0, x1) is given by

argmax(0)(x0, x1) =
p−1
∑
d=1

d−1(x0 + 1)(x0 + 2) ⋅ ⋅ ⋅ (x0 + d)x1(x1 − 1) ⋅ ⋅ ⋅ (x1 − (p − d) + 1).

Example 5.3. By using Proposition 5.2, for small primes p, we have the following minimal polynomial
expressions of argmax(0)(x0, x1):

when p = 2, argmax(0)(x0, x1) = (x0 + 1)x1,
when p = 3, argmax(0)(x0, x1) = −(x0 + 1)(x0 − x1)x1,
when p = 5, argmax(0)(x0, x1) = −(x0 + 1)(x20 − x0x1 + x0 + x

2
1)(x0 − x1)x1,

when p = 7, argmax(0)(x0, x1) = −(x40 + 5x
3
0x1 + 2x

3
0 + 3x

2
0x

2
1 + x

2
0x1 + 4x

2
0 + 5x0x

3
1

+ 6x0x21 + 3x0 + x
4
1)(x0 + 1)(x0 − x1)x1.

We also have the following relation between the functions max and argmax deduced from their definitions.

Lemma 5.4. We have

max(x) =
n−1
∑
i=0

xi ⋅ χ(argmax(x) = i)

for any n. In particular, we have

max(x0, x1) = x0 ⋅ (1 − argmax(x0, x1)) + x1 ⋅ argmax(x0, x1).

A straightforward substitution of the result of Proposition 5.2 into the right-hand side of Lemma 5.4 yields
an almost, but not yet minimal, polynomial expression of max(x0, x1). This expression can be converted
to a minimal polynomial expression. Indeed, for p = 2, the results above imply that max(x0, x1) = x0 ⋅
(1 − (x0 + 1)x1) + x1 ⋅ (x0 + 1)x1, which is equal to the correct value x0 + x1 + x0x1 for any x0, x1 ∈ 𝔽p due to
the relations x20 = x0 and x

2
1 = x1. On the other hand, we have the following result for p > 2.

Theorem 5.5. When p ≥ 3, we have the following minimal polynomial expression ofmax(x0, x1):

max(x0, x1) = (x1 − x0)
p−2
∑
d=2

d−1(x0 + 1)(x0 + 2) ⋅ ⋅ ⋅ (x0 + d)x1(x1 − 1) ⋅ ⋅ ⋅ (x1 − (p − d) + 1)

+ x0 + (x0 + 1)2(1 − (x1 + 1)p−1) + (1 − xp−10)x
2
1.

Proof. Throughout the proof, a notation f ≡ g means that f and g define an identical function on 𝔽p. First,
since p ≥ 3, Proposition 5.2 implies

x0 argmax(x0, x1) = x0
p−1
∑
d=1

d−1(x0 + 1)(x0 + 2) ⋅ ⋅ ⋅ (x0 + d)x1(x1 − 1) ⋅ ⋅ ⋅ (x1 − (p − d) + 1)

= x0
p−2
∑
d=2

d−1(x0 + 1)(x0 + 2) ⋅ ⋅ ⋅ (x0 + d)x1(x1 − 1) ⋅ ⋅ ⋅ (x1 − (p − d) + 1)

+ x0(x0 + 1)x1(x1 − 1) ⋅ ⋅ ⋅ (x1 − (p − 2))
− x0(x0 + 1)(x0 + 2) ⋅ ⋅ ⋅ (x0 + p − 1)x1,

76 | S. Kaji et al., p-ary auction functions

and we have x0(x0 + 1)(x0 + 2) ⋅ ⋅ ⋅ (x0 + p − 1)x1 ≡ 0 for the last term above. Similarly, we have

x1 argmax(x0, x1) = x1
p−1
∑
d=1

d−1(x0 + 1)(x0 + 2) ⋅ ⋅ ⋅ (x0 + d)x1(x1 − 1) ⋅ ⋅ ⋅ (x1 − (p − d) + 1)

= x1
p−2
∑
d=2

d−1(x0 + 1)(x0 + 2) ⋅ ⋅ ⋅ (x0 + d)x1(x1 − 1) ⋅ ⋅ ⋅ (x1 − (p − d) + 1)

+ (x0 + 1)x21(x1 − 1) ⋅ ⋅ ⋅ (x1 − (p − 2))
− (x0 + 1)(x0 + 2) ⋅ ⋅ ⋅ (x0 + p − 1)x21,

and, for the last two terms above, we have

(x0 + 1)x21(x1 − 1) ⋅ ⋅ ⋅ (x1 − (p − 2)) ≡ −(x0 + 1)x1(x1 − 1) ⋅ ⋅ ⋅ (x1 − (p − 2)),

(x0 + 1)(x0 + 2) ⋅ ⋅ ⋅ (x0 + p − 1)x21 ≡ (p − 1)! ⋅ δ0(x0)x
2
1 = −(1 − x

p−1
0)x

2
1,

where we used x21 ≡ x1((xi − (p − 1)) − 1) and Wilson’s theorem (p − 1)! ≡ −1 (mod p).
By combining these results to Lemma 5.4, we have

max(x0, x1) = x0 − x0 argmax(x0, x1) + x1 argmax(x0, x1)

≡ (x1 − x0)
p−2
∑
d=2

d−1(x0 + 1)(x0 + 2) ⋅ ⋅ ⋅ (x0 + d)x1(x1 − 1) ⋅ ⋅ ⋅ (x1 − (p − d) + 1)

+ x0 − x0(x0 + 1)x1(x1 − 1) ⋅ ⋅ ⋅ (x1 − (p − 2))

− (x0 + 1)x1(x1 − 1) ⋅ ⋅ ⋅ (x1 − (p − 2)) + (1 − xp−10)x
2
1

= (x1 − x0)
p−2
∑
d=2

d−1(x0 + 1)(x0 + 2) ⋅ ⋅ ⋅ (x0 + d)x1(x1 − 1) ⋅ ⋅ ⋅ (x1 − (p − d) + 1)

+ x0 − (x0 + 1)2x1(x1 − 1) ⋅ ⋅ ⋅ (x1 − (p − 2)) + (1 − xp−10)x
2
1,

and, for the second last term above, we have

(x0 + 1)2x1(x1 − 1) ⋅ ⋅ ⋅ (x1 − (p − 2)) ≡ (x0 + 1)2 ⋅ (p − 1)! ⋅ δp−1(x1) = −(x0 + 1)2(1 − (x1 + 1)p−1),

where we used Wilson’s theorem again. Hence, we have

max(x0, x1) ≡ (x1 − x0)
p−2
∑
d=2

d−1(x0 + 1)(x0 + 2) ⋅ ⋅ ⋅ (x0 + d)x1(x1 − 1) ⋅ ⋅ ⋅ (x1 − (p − d) + 1)

+ x0 + (x0 + 1)2(1 − (x1 + 1)p−1) + (1 − xp−10)x
2
1,

which is our claim in the statement.

6 Polynomial expressions of some other functions
In this section, we study the following two 𝔽p-valued functions relevant to functions max and argmax:

ismax(y; x) = χ(max(x) = y),

nummax(r)(x) = #{xi | max(x) = xi)}(r),

where x ∈ (𝔽p)n and y ∈ 𝔽p. These functions would be useful in practical situations where there can be “ties”
in the vote.

By a careful interpretation of the definitions, we obtain minimal polynomials of these functions (which,
however, consist of a lot of terms).

S. Kaji et al., p-ary auction functions | 77

Proposition 6.1. Using the notation from Section 2, the following are minimal polynomial expressions:

ismax(y; x) =
p−1
∑
t=0

δt(y)
n−1
∑
i=0
(∏

j<i
Lt(xj) ⋅ δt(xi) ⋅∏

k>i
Lt+1(xk)),

nummax(0)(x) =
n−1
∑
i=0

χ(max(x) = xi)

=
n−1
∑
i=0
∑

0≤t≤p−1
(δt(xi)∏

j ̸=i
Lt+1(xj)),

nummax(r)(x) =
n
∑
k=1

k(r) ⋅ χ(#{i | max(x) = xi} = k)

=
n
∑
k=1

k(r)(∑
I∈(nk)
∑

0≤t≤p−1
(∏

i∈I
δt(xi)∏

j ̸∈I
Lt(xj))),

where the notation “I ∈ (nk)” means that I is a k-element subset of {0, 1, . . . , n − 1}.

Proof. For the function ismax, given a constant t ∈ 𝔽p, we have max(x) = t if and only if there is an index i
such that xj < t for every j < i, xi = t, and xk ≤ t for every k > i; such an index i is unique if it exists. This
observation (in particular, the uniqueness of i) implies our claim.

For the function nummax(0), the function value is obtained by first counting the number of indices iwith
max(x) = xi (or equivalently, χ(max(x) = xi) = 1) and then taking the remainder of the numbermodulo p (i.e.,
just considering the number in 𝔽p). Moreover, given a constant t ∈ 𝔽p, we have max(x) = xi = t if and only if
xi = t and xj ≤ t for every j ̸= i. This observation implies our claim.

For the function nummax(r), given an integer k ≥ 1 and a constant t ∈ 𝔽p, we have max(x) = t and
#{i | max(x) = xi} = k if and only if there is a k-element set I of indices such that xi = t for every i ∈ I and
xj < t for every j ̸∈ I; such a set I is unique if it exists. This observation (in particular, the uniqueness of I)
implies our claim (note that 0(r) = 0 for any r).

When p ∈ {2, 3}, we give the following explicit minimal polynomial expressions of ismax(y; x).

Proposition 6.2. When p = 2, a minimal polynomial expression of ismax(y; x) is given by

ismax(y; x) = y +
n−1
∏
i=0
(1 + xi).

When p = 3, a minimal polynomial expression of ismax(y; x) is given by

ismax(y; x) = −y2 + y(
n−1
∏
i=0
(1 + xi)2 +

n−1
∏
i=0
(1 − x2i) + 1) +

n−1
∏
i=0
(1 − x2i).

Proof. First, we note that ismax(y; x) = 1 − (y −max(x))p−1, by the definition of the function. When p = 2,
the right-hand side becomes y +max(x) + 1 and now the claim follows from Corollary 3.2.

On the other hand, when p = 3, we have

ismax(y; x) = 1 − (y −max(x))2 = −y2 − ymax(x) + 1 −max(x)2.

Now we have 1 −max(x)2 = 1 if xi = 0 for all i, and = 0 otherwise. This implies that

1 −max(x)2 =
n−1
∏
i=0

δ0(xi) =
n−1
∏
i=0
(1 − x2i),

and now the claim follows from Proposition 3.3.

Example 6.3. When p = 2, a minimal polynomial expression of nummax(r)(x) is given by

nummax(r)(x) = e2r + n(r)
n−1
∏
i=0
(1 − xi).

78 | S. Kaji et al., p-ary auction functions

This can be seen by the following argument. Whenmax(x) = 0, i.e., xi = 0 for all i, we have nummax(r) = n(r)

for any r, which accounts for the second term. As (∑n−1i=0 xi)(r) ≡ e2r (x) mod 2 by the result of [3] (see also [6,
Example 1]), we obtain the equality.

7 Future subject: Multi-digit cases
We note that the previous sections studied functions with single-digit input values taken from 𝔽p; in such
a formulation, to handle larger input values we have to choose a larger prime p as well, which will result in
polynomial expressions of the functions with higher degrees and much more involved structures. Another
option to handle larger values is to express the input values inmulti-digit forms; now each component of the
input is identifiedwith its p-ary expansion, therefore the entire input is regarded as a two-dimensionalmatrix
over𝔽p rather than a one-dimensional vector (over a larger field). In the latter model, the base field𝔽p can be
kept small even if the input values become larger. On the other hand, a large input value will then increase
the total number of components of the input matrix, but this shortcoming might sometimes be avoidable in
practice by implementation techniques such as parallel computation. This suggests that polynomial expres-
sions of functions with multi-digit inputs are important as well. However, even if the polynomial expression
of a given function is understood well for single-digit input cases, it is in general a non-trivial task to deduce
a polynomial expression of the function for multi-digit input cases.

To study multi-digit versions of the functions, for an ℓ-digit parameter t = tℓ−1pℓ−1 + ⋅ ⋅ ⋅ + t1p + t0 ∈
{0, . . . , pℓ −1}, with t0, t1, . . . , tℓ−1 ∈ {0, . . . , p − 1}, and a tuple z of ℓ variables z0, z1, . . . , zℓ−1 over 𝔽p, we
define the multi-digit low-pass function Lt(z) by

Lt(z) = χ(zℓ−1pℓ−1 + ⋅ ⋅ ⋅ + z1p + z0 < t as integers).

We also extend the definition to the case t = pℓ by setting Lpℓ (z) = 1 for any z.
Here we consider the multi-digit version of the function argmax(r) as an example that is relatively easier

to handle. For ℓ ≥ 1 and for ℓ-digit input values 0 ≤ xi ≤ pℓ − 1 (i = 0, . . . , n − 1), argmax(r)(x0, . . . , xn−1) is
defined to be the r-th digit of the least index i with xi = max(x0, . . . , xn−1). Then the same argument as that
in Section 4 implies the following result.

Proposition 7.1. Let ℓ ≥ 1. For 0 ≤ i ≤ n − 1, let the i-th component xi of the input be given by xi = xi,ℓ−1pℓ−1 +
⋅ ⋅ ⋅ + xi,1p + xi,0, with xi,0, xi,1, . . . , xi,ℓ−1 ∈ 𝔽p (naturally identified with {0, 1, . . . , p − 1}). Let S(r, n) =
{h ⋅ pr − 1 | 1 ≤ h ≤ ⌊(n − 1)/pr⌋}. Then we have

argmax(r)(x) = ∑
1≤t≤pℓ−1

(∑
i∈S(r,n)
∏
0≤j≤i

Lt(xj) ∏
i+1≤k≤n−1

Lt+1(xk) − (n − 1)(r) ⋅ ∏
0≤j≤n−1

Lt(xj)).

To obtain a polynomial expression of argmax(r)(x) in terms of the input components xi,j, we study polynomial
expressions of the ℓ-digit low-pass function Lt(z), where t = (t0, t1, . . . , tℓ−1) and z = (z0, z1, . . . , zℓ−1) are
naturally identified with t0 + t1p + ⋅ ⋅ ⋅ + tℓ−1pℓ−1 and z0 + z1p + ⋅ ⋅ ⋅ + zℓ−1pℓ−1, respectively. We note that, we
have z < t if and only if there is an integer h ∈ {0, . . . , ℓ − 1} such that zj = tj for any h + 1 ≤ j ≤ ℓ − 1 and
zh < th; and this condition is satisfied for at most one h. This implies that

Lt(z) =
ℓ−1
∑
h=0

Lth (zh)
ℓ−1
∏
j=h+1

δtj (zj) (7.1)

and, similarly,

Lt+1(z) = Lt0+1(z0)
ℓ−1
∏
j=1

δtj (zj) +
ℓ−1
∑
h=1

Lth (zh)
ℓ−1
∏
j=h+1

δtj (zj) (7.2)

(we recall that we have extended the definition of the single-digit low-pass function as Lp(zj) = 1). Substitut-
ing theminimal polynomials for Lt(z) and Lt+1(z) in (7.1) and (7.2) into the equality in Proposition 7.1 yields

S. Kaji et al., p-ary auction functions | 79

the minimal polynomial for the multi-digit version of argmax(r). However, the expression thus obtained will
consist of too many terms as the number ℓ of input digits increases; we give an example only for a small case
below and leave a more concise expression for the function in the general case as a future research topic.

Example 7.2. Let p = 2 and ℓ = 2. Then the set S(r, n) is S(r, n) = {h ⋅ 2r − 1 | 1 ≤ h ≤ ⌊(n − 1)/2r⌋}. By set-
ting S(r, n) = S(r, n) if (n − 1)(r) = 0 and S(r, n) = S(r, n) ∪ {n − 1} if (n − 1)(r) = 1, in the same way as
Example 4.3, it follows from Proposition 7.1 and relations (7.1) and (7.2) that

argmax(r)(x)

= ∑
1≤t≤3
(∑
i∈S(r,n)

∏
0≤j≤i
(Lt0 (xj,0)δt1 (xj,1) + Lt1 (xj,1)) ∏

i+1≤k≤n−1
(Lt0+1(xk,0)δt1 (xk,1) + Lt1 (xk,1))). (7.3)

By the relations L0(xj,h) = 0, δ0(xj,h) = L1(xj,h) = 1 + xj,h, δ1(xj,h) = xj,h and L2(xj,h) = 1, the summand in the
right-hand side of (7.3) for each t ∈ {1, 2, 3} is: when t = 1 (i.e., (t0, t1) = (1, 0)),

∑
i∈S(r,n)

∏
0≤j≤i
(L1(xj,0)δ0(xj,1) + L0(xj,1)) ∏

i+1≤k≤n−1
(L2(xk,0)δ0(xk,1) + L0(xk,1))

= ∑
i∈S(r,n)

∏
0≤j≤i
(1 + xj,0)(1 + xj,1) ∏

i+1≤k≤n−1
(1 + xk,1),

when t = 2 (i.e., (t0, t1) = (0, 1)),

∑
i∈S(r,n)

∏
0≤j≤i
(L0(xj,0)δ1(xj,1) + L1(xj,1)) ∏

i+1≤k≤n−1
(L1(xk,0)δ1(xj,1) + L1(xj,1))

= ∑
i∈S(r,n)

∏
0≤j≤i
(1 + xj,1) ∏

i+1≤k≤n−1
(1 + xk,0xk,1),

when t = 3 (i.e., (t0, t1) = (1, 1)),

∑
i∈S(r,n)

∏
0≤j≤i
(L1(xj,0)δ1(xj,1) + L1(xj,1)) ∏

i+1≤k≤n−1
(L2(xk,0)δ1(xk,1) + L1(xk,1)) = ∑

i∈S(r,n)
∏
0≤j≤i
(1 + xj,0xj,1).

Summarizing, we have the following minimal polynomial expression for argmax(r)(x):

argmax(r)(x) = ∑
i∈S(r,n)
(∏
0≤j≤i
(1 + xj,0)(1 + xj,1) ∏

i+1≤k≤n−1
(1 + xk,1)

+ ∏
0≤j≤i
(1 + xj,1) ∏

i+1≤k≤n−1
(1 + xk,0xk,1) + ∏

0≤j≤i
(1 + xj,0xj,1)).

Such multi-digit extensions of the results on the other functions in this paper seem to be difficult, which we
leave as a future research topic. Here we just conclude this section with a small example.

Proposition 7.3. Let p = 2, and consider the two-bit inputs y = 2y1 + y0 ∈ {0, 1, 2, 3} and xi = 2xi,1 + xi,0 ∈
{0, 1, 2, 3} for 0 ≤ i ≤ n − 1, where yj , xi,j ∈ 𝔽2. Then the following is a minimal polynomial expression of the
two-bit version of the function ismax:

ismax(y; x) = ismax(y; x0, x1, . . . , xn−1)

= y1y0 + y1
n−1
∏
i=0
(1 + xi,1xi,0) + (y1 + y0)

n−1
∏
i=0
(1 + xi,1) + (y1 + 1)

n−1
∏
i=0
(1 + xi,1)(1 + xi,0).

Proof. As the right-hand side of the statement satisfies the minimality conditions for the degrees, it suffices
to verify that the values of both terms are equal for any input values.

First we note that, for any set I of index pairs (i, j), we have

∏
(i,j)∈I
(1 + xi,j) = χ(xi,j = 0 for all (i, j) ∈ I).

80 | S. Kaji et al., p-ary auction functions

Similarly, we have
∏
i
(1 + xi,1xi,0) = χ(for any i, either xi,1 = 0 or xi,0 = 0 holds).

We divide the argument according to the values of y1 and y0. When y1 = y0 = 0, we have ismax(y; x) = 1
if and only if xi,1 = xi,0 = 0 for every index i. Now the right-hand side of the statement becomes∏n−1

i=0 (1+ xi,1)
⋅ (1 + xi,0), which coincides with ismax(y; x) by the remark above.

When y1 = 0 and y0 = 1, the right-hand side of the statement becomes ∏n−1
i=0 (1 + xi,1) +∏

n−1
i=0 (1 + xi,1)

⋅ (1 + xi,0). Now if at least one of xi,1 is 1, then we have ismax(y; x) = 0 by definition, while the value of
the polynomial becomes 0 as well, by the remark above, as desired. In the remaining case where xi,1 = 0
for every i, we have ismax(y; x) = 1 if and only if xi,0 = 1 for some i; while the polynomial now becomes
1 +∏n−1

i=0 (1 + xi,0). By the remark above, the value of the polynomial coincides with ismax(y; x), as desired.
When y1 = 1and y0 = 0, the right-hand sideof the statementbecomes∏n−1

i=0 (1 + xi,1xi,0)+∏
n−1
i=0 (1 + xi,1).

Now if xi,1 = 0 for every i, then we have ismax(y; x) = 0 by definition, while the value of the polynomial
becomes 1 + 1 = 0 as well, by the remark above, as desired. In the remaining case where xi,1 = 1 for some i,
let I denote the set of indices i with xi,1 = 1 (hence now I ̸= 0). In this case, we have ismax(y; x) = 1 if and
only if xi,0 = 0 for every i ∈ I; while the polynomial now becomes ∏i∈I(1 + xi,0). By the remark above, the
value of the polynomial coincides with ismax(y; x), as desired.

Finally, when y1 = y0 = 1, the right-hand side of the statement becomes 1 +∏n−1
i=0 (1 + xi,1xi,0). By the

remark above, this polynomial takes the value 1 if and only if xi,1 = xi,0 = 1 for some index i; this condition
is precisely the same as the condition for ismax(y; x) in the present case to take the value 1, by definition.
This completes the proof.

Acknowledgment: The authors would like to thank Takuro Abe for fruitful discussions.

Funding: Thefirst namedauthorwaspartially supportedby JSTPRESTOGrantNumber JPMJPR16E3. The sec-
ond named author was partially supported by KAKENHI, Grant-in-Aid for Scientific Research (C) 16K05083.
The third named author was partially supported by JST PRESTO Grant Number JPMJPR14E8. The fourth
named author was partially supported by KAKENHI, Grant-in-Aid for Young Scientists (B) JP5800009.

References
[1] T. Araki, J. Furukawa, Y. Lindell, A. Nof and K. Ohara, High-throughput semi-honest secure three-party computation with an

honest majority, in: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, ACM, New
York (2016), 805–817.

[2] R. Bost, R. A. Popa, S. Tu and S. Goldwasser, Machine learning classification over encrypted data, IACR Cryptology ePrint
Archive (2014), https://eprint.iacr.org/2014/331.pdf.

[3] J. Boyar, R. Peralta and D. Pochuev, On the multiplicative complexity of Boolean functions over the basis (cap, +, 1), Theoret.
Comput. Sci. 235 (2000), no. 1, 43–57.

[4] J. H. Cheon, M. Kim and M. Kim, Search-and-compute on encrypted data, in: Proceedings of Financial Cryptography and
Data Security 2015—FC 2015, Lecture Notes in Comput. Sci. 8976, Springer, Berlin (2015), 142–159.

[5] C. Gentry, Fully homomorphic encryption using ideal lattices, in: Proceedings of the Forty-first Annual ACM Symposium on
Theory of Computing—STOC’09, ACM, New York (2009), 169–178.

[6] S. Kaji, T. Maeno, K. Nuida and Y. Numata, Polynomial expressions of carries in p-ary arithmetics, preprint (2015),
http://arxiv.org/abs/1506.02742.

[7] K. Nuida and K. Kurosawa, (Batch) fully homomorphic encryption over integers for non-binary message spaces, in: Advances
in Cryptology–EUROCRYPT 2015, Lecture Notes in Comput. Sci. 9056, Springer, Berlin (2015), 537–555.

[8] A. Shamir, How to share a secret, Commun. ACM 22 (1979), no. 11, 612–613.
[9] C. Sturtivant and G. S. Frandsen, The computational efficacy of finite-field arithmetic, Theoret. Comput. Sci. 112 (1993),

291–309.

https://eprint.iacr.org/2014/331.pdf
http://arxiv.org/abs/1506.02742

	Polynomial expressions of p-ary auction functions
	1 Introduction
	2 Notation and Basic functions
	3 Polynomial expressions of the max and the min functions
	4 Polynomial expressions of the argmax function
	5 Polynomial expressions of max and argmax functions for two variables
	6 Polynomial expressions of some other functions
	7 Future subject: Multi-digit cases

