
J. Math. Cryptol. 2020; 14: 172–201

 Open Access. © 2020 S. Chakraborty et al., published by De Gruyter. This work is licensed under the Creative Commons
Attribution alone 4.0 License.

J. Math. Cryptol. 2019; aop

Research Article

Suvradip Chakraborty, Janaka Alawatugoda* and Chandrasekaran Pandu Rangan

New approach to practical leakage-resilient
public-key cryptography
https://doi.org/10.1515/jmc-2019-0014
Received April 25, 2019; revised November 14, 2019; accepted November 28, 2019

Abstract:We present a new approach to construct several leakage-resilient cryptographic primitives, includ-
ing leakage-resilient public-key encryption (PKE) schemes, authenticated key exchange (AKE) protocols and
low-latency key exchange (LLKE) protocols. To this end, we introduce a new primitive called leakage-resilient
non-interactive key exchange (LR-NIKE) protocol. We introduce an appropriate security model for LR-NIKE
protocols in the bounded memory leakage (BML) settings. We then show a secure construction of the LR-
NIKE protocol in the BML setting that achieves an optimal leakage rate, i.e., 1 − o(1). Our construction of
LR-NIKE requires a minimal use of a leak-free hardware component. We argue that the use of such a leak-
free hardware component seems to be unavoidable in any construction of an LR-NIKE protocol, even in the
BML setting. Finally, we show how to construct the aforementioned leakage-resilient primitives from such an
LR-NIKE protocol as summarized below. All these primitives also achieve the same (optimal) leakage rate as
the underlying LR-NIKE protocol. We show how to construct a leakage-resilient (LR) IND-CCA-2-secure PKE
scheme in the BMLmodel generically from a bounded LR-NIKE (BLR-NIKE) protocol. Our construction of LR-
IND-CCA-2 secure PKE differs significantly from the state-of-the-art constructions of these primitives, which
mainly use hash proof techniques to achieve leakage resilience. Moreover, our transformation preserves the
leakage-rate of the underlying BLR-NIKE protocol. We introduce a new leakage model for AKE protocols, in
the BML setting, and present a leakage-resilient AKE protocol construction from the LR-NIKE protocol. We
introduce the first-ever leakagemodel for LLKE protocols in the BML setting and the first construction of such
a leakage-resilient LLKE from the LR-NIKE protocol.

Keywords: Leakage-resilient cryptography, public-key cryptography, non-interactive key exchange,
authenticated key exchange, low-latency key exchange

MSC 2010: 94A60, 14G50, 11T71, 68P25, 68M12

1 Introduction and related works

Traditional cryptographic primitives are provably analyzed in a black-box model, where the adversary has
access to the primitive via restrictive andwell-defined interfaces (oracles). However, this does not truly reflect
the real-world scenario, where the adversary may obtain lots of unintended side-channel information about
the cryptosystem from its implementation. This extra leakage of information is not accounted for in its analy-
sis in the aforementioned black-box model of security. Leakage-resilient cryptography emerged as a theoreti-
cal foundation to address the issue of side-channel attacks. Here it is assumed that the adversary has access
to side-channel information, which is modeled by allowing the adversary to specify arbitrary leakage func-
tions (subject to some restrictions) and obtain leakage from the secret key of the system as dictated by these

*Corresponding author: Janaka Alawatugoda, Department of Computer Science and Engineering, University of Peradeniya,
Peradeniya, Sri Lanka, e-mail: alawatugoda@eng.pdn.ac.lk. http://orcid.org/0000-0001-9431-5836
Suvradip Chakraborty, Chandrasekaran Pandu Rangan, Department of Computer Science and Engineering, Indian Institute of
Technology Madras, Chennai, India, e-mail: suvradip@cse.iitm.ac.in, rangan@cse.iitm.ac.in

2 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

functions. Note that some restrictions must be imposed on the class of allowable leakage functions as other-
wise an adversary can simply read off the entire secret key frommemory. Depending upon these restrictions,
many theoretical models of leakage have emerged in the recent literature [2, 6, 9, 14, 16, 30].

In this work, we focus mainly on the bounded-memory leakagemodel [2, 6]. In this model, the adversary
chooses arbitrary polynomial-time computable leakage functions f and receives f(sk), where sk is the secret
key. The only restriction is that the sum of output length of all these leakage functions that the adversary can
ever obtain is bounded by some parameter λ, which is smaller than the size of sk. Other notable models of
leakage include the “only computation leaks information” (OCLI) model, continual memory leakage model,
auxiliary input leakage model, etc. We briefly survey these models in Appendix B.

Ever since the ground-breaking work of Diffie and Hellman (DH) [13], authenticated key exchange (AKE)
protocols arose as an important cryptographic primitive. The DH key exchange protocol can actually be
viewed as a non-interactive key exchange (NIKE) protocol, where the parties can establish a shared key
among themselves without any interaction, provided the public keys of all the parties are pre-distributed
and they agree on some (common) global public parameters. NIKE is very useful in any bandwidth-critical,
power-critical, resource-critical systems such as embedded devices, wireless and sensor networks, where
the communication must be at its minimum. Despite its real-world applications, NIKE has mostly been
overlooked until recently [19]. Freire et al. [19] proposed formal security models for NIKE and efficient con-
structions of NIKE in these models. Although the NIKE constructions of [19] are secure in the traditional
(non-leakage) setting, the security of them may completely break down in the presence of leakage. In fact,
we demonstrate that the pairing-based construction of NIKE shown in [19] is insecure, even if the adversary
could obtain only a single bit of leakage from the secret key of a party. Therefore, it is really important to
thoroughly study on the leakage resiliency of NIKE. We note that much research has been carried out on
analyzing leakage resiliency of interactive key exchange protocols [3–5, 11], but the leakage resiliency of
NIKE remains largely unstudied. We note that Morita et al. [31] studied the security of NIKE protocols in the
face of related key attacks (RKA) and show various implications and separation results (in the RKA setting)
among the security notions of NIKE put forward by Freire et al. [19]. Morita et al. [31] have considered related-
key attacks on NIKE and showed that there is a separation among the security notions. We can see that the
equivalences between the different NIKEmodels of Freire et al. [19] easily carry forward to the leakage setting
as well. Therefore, such separation does not hold in the leakage setting. We refer the interested readers to
Morita et al. [31] and Freire et al. [19] for the detailed exposition.

As one of the central applications of leakage-resilient NIKE (LR-NIKE), we show how to construct
a leakage-resilient IND-CCA-2-secure PKE schemegenerically fromLR-NIKE (in the bounded-memory leakage
setting). All the previous constructions of leakage-resilient IND-CCA-2 (LR-IND-CCA-2) secure PKE schemes
rely solely on hash proof techniques to achieve leakage resiliency. However, the generic approach of con-
structing a leakage-resilient CCA secure PKE scheme solely using hash proof systems (HPS) is inherently
limited to a leakage rate below 1

2 as pointed out by Dodis et al. [15]. The leakage rate of the state-of-the-art
constructions of a LR-IND-CCA-2-secure PKE schemewas later improved in the subsequent works of Qin et al.
[35, 36], which achieved leakage rates of 1

2 − o(1) and 1 − o(1), respectively. They could achieve a leakage
rate of 1

2 − o(1) by using HPS and one-time lossy filters (OTLF)¹ and the optimal rate of 1 − o(1) by cleverly
instantiating the underlying primitives, namely HPS and OTLF. However, the complexity assumption they
make for their construction is rather non-standard, namely a refined subgroup indistinguishability (RSI)
assumption over composite order groups. The parameters of their construction are also large due to the use
of composite-order groups.

We deviate from this HPS-based approach of constructing LR-IND-CCA-2-secure PKE schemes and show
that this connection is not inherent. To this end, we develop a new primitive called leakage-resilient non-
interactive key exchange (NIKE). Our construction of leakage-resilient NIKE relies solely on a leakage-resilient

1 Note that this circumvents the impossibility result of Dodis et al. [15] since the analysis of [15] considered the fact that the
LR-IND-CCA-secure PKE was constructed solely from HPS; whereas, in [35, 36], they do not solely use HPS and instead rely on
both HPS and OTLF for their construction.

S. Chakraborty et al., New approach to practical leakage-resilient PKC  173J. Math. Cryptol. 2019; aop

Research Article

Suvradip Chakraborty, Janaka Alawatugoda* and Chandrasekaran Pandu Rangan

New approach to practical leakage-resilient
public-key cryptography
https://doi.org/10.1515/jmc-2019-0014
Received April 25, 2019; revised November 14, 2019; accepted November 28, 2019

Abstract:We present a new approach to construct several leakage-resilient cryptographic primitives, includ-
ing leakage-resilient public-key encryption (PKE) schemes, authenticated key exchange (AKE) protocols and
low-latency key exchange (LLKE) protocols. To this end, we introduce a new primitive called leakage-resilient
non-interactive key exchange (LR-NIKE) protocol. We introduce an appropriate security model for LR-NIKE
protocols in the bounded memory leakage (BML) settings. We then show a secure construction of the LR-
NIKE protocol in the BML setting that achieves an optimal leakage rate, i.e., 1 − o(1). Our construction of
LR-NIKE requires a minimal use of a leak-free hardware component. We argue that the use of such a leak-
free hardware component seems to be unavoidable in any construction of an LR-NIKE protocol, even in the
BML setting. Finally, we show how to construct the aforementioned leakage-resilient primitives from such an
LR-NIKE protocol as summarized below. All these primitives also achieve the same (optimal) leakage rate as
the underlying LR-NIKE protocol. We show how to construct a leakage-resilient (LR) IND-CCA-2-secure PKE
scheme in the BMLmodel generically from a bounded LR-NIKE (BLR-NIKE) protocol. Our construction of LR-
IND-CCA-2 secure PKE differs significantly from the state-of-the-art constructions of these primitives, which
mainly use hash proof techniques to achieve leakage resilience. Moreover, our transformation preserves the
leakage-rate of the underlying BLR-NIKE protocol. We introduce a new leakage model for AKE protocols, in
the BML setting, and present a leakage-resilient AKE protocol construction from the LR-NIKE protocol. We
introduce the first-ever leakagemodel for LLKE protocols in the BML setting and the first construction of such
a leakage-resilient LLKE from the LR-NIKE protocol.

Keywords: Leakage-resilient cryptography, public-key cryptography, non-interactive key exchange,
authenticated key exchange, low-latency key exchange

MSC 2010: 94A60, 14G50, 11T71, 68P25, 68M12

1 Introduction and related works

Traditional cryptographic primitives are provably analyzed in a black-box model, where the adversary has
access to the primitive via restrictive andwell-defined interfaces (oracles). However, this does not truly reflect
the real-world scenario, where the adversary may obtain lots of unintended side-channel information about
the cryptosystem from its implementation. This extra leakage of information is not accounted for in its analy-
sis in the aforementioned black-box model of security. Leakage-resilient cryptography emerged as a theoreti-
cal foundation to address the issue of side-channel attacks. Here it is assumed that the adversary has access
to side-channel information, which is modeled by allowing the adversary to specify arbitrary leakage func-
tions (subject to some restrictions) and obtain leakage from the secret key of the system as dictated by these

*Corresponding author: Janaka Alawatugoda, Department of Computer Science and Engineering, University of Peradeniya,
Peradeniya, Sri Lanka, e-mail: alawatugoda@eng.pdn.ac.lk. http://orcid.org/0000-0001-9431-5836
Suvradip Chakraborty, Chandrasekaran Pandu Rangan, Department of Computer Science and Engineering, Indian Institute of
Technology Madras, Chennai, India, e-mail: suvradip@cse.iitm.ac.in, rangan@cse.iitm.ac.in

2 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

functions. Note that some restrictions must be imposed on the class of allowable leakage functions as other-
wise an adversary can simply read off the entire secret key frommemory. Depending upon these restrictions,
many theoretical models of leakage have emerged in the recent literature [2, 6, 9, 14, 16, 30].

In this work, we focus mainly on the bounded-memory leakagemodel [2, 6]. In this model, the adversary
chooses arbitrary polynomial-time computable leakage functions f and receives f(sk), where sk is the secret
key. The only restriction is that the sum of output length of all these leakage functions that the adversary can
ever obtain is bounded by some parameter λ, which is smaller than the size of sk. Other notable models of
leakage include the “only computation leaks information” (OCLI) model, continual memory leakage model,
auxiliary input leakage model, etc. We briefly survey these models in Appendix B.

Ever since the ground-breaking work of Diffie and Hellman (DH) [13], authenticated key exchange (AKE)
protocols arose as an important cryptographic primitive. The DH key exchange protocol can actually be
viewed as a non-interactive key exchange (NIKE) protocol, where the parties can establish a shared key
among themselves without any interaction, provided the public keys of all the parties are pre-distributed
and they agree on some (common) global public parameters. NIKE is very useful in any bandwidth-critical,
power-critical, resource-critical systems such as embedded devices, wireless and sensor networks, where
the communication must be at its minimum. Despite its real-world applications, NIKE has mostly been
overlooked until recently [19]. Freire et al. [19] proposed formal security models for NIKE and efficient con-
structions of NIKE in these models. Although the NIKE constructions of [19] are secure in the traditional
(non-leakage) setting, the security of them may completely break down in the presence of leakage. In fact,
we demonstrate that the pairing-based construction of NIKE shown in [19] is insecure, even if the adversary
could obtain only a single bit of leakage from the secret key of a party. Therefore, it is really important to
thoroughly study on the leakage resiliency of NIKE. We note that much research has been carried out on
analyzing leakage resiliency of interactive key exchange protocols [3–5, 11], but the leakage resiliency of
NIKE remains largely unstudied. We note that Morita et al. [31] studied the security of NIKE protocols in the
face of related key attacks (RKA) and show various implications and separation results (in the RKA setting)
among the security notions of NIKE put forward by Freire et al. [19]. Morita et al. [31] have considered related-
key attacks on NIKE and showed that there is a separation among the security notions. We can see that the
equivalences between the different NIKEmodels of Freire et al. [19] easily carry forward to the leakage setting
as well. Therefore, such separation does not hold in the leakage setting. We refer the interested readers to
Morita et al. [31] and Freire et al. [19] for the detailed exposition.

As one of the central applications of leakage-resilient NIKE (LR-NIKE), we show how to construct
a leakage-resilient IND-CCA-2-secure PKE schemegenerically fromLR-NIKE (in the bounded-memory leakage
setting). All the previous constructions of leakage-resilient IND-CCA-2 (LR-IND-CCA-2) secure PKE schemes
rely solely on hash proof techniques to achieve leakage resiliency. However, the generic approach of con-
structing a leakage-resilient CCA secure PKE scheme solely using hash proof systems (HPS) is inherently
limited to a leakage rate below 1

2 as pointed out by Dodis et al. [15]. The leakage rate of the state-of-the-art
constructions of a LR-IND-CCA-2-secure PKE schemewas later improved in the subsequent works of Qin et al.
[35, 36], which achieved leakage rates of 1

2 − o(1) and 1 − o(1), respectively. They could achieve a leakage
rate of 1

2 − o(1) by using HPS and one-time lossy filters (OTLF)¹ and the optimal rate of 1 − o(1) by cleverly
instantiating the underlying primitives, namely HPS and OTLF. However, the complexity assumption they
make for their construction is rather non-standard, namely a refined subgroup indistinguishability (RSI)
assumption over composite order groups. The parameters of their construction are also large due to the use
of composite-order groups.

We deviate from this HPS-based approach of constructing LR-IND-CCA-2-secure PKE schemes and show
that this connection is not inherent. To this end, we develop a new primitive called leakage-resilient non-
interactive key exchange (NIKE). Our construction of leakage-resilient NIKE relies solely on a leakage-resilient

1 Note that this circumvents the impossibility result of Dodis et al. [15] since the analysis of [15] considered the fact that the
LR-IND-CCA-secure PKE was constructed solely from HPS; whereas, in [35, 36], they do not solely use HPS and instead rely on
both HPS and OTLF for their construction.

174  S. Chakraborty et al., New approach to practical leakage-resilient PKCS. Chakraborty et al., New approach to practical leakage-resilient PKC | 3

chameleon hash function (which in turn relies only on a strong collision-resistant hash function) and only
a constant number (to be precise, only 3) of pairing operations. We then show a very simple and generic
constructionof LR-IND-CCA-2-secure PKE schemes achieving the optimal leakage rate of 1 − o(1)based solely
on the assumption that the leakage-resilient NIKE exists.

We also show the applicability of leakage-resilient NIKE to construct leakage-resilient authenticated key
exchange (AKE) protocols and leakage-resilient low-latency key exchange (LLKE) protocols (in the bounded-
memory leakage setting). All the previous constructions of leakage-resilient AKE protocols [4, 11] either
implicitly rely on HPS (by using leakage-resilient PKE as their building block) or explicitly by using the
properties of HPS. Our generic construction of leakage-resilient AKE gives an alternate way to construct AKE
protocols, different from the previous constructions of leakage-resilient AKE protocols, achieving the opti-
mal leakage rate of 1 − o(1). Low-latency key exchange (LLKE) is one of the most practical key exchange
protocols that permits the transmission of cryptographically protected data, without prior key exchange,
while providing perfect forward secrecy (PFS). This concept was discussed in Google’s QUIC² protocol. Fur-
ther, a low-latency mode is currently under discussion for inclusion in TLS version 1.3. Although the first
formal model of LLKE was studied by Hale et al. [23], leakage resiliency of LLKE remains unstudied until
present. Being a candidate for TLS 1.3, it is important to explore the leakage resiliency of LLKE protocols as
side-channel attacks widely exist.

Our contributions

The main contributions are abridged as follows.

Leakage-resilient NIKE

As our firstmajor contribution, we study the leakage resiliency of NIKE protocols. We present a leakage secu-
ritymodel for NIKE protocols, defining the notion of leakage-resilient non-interactive key exchange.We point
out a subtle point in defining leakage-resilient NIKE protocols as discussed below and show that care must
taken while defining it. Finally, we show how to construct a secure NIKE protocol.

Our model: Our model of leakage-resilient NIKE adopts and generalizes the CKS-heavy model of NIKE pro-
posed by Freire et al. [19] in the setting of leakage. Firstly, we notice that defining the security of NIKE
protocols in the setting of leakage requires more care than defining the security model for NIKE protocols
in the non-leakage setting. Note that the shared key of a party in a two-party NIKE protocol is simply a deter-
ministic function of its own secret key and the public key of the other party. However, in the setting of leakage,
there is a simple attack on any LR-NIKE protocol as follows: the adversary can simply encode the (descrip-
tion) of the shared-key derivation function as the leakage function, with the public key of the other party
hard-coded in the function. Hence, using this, it can directly leak from the shared key. To prevent this trivial
attack, we must impose somemeaningful restrictions. One plausible solution to circumvent the above attack
could be to restrict the class of allowable leakage functions. In particular, one may assume that the leakage
functions are not allowed to access the public parameters of the system (and hence the public keys of the
parties) while leaking from the secret key of one party. However, this seems to be an unnatural restriction on
the leakage functions since the public parameters (and in particular the public keys of all parties) are known
to all the parties, and hence to the adversary also. To this end, we propose an alternative model for LR-NIKE
protocols that avoids the above impossibility result. In particular, we assume that all parties participating in
a NIKE protocol are equipped with a leak-free hardware component which can be used to shield a small part
of their public keys. The leakage functions can access the public keys of all the parties, except the compo-

2 https://www.chromium.org/quic

4 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

nents stored in the leak-free hardware. Note that the leak-free hardware should be used in a minimal way in
any LR-NIKE protocol³. Now we informally define our security model for LR-NIKE protocols.

Our model for LR-NIKE assumes that all parties participating in the protocol are equipped with a leak-
free hardware component. This hardware is used to store a small part of their public keys, hence effectively
shielding these parts from the view of the adversary. The specification of which components are stored in the
hardware is protocol-specific. However, we stress that the usage of the leak-free hardware should beminimal.
Our security model for LR-NIKE protocols is a very strong model allowing the adversary to register arbitrary
public keys into the system, corrupt honest parties to obtain their secret keys, issue extract queries to obtain
sharedkeysbetween twohonest parties andalsobetweenonehonest party andanother corrupt party. Besides
this, we also allow the adversary to obtain additional (bounded) leakage from both the parties involved in
the Test/challenge query. We also introduce the notion of validity of a test query reminiscent of the notion of
freshness of a test session for (interactive) key exchange protocols. Finally, in the (valid) test query between
two honest parties, the adversary has to distinguish the shared key from a random key.

Our construction: The starting point of our construction is the NIKE scheme of Freire et al. [19]. However, we
show that the above scheme is insecure in the setting of leakage, even if a single bit of the secret key is allowed
to leak. Themain stepwhere the construction breaks down is related to the exponentiation operation. In other
words, if exponentiation is performed normally as in the original protocol, it may be completely insecure in
the presence of leakage. A common countermeasure against this uses masking technique, where the secret
key of the system is secret-sharedusing amultiplicative secret sharing schemeand the exponentiation is done
step-wise using each of these shares. However, these masking schemes do not achieve the optimal 1 − o(1)
leakage-rate and also require additional restrictions (assumptions) on the class of allowable leakage func-
tions for arguing security. In particular, all these masking schemes are proven secure in the only computation
leaks information (OCLI) axiom of Micali and Reyzin [30] or under the split-state assumption [24, 27, 40].
The OCLI axiom postulates that the leakage only happens from thememory parts that are touched during the
actual computation(s), and the rest of thememory portions not touched by computation are not prone to leak-
age. In the split-state leakagemodel, it is assumed that the secret key is split into several disjoint parts and the
adversary is allowed to obtain leakage independently from each of these parts. However, both these models
do not address leakage from the entire memory, which is the case for the bounded memory leakage model.

So, amajor challenge in our construction is to come upwith a leakage-resilient exponentiation operation
achieving a leakage rate of 1 − o(1) in the globalmemory leakagemodel. Our first idea is to use the techniques
of [1, 6, 33] to perform leakage-resilient exponentiation. In particular, let 𝔾𝔾 be a group of prime order p,
and let g1, . . . , gn be random elements of the group. Then the vector x = (x1, . . . , xn) ∈ (ℤ∗p)n is said to be
a discrete log representation of some element y ∈ 𝔾𝔾with respect to g1, . . . , gn, if y = ∏n

i=1 gxii . To incorporate
this in our construction of NIKE, the elements g1, . . . , gn can be included in the public parameters params,
the public key of a party can be set to y, and the secret key can be the discrete log representation x of y.
In [1, 6, 33], it is also shown that, as long as the leakage on each representation is bounded by (1 − 2

n)|x|,
the adversary cannot come up with another discrete log representation x󸀠󸀠 of y. So this achieves the leakage
rate of 1 − o(1). However, it turns out that it becomes surprisingly difficult to incorporate this change in the
construction of Freire et al. [19]. The main difficulty stems from the use of multiple generators and also the
special structure of the public key.

To this end, we use the idea of the twisted-pair PRF trick [20], but carefully adapted to deal with leakage.
Themain idea behind the twisted-pair PRF trick is that it involves two PRFs F and F󸀠󸀠 with reversing keys. The
output of the twisting function is simply the output of the two PRFs that are combined together in special way.
The guarantee is that the output of the twisting function is computationally indistinguishable from a uniform
value over the same range. For our construction of a leakage-resilient twisted-pair PRF trick, we add strong
randomness extractors as pre-processors to this original twisting technique [20]. The guarantee is that the
output of our leakage-resilient twisted-pair PRF function is computationally indistinguishable fromauniform

3 Jumping ahead, in our LR-NIKE protocol, the leak-free hardware is only used to store a short seed used for randomness
extraction.

S. Chakraborty et al., New approach to practical leakage-resilient PKC  175S. Chakraborty et al., New approach to practical leakage-resilient PKC | 3

chameleon hash function (which in turn relies only on a strong collision-resistant hash function) and only
a constant number (to be precise, only 3) of pairing operations. We then show a very simple and generic
constructionof LR-IND-CCA-2-secure PKE schemes achieving the optimal leakage rate of 1 − o(1)based solely
on the assumption that the leakage-resilient NIKE exists.

We also show the applicability of leakage-resilient NIKE to construct leakage-resilient authenticated key
exchange (AKE) protocols and leakage-resilient low-latency key exchange (LLKE) protocols (in the bounded-
memory leakage setting). All the previous constructions of leakage-resilient AKE protocols [4, 11] either
implicitly rely on HPS (by using leakage-resilient PKE as their building block) or explicitly by using the
properties of HPS. Our generic construction of leakage-resilient AKE gives an alternate way to construct AKE
protocols, different from the previous constructions of leakage-resilient AKE protocols, achieving the opti-
mal leakage rate of 1 − o(1). Low-latency key exchange (LLKE) is one of the most practical key exchange
protocols that permits the transmission of cryptographically protected data, without prior key exchange,
while providing perfect forward secrecy (PFS). This concept was discussed in Google’s QUIC² protocol. Fur-
ther, a low-latency mode is currently under discussion for inclusion in TLS version 1.3. Although the first
formal model of LLKE was studied by Hale et al. [23], leakage resiliency of LLKE remains unstudied until
present. Being a candidate for TLS 1.3, it is important to explore the leakage resiliency of LLKE protocols as
side-channel attacks widely exist.

Our contributions

The main contributions are abridged as follows.

Leakage-resilient NIKE

As our firstmajor contribution, we study the leakage resiliency of NIKE protocols. We present a leakage secu-
ritymodel for NIKE protocols, defining the notion of leakage-resilient non-interactive key exchange.We point
out a subtle point in defining leakage-resilient NIKE protocols as discussed below and show that care must
taken while defining it. Finally, we show how to construct a secure NIKE protocol.

Our model: Our model of leakage-resilient NIKE adopts and generalizes the CKS-heavy model of NIKE pro-
posed by Freire et al. [19] in the setting of leakage. Firstly, we notice that defining the security of NIKE
protocols in the setting of leakage requires more care than defining the security model for NIKE protocols
in the non-leakage setting. Note that the shared key of a party in a two-party NIKE protocol is simply a deter-
ministic function of its own secret key and the public key of the other party. However, in the setting of leakage,
there is a simple attack on any LR-NIKE protocol as follows: the adversary can simply encode the (descrip-
tion) of the shared-key derivation function as the leakage function, with the public key of the other party
hard-coded in the function. Hence, using this, it can directly leak from the shared key. To prevent this trivial
attack, we must impose somemeaningful restrictions. One plausible solution to circumvent the above attack
could be to restrict the class of allowable leakage functions. In particular, one may assume that the leakage
functions are not allowed to access the public parameters of the system (and hence the public keys of the
parties) while leaking from the secret key of one party. However, this seems to be an unnatural restriction on
the leakage functions since the public parameters (and in particular the public keys of all parties) are known
to all the parties, and hence to the adversary also. To this end, we propose an alternative model for LR-NIKE
protocols that avoids the above impossibility result. In particular, we assume that all parties participating in
a NIKE protocol are equipped with a leak-free hardware component which can be used to shield a small part
of their public keys. The leakage functions can access the public keys of all the parties, except the compo-

2 https://www.chromium.org/quic

4 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

nents stored in the leak-free hardware. Note that the leak-free hardware should be used in a minimal way in
any LR-NIKE protocol³. Now we informally define our security model for LR-NIKE protocols.

Our model for LR-NIKE assumes that all parties participating in the protocol are equipped with a leak-
free hardware component. This hardware is used to store a small part of their public keys, hence effectively
shielding these parts from the view of the adversary. The specification of which components are stored in the
hardware is protocol-specific. However, we stress that the usage of the leak-free hardware should beminimal.
Our security model for LR-NIKE protocols is a very strong model allowing the adversary to register arbitrary
public keys into the system, corrupt honest parties to obtain their secret keys, issue extract queries to obtain
sharedkeysbetween twohonest parties andalsobetweenonehonest party andanother corrupt party. Besides
this, we also allow the adversary to obtain additional (bounded) leakage from both the parties involved in
the Test/challenge query. We also introduce the notion of validity of a test query reminiscent of the notion of
freshness of a test session for (interactive) key exchange protocols. Finally, in the (valid) test query between
two honest parties, the adversary has to distinguish the shared key from a random key.

Our construction: The starting point of our construction is the NIKE scheme of Freire et al. [19]. However, we
show that the above scheme is insecure in the setting of leakage, even if a single bit of the secret key is allowed
to leak. Themain stepwhere the construction breaks down is related to the exponentiation operation. In other
words, if exponentiation is performed normally as in the original protocol, it may be completely insecure in
the presence of leakage. A common countermeasure against this uses masking technique, where the secret
key of the system is secret-sharedusing amultiplicative secret sharing schemeand the exponentiation is done
step-wise using each of these shares. However, these masking schemes do not achieve the optimal 1 − o(1)
leakage-rate and also require additional restrictions (assumptions) on the class of allowable leakage func-
tions for arguing security. In particular, all these masking schemes are proven secure in the only computation
leaks information (OCLI) axiom of Micali and Reyzin [30] or under the split-state assumption [24, 27, 40].
The OCLI axiom postulates that the leakage only happens from thememory parts that are touched during the
actual computation(s), and the rest of thememory portions not touched by computation are not prone to leak-
age. In the split-state leakagemodel, it is assumed that the secret key is split into several disjoint parts and the
adversary is allowed to obtain leakage independently from each of these parts. However, both these models
do not address leakage from the entire memory, which is the case for the bounded memory leakage model.

So, amajor challenge in our construction is to come upwith a leakage-resilient exponentiation operation
achieving a leakage rate of 1 − o(1) in the globalmemory leakagemodel. Our first idea is to use the techniques
of [1, 6, 33] to perform leakage-resilient exponentiation. In particular, let 𝔾𝔾 be a group of prime order p,
and let g1, . . . , gn be random elements of the group. Then the vector x = (x1, . . . , xn) ∈ (ℤ∗p)n is said to be
a discrete log representation of some element y ∈ 𝔾𝔾with respect to g1, . . . , gn, if y = ∏n

i=1 gxii . To incorporate
this in our construction of NIKE, the elements g1, . . . , gn can be included in the public parameters params,
the public key of a party can be set to y, and the secret key can be the discrete log representation x of y.
In [1, 6, 33], it is also shown that, as long as the leakage on each representation is bounded by (1 − 2

n)|x|,
the adversary cannot come up with another discrete log representation x󸀠󸀠 of y. So this achieves the leakage
rate of 1 − o(1). However, it turns out that it becomes surprisingly difficult to incorporate this change in the
construction of Freire et al. [19]. The main difficulty stems from the use of multiple generators and also the
special structure of the public key.

To this end, we use the idea of the twisted-pair PRF trick [20], but carefully adapted to deal with leakage.
Themain idea behind the twisted-pair PRF trick is that it involves two PRFs F and F󸀠󸀠 with reversing keys. The
output of the twisting function is simply the output of the two PRFs that are combined together in special way.
The guarantee is that the output of the twisting function is computationally indistinguishable from a uniform
value over the same range. For our construction of a leakage-resilient twisted-pair PRF trick, we add strong
randomness extractors as pre-processors to this original twisting technique [20]. The guarantee is that the
output of our leakage-resilient twisted-pair PRF function is computationally indistinguishable fromauniform

3 Jumping ahead, in our LR-NIKE protocol, the leak-free hardware is only used to store a short seed used for randomness
extraction.

176  S. Chakraborty et al., New approach to practical leakage-resilient PKCS. Chakraborty et al., New approach to practical leakage-resilient PKC | 5

value over the same range, even if the adversary knows the key of one PRF in full and obtains bounded
leakage from the key of the other PRF. For our construction of NIKE in the bounded leakagemodel, the strong
randomness extractor (when appropriately parameterized) takes care of the (bounded) leakage, and then we
can extract randomness from the secret key of the NIKE and use the extracted key as the key in one of the
PRFs. The output of the leakage-resilient twisting function is then used to do secure exponentiation in the
presence of leakage. By appropriately parameterizing the extractor, we obtain the optimum leakage rate of
1 − o(1). Combinedwith a bounded leakage-resilient CHF tolerating a leakage rate of 1 − o(1), we can achieve
a leakage-resilient NIKE in the bounded-memory leakage model with overall leakage rate of 1 − o(1).

However, themain drawback of our leakage-resilient NIKE construction is that it requires a leak-freehard-
ware assumption.However, as arguedbefore, such anassumption is notmerely an artifact of our protocol, but
is likely to be required for constructing any LR-NIKE protocol. Since we allow the leakage function to access
all the public parameters of the system (and hence the public keys of parties), the adversary can directly leak
from the shared key of the parties by encoding the shared key derivation function as the leakage function.
Our protocol requires a leak-free component to store the seed of the extractor. This is required because the
view of the adversary in our construction should be independent of the seed since, otherwise, the adversary
may leak from the extracted value and the uniformity guarantee of the extractor does not hold in this case.
Hence we cannot include the seed in the public key. On the other hand, to compute the shared key, each
party needs to have access to the random seed. Hence we require that the seed is stored in a leak-free hard-
ware component.We also note that, since extractors are information theoretic gadgets, reusability of the seed
is not permitted. Hence each party needs to store a short random seed corresponding to every other party in
the leak-free hardware for establishing session keys with them. Minimizing this leak-free hardware assump-
tion is an interesting and challenging problem we leave open. A leak-free hardware component assumption
was also used in many prior works in leakage-resilient cryptography [18, 22, 25], although in the context
of continual memory leakage. In particular, in [25], it is assumed that the leak-free component can produce
random encryptions of fixed messages. In [22], it is assumed that there is a linear number of such leak-free
components and each component is capable of sampling from a fixed polynomial-time computable distribu-
tion. In [18], it is assumed that the leak-free component can sample two vectors from the underlying field
such that their inner product is zero. In contrast, in our construction, we do not require the leak-free hard-
ware to perform any expensive computation. We only require it to store several seeds of the extractor, which
are typically short random strings.

Comparison with Chen et al. [11, 12]: It is instructive to compare our construction of BLR-NIKE with the
leakage-resilient AKE protocols of Chen et al. [11, 12]. Chen et al. [11, 12] proposed constructions of AKE
protocols secure against “after-the-fact” bounded-memory [11] (resp. auxiliary input [12]) leakage attacks.
Our main idea of the BLR-NIKE protocols shares some technical similarities with [11, 12]. Namely, the main
idea of both these works is an “extract-then-PRF” technique, where a randomness extractor is applied on the
long-term secret key (in case of [11, 12] also on the ephemeral secret key) and then two PRFs with reversing
keys are applied to the extracted values (twisted PRF trick). Our NIKE protocol uses the framework of Freire
et al. [19] and uses the “extract-then-PRF” technique to tackle key leakage attacks. However, in this work,
we consider before-the-fact leakage attacks, in contrast to [11, 12] which considered after-the-fact leakage,
however, at the cost of restricting the leakage model further to avoid the impossibility result related to after-
the-fact leakage.

Leakage-resilient CCA-2-secure PKE

As one of the central applications of leakage-resilient NIKE (LR-NIKE), we show how to construct leakage-
resilient IND-CCA-2 (LR-IND-CCA-2) secure PKE generically from LR-NIKE in the bounded-memory leakage
model. This yields a new approach to construct LR-IND-CCA-2-secure PKE schemes, departing completely
from the hash-proof frameworks used in prior works. Our construction is practical and also achieves the
optimal leakage rate of 1 − o(1).

6 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

exponentiations # multiplications # pairings

Scheme KeyGen Enc. Dec. KeyGen Enc. Dec. KeyGen Enc. Dec.

Qin and Liu [35] n2 (n2 + n + 2) (n2 + 2n) (n2 + n) 2n2 (2n2 + n) NA NA NA
Qin and Liu [36] (n2 + n + 1) (3n + 2) (3n + 1) n 2n 2n NA NA NA
This work (n + 5) (2n + 8) (n + 3) (n + 3) (2n + 6) (n + 3) NA 3 3

Scheme Size of ciphertext C Leakage rate Complexity assumptions Additional assumptions

Qin and Liu [35] 𝔾𝔾2 × ℤnq × {0, 1}m × 𝔾̃𝔾n2×n2 1
2 − o(1) DDH No

Qin and Liu [36] 𝔾𝔾τ1 × {0, 1}m × 𝔾𝔾n+1 × Tc 1 − o(1) RSI over composite order groups No
This work 𝔾𝔾2 × ℤn+1q × {0, 1}s 1 − o(1) DBDH Leak-free component

Table 1: Comparison among the LR-IND-CCA PKE schemes. Here DDH stands for the decisional Diffie–Hellman problem. RSI
denotes the refined subgroup indistinguishability problem, and DBDH refers to the decisional bilinear Diffie–Hellman problem.

Our construction: Our generic transformation from an LR-NIKE to an LR-IND-CCA-2-secure PKE scheme
essentially follows and adapts the ideas of Freire et al. [19] in the setting of leakage. The main idea behind
the transformation is as follows: the public-secret key pair of the LR-IND-CCA-2-secure PKE scheme is the
same as the public-secret key pair of the underlying LR-NIKE protocol. While encrypting, another public-
secret key pair of the NIKE is sampled independently, and the shared key generation algorithm of the NIKE is
run among the two key pairs yielding a shared key. This key is used as the encapsulation key of the underly-
ing IND-CCA-2-secure key encapsulation mechanism (KEM), and the ciphertext is set to be the new sampled
public key. Decryption is straightforward, and the decryptor can recover the same shared key by running the
shared key generation algorithm with the original secret key and the new sampled public key. Now, from
IND-CCA-2-KEM, one can easily get full-fledged IND-CCA-2-secure PKE using standard hybrid encryption
techniques. Our transformation preserves the leakage rate in the sense that if the starting point of our con-
struction is LR-NIKE with a leakage rate of 1 − o(1), then the LR-CCA-2-secure PKE constructed from it also
enjoys the same leakage rate.

In Table 1, we show the comparison of our scheme with the state-of-the-art constructions of LR-IND-CCA
securePKE schemes in termsof both computational and communication complexity.Weobtain these complex-
ity figures by instantiating all of the compared schemeswith the state-of-the-art constructions of the required
underlying primitives. As we can see, the number of group elements involved in our ciphertext is much less
than the number of group elements involved in the ciphertexts of the other schemes. With regard to the num-
ber of exponentiations and multiplication operations also, our scheme is more efficient compared to others,
hence improving the computational complexity of the state-of-the-art LR-IND-CCA secure PKE schemes by
a significant margin. Note that we do require a constant number of pairing operations (to be precise only 3)
in the encryption side and also in the decryption side. According to Benhamouda et al. [7], pairing is roughly
three times slower than computing an exponentiation. Therefore, each encryption and decryption cost is
roughly nine times of an exponentiation. Since we can achieve the optimum leakage rate (albeit using a leak-
free hardware assumption), this additional computation cost is reasonable. In the table, n ∈ ℕ is usually
the number of generators required for the construction. Also, [36] works over composite order groups of the
form𝔾𝔾 = 𝔾𝔾τ1 × 𝔾𝔾τ2 . Here Tc denotes the tag space in the encryption scheme of [36], and {0, 1}s denotes the
seed space of a strong randomness extractor. Lastly, we want to stress that, although our scheme is more
efficient than that of Qin et al. [35, 36] in terms of computational cost and communication complexity and
also achieves an optimal leakage rate, our scheme is not superior to them because of the use of a leak-free
hardware component. The leak-free hardware is clearly a strong assumption.

S. Chakraborty et al., New approach to practical leakage-resilient PKC  177S. Chakraborty et al., New approach to practical leakage-resilient PKC | 5

value over the same range, even if the adversary knows the key of one PRF in full and obtains bounded
leakage from the key of the other PRF. For our construction of NIKE in the bounded leakagemodel, the strong
randomness extractor (when appropriately parameterized) takes care of the (bounded) leakage, and then we
can extract randomness from the secret key of the NIKE and use the extracted key as the key in one of the
PRFs. The output of the leakage-resilient twisting function is then used to do secure exponentiation in the
presence of leakage. By appropriately parameterizing the extractor, we obtain the optimum leakage rate of
1 − o(1). Combinedwith a bounded leakage-resilient CHF tolerating a leakage rate of 1 − o(1), we can achieve
a leakage-resilient NIKE in the bounded-memory leakage model with overall leakage rate of 1 − o(1).

However, themain drawback of our leakage-resilient NIKE construction is that it requires a leak-freehard-
ware assumption.However, as arguedbefore, such anassumption is notmerely an artifact of our protocol, but
is likely to be required for constructing any LR-NIKE protocol. Since we allow the leakage function to access
all the public parameters of the system (and hence the public keys of parties), the adversary can directly leak
from the shared key of the parties by encoding the shared key derivation function as the leakage function.
Our protocol requires a leak-free component to store the seed of the extractor. This is required because the
view of the adversary in our construction should be independent of the seed since, otherwise, the adversary
may leak from the extracted value and the uniformity guarantee of the extractor does not hold in this case.
Hence we cannot include the seed in the public key. On the other hand, to compute the shared key, each
party needs to have access to the random seed. Hence we require that the seed is stored in a leak-free hard-
ware component.We also note that, since extractors are information theoretic gadgets, reusability of the seed
is not permitted. Hence each party needs to store a short random seed corresponding to every other party in
the leak-free hardware for establishing session keys with them. Minimizing this leak-free hardware assump-
tion is an interesting and challenging problem we leave open. A leak-free hardware component assumption
was also used in many prior works in leakage-resilient cryptography [18, 22, 25], although in the context
of continual memory leakage. In particular, in [25], it is assumed that the leak-free component can produce
random encryptions of fixed messages. In [22], it is assumed that there is a linear number of such leak-free
components and each component is capable of sampling from a fixed polynomial-time computable distribu-
tion. In [18], it is assumed that the leak-free component can sample two vectors from the underlying field
such that their inner product is zero. In contrast, in our construction, we do not require the leak-free hard-
ware to perform any expensive computation. We only require it to store several seeds of the extractor, which
are typically short random strings.

Comparison with Chen et al. [11, 12]: It is instructive to compare our construction of BLR-NIKE with the
leakage-resilient AKE protocols of Chen et al. [11, 12]. Chen et al. [11, 12] proposed constructions of AKE
protocols secure against “after-the-fact” bounded-memory [11] (resp. auxiliary input [12]) leakage attacks.
Our main idea of the BLR-NIKE protocols shares some technical similarities with [11, 12]. Namely, the main
idea of both these works is an “extract-then-PRF” technique, where a randomness extractor is applied on the
long-term secret key (in case of [11, 12] also on the ephemeral secret key) and then two PRFs with reversing
keys are applied to the extracted values (twisted PRF trick). Our NIKE protocol uses the framework of Freire
et al. [19] and uses the “extract-then-PRF” technique to tackle key leakage attacks. However, in this work,
we consider before-the-fact leakage attacks, in contrast to [11, 12] which considered after-the-fact leakage,
however, at the cost of restricting the leakage model further to avoid the impossibility result related to after-
the-fact leakage.

Leakage-resilient CCA-2-secure PKE

As one of the central applications of leakage-resilient NIKE (LR-NIKE), we show how to construct leakage-
resilient IND-CCA-2 (LR-IND-CCA-2) secure PKE generically from LR-NIKE in the bounded-memory leakage
model. This yields a new approach to construct LR-IND-CCA-2-secure PKE schemes, departing completely
from the hash-proof frameworks used in prior works. Our construction is practical and also achieves the
optimal leakage rate of 1 − o(1).

6 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

exponentiations # multiplications # pairings

Scheme KeyGen Enc. Dec. KeyGen Enc. Dec. KeyGen Enc. Dec.

Qin and Liu [35] n2 (n2 + n + 2) (n2 + 2n) (n2 + n) 2n2 (2n2 + n) NA NA NA
Qin and Liu [36] (n2 + n + 1) (3n + 2) (3n + 1) n 2n 2n NA NA NA
This work (n + 5) (2n + 8) (n + 3) (n + 3) (2n + 6) (n + 3) NA 3 3

Scheme Size of ciphertext C Leakage rate Complexity assumptions Additional assumptions

Qin and Liu [35] 𝔾𝔾2 × ℤnq × {0, 1}m × 𝔾̃𝔾n2×n2 1
2 − o(1) DDH No

Qin and Liu [36] 𝔾𝔾τ1 × {0, 1}m × 𝔾𝔾n+1 × Tc 1 − o(1) RSI over composite order groups No
This work 𝔾𝔾2 × ℤn+1q × {0, 1}s 1 − o(1) DBDH Leak-free component

Table 1: Comparison among the LR-IND-CCA PKE schemes. Here DDH stands for the decisional Diffie–Hellman problem. RSI
denotes the refined subgroup indistinguishability problem, and DBDH refers to the decisional bilinear Diffie–Hellman problem.

Our construction: Our generic transformation from an LR-NIKE to an LR-IND-CCA-2-secure PKE scheme
essentially follows and adapts the ideas of Freire et al. [19] in the setting of leakage. The main idea behind
the transformation is as follows: the public-secret key pair of the LR-IND-CCA-2-secure PKE scheme is the
same as the public-secret key pair of the underlying LR-NIKE protocol. While encrypting, another public-
secret key pair of the NIKE is sampled independently, and the shared key generation algorithm of the NIKE is
run among the two key pairs yielding a shared key. This key is used as the encapsulation key of the underly-
ing IND-CCA-2-secure key encapsulation mechanism (KEM), and the ciphertext is set to be the new sampled
public key. Decryption is straightforward, and the decryptor can recover the same shared key by running the
shared key generation algorithm with the original secret key and the new sampled public key. Now, from
IND-CCA-2-KEM, one can easily get full-fledged IND-CCA-2-secure PKE using standard hybrid encryption
techniques. Our transformation preserves the leakage rate in the sense that if the starting point of our con-
struction is LR-NIKE with a leakage rate of 1 − o(1), then the LR-CCA-2-secure PKE constructed from it also
enjoys the same leakage rate.

In Table 1, we show the comparison of our scheme with the state-of-the-art constructions of LR-IND-CCA
securePKE schemes in termsof both computational and communication complexity.Weobtain these complex-
ity figures by instantiating all of the compared schemeswith the state-of-the-art constructions of the required
underlying primitives. As we can see, the number of group elements involved in our ciphertext is much less
than the number of group elements involved in the ciphertexts of the other schemes. With regard to the num-
ber of exponentiations and multiplication operations also, our scheme is more efficient compared to others,
hence improving the computational complexity of the state-of-the-art LR-IND-CCA secure PKE schemes by
a significant margin. Note that we do require a constant number of pairing operations (to be precise only 3)
in the encryption side and also in the decryption side. According to Benhamouda et al. [7], pairing is roughly
three times slower than computing an exponentiation. Therefore, each encryption and decryption cost is
roughly nine times of an exponentiation. Since we can achieve the optimum leakage rate (albeit using a leak-
free hardware assumption), this additional computation cost is reasonable. In the table, n ∈ ℕ is usually
the number of generators required for the construction. Also, [36] works over composite order groups of the
form𝔾𝔾 = 𝔾𝔾τ1 × 𝔾𝔾τ2 . Here Tc denotes the tag space in the encryption scheme of [36], and {0, 1}s denotes the
seed space of a strong randomness extractor. Lastly, we want to stress that, although our scheme is more
efficient than that of Qin et al. [35, 36] in terms of computational cost and communication complexity and
also achieves an optimal leakage rate, our scheme is not superior to them because of the use of a leak-free
hardware component. The leak-free hardware is clearly a strong assumption.

178  S. Chakraborty et al., New approach to practical leakage-resilient PKCS. Chakraborty et al., New approach to practical leakage-resilient PKC | 7

Leakage model
Scheme B/C BFL/AFL Complexity assumptions Leakage rate

Moriyama and Okamoto [32] B BFL DDH, HPS, CR, π-PRF, Ext 1 − o(1)
Alawatugoda, Boyd and Stebila [3] C AFL CCLA-2 secure PKE, PRF sub-optimal*
Alawatugoda, Stebila and Boyd [4] B/C AFL DDH, ODH, ε-PG-IND and CPLA-2

secure PKE, UFCMLA-secure
signature, secure KDF, PRF

min{CPLA-2 PKE, UFCMLA-sig}

Chen, Mu, Yang, Susilo and Guo [11] B AFL DDH, HPS, CR, π-PRF, Ext min{HPS, Ext}
This work B BFL BLR-CKS-heavy NIKE,

UFCMLA-secure signature
1 − o(1)

Table 2: Comparison among the LR-AKE schemes. Here B/C stands for either bounded or continuous memory leakage; BFL/AFL
denotes the resilience of the AKE protocols to before-the-fact/after-the-fact leakage attacks. The shorthands DDH, HPS, CR,
π-PRF and Ext stand for the decisional Diffie–Hellman problem, hash proof systems, collision-resistant hash function,
pairwise-independent PRF families and strong extractors, respectively. CPLA-2 (resp. CCLA-2) secure PKE denotes an adaptively
chosen plaintext (resp. ciphertext) after-the-fact leakage secure public-key cryptosystem. ε-PG-IND refers to the pair-generation
indistinguishable PKE scheme; ODH and KDF refer to the oracle Diffie–Hellman and secure key derivation functions, respectively.
BLR-CKS-heavy stands for bounded leakage-resilient “Cash–Kiltz–Shoup”-heavy model (BLR analogue of the CKS-heavy model).

Leakage-resilient AKE

We show how to obtain a generic construction of a leakage-resilient authenticated key exchange (LR-AKE)
protocol starting from a leakage-resilient NIKE protocol. We formulate a new security model for LR-AKE pro-
tocols,whichwecallbounded-memorybefore-the-fact leakage eCK (BBFL-eCK)model.We then showageneric
construction of BBFL-eCK-secure AKE protocol using LR-NIKE in the bounded-memory leakage setting.

Our model: Our security model for LR-AKE is a strong security model which addresses (bounded) leakage
from the entire memory, which is stronger than the “only computation leaks information” axiom [30]. We
present an eCK-style [28] security model, suitably adjusted to the leakage setting.

Our construction: We give the generic construction of leakage-resilient AKE from leakage-resilient NIKE in
the bounded-memory leakagemodel.We adapt the construction of Bergsma et al. [8] to the setting of leakage.
In particular, Bergsma et al. [8] showed a construction of AKE protocols from a standard NIKE protocol and
an existentially unforgeable signature scheme.We replace the standard NIKEwith our leakage-resilient NIKE
and the existentially unforgeable signature scheme with a signature scheme that is existentially unforge-
able under chosen message and leakage attacks [26]. We then show that the constructed AKE protocol is
secure in our BBFL-eCK security model. The leakage rate of our construction is 1 − o(1) under an appropriate
choice of parameters. We refer the reader to Table 2 for a more detailed comparison of leakage-resilient AKE
protocols.

Leakage-resilient LLKE

We show an extremely important practical application of leakage-resilient NIKE protocols. We study the leak-
age resiliency of low-latency key exchange (LLKE) protocols. In this paper, we give a suitable leakage security
model for LLKE protocols which we call the bounded-memory leakage LLKE-ma (BL-LLKE-ma) model, where
“ma” stands for mutual authentication. We then present a generic construction of leakage-resilient LLKE
(LR-LLKE) construction based on our LR-NIKE protocol in the bounded-memory leakage setting.

Our model: The security of (standard) LLKE protocols has been recently analyzed by Hale et al. [23] under
mutual authentication of the client as well as the server. We give a leakage analogue of their security model.
Our model allows the adversary to activate arbitrary protocol sessions between the clients and servers.
Besides, the adversary can obtain the temporary or the main keys of a session of both the clients as well
as the server, obtain the long-term secret key of clients and servers and also obtain bounded leakage from

8 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

both the client and the server involved in the Test query. Finally, in the test query (satisfying some freshness/
validity conditions), the adversary has to guess the requested key from a random key.

Our construction: Adopting the construction of Hale et al. [23], we show a generic construction of leakage-
resilient LLKE protocol from a leakage-resilient NIKE protocol. In particular, we require an LR-NIKE scheme
and a UF-CMLA secure signature scheme. Plugging them appropriately in our context, we obtain the con-
struction of a leakage-resilient LLKE protocol. Moreover, the leakage rate enjoyed by our LLKE protocol is
also optimal, i.e., 1 − o(1).

Alternative thought

It is possible to compare our LR-NIKE protocol (in the bounded-memory leakage model) with an alternative
simpler construction, which is essentially an adaptation of the idea which we made explicit only for the LR-
CCA-secure PKE scheme.

Essentially, the idea is as follows: sample a random string r, and use a (seeded) randomness extractor
to extract another the key generation function. The seed s of the extractor is stored in the leak-free hardware
component. The intuition behind the security is that, since the leakage from r is bounded and the seed s
is kept outside the view of the adversary, the extracted value r󸀠󸀠 should look random to the adversary (the
parameters need to be appropriately set to argue this). While we have made this explicit only for PKE, the
above simple idea also works for achieving leakage resilience of NIKE protocols starting from any NIKE pro-
tocol in the CKS-heavy model. In fact, our construction of NIKE is exactly along this line: we start with the
NIKE protocol of Freire et al. [19] and show the above NIKE protocol can bemade (bounded) leakage-resilient
by using the above trick. The reason we choose to give a concrete NIKE protocol is that the protocol of Freire
et al. [19] is the only existing NIKE protocol secure in the CKS-heavy model (the base model we consider in
our paper as well) in the standard model. Hence we start with the protocol of Freire et al. [19] and explicitly
show the above idea to bootstrap its security in the bounded leakage setting.

For other primitives like AKE and LLKE, a similar idea works, and we can construct leakage-resilient
versions of theseprimitives in a stand-alonemanner using the above idea (givena leak-freehardware assump-
tion). However, the focus of the paper is to present LR-NIKE as a unified paradigm for constructing other
leakage-resilient primitives like PKE, AKE and LLKE. In particular, a construction of continuous leakage-
resilient NIKE will directly translate into a construction of continuous leakage-resilient PKE, AKE, LLKE via
our transformations (which would otherwise not be possible using the above simpler transformations). Also,
any improvement in the construction of NIKE will directly impact the efficiency of the corresponding PKE,
AKE and LLKE schemes.

2 Preliminaries

2.1 Notations

For a, b ∈ ℝ, we let [a, b] = {x ∈ ℝ : a ≤ x ≤ b}; for a ∈ ℕ, we let [a] = {1, 2, . . . , a}. If x is a string, we denote
|x| as the length of x. When x is chosen randomly from a set X, we write x $← X. When A is an algorithm, we
write y $← A(x) to denote a run of A on input x and output y; if A is randomized, then y is a random variable
and A(x; r) denotes a run of A on input x and randomness r. We denote the security parameter throughout
by κ. AnalgorithmA is probabilistic polynomial-time (PPT) ifA is randomizedand, for any input x, r ∈ {0, 1}∗,
the computation of A(x; r) terminates in at most poly(|x|) steps. Let 𝔾𝔾 be a group of prime order p such that
log2(p) ≥ κ. Let g be a generator of 𝔾𝔾. Then, for a (column/row) vector C = (C1, . . . , Cn) ∈ ℤnp, we denote
by gC the vector C = (gC1 , . . . , gCn). Furthermore, for a vector D = (D1, . . . , Dn) ∈ ℤnp, we denote by CD the
group element X = ∏n

i=1 gCiDi = g∑ni=1 CiDi . We say two random variables X and Y are ε-close statistically if
the statistical distance between them is at most ε, and this is denoted by X ≈ε Y. On the other hand, if X

S. Chakraborty et al., New approach to practical leakage-resilient PKC  179S. Chakraborty et al., New approach to practical leakage-resilient PKC | 7

Leakage model
Scheme B/C BFL/AFL Complexity assumptions Leakage rate

Moriyama and Okamoto [32] B BFL DDH, HPS, CR, π-PRF, Ext 1 − o(1)
Alawatugoda, Boyd and Stebila [3] C AFL CCLA-2 secure PKE, PRF sub-optimal*
Alawatugoda, Stebila and Boyd [4] B/C AFL DDH, ODH, ε-PG-IND and CPLA-2

secure PKE, UFCMLA-secure
signature, secure KDF, PRF

min{CPLA-2 PKE, UFCMLA-sig}

Chen, Mu, Yang, Susilo and Guo [11] B AFL DDH, HPS, CR, π-PRF, Ext min{HPS, Ext}
This work B BFL BLR-CKS-heavy NIKE,

UFCMLA-secure signature
1 − o(1)

Table 2: Comparison among the LR-AKE schemes. Here B/C stands for either bounded or continuous memory leakage; BFL/AFL
denotes the resilience of the AKE protocols to before-the-fact/after-the-fact leakage attacks. The shorthands DDH, HPS, CR,
π-PRF and Ext stand for the decisional Diffie–Hellman problem, hash proof systems, collision-resistant hash function,
pairwise-independent PRF families and strong extractors, respectively. CPLA-2 (resp. CCLA-2) secure PKE denotes an adaptively
chosen plaintext (resp. ciphertext) after-the-fact leakage secure public-key cryptosystem. ε-PG-IND refers to the pair-generation
indistinguishable PKE scheme; ODH and KDF refer to the oracle Diffie–Hellman and secure key derivation functions, respectively.
BLR-CKS-heavy stands for bounded leakage-resilient “Cash–Kiltz–Shoup”-heavy model (BLR analogue of the CKS-heavy model).

Leakage-resilient AKE

We show how to obtain a generic construction of a leakage-resilient authenticated key exchange (LR-AKE)
protocol starting from a leakage-resilient NIKE protocol. We formulate a new security model for LR-AKE pro-
tocols,whichwecallbounded-memorybefore-the-fact leakage eCK (BBFL-eCK)model.We then showageneric
construction of BBFL-eCK-secure AKE protocol using LR-NIKE in the bounded-memory leakage setting.

Our model: Our security model for LR-AKE is a strong security model which addresses (bounded) leakage
from the entire memory, which is stronger than the “only computation leaks information” axiom [30]. We
present an eCK-style [28] security model, suitably adjusted to the leakage setting.

Our construction: We give the generic construction of leakage-resilient AKE from leakage-resilient NIKE in
the bounded-memory leakagemodel.We adapt the construction of Bergsma et al. [8] to the setting of leakage.
In particular, Bergsma et al. [8] showed a construction of AKE protocols from a standard NIKE protocol and
an existentially unforgeable signature scheme.We replace the standard NIKEwith our leakage-resilient NIKE
and the existentially unforgeable signature scheme with a signature scheme that is existentially unforge-
able under chosen message and leakage attacks [26]. We then show that the constructed AKE protocol is
secure in our BBFL-eCK security model. The leakage rate of our construction is 1 − o(1) under an appropriate
choice of parameters. We refer the reader to Table 2 for a more detailed comparison of leakage-resilient AKE
protocols.

Leakage-resilient LLKE

We show an extremely important practical application of leakage-resilient NIKE protocols. We study the leak-
age resiliency of low-latency key exchange (LLKE) protocols. In this paper, we give a suitable leakage security
model for LLKE protocols which we call the bounded-memory leakage LLKE-ma (BL-LLKE-ma) model, where
“ma” stands for mutual authentication. We then present a generic construction of leakage-resilient LLKE
(LR-LLKE) construction based on our LR-NIKE protocol in the bounded-memory leakage setting.

Our model: The security of (standard) LLKE protocols has been recently analyzed by Hale et al. [23] under
mutual authentication of the client as well as the server. We give a leakage analogue of their security model.
Our model allows the adversary to activate arbitrary protocol sessions between the clients and servers.
Besides, the adversary can obtain the temporary or the main keys of a session of both the clients as well
as the server, obtain the long-term secret key of clients and servers and also obtain bounded leakage from

8 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

both the client and the server involved in the Test query. Finally, in the test query (satisfying some freshness/
validity conditions), the adversary has to guess the requested key from a random key.

Our construction: Adopting the construction of Hale et al. [23], we show a generic construction of leakage-
resilient LLKE protocol from a leakage-resilient NIKE protocol. In particular, we require an LR-NIKE scheme
and a UF-CMLA secure signature scheme. Plugging them appropriately in our context, we obtain the con-
struction of a leakage-resilient LLKE protocol. Moreover, the leakage rate enjoyed by our LLKE protocol is
also optimal, i.e., 1 − o(1).

Alternative thought

It is possible to compare our LR-NIKE protocol (in the bounded-memory leakage model) with an alternative
simpler construction, which is essentially an adaptation of the idea which we made explicit only for the LR-
CCA-secure PKE scheme.

Essentially, the idea is as follows: sample a random string r, and use a (seeded) randomness extractor
to extract another the key generation function. The seed s of the extractor is stored in the leak-free hardware
component. The intuition behind the security is that, since the leakage from r is bounded and the seed s
is kept outside the view of the adversary, the extracted value r󸀠󸀠 should look random to the adversary (the
parameters need to be appropriately set to argue this). While we have made this explicit only for PKE, the
above simple idea also works for achieving leakage resilience of NIKE protocols starting from any NIKE pro-
tocol in the CKS-heavy model. In fact, our construction of NIKE is exactly along this line: we start with the
NIKE protocol of Freire et al. [19] and show the above NIKE protocol can bemade (bounded) leakage-resilient
by using the above trick. The reason we choose to give a concrete NIKE protocol is that the protocol of Freire
et al. [19] is the only existing NIKE protocol secure in the CKS-heavy model (the base model we consider in
our paper as well) in the standard model. Hence we start with the protocol of Freire et al. [19] and explicitly
show the above idea to bootstrap its security in the bounded leakage setting.

For other primitives like AKE and LLKE, a similar idea works, and we can construct leakage-resilient
versions of theseprimitives in a stand-alonemanner using the above idea (givena leak-freehardware assump-
tion). However, the focus of the paper is to present LR-NIKE as a unified paradigm for constructing other
leakage-resilient primitives like PKE, AKE and LLKE. In particular, a construction of continuous leakage-
resilient NIKE will directly translate into a construction of continuous leakage-resilient PKE, AKE, LLKE via
our transformations (which would otherwise not be possible using the above simpler transformations). Also,
any improvement in the construction of NIKE will directly impact the efficiency of the corresponding PKE,
AKE and LLKE schemes.

2 Preliminaries

2.1 Notations

For a, b ∈ ℝ, we let [a, b] = {x ∈ ℝ : a ≤ x ≤ b}; for a ∈ ℕ, we let [a] = {1, 2, . . . , a}. If x is a string, we denote
|x| as the length of x. When x is chosen randomly from a set X, we write x $← X. When A is an algorithm, we
write y $← A(x) to denote a run of A on input x and output y; if A is randomized, then y is a random variable
and A(x; r) denotes a run of A on input x and randomness r. We denote the security parameter throughout
by κ. AnalgorithmA is probabilistic polynomial-time (PPT) ifA is randomizedand, for any input x, r ∈ {0, 1}∗,
the computation of A(x; r) terminates in at most poly(|x|) steps. Let 𝔾𝔾 be a group of prime order p such that
log2(p) ≥ κ. Let g be a generator of 𝔾𝔾. Then, for a (column/row) vector C = (C1, . . . , Cn) ∈ ℤnp, we denote
by gC the vector C = (gC1 , . . . , gCn). Furthermore, for a vector D = (D1, . . . , Dn) ∈ ℤnp, we denote by CD the
group element X = ∏n

i=1 gCiDi = g∑ni=1 CiDi . We say two random variables X and Y are ε-close statistically if
the statistical distance between them is at most ε, and this is denoted by X ≈ε Y. On the other hand, if X

180  S. Chakraborty et al., New approach to practical leakage-resilient PKCS. Chakraborty et al., New approach to practical leakage-resilient PKC | 9

and Y are computationally indistinguishable, we write X ≈c Y. We refer to Appendix A.1 for the definitions
of min-entropy, average conditional min-entropy, randomness extractors and basic results related to them.

2.2 Underlying primitives for our constructions

For our construction of NIKE in the bounded-memory leakage setting, we require a bounded leakage-resilient
chameleon hash function (BLR-CHF). Leakage-resilient chameleon hash functions (LR-CHF) postulate that it
is hard to find collisions, even when the adversary learns bounded leakage from the secret key/trapdoor. We
refer the reader to Appendix A.2 for the formal definition of LR-CHF. We also need standard pseudo-random
function (PRF) for this construction (please refer to Appendix A.3). A function F is an (εprf , sprf , qprf)-secure
PRF if no adversary of size sprf can distinguish F (instantiated with a random key) from a uniformly random
function, except with negligible probability εprf .

For our construction of leakage-resilient AKE and leakage-resilient LLKE protocols, we also need an exis-
tentially unforgeable signature secure against chosen message and leakage attacks (UF-CMLA). We refer the
reader to Appendix A.4 for the formal definition. In all these definitions, the leakage functions can be arbi-
trarily and adaptively chosen by the adversary, with the only restriction that the output size of those functions
are bounded by some leakage parameter.

3 Assumptions in a bilinear group

In this paper, we consider type-2 pairings over appropriate elliptic curve groups. Let G2 be a type-2 pairing
parameter generation algorithm. It takes as input the security parameter 1κ and outputs

gk = (𝔾𝔾1,𝔾𝔾2,𝔾𝔾T , g1, g2, p, e, ψ)
such that p is a prime, (𝔾𝔾1,𝔾𝔾2,𝔾𝔾T) are a description of multiplicative cyclic groups of the same order p,
g1, g2 are generators of𝔾𝔾1 and𝔾𝔾2, respectively, e : 𝔾𝔾1 × 𝔾𝔾2 → 𝔾𝔾T is a non-degenerate efficiently computable
bilinear map, ψ is an efficiently computable isomorphism ψ : 𝔾𝔾2 → 𝔾𝔾1 and g1 = ψ(g2).
Decisional bilinear assumption over type-2 pairings (DBDH-2): Let gk = (𝔾𝔾1,𝔾𝔾2,𝔾𝔾T , g1, g2, p, e, ψ) be the
output of the parameter generation algorithm G2 as above. We consider the following version of the DBDH-2
problem introduced by Galindo [21] and also used in [19]. Formally, we say that the DBDH-2 assumption
holds for type-2 pairings if the advantage of the adversary ADBDH-2 denoted by Advdbdh-2ADBDH-2 ,G2

(κ) is negligible,
where

Advdbdh-2ADBDH-2 ,G2
(κ) = |Pr[A(g2, ga2, gb2, gc1, e(g1, g2)abc) = 1] − Pr[A(g2, ga2, gb2, gc1, e(g1, g2)z) = 1]|,

where the probability is taken over the random choices of the algorithm G2 and the internal coin tosses of the
algorithmA.

4 Leakage-resilient non-interactive key exchange

In this section, we present the syntax of leakage-resilient non-interactive key exchange (LR-NIKE) protocols.
We denote by PK, SK and SHK the space of public keys, secret keys and shared keys of LR-NIKE, respec-
tively. When we write pki for the i-th public key, we mean that pki is associated with the user with identifier
IDi ∈ IDS, where IDS denotes the identity space⁴. Formally, an LR-NIKE scheme, LR-NIKE, consists of a tuple
of algorithms (NIKEcommon_setup, NIKEgen, NIKEkey) with the functionalities specified below.

4 Note that, we are not in the identity-based setting.

10 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

(i) NIKEcommon_setup(1κ , λ(κ)): The setup algorithm takes as input the security parameter κ and the leak-
age bound λ(κ) that can be tolerated by the NIKE scheme and outputs a set of global parameters params
of the system. We sometimes drop κ and write λ instead of λ(κ) when κ is clear from context.

(ii) NIKEgen(1κ , params): The key generation algorithm is probabilistic and can be executed independently
by all the users. It takes as input the security parameter κ and params and outputs a public/secret key
pair (pk, sk) ∈ PK × SK.

(iii) NIKEkey(pki , skj): The shared key generation algorithm takes the public key of user IDi, namely pki, and
the secret key of user IDj, namely skj, and outputs a shared key shkij ∈ SHK for the two keys or a failure
symbol ⊥ if i = j, i.e., if skj is the secret key corresponding to pki.

The correctness requirement states that, for any two pairs (pki , ski) and (pkj , skj), the shared keys computed
by them should be identical.

4.1 Bounded leakage-resilient non-interactive key exchange (BLR-CKS-heavy)
security model

In this section, we present the formal security model for leakage-resilient non-interactive key exchange (LR-
NIKE). Before defining our security model for LR-NIKE protocols, we present an impossibility result related
to LR-NIKE protocols in Section 4.1.1. In particular, we show that if the leakage function is an arbitrary
polynomial-time computable function having access to the public parameters, we cannot hope to construct
a secure LR-NIKE protocol, even in the bounded memory leakage model. In Section 4.1.2, we show how to
circumvent this impossibility result by enforcing some restrictions on the class of allowable leakage functions
in our BLR-CKS-heavy security model for NIKE.

4.1.1 Impossibility of LR-NIKE protocols

In this section, we present an impossibility result of constructing the LR-NIKE protocol, even in the bounded
leakage model. Then we suitably adapt our security model to circumvent this impossibility result. Let us
assume that the NIKE protocol is run between two users, say, Alice and Bob. The key pairs of Alice and Bob
are (pkA , skA) and (pkB , skB), respectively. In the leakage setting, the adversary may ask bounded leakage
from the secret keys of both Alice and Bob. Note that the shared key between Alice and Bob is a deterministic
function of their own secret keys and the public key of the other party, namely, for Alice (for Bob), the shared
key shkAB is derived asNIKEkey(pkB , skA) (asNIKEkey(pkA , skB)). Now the adversary can set the leakage func-
tion for Alice as L(⋅) = L󸀠󸀠pkB (⋅) = NIKEkey(pkB , ⋅), i.e. the adversary can specify the leakage function as the
shared key derivation function NIKEkey with the public key of the other party hard-coded in it. This allows
the adversary to directly leak from the shared key shkAB established between Alice and Bob. If the adversary
can leak sufficiently many bits of shkAB, then, with very high probability, the adversary can distinguish the
shkAB from a random key.

The above attack demonstrates that if we allow the leakage function to be arbitrary polynomial-time
computable functions with access to all the public parameters (and hence to the public keys of all the par-
ties) of the system, it is impossible to have a secure instantiation of an LR-NIKE protocol. Hence we need
to enforce some meaningful restrictions on the leakage functions. In particular, one may assume that the
leakage functions are not allowed to access the public parameters of the system. This can be enforced by hav-
ing the adversary specify the set of leakage functions before receiving the public parameters, the so-called
“non-adaptive” leakage model. However, this is necessarily a much more restrictive model than the adaptive
leakage model, where the leakage may depend on the parameters on the system. To circumvent the impos-
sibility result in the adaptive leakage model, we incorporate some assumptions in our security model for
LR-NIKE. In particular, we assume that every party participating in a NIKE protocol is equipped with a leak-
freehardware componentwhich canbeused to store a very small part of their public key. The leakage function
can access the public keys of all the parties, except the components stored in the leak-free hardware. This

S. Chakraborty et al., New approach to practical leakage-resilient PKC  181S. Chakraborty et al., New approach to practical leakage-resilient PKC | 9

and Y are computationally indistinguishable, we write X ≈c Y. We refer to Appendix A.1 for the definitions
of min-entropy, average conditional min-entropy, randomness extractors and basic results related to them.

2.2 Underlying primitives for our constructions

For our construction of NIKE in the bounded-memory leakage setting, we require a bounded leakage-resilient
chameleon hash function (BLR-CHF). Leakage-resilient chameleon hash functions (LR-CHF) postulate that it
is hard to find collisions, even when the adversary learns bounded leakage from the secret key/trapdoor. We
refer the reader to Appendix A.2 for the formal definition of LR-CHF. We also need standard pseudo-random
function (PRF) for this construction (please refer to Appendix A.3). A function F is an (εprf , sprf , qprf)-secure
PRF if no adversary of size sprf can distinguish F (instantiated with a random key) from a uniformly random
function, except with negligible probability εprf .

For our construction of leakage-resilient AKE and leakage-resilient LLKE protocols, we also need an exis-
tentially unforgeable signature secure against chosen message and leakage attacks (UF-CMLA). We refer the
reader to Appendix A.4 for the formal definition. In all these definitions, the leakage functions can be arbi-
trarily and adaptively chosen by the adversary, with the only restriction that the output size of those functions
are bounded by some leakage parameter.

3 Assumptions in a bilinear group

In this paper, we consider type-2 pairings over appropriate elliptic curve groups. Let G2 be a type-2 pairing
parameter generation algorithm. It takes as input the security parameter 1κ and outputs

gk = (𝔾𝔾1,𝔾𝔾2,𝔾𝔾T , g1, g2, p, e, ψ)
such that p is a prime, (𝔾𝔾1,𝔾𝔾2,𝔾𝔾T) are a description of multiplicative cyclic groups of the same order p,
g1, g2 are generators of𝔾𝔾1 and𝔾𝔾2, respectively, e : 𝔾𝔾1 × 𝔾𝔾2 → 𝔾𝔾T is a non-degenerate efficiently computable
bilinear map, ψ is an efficiently computable isomorphism ψ : 𝔾𝔾2 → 𝔾𝔾1 and g1 = ψ(g2).
Decisional bilinear assumption over type-2 pairings (DBDH-2): Let gk = (𝔾𝔾1,𝔾𝔾2,𝔾𝔾T , g1, g2, p, e, ψ) be the
output of the parameter generation algorithm G2 as above. We consider the following version of the DBDH-2
problem introduced by Galindo [21] and also used in [19]. Formally, we say that the DBDH-2 assumption
holds for type-2 pairings if the advantage of the adversary ADBDH-2 denoted by Advdbdh-2ADBDH-2 ,G2

(κ) is negligible,
where

Advdbdh-2ADBDH-2 ,G2
(κ) = |Pr[A(g2, ga2, gb2, gc1, e(g1, g2)abc) = 1] − Pr[A(g2, ga2, gb2, gc1, e(g1, g2)z) = 1]|,

where the probability is taken over the random choices of the algorithm G2 and the internal coin tosses of the
algorithmA.

4 Leakage-resilient non-interactive key exchange

In this section, we present the syntax of leakage-resilient non-interactive key exchange (LR-NIKE) protocols.
We denote by PK, SK and SHK the space of public keys, secret keys and shared keys of LR-NIKE, respec-
tively. When we write pki for the i-th public key, we mean that pki is associated with the user with identifier
IDi ∈ IDS, where IDS denotes the identity space⁴. Formally, an LR-NIKE scheme, LR-NIKE, consists of a tuple
of algorithms (NIKEcommon_setup, NIKEgen, NIKEkey) with the functionalities specified below.

4 Note that, we are not in the identity-based setting.

10 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

(i) NIKEcommon_setup(1κ , λ(κ)): The setup algorithm takes as input the security parameter κ and the leak-
age bound λ(κ) that can be tolerated by the NIKE scheme and outputs a set of global parameters params
of the system. We sometimes drop κ and write λ instead of λ(κ) when κ is clear from context.

(ii) NIKEgen(1κ , params): The key generation algorithm is probabilistic and can be executed independently
by all the users. It takes as input the security parameter κ and params and outputs a public/secret key
pair (pk, sk) ∈ PK × SK.

(iii) NIKEkey(pki , skj): The shared key generation algorithm takes the public key of user IDi, namely pki, and
the secret key of user IDj, namely skj, and outputs a shared key shkij ∈ SHK for the two keys or a failure
symbol ⊥ if i = j, i.e., if skj is the secret key corresponding to pki.

The correctness requirement states that, for any two pairs (pki , ski) and (pkj , skj), the shared keys computed
by them should be identical.

4.1 Bounded leakage-resilient non-interactive key exchange (BLR-CKS-heavy)
security model

In this section, we present the formal security model for leakage-resilient non-interactive key exchange (LR-
NIKE). Before defining our security model for LR-NIKE protocols, we present an impossibility result related
to LR-NIKE protocols in Section 4.1.1. In particular, we show that if the leakage function is an arbitrary
polynomial-time computable function having access to the public parameters, we cannot hope to construct
a secure LR-NIKE protocol, even in the bounded memory leakage model. In Section 4.1.2, we show how to
circumvent this impossibility result by enforcing some restrictions on the class of allowable leakage functions
in our BLR-CKS-heavy security model for NIKE.

4.1.1 Impossibility of LR-NIKE protocols

In this section, we present an impossibility result of constructing the LR-NIKE protocol, even in the bounded
leakage model. Then we suitably adapt our security model to circumvent this impossibility result. Let us
assume that the NIKE protocol is run between two users, say, Alice and Bob. The key pairs of Alice and Bob
are (pkA , skA) and (pkB , skB), respectively. In the leakage setting, the adversary may ask bounded leakage
from the secret keys of both Alice and Bob. Note that the shared key between Alice and Bob is a deterministic
function of their own secret keys and the public key of the other party, namely, for Alice (for Bob), the shared
key shkAB is derived asNIKEkey(pkB , skA) (asNIKEkey(pkA , skB)). Now the adversary can set the leakage func-
tion for Alice as L(⋅) = L󸀠󸀠pkB (⋅) = NIKEkey(pkB , ⋅), i.e. the adversary can specify the leakage function as the
shared key derivation function NIKEkey with the public key of the other party hard-coded in it. This allows
the adversary to directly leak from the shared key shkAB established between Alice and Bob. If the adversary
can leak sufficiently many bits of shkAB, then, with very high probability, the adversary can distinguish the
shkAB from a random key.

The above attack demonstrates that if we allow the leakage function to be arbitrary polynomial-time
computable functions with access to all the public parameters (and hence to the public keys of all the par-
ties) of the system, it is impossible to have a secure instantiation of an LR-NIKE protocol. Hence we need
to enforce some meaningful restrictions on the leakage functions. In particular, one may assume that the
leakage functions are not allowed to access the public parameters of the system. This can be enforced by hav-
ing the adversary specify the set of leakage functions before receiving the public parameters, the so-called
“non-adaptive” leakage model. However, this is necessarily a much more restrictive model than the adaptive
leakage model, where the leakage may depend on the parameters on the system. To circumvent the impos-
sibility result in the adaptive leakage model, we incorporate some assumptions in our security model for
LR-NIKE. In particular, we assume that every party participating in a NIKE protocol is equipped with a leak-
freehardware componentwhich canbeused to store a very small part of their public key. The leakage function
can access the public keys of all the parties, except the components stored in the leak-free hardware. This

182  S. Chakraborty et al., New approach to practical leakage-resilient PKCS. Chakraborty et al., New approach to practical leakage-resilient PKC | 11

essentially provides a way to shield some part of the public key from the view of the adversary. The informa-
tion that is stored in the leak-free hardware is implementation-specific. However, we stress that the leak-free
hardware should be used in a minimal way in any LR-NIKE protocol⁵. Also, note that if we store the entire
public key in the leak-free hardware, then our model is essentially equivalent to the non-adaptive leakage
model. Hence our security model for LR-NIKE can be seen as a convex combination of the non-adaptive and
adaptive leakage model, depending on the information that is stored in the leak-free hardware.

Lastly, we note that the above impossibility results do not carry forward to the setting of (interactive) AKE
protocols. This is because the shared key between two parties in an AKE protocol does not only depend on
the long-term keys of the parties, but also depends on the ephemeral secret and public keys. Hence, in this
case, the leakage functions may be allowed to access the public keys of all the parties.

4.1.2 BLR-CKS-heavy security model for LR-NIKE

We model every party (including the adversary) as a probabilistic polynomial-time Turing machine (PPTM).
In addition, we assume that all the legitimate parties involved in the protocol have access to an oracle tape,
each per party. When required, the parties can enter into a query phase and can look up the response on its
corresponding oracle tape. After obtaining the response, the parties can continue with the execution of the
protocol.⁶ Moreover, we assume that the adversary cannot read the contents of the oracle tape. In reality, the
oracle tapemodels the leak-free hardware device available to each party. Equippedwith this, we next present
our BLR-CKS-heavy model for NIKE.

Our securitymodel of LR-NIKE can be seen as generalization of the CKS-heavy security model introduced
by Freire et al. [19] to appropriately model key leakage attacks. We assume that the adversary is not allowed
to register the same public key more than once. In practice, this can easily be ensured by requiring the certi-
fication authority (CA) to check for consistency whenever an individual attempt to register a public key in the
system. So, in the leakage-free scenario, this settingwas also considered in thework of Freire et al. [19], which
they called the Simplified(S)-NIKE. Our model allows the adversary to register arbitrary public keys into the
system, provided they are distinct from each other and from the public keys of the honestly registered parties.
The adversary can also issue Extract queries to learn the private keys corresponding to the honestly gener-
ated public keys. The adversary can also learn the shared key between two honestly generated parties (via
HonestReveal query) as long as both of them are not involved in the challenge/Test query. We also allow the
adversary to learn the shared key between an honest party and a corrupt party (via CorruptReveal query).
Apart from the above queries, the BLR-CKS-heavy model allows the adversary to obtain a bounded amount
of leakage of the secret/private keys of the parties. Finally, in the Test query, the adversary has to distinguish
the real shared key between two honest parties from a random shared key. To prevent trivial wins, we enforce
some natural restrictions on the Test query which we call the validity conditions. We also note that, once the
test query is asked by the adversary, he is not allowed to make further leakage queries on the corresponding
parties involved in the test query (modeling before-the-fact leakage).

Remark 4.1 (Extract query vs. Leakage queries). By issuing the Extract query, the adversary can learn the
secret key of a party entirely. Separately, by issuing leakage queries the adversary gets a bounded amount
of leakage from the secret key. It may seem paradoxical to consider both Extract as well as Leakage queries at
the same time. However, there are good reasons to consider both.

A non-leakage version of the BLR-CKS-heavy model allows the adversary to corrupt the honest parties
to obtain the corresponding secret keys. However, it disallows the adversary to corrupt any of the parties
involved in the Test query. This is a natural restriction since corrupting any of the parties involved in the
test session will also allow the adversary to reconstruct the shared key of the test session and hence win

5 In our construction, we use the leak-free hardware only to store a short seed used for randomness extraction.
6 In our construction, the oracle tape generates a short random string and stores it in as a response. When required, the parties
can look up the contents of its oracle tape and use the string as a seed for randomness extraction in the LR-NIKE protocol.

12 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

the security game with certainty. But note that, in our BLR-CKS-heavy model, the adversary can also obtain
bounded leakage from the secret keys of the parties involved in the test session in addition to corrupting other
(non-test) honest parties in the system. Hence the BLR-CKS-heavymodel allows the adversary to obtain more
information than a non-leakage version of BLR-CKS-heavy model, namely the CKS-heavy model [19], and
hence is necessarily stronger than the CKS-heavy model.

4.1.3 Adversarial powers

Our BLR-CKS-heavy securitymodel is stated in terms of a security game between a challenger C and an adver-
sary A. The adversary A is modeled as a PPTM algorithm. We denote by ΠU,V the protocol run between
principal U, with intended principal V. Initially, the challenger C runs the NIKEcommon_setup algorithm
to output the set of public parameters params, and gives params to A. The challenger C also chooses a ran-
dom bit b in the beginning of the security game and answers all the legitimate queries of A until A outputs
a bit b󸀠󸀠. The adversaryA is allowed to ask the following queries.
(i) RegisterHonest(1κ , params): This query allows the adversary to register honest parties in the system.

The challenger runs the NIKEgen algorithm to generate a key pair (pkU , skU) and records the tuple
(honest, pkU , skU). It then returns the public key pkU toA. We refer to the parties registered via this query
as honest parties.

(ii) RegisterCorrupt(pkU): This query allows the adversary to register arbitrary corrupt parties in the system.
Here A supplies a public key pkU . The challenger records the tuple (corrupt, pkU ,⊥). We demand that
all the public keys involved in this query are distinct from one another and from the honestly generated
public keys from above. The parties registered via this query are referred to as corrupt.

(iii) Extract(pkU): In this query, the adversaryA supplies the public key pkU of an honest party. The challenger
looks up the corresponding tuple (honest, pkU , skU) and returns the secret key skU toA.

(iv) Reveal(pkU , pkV): This query can be categorized into two types – HonestReveal and CorruptReveal
queries. Here the adversary supplies a pair of public keys pkU and pkV . In the HonestReveal query,
both pkU and pkV are honestly registered, i.e., both of them correspond to honest parties; whereas in
the CorruptReveal query, one of the public keys is registered as honest while the other is registered as
corrupt. The challenger runs the NIKEkey algorithm using the secret key of the honest party (in case of
the HonestReveal query, using the secret key of any one of the parties) and the public key of the other
party, and returns the result toA.

(v) Leakage: In the BLR-CKS-heavy security model, the total amount of leakage from the secret key of the
underlying cryptographic primitives is bounded by the leakage parameter λ = λ(κ). Here the adversaryA
supplies the description of an arbitrary polynomial-time computable function fi ∈ F and a public key pk.
The challenger computes fi(sk), where sk is the secret key corresponding to pk, and returns the output
to A. The class F = {fi}i of leakage functions is defined as fi : {0, 1}∗ → {0, 1}λi(κ), where λi(κ) < λ(κ).
Secondly, the functions fi cannot take as input the values f(pk), where the value f(pk) is stored in a leak-
free hardware component, and f is a function of the public key pk.⁷ The adversaryA can specify multiple
such leakage functions as long as the leakage bound is not violated, i.e., ∑i|fi(sk)| ≤ λ(κ), and fi ∈ F.
Note thatA can obtain λ bits of information/leakage from the secret key from each of the honest parties,
including those involved in the Test queries.

(vi) Test(pkU , pkV): HereA supplies two distinct public keys pkU and pkV that were both registered as honest.
If pkU = pkV , the challenger aborts and returns⊥. Otherwise, it uses the bit b to answer the query. If b = 0,
the challenger runs the NIKEkey algorithm using the public key of one party, say pkU , and the private key
of the other party skV and returns the result to A. If b = 1, the challenger samples a random shared key
from SHK and returns that toA.

7 In our LR-NIKE, the public-key is pk = (pk1, pk2, pk3, pk4, pk5, and F(pk) = pk5.

S. Chakraborty et al., New approach to practical leakage-resilient PKC  183S. Chakraborty et al., New approach to practical leakage-resilient PKC | 11

essentially provides a way to shield some part of the public key from the view of the adversary. The informa-
tion that is stored in the leak-free hardware is implementation-specific. However, we stress that the leak-free
hardware should be used in a minimal way in any LR-NIKE protocol⁵. Also, note that if we store the entire
public key in the leak-free hardware, then our model is essentially equivalent to the non-adaptive leakage
model. Hence our security model for LR-NIKE can be seen as a convex combination of the non-adaptive and
adaptive leakage model, depending on the information that is stored in the leak-free hardware.

Lastly, we note that the above impossibility results do not carry forward to the setting of (interactive) AKE
protocols. This is because the shared key between two parties in an AKE protocol does not only depend on
the long-term keys of the parties, but also depends on the ephemeral secret and public keys. Hence, in this
case, the leakage functions may be allowed to access the public keys of all the parties.

4.1.2 BLR-CKS-heavy security model for LR-NIKE

We model every party (including the adversary) as a probabilistic polynomial-time Turing machine (PPTM).
In addition, we assume that all the legitimate parties involved in the protocol have access to an oracle tape,
each per party. When required, the parties can enter into a query phase and can look up the response on its
corresponding oracle tape. After obtaining the response, the parties can continue with the execution of the
protocol.⁶ Moreover, we assume that the adversary cannot read the contents of the oracle tape. In reality, the
oracle tapemodels the leak-free hardware device available to each party. Equippedwith this, we next present
our BLR-CKS-heavy model for NIKE.

Our securitymodel of LR-NIKE can be seen as generalization of the CKS-heavy security model introduced
by Freire et al. [19] to appropriately model key leakage attacks. We assume that the adversary is not allowed
to register the same public key more than once. In practice, this can easily be ensured by requiring the certi-
fication authority (CA) to check for consistency whenever an individual attempt to register a public key in the
system. So, in the leakage-free scenario, this settingwas also considered in thework of Freire et al. [19], which
they called the Simplified(S)-NIKE. Our model allows the adversary to register arbitrary public keys into the
system, provided they are distinct from each other and from the public keys of the honestly registered parties.
The adversary can also issue Extract queries to learn the private keys corresponding to the honestly gener-
ated public keys. The adversary can also learn the shared key between two honestly generated parties (via
HonestReveal query) as long as both of them are not involved in the challenge/Test query. We also allow the
adversary to learn the shared key between an honest party and a corrupt party (via CorruptReveal query).
Apart from the above queries, the BLR-CKS-heavy model allows the adversary to obtain a bounded amount
of leakage of the secret/private keys of the parties. Finally, in the Test query, the adversary has to distinguish
the real shared key between two honest parties from a random shared key. To prevent trivial wins, we enforce
some natural restrictions on the Test query which we call the validity conditions. We also note that, once the
test query is asked by the adversary, he is not allowed to make further leakage queries on the corresponding
parties involved in the test query (modeling before-the-fact leakage).

Remark 4.1 (Extract query vs. Leakage queries). By issuing the Extract query, the adversary can learn the
secret key of a party entirely. Separately, by issuing leakage queries the adversary gets a bounded amount
of leakage from the secret key. It may seem paradoxical to consider both Extract as well as Leakage queries at
the same time. However, there are good reasons to consider both.

A non-leakage version of the BLR-CKS-heavy model allows the adversary to corrupt the honest parties
to obtain the corresponding secret keys. However, it disallows the adversary to corrupt any of the parties
involved in the Test query. This is a natural restriction since corrupting any of the parties involved in the
test session will also allow the adversary to reconstruct the shared key of the test session and hence win

5 In our construction, we use the leak-free hardware only to store a short seed used for randomness extraction.
6 In our construction, the oracle tape generates a short random string and stores it in as a response. When required, the parties
can look up the contents of its oracle tape and use the string as a seed for randomness extraction in the LR-NIKE protocol.

12 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

the security game with certainty. But note that, in our BLR-CKS-heavy model, the adversary can also obtain
bounded leakage from the secret keys of the parties involved in the test session in addition to corrupting other
(non-test) honest parties in the system. Hence the BLR-CKS-heavymodel allows the adversary to obtain more
information than a non-leakage version of BLR-CKS-heavy model, namely the CKS-heavy model [19], and
hence is necessarily stronger than the CKS-heavy model.

4.1.3 Adversarial powers

Our BLR-CKS-heavy securitymodel is stated in terms of a security game between a challenger C and an adver-
sary A. The adversary A is modeled as a PPTM algorithm. We denote by ΠU,V the protocol run between
principal U, with intended principal V. Initially, the challenger C runs the NIKEcommon_setup algorithm
to output the set of public parameters params, and gives params to A. The challenger C also chooses a ran-
dom bit b in the beginning of the security game and answers all the legitimate queries of A until A outputs
a bit b󸀠󸀠. The adversaryA is allowed to ask the following queries.
(i) RegisterHonest(1κ , params): This query allows the adversary to register honest parties in the system.

The challenger runs the NIKEgen algorithm to generate a key pair (pkU , skU) and records the tuple
(honest, pkU , skU). It then returns the public key pkU toA. We refer to the parties registered via this query
as honest parties.

(ii) RegisterCorrupt(pkU): This query allows the adversary to register arbitrary corrupt parties in the system.
Here A supplies a public key pkU . The challenger records the tuple (corrupt, pkU ,⊥). We demand that
all the public keys involved in this query are distinct from one another and from the honestly generated
public keys from above. The parties registered via this query are referred to as corrupt.

(iii) Extract(pkU): In this query, the adversaryA supplies the public key pkU of an honest party. The challenger
looks up the corresponding tuple (honest, pkU , skU) and returns the secret key skU toA.

(iv) Reveal(pkU , pkV): This query can be categorized into two types – HonestReveal and CorruptReveal
queries. Here the adversary supplies a pair of public keys pkU and pkV . In the HonestReveal query,
both pkU and pkV are honestly registered, i.e., both of them correspond to honest parties; whereas in
the CorruptReveal query, one of the public keys is registered as honest while the other is registered as
corrupt. The challenger runs the NIKEkey algorithm using the secret key of the honest party (in case of
the HonestReveal query, using the secret key of any one of the parties) and the public key of the other
party, and returns the result toA.

(v) Leakage: In the BLR-CKS-heavy security model, the total amount of leakage from the secret key of the
underlying cryptographic primitives is bounded by the leakage parameter λ = λ(κ). Here the adversaryA
supplies the description of an arbitrary polynomial-time computable function fi ∈ F and a public key pk.
The challenger computes fi(sk), where sk is the secret key corresponding to pk, and returns the output
to A. The class F = {fi}i of leakage functions is defined as fi : {0, 1}∗ → {0, 1}λi(κ), where λi(κ) < λ(κ).
Secondly, the functions fi cannot take as input the values f(pk), where the value f(pk) is stored in a leak-
free hardware component, and f is a function of the public key pk.⁷ The adversaryA can specify multiple
such leakage functions as long as the leakage bound is not violated, i.e., ∑i|fi(sk)| ≤ λ(κ), and fi ∈ F.
Note thatA can obtain λ bits of information/leakage from the secret key from each of the honest parties,
including those involved in the Test queries.

(vi) Test(pkU , pkV): HereA supplies two distinct public keys pkU and pkV that were both registered as honest.
If pkU = pkV , the challenger aborts and returns⊥. Otherwise, it uses the bit b to answer the query. If b = 0,
the challenger runs the NIKEkey algorithm using the public key of one party, say pkU , and the private key
of the other party skV and returns the result to A. If b = 1, the challenger samples a random shared key
from SHK and returns that toA.

7 In our LR-NIKE, the public-key is pk = (pk1, pk2, pk3, pk4, pk5, and F(pk) = pk5.

184  S. Chakraborty et al., New approach to practical leakage-resilient PKCS. Chakraborty et al., New approach to practical leakage-resilient PKC | 13

A’s queries may be made adaptively and are arbitrary in number. However, to prevent trivial wins, the adver-
sary should not be allowed to make certain queries to the parties involved in the Test query. Wemodel this by
requiring the Test query to be valid. We next give the definition of validity in our BLR-CKS-heavy model (see
Definition 4.2).

Definition 4.2 (λ-BLR-CKS-heavy validity). We say that the Test query ΠU,V between two parties U and V with
public-secret key pairs (pkU , skU) and (pkV , skV), respectively, is valid in the BLR-CKS-heavy model if the
following conditions hold.
(i) The adversaryA is not allowed to ask Extract(pkU) or Extract(pkV) queries.
(ii) The adversaryA is not allowed to ask HonestReveal(pkU , pkV) or HonestReveal(pkV , pkU) queries.
(iii) The total output length of all the leakage queries by A to each party involved in the Test query, i.e., U

and V, is at most λ(κ), i.e., ∑i|fi(skU)| ≤ λ(κ) and ∑i|fi(skV)| ≤ λ(κ), and we require that fi ∈ F, where F
is as defined above.

4.1.4 Security game and security definition

Definition 4.3 (BLR-CKS-heavy security game). The security of aNIKEprotocol in the generic (BLR-CKS-heavy
model is definedusing the following security game,which is played by a PPT adversaryA against the protocol
challenger C.
∙ Stage 1: The challengerC runs theNIKEcommon_setup algorithm to output the global parameters params

and returns them toA.
∙ Stage 2: A may ask any number of RegisterHonest, RegisterCorrupt, Extract, HonestReveal, CorruptRe-

veal, and Leakage queries adaptively.
∙ Stage 3: At any point of the game, Amay ask a Test query that is λ-BLR-CKS-heavy valid. The challenger

chooses a random bit b to respond to this query. If b = 0, the actual shared key between the respective
pairs of parties involved in the corresponding test query is returned toA. If b = 1, the challenger samples
a random shared key from SHK, records it for later and returns that toA.

∙ Stage 4: A may continue asking RegisterHonest, RegisterCorrupt, Extract, HonestReveal, CorruptReveal
and Leakage queries adaptively, provided the Test query remains valid.

∙ Stage 5: At some point, A outputs the bit b󸀠󸀠 ← {0, 1}, which is its guess of the value b. Then A wins if
b󸀠󸀠 = b.

Let SuccA denote the event thatA wins the above security game (Definition 4.3).

Definition 4.4 (BLR-CKS-heavy security). Let qH, qC, qE, qHR and qCR denote the number of RegisterHonest,
RegisterCorrupt, Extract, HonestReveal and CorruptReveal queries, respectively. A NIKE protocol Π is said to
be BLR-CKS-heavy secure if there is no PPT algorithmA that can win the above BLR-CKS-heavy security game
with non-negligible advantage. The advantage of an adversaryA is defined as

AdvBLR-CKS-heavyΠ,A (κ, qH, qC, qE, qHR, qCR) = |2Pr(SuccA) − 1|.

Remark 4.5. We remark that our BLR-CKS-heavy security model for NIKE can be generalized in a straightfor-
wardmanner to incorporate continuousmemory leakage (CML) attacks. However, we do not give our security
model for NIKE in the CML setting since we mainly focus on the construction of BLR-NIKE in this work. We
note that a recent work [10] already solved the open problem of constructing LR-NIKE in the CML setting.
However, they assume additional restrictions on the leakage model, namely a split-state model (where the
secret key is split into multiple parts and it is assumed that the adversary can leak from both these parts, but
in an independent manner) and also does not achieve the optimal leakage rate (i.e. 1 − o(1)). We leave the
construction of LR-NIKE in the CML setting in the non-split state model achieving optimal leakage rate as an
exciting open problem.

14 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

Party IDA Party IDB

NIKEcommon_setup(1κ)
gk $← G2(1κ), where gk = (𝔾𝔾1,𝔾𝔾2,𝔾𝔾T , g1, g2, p, e, ψ);
α, β, γ, δ $← 𝔾𝔾∗1;
(hk, ck) ← Cham.KeyGen(1κ , λ);
params := (gk, α, β, γ, δ, hk);
return params

NIKEgen(1κ , params)
xA , rA $← ℤp; r󸀠󸀠A $← Rcham; xB , rB $← ℤp; r󸀠󸀠B $← Rcham;
sample sA $← {0, 1}s, and store sA in leak-free component; sample sB $← {0, 1}s, and store sB in leak-free component;
x̂A ← Ext(xA , sA); x̂B ← Ext(xB , sB);
x󸀠󸀠A ← Fx̂A (rA) + F 󸀠󸀠rA (1κ); x󸀠󸀠B ← Fx̂B (rB) + F 󸀠󸀠rB (1κ);
ZA ← g x󸀠󸀠A

2 ; ZB ← g x󸀠󸀠B
2 ;

tA ← ChamHhk(ZA‖IDA; r󸀠󸀠A); tB ← ChamHhk(ZB‖IDB; r󸀠󸀠B);
YA ← αβtA γtA2 ; XA ← Y x󸀠󸀠A

A YB ← αβtB γtB2 ; XB ← Y x󸀠󸀠B
B ;

pkA ← (XA , ZA , r󸀠󸀠A , rA , sA); skA ← xA pkB ← (XB , ZB , r󸀠󸀠B , rB , sB); skB ← xB

NIKEkey(pkB , skA) NIKEkey(pkA , skB)
if pkA = pkB, return ⊥; if pkB = pkA, return ⊥;
parse pkB as (XB , ZB , r󸀠󸀠B , rB); parse pkA as (XA , ZA , r󸀠󸀠A , rA);
tB ← ChamHhk(ZB‖IDB; r󸀠󸀠B); tA ← ChamHhk(ZA‖IDA; r󸀠󸀠A);
if e(XB , g2) ̸= e(αβtB γtB2 , ZB), then shkA,B ← ⊥; if e(XA , g2) ̸= e(αβtA γtA2 , ZA), then shkA,B ← ⊥;
x󸀠󸀠A ← Fx̂A (rA) + F 󸀠󸀠rA (1κ); x󸀠󸀠B ← Fx̂B (rB) + F 󸀠󸀠rB (1κ);
shkAB ← e(δx󸀠󸀠A , ZB); shkAB ← e(δx󸀠󸀠B , ZA)

Table 3: LR-NIKE protocol in the bounded leakage model (BLR-NIKE).

4.2 Constructions of leakage-resilient non-interactive key exchange

In this section, we show our construction of leakage-resilient NIKE in the bounded-memory leakage model.
We show that the pairing-based NIKE protocol of Freire et al. [19] (in the standard model), which is secure
in the non-leakage setting, is in fact insecure in the bounded memory leakage model, even if the adversary
obtains a single bit of leakage on the secret key of the parties. This is illustrated in Appendix C.

4.2.1 Protocol BLR-NIKE: Construction of NIKE in the bounded-memory leakage model

Table 3 shows our construction of NIKE in the bounded-memory leakage model. The starting point of our
construction is the NIKE protocol of [19]. Let G2 be a type-2 pairing parameter generation algorithm, i.e.,
it outputs gk = (𝔾𝔾1,𝔾𝔾2,𝔾𝔾T , g1, g2, p, e, ψ). Let ChamHhk : {0, 1}∗ × Rcham → ℤp be a (bounded) leakage-
resilient chameleon hash function tolerating leakage bound up to λ(κ) (denoted as λ-LR-CHF) indexed with
the evaluation/hashing key hk, and Rcham denotes the randomness space of the hash function. Also, let
F : {0, 1}ℓ(κ) × ℤp → ℤp, F󸀠󸀠 : ℤp × {0, 1}κ → ℤp be (εprf , sprf , qprf) and (ε󸀠󸀠prf , s󸀠󸀠prf , q󸀠󸀠prf) secure PRF families,
and let Ext : ℤp × {0, 1}s → {0, 1}ℓ(κ) be an average-case (v, ε)-extractor, with v ≪ log p and s = ω(log κ).
Namely, it has log p bits of input, ω(log κ)-bit seed s and ℓ(κ)-bit outputs, and for a random seed and input
with v bits of min-entropy, the output is ε-away from a uniform ℓ(κ)-bit string. We can set the parameters
appropriately to achieve this.

Setting the parameters of the extractor: For our construction, the seed s of the extractor Ext is stored in
the leak-free hardware component. If the length of the seed s is O(log κ), the adversary can enumerate
over the entire seed space itself, and the adversary can simply ask for leakage functions on the private
key with enumeration of all possible seeds. This necessitates the length of s to be at least ω(log κ). The
classical result of [34] shows that, for every n, k, ε, there exist (k, ε)-extractors that use a seed of length

S. Chakraborty et al., New approach to practical leakage-resilient PKC  185S. Chakraborty et al., New approach to practical leakage-resilient PKC | 13

A’s queries may be made adaptively and are arbitrary in number. However, to prevent trivial wins, the adver-
sary should not be allowed to make certain queries to the parties involved in the Test query. Wemodel this by
requiring the Test query to be valid. We next give the definition of validity in our BLR-CKS-heavy model (see
Definition 4.2).

Definition 4.2 (λ-BLR-CKS-heavy validity). We say that the Test query ΠU,V between two parties U and V with
public-secret key pairs (pkU , skU) and (pkV , skV), respectively, is valid in the BLR-CKS-heavy model if the
following conditions hold.
(i) The adversaryA is not allowed to ask Extract(pkU) or Extract(pkV) queries.
(ii) The adversaryA is not allowed to ask HonestReveal(pkU , pkV) or HonestReveal(pkV , pkU) queries.
(iii) The total output length of all the leakage queries by A to each party involved in the Test query, i.e., U

and V, is at most λ(κ), i.e., ∑i|fi(skU)| ≤ λ(κ) and ∑i|fi(skV)| ≤ λ(κ), and we require that fi ∈ F, where F
is as defined above.

4.1.4 Security game and security definition

Definition 4.3 (BLR-CKS-heavy security game). The security of aNIKEprotocol in the generic (BLR-CKS-heavy
model is definedusing the following security game,which is played by a PPT adversaryA against the protocol
challenger C.
∙ Stage 1: The challengerC runs theNIKEcommon_setup algorithm to output the global parameters params

and returns them toA.
∙ Stage 2: A may ask any number of RegisterHonest, RegisterCorrupt, Extract, HonestReveal, CorruptRe-

veal, and Leakage queries adaptively.
∙ Stage 3: At any point of the game, Amay ask a Test query that is λ-BLR-CKS-heavy valid. The challenger

chooses a random bit b to respond to this query. If b = 0, the actual shared key between the respective
pairs of parties involved in the corresponding test query is returned toA. If b = 1, the challenger samples
a random shared key from SHK, records it for later and returns that toA.

∙ Stage 4: A may continue asking RegisterHonest, RegisterCorrupt, Extract, HonestReveal, CorruptReveal
and Leakage queries adaptively, provided the Test query remains valid.

∙ Stage 5: At some point, A outputs the bit b󸀠󸀠 ← {0, 1}, which is its guess of the value b. Then A wins if
b󸀠󸀠 = b.

Let SuccA denote the event thatA wins the above security game (Definition 4.3).

Definition 4.4 (BLR-CKS-heavy security). Let qH, qC, qE, qHR and qCR denote the number of RegisterHonest,
RegisterCorrupt, Extract, HonestReveal and CorruptReveal queries, respectively. A NIKE protocol Π is said to
be BLR-CKS-heavy secure if there is no PPT algorithmA that can win the above BLR-CKS-heavy security game
with non-negligible advantage. The advantage of an adversaryA is defined as

AdvBLR-CKS-heavyΠ,A (κ, qH, qC, qE, qHR, qCR) = |2Pr(SuccA) − 1|.

Remark 4.5. We remark that our BLR-CKS-heavy security model for NIKE can be generalized in a straightfor-
wardmanner to incorporate continuousmemory leakage (CML) attacks. However, we do not give our security
model for NIKE in the CML setting since we mainly focus on the construction of BLR-NIKE in this work. We
note that a recent work [10] already solved the open problem of constructing LR-NIKE in the CML setting.
However, they assume additional restrictions on the leakage model, namely a split-state model (where the
secret key is split into multiple parts and it is assumed that the adversary can leak from both these parts, but
in an independent manner) and also does not achieve the optimal leakage rate (i.e. 1 − o(1)). We leave the
construction of LR-NIKE in the CML setting in the non-split state model achieving optimal leakage rate as an
exciting open problem.

14 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

Party IDA Party IDB

NIKEcommon_setup(1κ)
gk $← G2(1κ), where gk = (𝔾𝔾1,𝔾𝔾2,𝔾𝔾T , g1, g2, p, e, ψ);
α, β, γ, δ $← 𝔾𝔾∗1;
(hk, ck) ← Cham.KeyGen(1κ , λ);
params := (gk, α, β, γ, δ, hk);
return params

NIKEgen(1κ , params)
xA , rA $← ℤp; r󸀠󸀠A $← Rcham; xB , rB $← ℤp; r󸀠󸀠B $← Rcham;
sample sA $← {0, 1}s, and store sA in leak-free component; sample sB $← {0, 1}s, and store sB in leak-free component;
x̂A ← Ext(xA , sA); x̂B ← Ext(xB , sB);
x󸀠󸀠A ← Fx̂A (rA) + F 󸀠󸀠rA (1κ); x󸀠󸀠B ← Fx̂B (rB) + F 󸀠󸀠rB (1κ);
ZA ← g x󸀠󸀠A

2 ; ZB ← g x󸀠󸀠B
2 ;

tA ← ChamHhk(ZA‖IDA; r󸀠󸀠A); tB ← ChamHhk(ZB‖IDB; r󸀠󸀠B);
YA ← αβtA γtA2 ; XA ← Y x󸀠󸀠A

A YB ← αβtB γtB2 ; XB ← Y x󸀠󸀠B
B ;

pkA ← (XA , ZA , r󸀠󸀠A , rA , sA); skA ← xA pkB ← (XB , ZB , r󸀠󸀠B , rB , sB); skB ← xB

NIKEkey(pkB , skA) NIKEkey(pkA , skB)
if pkA = pkB, return ⊥; if pkB = pkA, return ⊥;
parse pkB as (XB , ZB , r󸀠󸀠B , rB); parse pkA as (XA , ZA , r󸀠󸀠A , rA);
tB ← ChamHhk(ZB‖IDB; r󸀠󸀠B); tA ← ChamHhk(ZA‖IDA; r󸀠󸀠A);
if e(XB , g2) ̸= e(αβtB γtB2 , ZB), then shkA,B ← ⊥; if e(XA , g2) ̸= e(αβtA γtA2 , ZA), then shkA,B ← ⊥;
x󸀠󸀠A ← Fx̂A (rA) + F 󸀠󸀠rA (1κ); x󸀠󸀠B ← Fx̂B (rB) + F 󸀠󸀠rB (1κ);
shkAB ← e(δx󸀠󸀠A , ZB); shkAB ← e(δx󸀠󸀠B , ZA)

Table 3: LR-NIKE protocol in the bounded leakage model (BLR-NIKE).

4.2 Constructions of leakage-resilient non-interactive key exchange

In this section, we show our construction of leakage-resilient NIKE in the bounded-memory leakage model.
We show that the pairing-based NIKE protocol of Freire et al. [19] (in the standard model), which is secure
in the non-leakage setting, is in fact insecure in the bounded memory leakage model, even if the adversary
obtains a single bit of leakage on the secret key of the parties. This is illustrated in Appendix C.

4.2.1 Protocol BLR-NIKE: Construction of NIKE in the bounded-memory leakage model

Table 3 shows our construction of NIKE in the bounded-memory leakage model. The starting point of our
construction is the NIKE protocol of [19]. Let G2 be a type-2 pairing parameter generation algorithm, i.e.,
it outputs gk = (𝔾𝔾1,𝔾𝔾2,𝔾𝔾T , g1, g2, p, e, ψ). Let ChamHhk : {0, 1}∗ × Rcham → ℤp be a (bounded) leakage-
resilient chameleon hash function tolerating leakage bound up to λ(κ) (denoted as λ-LR-CHF) indexed with
the evaluation/hashing key hk, and Rcham denotes the randomness space of the hash function. Also, let
F : {0, 1}ℓ(κ) × ℤp → ℤp, F󸀠󸀠 : ℤp × {0, 1}κ → ℤp be (εprf , sprf , qprf) and (ε󸀠󸀠prf , s󸀠󸀠prf , q󸀠󸀠prf) secure PRF families,
and let Ext : ℤp × {0, 1}s → {0, 1}ℓ(κ) be an average-case (v, ε)-extractor, with v ≪ log p and s = ω(log κ).
Namely, it has log p bits of input, ω(log κ)-bit seed s and ℓ(κ)-bit outputs, and for a random seed and input
with v bits of min-entropy, the output is ε-away from a uniform ℓ(κ)-bit string. We can set the parameters
appropriately to achieve this.

Setting the parameters of the extractor: For our construction, the seed s of the extractor Ext is stored in
the leak-free hardware component. If the length of the seed s is O(log κ), the adversary can enumerate
over the entire seed space itself, and the adversary can simply ask for leakage functions on the private
key with enumeration of all possible seeds. This necessitates the length of s to be at least ω(log κ). The
classical result of [34] shows that, for every n, k, ε, there exist (k, ε)-extractors that use a seed of length

186  S. Chakraborty et al., New approach to practical leakage-resilient PKCS. Chakraborty et al., New approach to practical leakage-resilient PKC | 15

d = log(n − k) + 2 log(1ε) + O(1) and output m = k + d − 2 log(1ε) bits. In our construction, n = log p (since
the input of Ext is from ℤp), k = n − λ = log p − λ (since a leakage of λ bits can reduce the entropy of the
source by at most λ bits). Hence the seed is of the length s = log(λ) + 2 log(1ε) + O(1). By appropriately setting
the value of p, λ and ε, one can show that s ≥ ω(log κ).
On the leak-freehardware assumption: Asalready stated inSection4.1.2,we consider anadditional assump-
tion that each party involved in our LR-NIKE protocol has access to a leak-free secure hardware component.
In our LR-NIKE construction, each party needs to store a short random seed (which is part of the public key of
that party) corresponding to every other partywithwhomasharedkeywill be established. The above assump-
tion seems to be necessary for our protocol since, otherwise, the adversary could leak from the extracted value
itself by knowing the seed. However, as discussed in Section 4.1.1, the leak-free hardware assumption seems
to be necessary for the construction for any secure LR-NIKE protocol, unless one sacrifices the leakage model
further (non-adaptive leakage).

Theorem 4.6. Let ChamHhk be a family of bounded leakage-resilient chameleon hash function (BLR-CHF). Let
F and F󸀠󸀠 be (εprf , sprf , qprf) and (ε󸀠󸀠prf , s󸀠󸀠prf , q󸀠󸀠prf) secure PRFs. Let Ext be a (v, ε)-strong average case randomness
extractor with seed length at least ω(log κ), and let p be the order of the underlying groups 𝔾𝔾1, 𝔾𝔾2 and 𝔾𝔾T.
Then the above NIKE protocol BLR-NIKE is BLR-CKS-heavy-secure assuming the intractability of the DBDH-2
assumption with respect to the parameter generator G2. In particular, let A be an adversary against the NIKE
protocol BLR-NIKE in the BLR-CKS-heavy security model making qH the number of RegisterHonest user queries.
Then, using it, we can construct an adversaryADBDH-2 against the DBDH-2 problem such that

AdvBLR-CKS-heavyBLR-NIKE,A (κ) ≤ q2H(2ε + εprf + ε󸀠󸀠prf + AdvcollA,ChamH(κ) + Advdbdh-2ADBDH-2 ,G2
(κ)).

Proof. The proof of this theorem will proceed via the game hopping technique [38]: define a sequence of
games, and relate the adversary’s advantage of distinguishing each game from the previous game to the
advantage of breaking one of the underlying cryptographic primitives. Let Adv󲆇󲆇δ(A) denote the advantage
of the adversaryA in Game δ.

Game 0. This is the original security gamewith adversaryADBDH-2. When the Test query is asked, the Game 0
challenger chooses a random bit b $← {0, 1}. If b = 0, the real shared key is given to A; otherwise, a random
value chosen from the shared key space is given.

AdvGame0 (A) = AdvBLR-CKS-heavyBLR-NIKE,A (κ).
Game 1. Initially,ADBDH-2 chooses two identities IDA , IDB ∈ [qH], where qH denotes the number of Register-
Honest queries made by ANIKE. Effectively, ADBDH-2 is guessing that IDA and IDB to be honestly registered by
ANIKE will be involved in the Test query later.WhenANIKEmakes its Test query on a pair of identities {IDI , IDJ},
ADBDH-2 checks if {IDI , IDJ} = {IDA , IDB}. If so, it continues with the simulation and gives the result to ANIKE;
else it aborts the simulation.

AdvGame1 (A) ≥ AdvGame0 (A)/q2H.
Game2. This game is identical to the previous game, except that the challenger changes theway how the out-
put of the extractor is computed. In particular, instead of computing x̂A ← Ext(xA , sA) and x̂B ← Ext(xB , sB),
the challenger chooses a uniformly random x̂A , x̂B ← {0, 1}ℓ(κ). Game 0 and Game 1 are indistinguishable
by the property of the strong average case randomness extractor. Suppose that the adversary obtains at
most λ = λ(κ) bits of leakage from the secret keys xA and xB of parties A and B, respectively. Since Ext
can work with inputs that have min-entropy v ≪ log p, even given the bounded leakage of λ bits, we have
(xA , sA , Ext(xA , sA)) ≈ε (xA , sA , Uℓ(κ)) and (xB , sB , Ext(xB , sB)) ≈ε (xB , sB , Uℓ(κ)), where Uℓ(κ) denotes the
uniform distribution over {0, 1}ℓ(κ). Recall that, in our construction, the seeds sA and sB are stored in the
leak-free hardware component (i.e., sA and sB are stored in the oracle tape of party IDA and IDB, respectively),
and hence are outside the view of the adversary. Thus it is possible to replace the output the extractor with
a uniformly random value in this game. This is the only place where we require the leak-free assumption in
our proof.

|AdvGame2 (A) − AdvGame1 (A)| ≤ 2ε.

16 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

Game 3. This game is identical to the previous game, except that the challenger changes the way how the
PRFs are computed. In particular, instead of computing x󸀠󸀠A ← Fx̂A (rA) + F󸀠󸀠rA (1κ) and x󸀠󸀠B ← Fx̂B (rB) + F󸀠󸀠rB (1κ),
the challenger computes x󸀠󸀠A ← RF(rA) + F󸀠󸀠rA (1κ) and x󸀠󸀠B ← RF(rB) + F󸀠󸀠rB (1κ), where RF is random function
with the same range as F. If A can distinguish the difference between Game 2 and Game 3, then A can be
used as a subroutine to construct a distinguisherD between the PRF F : {0, 1}ℓ(κ) × ℤp → ℤp and a random
function RF.

|AdvGame3 (A) − AdvGame2 (A)| ≤ εprf + ε󸀠󸀠prf .
Game 4. This game is identical to the previous game, except that the challenger now samples x󸀠󸀠A and x󸀠󸀠B
randomly. In particular, instead of computing x󸀠󸀠A ← Fx̂A (rA) + F󸀠󸀠rA (1κ) and x󸀠󸀠B ← Fx̂B (rB) + F󸀠󸀠rB (1κ), the chal-
lenger samples x󸀠󸀠A , x󸀠󸀠B

$← ℤp. Note that x󸀠󸀠A and x󸀠󸀠B are identically distributed in both Game 3 and Game 4, and
hence both these games are identical from the view of an adversary.

AdvGame4 (A) = AdvGame3 (A).
Game 5. In this game, the challenger changes the way in which it answers RegisterCorrupt queries. In
particular, let IDA and IDB be identities of two honest parties involved in the Test query with public keys
(XA , ZA , r󸀠󸀠A , rA , sA) and (XB , ZB , r󸀠󸀠B , rB , sB), respectively. Let IDD be the identity of the party with public key
(XD , ZD , r󸀠󸀠D , rD) that is subject to a RegisterCorrupt query. If

tD = ChamHhk(ZA‖IDA; r󸀠󸀠A) or tD = ChamHhk(ZB‖IDB; r󸀠󸀠B),
the challenger aborts. Note that if the above happens, then the challenger has successfully found a collision
of the chameleon hash function. By the difference lemma [37], we have

|AdvGame5 (A) − AdvGame4 (A)| ≤ AdvcollA,ChamH(κ).
Game 6. In this game, the DBDH-2 adversary ADBDH-2 receives as input (g2, ga2, gb2, gc1, T), and its objective
is to determine if T = e(g1, g2)sbc or a random element from𝔾𝔾T , where g1 and g2 are generators of the group
𝔾𝔾1 and𝔾𝔾2, respectively, and a, b, c are random elements fromℤp. We now describe howADBDH-2 sets up the
environment forANIKE and simulates all its queries properly.

The adversary ADBDH-2 runs Cham.KeyGen(1κ , λ) to obtain a key pair for a chameleon hash function,
(hk, ck). It then chooses twomessagesm1,m2 ← {0, 1}∗ and r1, r2 ← Rcham, whereRcham is the randomness
space of the chameleon hash function.ADBDH-2 then computes the values

tA = Cham.Eval(m1; r1) and tB = Cham.Eval(m2; r2).
Let us define a polynomial p(t) = p0 + p1t + p2t2 of degree 2 overℤp such that tA and tB are the roots of

p(t), i.e., p(tA) = 0 and p(tB) = 0. Also, let q(t) = q0 + q1t + q2t2 be a randompolynomial of degree 2 overℤp.
ThenADBDH-2 sets α = (gc1)p0gq01 , β = (gc1)p1gq11 , γ = (gc1)p2gq21 and δ = gc1 (gc1 was obtained as input of the hard
problem instance). Note that, since pi , qi ← ℤp are randomly chosen, the values of α, β and γ are also ran-
dom. Also, note that αβtγt2 = (g1)p1(t)gq(t)1 . In particular, YA = gq(tA)1 and YB = gq(tB)1 (since p(tA) = p(tB) = 0).
ThenADBDH-2 simulates all the queries ofANIKE as follows.
∙ RegisterHonest: WhenADBDH-2 receives as input a RegisterHonest user query fromANIKE for a party with

identity ID, it fist checks whether ID ∈ {IDA , IDB}. Depending upon the result, it does the following:
– If ID ∉ {IDA , IDB},ADBDH-2 runs NIKE.gen to generate a pair of keys (pk, sk) and returns pk toANIKE.
– If ID ∈ {IDA , IDB}, ADBDH-2 does the following. Without loss of generality, let ID = IDA. Now ADBDH-2

uses the trapdoor ck of the chameleon hash to produce r󸀠󸀠A ∈ Rcham such that

Cham.Eval(ga2‖IDA; r󸀠󸀠A) = Cham.Eval(m1; r1).
Note that, by the random trapdoor collisionproperty of the chameleonhash function, r󸀠󸀠A is uniformly
distributed over Rcham and also independent of r1. Similarly, when ID = IDB,ADBDH-2 uses the trap-
door ck to produce r󸀠󸀠B ∈ Rcham such that Cham.Eval(gb2‖IDB; r󸀠󸀠B) = Cham.Eval(m2; r2). The value r󸀠󸀠B is
also uniformly distributed over Rcham and also independent of r2.ADBDH-2 then sets

pkA = (ψ(ga2)q(tA), ga2, r󸀠󸀠A , rA) and pkB = (ψ(gb2)q(tB), gB2 , r󸀠󸀠B , rB),
where rA , rB ← ℤp. Note that these are correct public keys since p(tA) = p(tB) = 0.

S. Chakraborty et al., New approach to practical leakage-resilient PKC  187S. Chakraborty et al., New approach to practical leakage-resilient PKC | 15

d = log(n − k) + 2 log(1ε) + O(1) and output m = k + d − 2 log(1ε) bits. In our construction, n = log p (since
the input of Ext is from ℤp), k = n − λ = log p − λ (since a leakage of λ bits can reduce the entropy of the
source by at most λ bits). Hence the seed is of the length s = log(λ) + 2 log(1ε) + O(1). By appropriately setting
the value of p, λ and ε, one can show that s ≥ ω(log κ).
On the leak-freehardware assumption: Asalready stated inSection4.1.2,we consider anadditional assump-
tion that each party involved in our LR-NIKE protocol has access to a leak-free secure hardware component.
In our LR-NIKE construction, each party needs to store a short random seed (which is part of the public key of
that party) corresponding to every other partywithwhomasharedkeywill be established. The above assump-
tion seems to be necessary for our protocol since, otherwise, the adversary could leak from the extracted value
itself by knowing the seed. However, as discussed in Section 4.1.1, the leak-free hardware assumption seems
to be necessary for the construction for any secure LR-NIKE protocol, unless one sacrifices the leakage model
further (non-adaptive leakage).

Theorem 4.6. Let ChamHhk be a family of bounded leakage-resilient chameleon hash function (BLR-CHF). Let
F and F󸀠󸀠 be (εprf , sprf , qprf) and (ε󸀠󸀠prf , s󸀠󸀠prf , q󸀠󸀠prf) secure PRFs. Let Ext be a (v, ε)-strong average case randomness
extractor with seed length at least ω(log κ), and let p be the order of the underlying groups 𝔾𝔾1, 𝔾𝔾2 and 𝔾𝔾T.
Then the above NIKE protocol BLR-NIKE is BLR-CKS-heavy-secure assuming the intractability of the DBDH-2
assumption with respect to the parameter generator G2. In particular, let A be an adversary against the NIKE
protocol BLR-NIKE in the BLR-CKS-heavy security model making qH the number of RegisterHonest user queries.
Then, using it, we can construct an adversaryADBDH-2 against the DBDH-2 problem such that

AdvBLR-CKS-heavyBLR-NIKE,A (κ) ≤ q2H(2ε + εprf + ε󸀠󸀠prf + AdvcollA,ChamH(κ) + Advdbdh-2ADBDH-2 ,G2
(κ)).

Proof. The proof of this theorem will proceed via the game hopping technique [38]: define a sequence of
games, and relate the adversary’s advantage of distinguishing each game from the previous game to the
advantage of breaking one of the underlying cryptographic primitives. Let Adv󲆇󲆇δ(A) denote the advantage
of the adversaryA in Game δ.

Game 0. This is the original security gamewith adversaryADBDH-2. When the Test query is asked, the Game 0
challenger chooses a random bit b $← {0, 1}. If b = 0, the real shared key is given to A; otherwise, a random
value chosen from the shared key space is given.

AdvGame0 (A) = AdvBLR-CKS-heavyBLR-NIKE,A (κ).
Game 1. Initially,ADBDH-2 chooses two identities IDA , IDB ∈ [qH], where qH denotes the number of Register-
Honest queries made by ANIKE. Effectively, ADBDH-2 is guessing that IDA and IDB to be honestly registered by
ANIKE will be involved in the Test query later.WhenANIKEmakes its Test query on a pair of identities {IDI , IDJ},
ADBDH-2 checks if {IDI , IDJ} = {IDA , IDB}. If so, it continues with the simulation and gives the result to ANIKE;
else it aborts the simulation.

AdvGame1 (A) ≥ AdvGame0 (A)/q2H.
Game2. This game is identical to the previous game, except that the challenger changes theway how the out-
put of the extractor is computed. In particular, instead of computing x̂A ← Ext(xA , sA) and x̂B ← Ext(xB , sB),
the challenger chooses a uniformly random x̂A , x̂B ← {0, 1}ℓ(κ). Game 0 and Game 1 are indistinguishable
by the property of the strong average case randomness extractor. Suppose that the adversary obtains at
most λ = λ(κ) bits of leakage from the secret keys xA and xB of parties A and B, respectively. Since Ext
can work with inputs that have min-entropy v ≪ log p, even given the bounded leakage of λ bits, we have
(xA , sA , Ext(xA , sA)) ≈ε (xA , sA , Uℓ(κ)) and (xB , sB , Ext(xB , sB)) ≈ε (xB , sB , Uℓ(κ)), where Uℓ(κ) denotes the
uniform distribution over {0, 1}ℓ(κ). Recall that, in our construction, the seeds sA and sB are stored in the
leak-free hardware component (i.e., sA and sB are stored in the oracle tape of party IDA and IDB, respectively),
and hence are outside the view of the adversary. Thus it is possible to replace the output the extractor with
a uniformly random value in this game. This is the only place where we require the leak-free assumption in
our proof.

|AdvGame2 (A) − AdvGame1 (A)| ≤ 2ε.

16 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

Game 3. This game is identical to the previous game, except that the challenger changes the way how the
PRFs are computed. In particular, instead of computing x󸀠󸀠A ← Fx̂A (rA) + F󸀠󸀠rA (1κ) and x󸀠󸀠B ← Fx̂B (rB) + F󸀠󸀠rB (1κ),
the challenger computes x󸀠󸀠A ← RF(rA) + F󸀠󸀠rA (1κ) and x󸀠󸀠B ← RF(rB) + F󸀠󸀠rB (1κ), where RF is random function
with the same range as F. If A can distinguish the difference between Game 2 and Game 3, then A can be
used as a subroutine to construct a distinguisherD between the PRF F : {0, 1}ℓ(κ) × ℤp → ℤp and a random
function RF.

|AdvGame3 (A) − AdvGame2 (A)| ≤ εprf + ε󸀠󸀠prf .
Game 4. This game is identical to the previous game, except that the challenger now samples x󸀠󸀠A and x󸀠󸀠B
randomly. In particular, instead of computing x󸀠󸀠A ← Fx̂A (rA) + F󸀠󸀠rA (1κ) and x󸀠󸀠B ← Fx̂B (rB) + F󸀠󸀠rB (1κ), the chal-
lenger samples x󸀠󸀠A , x󸀠󸀠B

$← ℤp. Note that x󸀠󸀠A and x󸀠󸀠B are identically distributed in both Game 3 and Game 4, and
hence both these games are identical from the view of an adversary.

AdvGame4 (A) = AdvGame3 (A).
Game 5. In this game, the challenger changes the way in which it answers RegisterCorrupt queries. In
particular, let IDA and IDB be identities of two honest parties involved in the Test query with public keys
(XA , ZA , r󸀠󸀠A , rA , sA) and (XB , ZB , r󸀠󸀠B , rB , sB), respectively. Let IDD be the identity of the party with public key
(XD , ZD , r󸀠󸀠D , rD) that is subject to a RegisterCorrupt query. If

tD = ChamHhk(ZA‖IDA; r󸀠󸀠A) or tD = ChamHhk(ZB‖IDB; r󸀠󸀠B),
the challenger aborts. Note that if the above happens, then the challenger has successfully found a collision
of the chameleon hash function. By the difference lemma [37], we have

|AdvGame5 (A) − AdvGame4 (A)| ≤ AdvcollA,ChamH(κ).
Game 6. In this game, the DBDH-2 adversary ADBDH-2 receives as input (g2, ga2, gb2, gc1, T), and its objective
is to determine if T = e(g1, g2)sbc or a random element from𝔾𝔾T , where g1 and g2 are generators of the group
𝔾𝔾1 and𝔾𝔾2, respectively, and a, b, c are random elements fromℤp. We now describe howADBDH-2 sets up the
environment forANIKE and simulates all its queries properly.

The adversary ADBDH-2 runs Cham.KeyGen(1κ , λ) to obtain a key pair for a chameleon hash function,
(hk, ck). It then chooses twomessagesm1,m2 ← {0, 1}∗ and r1, r2 ← Rcham, whereRcham is the randomness
space of the chameleon hash function.ADBDH-2 then computes the values

tA = Cham.Eval(m1; r1) and tB = Cham.Eval(m2; r2).
Let us define a polynomial p(t) = p0 + p1t + p2t2 of degree 2 overℤp such that tA and tB are the roots of

p(t), i.e., p(tA) = 0 and p(tB) = 0. Also, let q(t) = q0 + q1t + q2t2 be a randompolynomial of degree 2 overℤp.
ThenADBDH-2 sets α = (gc1)p0gq01 , β = (gc1)p1gq11 , γ = (gc1)p2gq21 and δ = gc1 (gc1 was obtained as input of the hard
problem instance). Note that, since pi , qi ← ℤp are randomly chosen, the values of α, β and γ are also ran-
dom. Also, note that αβtγt2 = (g1)p1(t)gq(t)1 . In particular, YA = gq(tA)1 and YB = gq(tB)1 (since p(tA) = p(tB) = 0).
ThenADBDH-2 simulates all the queries ofANIKE as follows.
∙ RegisterHonest: WhenADBDH-2 receives as input a RegisterHonest user query fromANIKE for a party with

identity ID, it fist checks whether ID ∈ {IDA , IDB}. Depending upon the result, it does the following:
– If ID ∉ {IDA , IDB},ADBDH-2 runs NIKE.gen to generate a pair of keys (pk, sk) and returns pk toANIKE.
– If ID ∈ {IDA , IDB}, ADBDH-2 does the following. Without loss of generality, let ID = IDA. Now ADBDH-2

uses the trapdoor ck of the chameleon hash to produce r󸀠󸀠A ∈ Rcham such that

Cham.Eval(ga2‖IDA; r󸀠󸀠A) = Cham.Eval(m1; r1).
Note that, by the random trapdoor collisionproperty of the chameleonhash function, r󸀠󸀠A is uniformly
distributed over Rcham and also independent of r1. Similarly, when ID = IDB,ADBDH-2 uses the trap-
door ck to produce r󸀠󸀠B ∈ Rcham such that Cham.Eval(gb2‖IDB; r󸀠󸀠B) = Cham.Eval(m2; r2). The value r󸀠󸀠B is
also uniformly distributed over Rcham and also independent of r2.ADBDH-2 then sets

pkA = (ψ(ga2)q(tA), ga2, r󸀠󸀠A , rA) and pkB = (ψ(gb2)q(tB), gB2 , r󸀠󸀠B , rB),
where rA , rB ← ℤp. Note that these are correct public keys since p(tA) = p(tB) = 0.

188  S. Chakraborty et al., New approach to practical leakage-resilient PKCS. Chakraborty et al., New approach to practical leakage-resilient PKC | 17

∙ RegisterCorrupt: Here ADBDH-2 receives as input a public key pk and an identity string ID from ANIKE. If
ID ∈ {IDA , IDB},ADBDH-2 aborts as in the original attack game.

∙ HonestReveal: When ANIKE supplies identities of two honest parties, ID and ID󸀠󸀠 say, ADBDH-2 checks if
{ID, ID󸀠󸀠} = {IDA , IDB}. If this happens, ADBDH-2 aborts. Else, if {ID, ID󸀠󸀠} ∩ {IDA , IDB} ≤ 1, there are three
cases:
– ID ∩ {IDA , IDB} ̸= ϕ and ID󸀠󸀠 ∩ {IDA , IDB} = ϕ. Here the challengerADBDH-2 runs NIKE.key(pkID, skID󸀠󸀠)

to produce the shared key shkID,ID󸀠󸀠 . Note that ADBDH-2 can do this since it knows the secret key skID󸀠󸀠

of the party ID󸀠󸀠. ThenADBDH-2 gives shkID,ID󸀠󸀠 toANIKE.
– ID ∩ {IDA , IDB} = ϕ and ID󸀠󸀠 ∩ {IDA , IDB} ̸= ϕ. Here the challengerADBDH-2 runs NIKE.key(pkID󸀠󸀠 , skID)

to produce the shared key shkID,ID󸀠󸀠 . Note that ADBDH-2 can do this since it knows the secret key skID󸀠󸀠

of the party ID󸀠󸀠. ThenADBDH-2 gives shkID,ID󸀠󸀠 toANIKE.
– {ID, ID󸀠󸀠} ∩ {IDA , IDB} = ϕ. In this case, the challenger ADBDH-2 runs NIKE.key(pkID󸀠󸀠 , skID) (it can use

skID󸀠󸀠 also) to produce the shared key shkID,ID󸀠󸀠 . ThenADBDH-2 gives shkID,ID󸀠󸀠 toANIKE.
∙ CorruptReveal: When ANIKE supplies two identities ID and ID󸀠󸀠, where ID was registered as corrupt

and ID󸀠󸀠 was registered as honest, ADBDH-2 checks if ID󸀠󸀠 ∈ {IDA , IDB}. If ID󸀠󸀠 ∉ {IDA , IDB}, ADBDH-2 runs
NIKE.key(pkID, skID󸀠󸀠) to obtain shkID,ID󸀠󸀠 and returns it to ANIKE. However, if ID󸀠󸀠 ∈ {IDA , IDB}, ADBDH-2
checks whether the public key pkID equals (XID, ZID, r󸀠󸀠ID, rID) by checking the pairing. This makes
sure that pkID is of the form (Yd

ID, g
d
2 , r
󸀠󸀠
D , rD) for some d ∈ ℤp, where YD = (gc1)p(tID)gq(tID)1 , rD ← ℤp and

r󸀠󸀠D ← Rcham. This means that XID = (gcd1)p(tID)gdq(tID)1 . From this the value, gcd1 can be computed as

gcd1 = (XID/ψ(ZID)q(tID))1/p(tID) mod p .

Note that the value 1/p(tID) is well defined since p(tID) ̸= 0 mod p. Also, note that tID ̸= tA , tB since we
have already eliminated the hash collisions. Assume w.l.o.g. that ID󸀠󸀠 = IDA. So, writing the public key of
IDA as (YA , ZA , r󸀠󸀠A , rA), the shared key between IDA and ID is given by shkIDA ,ID = e(gcd1 , ZA).

∙ Leakage queries: The adversary ANIKE may specify arbitrary polynomial-time computable functions fi to
leak from the secret keys xA and xB. The challengerADBDH-2 forwards the functions fi to its leakage oracle
and forwards the answers toANIKE.

∙ Test query: HereADBDH-2 returns T.
This completes the description of simulation by ADBDH-2. If ANIKE can distinguish between real and ran-
dom key in Game 4, then this is equivalent to solving the DBDH-2 problem. To see this, note that, for user
IDA, we have ZA = ga2 and XA = ψ(ZA)q(tA), and for user IDB, we have ZB = gb2 and XB = ψ(ZB)q(tB). Hence
shkIDA ,IDB = e((gc1)b , ZA) = e((gc1)a , ZB) = e(g1, g2)abc.

Since the simulation done byADBDH-2 is perfect, we have

AdvGame6 (A) = AdvGame5 (A).

Game 7. In this game, the challengerADBDH-2 chooses T randomly from the target group𝔾𝔾T . Since T is now
completely independent of the challenge bit, we have Pr(SuccGame6) = 1

2 . Game 5 and Game 6 are identical
unless adversaryADBDH-2 can distinguish e(g1, g2)abc from a random element. So we have

|AdvGame7 (A) − AdvGame6 (A)| ≤ Advdbdh-2ADBDH-2 ,G2
(κ).

By combining all the above expression from Game 0 to Game 7, we have the following. We use Gi to denote
Gamei.

AdvBLR-CKS-heavyBLR-NIKE,ANIKE
(κ) = AdvG0 (A)
≤ q2H(AdvG1 (A))
≤ q2H(AdvG2 (A) + 2ε)
≤ q2H(AdvG3 (A) + 2ε + εprf + ε󸀠󸀠prf)
= q2H(AdvG4 (A) + 2ε + εprf + ε󸀠󸀠prf)
≤ q2H(AdvG5 (A) + 2ε + εprf + ε󸀠󸀠prf + AdvcollA,ChamH(κ))

18 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

= q2H(AdvG6 (A) + 2ε + εprf + ε󸀠󸀠prf + AdvcollA,ChamH(κ))
≤ q2H(AdvG7 (A) + 2ε + εprf + ε󸀠󸀠prf + AdvcollA,ChamH(κ) + Advdbdh-2ADBDH-2 ,G2

(κ))
≤ q2H(2ε + εprf + ε󸀠󸀠prf + AdvcollA,ChamH(κ) + Advdbdh-2ADBDH-2 ,G2

(κ)).

Thus we have

AdvBLR-CKS-heavyBLR-NIKE,ANIKE
(κ) ≤ q2H(2ε + εprf + ε󸀠󸀠prf + AdvcollA,ChamH(κ) + Advdbdh-2ADBDH-2 ,G2

(κ)).

4.2.2 Leakage tolerance of protocol BLR-NIKE

The order of the groups 𝔾𝔾1, 𝔾𝔾2 and 𝔾𝔾T is p. Note that, although the secret key in our protocol BLR-
NIKE may appear to be a single field element, in the actual instantiation of the protocol, the secret key
is a tuple of n + 1 field elements. This is because the secret key of the concrete instantiation of BLR-CHF
of Wang and Tanaka [39] consists of n field elements which also corresponds to the number of gener-
ators in the construction of [39]. The leakage tolerance of BLR-CHF is λ󸀠󸀠 = ((n − 1) log(p) − ω(log κ)) as
shown in [39]. The size of the secret key of the BLR-CHF is L = n log p. So, for sufficiently large n, the
leakage rate η = λ󸀠󸀠

L of BLR-CHF approaches 1 − o(1). We also consider a very good randomness extractor
that can work with inputs that have min-entropy v ≪ log p and produces outputs whose distance from
uniform ℓ(κ)-bit strings is ε < 2−ℓ(κ). The size of the secret key xA (respectively xB) of our NIKE construc-
tion is log p (apart from the size of the secret key of λ󸀠󸀠-LR-CHF, i.e., n log p). So the leakage tolerated from
xA (respectively xB) is at least log p − v ≈ log p. Hence the overall leakage tolerated by our construction is
λ ≈ ((n − 1) log(p) − ω(log κ)) + log p ≈ n log(p) − ω(log κ). The overall size of the secret key of our construc-
tion is L󸀠󸀠 = (n + 1) log p. So the overall leakage rate of our construction is η󸀠󸀠 = λ

L󸀠󸀠 = 1 − o(1) for sufficiently
large n.

5 Constructions of various cryptographic primitives
from leakage-resilient NIKE

Now we show many potential applications of leakage-resilient NIKE.

5.1 Leakage-resilient adaptive chosen ciphertext secure PKE

We now present our construction of an LR-IND-CCA-2-secure PKE scheme from a BLR-CKS-heavy-secure LR-
NIKE scheme. Actually, we show how to construct an LR-IND-CCA-2-secure key encapsulation mechanism
(KEM) given such a NIKE. Before proceeding with the construction, we give the LR-IND-CCA-2 security model
for KEMs.

5.1.1 Leakage-resilient chosen-ciphertext security for KEM

We say a KEM
Γ = (KEM.Setup, KEM.Gen, KEM.Encap, KEM.Decap)

satisfies correctness if, for all pub $← Setup(1κ), (pkKEM, skKEM) $← Gen(1κ , pub) and (C, K) ← Encap(pkKEM),
it holds that Pr[Decap(skKEM, C) = K] = 1 (where the randomness is taken over the internal coin tosses of
algorithm KEM.Gen and KEM.Encap).

S. Chakraborty et al., New approach to practical leakage-resilient PKC  189S. Chakraborty et al., New approach to practical leakage-resilient PKC | 17

∙ RegisterCorrupt: Here ADBDH-2 receives as input a public key pk and an identity string ID from ANIKE. If
ID ∈ {IDA , IDB},ADBDH-2 aborts as in the original attack game.

∙ HonestReveal: When ANIKE supplies identities of two honest parties, ID and ID󸀠󸀠 say, ADBDH-2 checks if
{ID, ID󸀠󸀠} = {IDA , IDB}. If this happens, ADBDH-2 aborts. Else, if {ID, ID󸀠󸀠} ∩ {IDA , IDB} ≤ 1, there are three
cases:
– ID ∩ {IDA , IDB} ̸= ϕ and ID󸀠󸀠 ∩ {IDA , IDB} = ϕ. Here the challengerADBDH-2 runs NIKE.key(pkID, skID󸀠󸀠)

to produce the shared key shkID,ID󸀠󸀠 . Note that ADBDH-2 can do this since it knows the secret key skID󸀠󸀠

of the party ID󸀠󸀠. ThenADBDH-2 gives shkID,ID󸀠󸀠 toANIKE.
– ID ∩ {IDA , IDB} = ϕ and ID󸀠󸀠 ∩ {IDA , IDB} ̸= ϕ. Here the challengerADBDH-2 runs NIKE.key(pkID󸀠󸀠 , skID)

to produce the shared key shkID,ID󸀠󸀠 . Note that ADBDH-2 can do this since it knows the secret key skID󸀠󸀠

of the party ID󸀠󸀠. ThenADBDH-2 gives shkID,ID󸀠󸀠 toANIKE.
– {ID, ID󸀠󸀠} ∩ {IDA , IDB} = ϕ. In this case, the challenger ADBDH-2 runs NIKE.key(pkID󸀠󸀠 , skID) (it can use

skID󸀠󸀠 also) to produce the shared key shkID,ID󸀠󸀠 . ThenADBDH-2 gives shkID,ID󸀠󸀠 toANIKE.
∙ CorruptReveal: When ANIKE supplies two identities ID and ID󸀠󸀠, where ID was registered as corrupt

and ID󸀠󸀠 was registered as honest, ADBDH-2 checks if ID󸀠󸀠 ∈ {IDA , IDB}. If ID󸀠󸀠 ∉ {IDA , IDB}, ADBDH-2 runs
NIKE.key(pkID, skID󸀠󸀠) to obtain shkID,ID󸀠󸀠 and returns it to ANIKE. However, if ID󸀠󸀠 ∈ {IDA , IDB}, ADBDH-2
checks whether the public key pkID equals (XID, ZID, r󸀠󸀠ID, rID) by checking the pairing. This makes
sure that pkID is of the form (Yd

ID, g
d
2 , r
󸀠󸀠
D , rD) for some d ∈ ℤp, where YD = (gc1)p(tID)gq(tID)1 , rD ← ℤp and

r󸀠󸀠D ← Rcham. This means that XID = (gcd1)p(tID)gdq(tID)1 . From this the value, gcd1 can be computed as

gcd1 = (XID/ψ(ZID)q(tID))1/p(tID) mod p .

Note that the value 1/p(tID) is well defined since p(tID) ̸= 0 mod p. Also, note that tID ̸= tA , tB since we
have already eliminated the hash collisions. Assume w.l.o.g. that ID󸀠󸀠 = IDA. So, writing the public key of
IDA as (YA , ZA , r󸀠󸀠A , rA), the shared key between IDA and ID is given by shkIDA ,ID = e(gcd1 , ZA).

∙ Leakage queries: The adversary ANIKE may specify arbitrary polynomial-time computable functions fi to
leak from the secret keys xA and xB. The challengerADBDH-2 forwards the functions fi to its leakage oracle
and forwards the answers toANIKE.

∙ Test query: HereADBDH-2 returns T.
This completes the description of simulation by ADBDH-2. If ANIKE can distinguish between real and ran-
dom key in Game 4, then this is equivalent to solving the DBDH-2 problem. To see this, note that, for user
IDA, we have ZA = ga2 and XA = ψ(ZA)q(tA), and for user IDB, we have ZB = gb2 and XB = ψ(ZB)q(tB). Hence
shkIDA ,IDB = e((gc1)b , ZA) = e((gc1)a , ZB) = e(g1, g2)abc.

Since the simulation done byADBDH-2 is perfect, we have

AdvGame6 (A) = AdvGame5 (A).

Game 7. In this game, the challengerADBDH-2 chooses T randomly from the target group𝔾𝔾T . Since T is now
completely independent of the challenge bit, we have Pr(SuccGame6) = 1

2 . Game 5 and Game 6 are identical
unless adversaryADBDH-2 can distinguish e(g1, g2)abc from a random element. So we have

|AdvGame7 (A) − AdvGame6 (A)| ≤ Advdbdh-2ADBDH-2 ,G2
(κ).

By combining all the above expression from Game 0 to Game 7, we have the following. We use Gi to denote
Gamei.

AdvBLR-CKS-heavyBLR-NIKE,ANIKE
(κ) = AdvG0 (A)
≤ q2H(AdvG1 (A))
≤ q2H(AdvG2 (A) + 2ε)
≤ q2H(AdvG3 (A) + 2ε + εprf + ε󸀠󸀠prf)
= q2H(AdvG4 (A) + 2ε + εprf + ε󸀠󸀠prf)
≤ q2H(AdvG5 (A) + 2ε + εprf + ε󸀠󸀠prf + AdvcollA,ChamH(κ))

18 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

= q2H(AdvG6 (A) + 2ε + εprf + ε󸀠󸀠prf + AdvcollA,ChamH(κ))
≤ q2H(AdvG7 (A) + 2ε + εprf + ε󸀠󸀠prf + AdvcollA,ChamH(κ) + Advdbdh-2ADBDH-2 ,G2

(κ))
≤ q2H(2ε + εprf + ε󸀠󸀠prf + AdvcollA,ChamH(κ) + Advdbdh-2ADBDH-2 ,G2

(κ)).

Thus we have

AdvBLR-CKS-heavyBLR-NIKE,ANIKE
(κ) ≤ q2H(2ε + εprf + ε󸀠󸀠prf + AdvcollA,ChamH(κ) + Advdbdh-2ADBDH-2 ,G2

(κ)).

4.2.2 Leakage tolerance of protocol BLR-NIKE

The order of the groups 𝔾𝔾1, 𝔾𝔾2 and 𝔾𝔾T is p. Note that, although the secret key in our protocol BLR-
NIKE may appear to be a single field element, in the actual instantiation of the protocol, the secret key
is a tuple of n + 1 field elements. This is because the secret key of the concrete instantiation of BLR-CHF
of Wang and Tanaka [39] consists of n field elements which also corresponds to the number of gener-
ators in the construction of [39]. The leakage tolerance of BLR-CHF is λ󸀠󸀠 = ((n − 1) log(p) − ω(log κ)) as
shown in [39]. The size of the secret key of the BLR-CHF is L = n log p. So, for sufficiently large n, the
leakage rate η = λ󸀠󸀠

L of BLR-CHF approaches 1 − o(1). We also consider a very good randomness extractor
that can work with inputs that have min-entropy v ≪ log p and produces outputs whose distance from
uniform ℓ(κ)-bit strings is ε < 2−ℓ(κ). The size of the secret key xA (respectively xB) of our NIKE construc-
tion is log p (apart from the size of the secret key of λ󸀠󸀠-LR-CHF, i.e., n log p). So the leakage tolerated from
xA (respectively xB) is at least log p − v ≈ log p. Hence the overall leakage tolerated by our construction is
λ ≈ ((n − 1) log(p) − ω(log κ)) + log p ≈ n log(p) − ω(log κ). The overall size of the secret key of our construc-
tion is L󸀠󸀠 = (n + 1) log p. So the overall leakage rate of our construction is η󸀠󸀠 = λ

L󸀠󸀠 = 1 − o(1) for sufficiently
large n.

5 Constructions of various cryptographic primitives
from leakage-resilient NIKE

Now we show many potential applications of leakage-resilient NIKE.

5.1 Leakage-resilient adaptive chosen ciphertext secure PKE

We now present our construction of an LR-IND-CCA-2-secure PKE scheme from a BLR-CKS-heavy-secure LR-
NIKE scheme. Actually, we show how to construct an LR-IND-CCA-2-secure key encapsulation mechanism
(KEM) given such a NIKE. Before proceeding with the construction, we give the LR-IND-CCA-2 security model
for KEMs.

5.1.1 Leakage-resilient chosen-ciphertext security for KEM

We say a KEM
Γ = (KEM.Setup, KEM.Gen, KEM.Encap, KEM.Decap)

satisfies correctness if, for all pub $← Setup(1κ), (pkKEM, skKEM) $← Gen(1κ , pub) and (C, K) ← Encap(pkKEM),
it holds that Pr[Decap(skKEM, C) = K] = 1 (where the randomness is taken over the internal coin tosses of
algorithm KEM.Gen and KEM.Encap).

190  S. Chakraborty et al., New approach to practical leakage-resilient PKCS. Chakraborty et al., New approach to practical leakage-resilient PKC | 19

Experiment ExpBLR-IND-CCA-2Γ,A (κ, λ)

pub $← Setup(1κ);
(pk, sk) $← Gen(1κ , pub); L ← 0; b $← {0, 1};
(C∗ , K∗1) ← Encap(pk); K∗0 $← K;
b󸀠󸀠 ← ADecap

∗ ,Oλ
sk(⋅)(pk, C∗ , K∗b);

if b󸀠󸀠 = b, then return 1, else return 0

Oracle Decap∗(C)

if C = C∗, abort;
return Decap(sk, C)

Oracle Oλ
sk(f)

if L + |f(sk)| ≤ λ(κ),
return f(sk)

Table 4: Experiment defining LR-CCA-2 security of KEM.

Let LR-NIKE = (NIKEcommon_setup, NIKEgen, NIKEkey) be a BLR-CKS-heavy NIKE with leakage rate 1 − o(1).
(i) KEM.Setup(1κ): This algorithm runs the NIKEcommon_setup(1κ) algorithm to obtain the system parameters params.

It then sets the public parameters of the KEM pub as params.
(ii) KEM.Gen(1κ , pub): This algorithm runs the algorithm NIKEgen(1κ , pub) to obtain a pair of public-private keys (pk, sk).

It then sets pkKEM = pk and skKEM = sk.
(iii) KEM.Encap(pkKEM): This algorithm parses pkKEM as pk and samples another key pair (pk󸀠󸀠 , sk󸀠󸀠) ← NIKEgen(1κ , pub).

Then it runs NIKEkey(pk, sk󸀠󸀠) to produce the shared key shk. It then sets the encapsulated key K = shk and the ciphertext
C = pk󸀠󸀠.

(iv) KEM.Decap(skKEM, C): This algorithm parses the ciphertext C as pk󸀠󸀠 and the secret key skKEM as sk. It then runs
NIKEkey(pk󸀠󸀠 , sk) and obtains the result.

Figure 1: Construction of LR-CCA-2 secure KEM Γ.

LR-IND-CCA-2 security: We now turn to defining indistinguishability under adaptive chosen-ciphertext and
leakage attacks in the bounded-memory leakage setting (BLR-IND-CCA-2).

Definition 5.1 (BLR-IND-CCA-2 security). Let κ ∈ ℕ and λ = λ(κ) be parameters. We say a KEM

Γ = (Setup, Gen, Encap, Decap)
is λ-BLR-CCA-2-secure if, for all PPT adversaries A, there exists a negligible ν(κ) such that

|Pr[ExpBLR-IND-CCA-2Γ,A (κ, λ) = 1]| ≤ ν(κ),
where the experiment ExpBLR-IND-CCA-2Γ,A (κ, λ) is defined in Table 4.

5.1.2 Generic construction of leakage-resilient KEM

We now show the construction of a leakage-resilient CCA-2-secure KEM

Γ = (KEM.Setup, KEM.Gen, KEM.Encap, KEM.Decap)
from leakage-resilient NIKE (Figure 1).

Theorem 5.2. Suppose the leakage-resilient NIKE scheme LR-NIKE is BLR-CKS-heavy-secure with leakage rate
1 − o(1). Then the KEM scheme Γ is BLR-IND-CCA-2-secure KEM. More formally, let AKEM be an adversary
against Γmaking qD decapsulation queries and qL leakage queries. Then, usingAKEM, we can construct another
adversaryANIKE in the BLR-CKS-heavy security model who makes two RegisterHonest queries, qD RegisterCor-
rupt queries, qD CorruptReveal queries and qL Leakage queries, and the running time of ANIKE is roughly the
same as that ofAKEM. Moreover, the leakage rate of Γ is 1 − o(1).
Proof. LetAKEM be an adversary against the BLR-IND-CCA-2-secure KEM Γ.We now show how to useAKEM to
construct another adversary ANIKE against LR-NIKE, thereby contradicting its BLR-CKS-heavy security. ANIKE
simulates the environment toAKEM in the following way.
∙ KEM.Setup: On input of the public parameters params,ANIKE sets the public parameters pub of the KEM

scheme as params.

20 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

∙ KEM.Gen: ANIKE makes two RegisterHonest queries, receiving as input two honestly registered public
keys pk1 and pk2. It then sets pkKEM = pk1 and skKEM = ⊥.

∙ KEM.Encap(pk): To simulate the challenge phase,ANIKE makes a Test(pk1, pk2) query. It receives as reply
a shared key K which is either the real key, i.e., K = NIKE.key(pk1, sk2), or a random shared K ← SHK. It
then sets the encapsulated key K∗ = K and C∗ = pk2.

∙ Leakage queries: When AKEM queries with leakage functions f , the challenger ANIKE forwards f to the
leakage oracle Oλ

sk1 (⋅) and receives as response f(sk1). It then returns f(sk1) toAKEM.
∙ Decapsulation queries: AKEM makes decapsulation queries to ANIKE with ciphertexts C. ANIKE parses C

as pk󸀠󸀠, and since C ̸= C∗, we have pk󸀠󸀠 ̸= pk2. If pk󸀠󸀠 = pk1, ANIKE outputs ⊥. This is consistent with the
rejection rule of the KEM Γ and also LR-NIKE. Else,ANIKE makes a RegisterCorrupt query on pk󸀠󸀠. Here we
assume that all of AKEM’s decapsulation queries are distinct without loss of generality, and hence all of
the RegisterHonest queries are distinct.ANIKE thenmakes a CorruptReveal(pk1, pk󸀠󸀠) query to get a shared
key K ∈ SHK or a symbol ⊥. It then returns K toAKEM.

This completes the description of ANIKE’s simulation. From the description, it is clear that the above simu-
lation is perfect. Note that if K∗ is the real shared key, i.e., it is the output of the NIKE.key algorithm, then
it is properly simulating the Encap algorithm in the ExpBLR-IND-CCA-2Γ,A (κ, λ) security experiment; else if K∗ is
chosen randomly, it also properly simulates the fact that it is chosen randomly in the experiment. Finally,
when AKEM outputs a bit b󸀠󸀠 as its guess for b in the experiment, ANIKE also outputs the same bit b󸀠󸀠. So the
advantage of ANIKE in breaking the BLR-CKS-heavy security of LR-NIKE is exactly the same as the advantage
ofAKEM in breaking the BLR-IND-CCA-2 security of the KEM scheme Γ. Also note that the number of Register-
Corrupt and CorruptReveal queries made byANIKE is the same as the number of decapsulation queries asked
byAKEM. This completes the proof of the above theorem.

Remark 5.3. Here we show an alternative simple construction of a BLR-IND-CCA-2-secure KEM from a stan-
dard IND-CCA-2 secure KEM given access to a leak-free hardware component that can store the seed of a ran-
domness extractor (as in our case). Namely, let π = (Gen, Encap, Decap) be a (standard) IND-CCA-2-secure
KEM. We construct a BLR-IND-CCA-2-secure KEM Γ = (KEM.Setup, KEM.Gen, KEM.Encap, KEM.Decap) from
π as follows. KEM.Setup(1κ): Sample a random string r󸀠󸀠, and compute r = Ext(r󸀠󸀠, s), where s is the random
seed of the extractor Ext. Store the seed s in the leak-free hardware component. Then run pk = Gen(1κ , r) to
obtain the public key pk. Set the secret key sk = r󸀠󸀠. The above scheme Γ achieves BLR-IND-CCA-2 security as
long as the string r󸀠󸀠 is sufficiently long and the seed s is kept out of the view of the adversary. The encapsula-
tion and the decapsulation functions remain unchanged from the underlying KEM scheme π. Although this
simple solution works, we stress the objective of our work is to show the applications of LR-NIKE as a cen-
tral unifying to construct many leakage-resilient primitives. We thank an anonymous reviewer of the journal
Design, Codes and Cryptography for suggesting the above construction.

5.2 Leakage-resilient authenticated key exchange

The work of Bergsma et al. [8] shows a generic construction of an eCK-secure AKE protocol using an UF-
CMA-secure signature scheme, CKS-light-secure NIKE scheme and a pseudo-random function as underlying
primitives.

In this paper, we present a construction of a leakage-resilient NIKE protocol, which is secure in the
CKS-heavy model, under bounded-memory leakage, i.e. BLR-CKS-heavy-secure NIKE protocol (Table 3).
Since the CKS-heavy security implies the CKS-light security, our leakage-resilient NIKE protocol can work
as a bounded-memory leakage-resilient CKS-light-secure NIKE protocol. Further, in the literature, we can
find UF-CMLA-secure signature schemes [26], which are UF-CMA-secure signature schemes under the
bounded-memory leakage model. Thus we have the necessary primitives to transform our leakage-resilient
NIKE to a leakage-resilient AKE following the NIKE to AKE transformation of Bergsma et al. [8] in the
bounded-memory leakage model.

S. Chakraborty et al., New approach to practical leakage-resilient PKC  191S. Chakraborty et al., New approach to practical leakage-resilient PKC | 19

Experiment ExpBLR-IND-CCA-2Γ,A (κ, λ)

pub $← Setup(1κ);
(pk, sk) $← Gen(1κ , pub); L ← 0; b $← {0, 1};
(C∗ , K∗1) ← Encap(pk); K∗0 $← K;
b󸀠󸀠 ← ADecap

∗ ,Oλ
sk(⋅)(pk, C∗ , K∗b);

if b󸀠󸀠 = b, then return 1, else return 0

Oracle Decap∗(C)

if C = C∗, abort;
return Decap(sk, C)

Oracle Oλ
sk(f)

if L + |f(sk)| ≤ λ(κ),
return f(sk)

Table 4: Experiment defining LR-CCA-2 security of KEM.

Let LR-NIKE = (NIKEcommon_setup, NIKEgen, NIKEkey) be a BLR-CKS-heavy NIKE with leakage rate 1 − o(1).
(i) KEM.Setup(1κ): This algorithm runs the NIKEcommon_setup(1κ) algorithm to obtain the system parameters params.

It then sets the public parameters of the KEM pub as params.
(ii) KEM.Gen(1κ , pub): This algorithm runs the algorithm NIKEgen(1κ , pub) to obtain a pair of public-private keys (pk, sk).

It then sets pkKEM = pk and skKEM = sk.
(iii) KEM.Encap(pkKEM): This algorithm parses pkKEM as pk and samples another key pair (pk󸀠󸀠 , sk󸀠󸀠) ← NIKEgen(1κ , pub).

Then it runs NIKEkey(pk, sk󸀠󸀠) to produce the shared key shk. It then sets the encapsulated key K = shk and the ciphertext
C = pk󸀠󸀠.

(iv) KEM.Decap(skKEM, C): This algorithm parses the ciphertext C as pk󸀠󸀠 and the secret key skKEM as sk. It then runs
NIKEkey(pk󸀠󸀠 , sk) and obtains the result.

Figure 1: Construction of LR-CCA-2 secure KEM Γ.

LR-IND-CCA-2 security: We now turn to defining indistinguishability under adaptive chosen-ciphertext and
leakage attacks in the bounded-memory leakage setting (BLR-IND-CCA-2).

Definition 5.1 (BLR-IND-CCA-2 security). Let κ ∈ ℕ and λ = λ(κ) be parameters. We say a KEM

Γ = (Setup, Gen, Encap, Decap)
is λ-BLR-CCA-2-secure if, for all PPT adversaries A, there exists a negligible ν(κ) such that

|Pr[ExpBLR-IND-CCA-2Γ,A (κ, λ) = 1]| ≤ ν(κ),
where the experiment ExpBLR-IND-CCA-2Γ,A (κ, λ) is defined in Table 4.

5.1.2 Generic construction of leakage-resilient KEM

We now show the construction of a leakage-resilient CCA-2-secure KEM

Γ = (KEM.Setup, KEM.Gen, KEM.Encap, KEM.Decap)
from leakage-resilient NIKE (Figure 1).

Theorem 5.2. Suppose the leakage-resilient NIKE scheme LR-NIKE is BLR-CKS-heavy-secure with leakage rate
1 − o(1). Then the KEM scheme Γ is BLR-IND-CCA-2-secure KEM. More formally, let AKEM be an adversary
against Γmaking qD decapsulation queries and qL leakage queries. Then, usingAKEM, we can construct another
adversaryANIKE in the BLR-CKS-heavy security model who makes two RegisterHonest queries, qD RegisterCor-
rupt queries, qD CorruptReveal queries and qL Leakage queries, and the running time of ANIKE is roughly the
same as that ofAKEM. Moreover, the leakage rate of Γ is 1 − o(1).
Proof. LetAKEM be an adversary against the BLR-IND-CCA-2-secure KEM Γ.We now show how to useAKEM to
construct another adversary ANIKE against LR-NIKE, thereby contradicting its BLR-CKS-heavy security. ANIKE
simulates the environment toAKEM in the following way.
∙ KEM.Setup: On input of the public parameters params,ANIKE sets the public parameters pub of the KEM

scheme as params.

20 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

∙ KEM.Gen: ANIKE makes two RegisterHonest queries, receiving as input two honestly registered public
keys pk1 and pk2. It then sets pkKEM = pk1 and skKEM = ⊥.

∙ KEM.Encap(pk): To simulate the challenge phase,ANIKE makes a Test(pk1, pk2) query. It receives as reply
a shared key K which is either the real key, i.e., K = NIKE.key(pk1, sk2), or a random shared K ← SHK. It
then sets the encapsulated key K∗ = K and C∗ = pk2.

∙ Leakage queries: When AKEM queries with leakage functions f , the challenger ANIKE forwards f to the
leakage oracle Oλ

sk1 (⋅) and receives as response f(sk1). It then returns f(sk1) toAKEM.
∙ Decapsulation queries: AKEM makes decapsulation queries to ANIKE with ciphertexts C. ANIKE parses C

as pk󸀠󸀠, and since C ̸= C∗, we have pk󸀠󸀠 ̸= pk2. If pk󸀠󸀠 = pk1, ANIKE outputs ⊥. This is consistent with the
rejection rule of the KEM Γ and also LR-NIKE. Else,ANIKE makes a RegisterCorrupt query on pk󸀠󸀠. Here we
assume that all of AKEM’s decapsulation queries are distinct without loss of generality, and hence all of
the RegisterHonest queries are distinct.ANIKE thenmakes a CorruptReveal(pk1, pk󸀠󸀠) query to get a shared
key K ∈ SHK or a symbol ⊥. It then returns K toAKEM.

This completes the description of ANIKE’s simulation. From the description, it is clear that the above simu-
lation is perfect. Note that if K∗ is the real shared key, i.e., it is the output of the NIKE.key algorithm, then
it is properly simulating the Encap algorithm in the ExpBLR-IND-CCA-2Γ,A (κ, λ) security experiment; else if K∗ is
chosen randomly, it also properly simulates the fact that it is chosen randomly in the experiment. Finally,
when AKEM outputs a bit b󸀠󸀠 as its guess for b in the experiment, ANIKE also outputs the same bit b󸀠󸀠. So the
advantage of ANIKE in breaking the BLR-CKS-heavy security of LR-NIKE is exactly the same as the advantage
ofAKEM in breaking the BLR-IND-CCA-2 security of the KEM scheme Γ. Also note that the number of Register-
Corrupt and CorruptReveal queries made byANIKE is the same as the number of decapsulation queries asked
byAKEM. This completes the proof of the above theorem.

Remark 5.3. Here we show an alternative simple construction of a BLR-IND-CCA-2-secure KEM from a stan-
dard IND-CCA-2 secure KEM given access to a leak-free hardware component that can store the seed of a ran-
domness extractor (as in our case). Namely, let π = (Gen, Encap, Decap) be a (standard) IND-CCA-2-secure
KEM. We construct a BLR-IND-CCA-2-secure KEM Γ = (KEM.Setup, KEM.Gen, KEM.Encap, KEM.Decap) from
π as follows. KEM.Setup(1κ): Sample a random string r󸀠󸀠, and compute r = Ext(r󸀠󸀠, s), where s is the random
seed of the extractor Ext. Store the seed s in the leak-free hardware component. Then run pk = Gen(1κ , r) to
obtain the public key pk. Set the secret key sk = r󸀠󸀠. The above scheme Γ achieves BLR-IND-CCA-2 security as
long as the string r󸀠󸀠 is sufficiently long and the seed s is kept out of the view of the adversary. The encapsula-
tion and the decapsulation functions remain unchanged from the underlying KEM scheme π. Although this
simple solution works, we stress the objective of our work is to show the applications of LR-NIKE as a cen-
tral unifying to construct many leakage-resilient primitives. We thank an anonymous reviewer of the journal
Design, Codes and Cryptography for suggesting the above construction.

5.2 Leakage-resilient authenticated key exchange

The work of Bergsma et al. [8] shows a generic construction of an eCK-secure AKE protocol using an UF-
CMA-secure signature scheme, CKS-light-secure NIKE scheme and a pseudo-random function as underlying
primitives.

In this paper, we present a construction of a leakage-resilient NIKE protocol, which is secure in the
CKS-heavy model, under bounded-memory leakage, i.e. BLR-CKS-heavy-secure NIKE protocol (Table 3).
Since the CKS-heavy security implies the CKS-light security, our leakage-resilient NIKE protocol can work
as a bounded-memory leakage-resilient CKS-light-secure NIKE protocol. Further, in the literature, we can
find UF-CMLA-secure signature schemes [26], which are UF-CMA-secure signature schemes under the
bounded-memory leakage model. Thus we have the necessary primitives to transform our leakage-resilient
NIKE to a leakage-resilient AKE following the NIKE to AKE transformation of Bergsma et al. [8] in the
bounded-memory leakage model.

192  S. Chakraborty et al., New approach to practical leakage-resilient PKCS. Chakraborty et al., New approach to practical leakage-resilient PKC | 21

There are numerous leakage versions of the eCK model, under the OCLI axiom [3–5] and the memory
leakage model [11]. Further, they address after-the-fact leakage. With our new BLR-CKS-heavy-secure NIKE
protocol, following the Bergsma et al. [8] transformation, we can achieve leakage-resilient AKE in an eCK-
style model
∙ under memory leakage (stronger than the OCLI axiom),
∙ addressing before-the-fact leakage (weaker than after-the-fact leakage).

5.2.1 Bounded-memory before-the-fact leakage eCK model

Wepresent a suitable securitymodel to analyze the leakage resiliency of AKEprotocols, considering the afore-
mentioned points, i.e., in an eCK-style security model [28], addressing before-the-fact, bounded-memory
leakage.

Let κ be the security parameter. Let U = {U1, . . . , Un} be a set of n parties. We use the term principal
to identify a party involved in a protocol instance. Each party Ui, where i ∈ [1, NP], has a pair of long-term
public and secret keys, (pkUi , skUi). The term session is used to identify a protocol instance at a principal.
Each principal may have multiple sessions, and they may run concurrently. The oracle Πs

U,V represents the
s-th session at the owner principal U, with intended partner principal V. The principal which sends the first
protocol message of a session is the initiator of the session, and the principal which responds to the first
protocol message is the responder of the session.

Partner sessions in the BBFL-eCK model: Two oracles Πs
U,V and Πs󸀠󸀠

U󸀠󸀠 ,V󸀠󸀠 are said to be partners if all of the
following conditions hold:
(i) both Πs

U,V and Πs󸀠󸀠
U󸀠󸀠 ,V󸀠󸀠 have computed session keys;

(ii) messages sent from Πs
U,V and messages received by Πs󸀠󸀠

U󸀠󸀠 ,V󸀠󸀠 are identical;
(iii) messages sent from Πs󸀠󸀠

U󸀠󸀠 ,V󸀠󸀠 and messages received by Πs
U,V are identical;

(iv) U󸀠󸀠 = V and V󸀠󸀠 = U;
(v) exactly one of U and V is the initiator, and the other is the responder.
The protocol is said to be correct if two partner oracles compute identical session keys.

Modeling leakage: We consider the bounded-memory leakage setting for modeling the leakage. As before,
the adversary is allowed to issue arbitrary efficiently computable leakage functions fi and obtain the leak-
age fi(sk) of the secret key sk, before the session key is established. As mentioned above, the constraint is
∑i=1|fi(sk)| ≤ λ, where λ is the leakage parameter.

Adversarial powers:
∙ Send(U, V, s,m) query: The oracle Πs

U,V computes the next protocol message according to the protocol
specification and sends it to the adversary.A can also use this query to activate a new protocol instance
with blank m.

∙ SessionKeyReveal(U, V, s) query:A is given the session key of the oracle Πs
U,V .

∙ EphemeralKeyReveal(U, V, s) query:A is given the ephemeral keys (per-session randomness) of Πs
U,V .

∙ Corrupt(U) query:A is given the long-term secrets of the principal U.
∙ Test(U, s) query: When A asks the Test query, the challenger first chooses a random bit b $← {0, 1} and

if b = 1 then the actual session key is returned to A, otherwise a random string chosen from the same
session key space is returned toA.

∙ Leakage(U, fi) query: The leakage fi(skU) is computed and returns to the adversary if and only if
∑i=1|fi(skU)| ≤ λ.

λ-BBFL-eCK-freshness: Let λ be the leakage parameter. An oracle Πs
U,V is said to be λ-BBFL-eCK-fresh if and

only if conditions (1)–(3) of Alawatugoda et al. [4, Definition 4] hold, and
(iv) before Πs

U,V is activated, for all Leakage(U, fi) queries,∑i=1|fi(skU)| ≤ λ, and for all Leakage(V, fi) queries,
∑i=1|fi(skV)| ≤ λ;

(v) after Πs
U,V is activated, no leakage is allowed from U and V.

22 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

A (initiator) B (responder)
((sknikeA , sksigA), (pk

nike
A , pksigA)) ((sknikeB , sksigB), (pk

nike
B , pksigB))

rA $← {0.1}κ rB $← {0.1}κ
(sktmpA , pktmpA) ← NIKEgen(1κ , rA) (sktmpB , pktmpB) ← NIKEgen(1κ , rB)
σA ← SIGsign(sksigA , pktmpA)

(pktmpA ,σA)󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀 σB ← SIGsign(sksigB , pktmpB)
if SIGvfy(pksigB , pktmpB , σB) = 1; (pktmpB ,σB)←󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀 if SIGvfy(pksigA , pktmpA , σA) = 1;

T := sort(pktmpA , pktmpB) T := sort(pktmpA , pktmpB)
knike,nike = PRF(NIKEkey(sknikeA , pknikeB), T) knike,nike = PRF(NIKEkey(sknikeB , pknikeA), T)
knike,tmp = PRF(NIKEkey(sknikeA , pktmpB), T) knike,tmp = PRF(NIKEkey(sknikeB , pktmpA), T)
ktmp,nike = PRF(NIKEkey(sktmpA , pknikeB), T) ktmp,nike = PRF(NIKEkey(sktmpB , pknikeA), T)
ktmp,tmp = PRF(NIKEkey(sktmpA , pktmpB)) ktmp,tmp = PRF(NIKEkey(sktmpB , pktmpA))

kA,B := knike,nike ⊕ knike,tmp ⊕ ktmp,nike ⊕ ktmp,tmp kB,A := knike,nike ⊕ knike,tmp ⊕ ktmp,nike ⊕ ktmp,tmp

Table 5: Leakage-resilient AKE protocol LR-AKE.

BBFL-eCK security game: The adversary A interacts with the challenger by issuing any combination of
Send(), SessionKeyReveal(), EphemeralKeyReveal(), Leakage() and Corrupt() queries at will. At some point,
the adversary chooses a λ-BBFL-eCK-fresh oracle and issues a Test() query. Then the adversary may continue
asking the Send(), SessionKeyReveal(), EphemeralKeyReveal(), Leakage() and Corrupt() queries while pre-
serving the freshness of the test session, and finally outputs answer bit b󸀠󸀠 for the challenge.Awins if b󸀠󸀠 = b.
Let SuccA denote the event that the adversaryA wins the above security game.

Definition 5.4 (BBFL-eCK security). A protocol π is said to be BBFL-eCK-secure if there is no PPT adversaryA
that can win the BBFL-eCK security game with non-negligible advantage. The advantage of an adversary A

is defined as AdvBBFL-eCKπ,A (κ) = |2Pr(SuccA) − 1|.

5.2.2 Constructing BBFL-eCK-secure key exchange protocols

In Table 5, we show the generic leakage-resilient variant of the Bergsma et al. [8] AKE protocol. We replace
the CKS-light-secureNIKEwith a BLR-CKS-heavy-secureNIKE, and theUF-CMA-secure signature schemewith
a UF-CMLA-secure signature scheme in the bounded-memory leakage model, to come up with the generic
BBFL-eCK-secure AKE protocol. In this protocol, the final shared key is obtained by xor-ing the intermedi-
ate keys. Since the adversary learns the leakage only from the long-term secret parameters, it is not neces-
sary to use leakage-resilient PRFs for the construction of LR-AKE, following NIKE to AKE transformation of
Bergsma et al.

Let LR-NIKE = (NIKEcommon_setup, NIKEgen, NIKEkey) be the underlying BLR-CKS-heavy-secure NIKE
protocol. Let LR-SIG = (SIGkg, SIGsign, SIGvfy) be the underlying UF-CMLA-secure signature scheme, and
let PRF be a secure pseudo-random function. Since the generic construction of the AKE protocol remains
unchanged with respect to Bergsma et al. [8], except the replacement of the leakage-resilient advancements
of the underlying primitives, in the bounded-memory leakage setting, the security of the resulting AKE still
preserves the eCK-style with the advancements of leakage resiliency in the bounded-memory leakage setting.
Therefore, the security theorem and the flow of the security proof is similar to [8, Appendix A, Theorem 1]
and its proof.

Theorem 5.5. If the underlying NIKE protocol LR-NIKE is BLR-CKS-heavy-secure, the signature scheme LR-SIG
is UF-CMLA-secure in the bounded-memory leakage model and the pseudo-random property holds for the PRF,
then the LR-AKE protocol is BBFL-eCK-secure.

Let d be the number of parties. Eachparty Ui ownsatmost ℓprotocol sessions. LetAbeanadversary against
the above protocol LR-AKE. We construct attackers Bsig, B(1)nike, B

(0)
nike and Bprf against the underlying leakage-

resilient signature scheme, the leakage-resilientNIKEprotocol (matching session exists andnomatching session

S. Chakraborty et al., New approach to practical leakage-resilient PKC  193S. Chakraborty et al., New approach to practical leakage-resilient PKC | 21

There are numerous leakage versions of the eCK model, under the OCLI axiom [3–5] and the memory
leakage model [11]. Further, they address after-the-fact leakage. With our new BLR-CKS-heavy-secure NIKE
protocol, following the Bergsma et al. [8] transformation, we can achieve leakage-resilient AKE in an eCK-
style model
∙ under memory leakage (stronger than the OCLI axiom),
∙ addressing before-the-fact leakage (weaker than after-the-fact leakage).

5.2.1 Bounded-memory before-the-fact leakage eCK model

Wepresent a suitable securitymodel to analyze the leakage resiliency of AKEprotocols, considering the afore-
mentioned points, i.e., in an eCK-style security model [28], addressing before-the-fact, bounded-memory
leakage.

Let κ be the security parameter. Let U = {U1, . . . , Un} be a set of n parties. We use the term principal
to identify a party involved in a protocol instance. Each party Ui, where i ∈ [1, NP], has a pair of long-term
public and secret keys, (pkUi , skUi). The term session is used to identify a protocol instance at a principal.
Each principal may have multiple sessions, and they may run concurrently. The oracle Πs

U,V represents the
s-th session at the owner principal U, with intended partner principal V. The principal which sends the first
protocol message of a session is the initiator of the session, and the principal which responds to the first
protocol message is the responder of the session.

Partner sessions in the BBFL-eCK model: Two oracles Πs
U,V and Πs󸀠󸀠

U󸀠󸀠 ,V󸀠󸀠 are said to be partners if all of the
following conditions hold:
(i) both Πs

U,V and Πs󸀠󸀠
U󸀠󸀠 ,V󸀠󸀠 have computed session keys;

(ii) messages sent from Πs
U,V and messages received by Πs󸀠󸀠

U󸀠󸀠 ,V󸀠󸀠 are identical;
(iii) messages sent from Πs󸀠󸀠

U󸀠󸀠 ,V󸀠󸀠 and messages received by Πs
U,V are identical;

(iv) U󸀠󸀠 = V and V󸀠󸀠 = U;
(v) exactly one of U and V is the initiator, and the other is the responder.
The protocol is said to be correct if two partner oracles compute identical session keys.

Modeling leakage: We consider the bounded-memory leakage setting for modeling the leakage. As before,
the adversary is allowed to issue arbitrary efficiently computable leakage functions fi and obtain the leak-
age fi(sk) of the secret key sk, before the session key is established. As mentioned above, the constraint is
∑i=1|fi(sk)| ≤ λ, where λ is the leakage parameter.

Adversarial powers:
∙ Send(U, V, s,m) query: The oracle Πs

U,V computes the next protocol message according to the protocol
specification and sends it to the adversary.A can also use this query to activate a new protocol instance
with blank m.

∙ SessionKeyReveal(U, V, s) query:A is given the session key of the oracle Πs
U,V .

∙ EphemeralKeyReveal(U, V, s) query:A is given the ephemeral keys (per-session randomness) of Πs
U,V .

∙ Corrupt(U) query:A is given the long-term secrets of the principal U.
∙ Test(U, s) query: When A asks the Test query, the challenger first chooses a random bit b $← {0, 1} and

if b = 1 then the actual session key is returned to A, otherwise a random string chosen from the same
session key space is returned toA.

∙ Leakage(U, fi) query: The leakage fi(skU) is computed and returns to the adversary if and only if
∑i=1|fi(skU)| ≤ λ.

λ-BBFL-eCK-freshness: Let λ be the leakage parameter. An oracle Πs
U,V is said to be λ-BBFL-eCK-fresh if and

only if conditions (1)–(3) of Alawatugoda et al. [4, Definition 4] hold, and
(iv) before Πs

U,V is activated, for all Leakage(U, fi) queries,∑i=1|fi(skU)| ≤ λ, and for all Leakage(V, fi) queries,
∑i=1|fi(skV)| ≤ λ;

(v) after Πs
U,V is activated, no leakage is allowed from U and V.

22 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

A (initiator) B (responder)
((sknikeA , sksigA), (pk

nike
A , pksigA)) ((sknikeB , sksigB), (pk

nike
B , pksigB))

rA $← {0.1}κ rB $← {0.1}κ
(sktmpA , pktmpA) ← NIKEgen(1κ , rA) (sktmpB , pktmpB) ← NIKEgen(1κ , rB)
σA ← SIGsign(sksigA , pktmpA)

(pktmpA ,σA)󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀 σB ← SIGsign(sksigB , pktmpB)
if SIGvfy(pksigB , pktmpB , σB) = 1; (pktmpB ,σB)←󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀 if SIGvfy(pksigA , pktmpA , σA) = 1;

T := sort(pktmpA , pktmpB) T := sort(pktmpA , pktmpB)
knike,nike = PRF(NIKEkey(sknikeA , pknikeB), T) knike,nike = PRF(NIKEkey(sknikeB , pknikeA), T)
knike,tmp = PRF(NIKEkey(sknikeA , pktmpB), T) knike,tmp = PRF(NIKEkey(sknikeB , pktmpA), T)
ktmp,nike = PRF(NIKEkey(sktmpA , pknikeB), T) ktmp,nike = PRF(NIKEkey(sktmpB , pknikeA), T)
ktmp,tmp = PRF(NIKEkey(sktmpA , pktmpB)) ktmp,tmp = PRF(NIKEkey(sktmpB , pktmpA))

kA,B := knike,nike ⊕ knike,tmp ⊕ ktmp,nike ⊕ ktmp,tmp kB,A := knike,nike ⊕ knike,tmp ⊕ ktmp,nike ⊕ ktmp,tmp

Table 5: Leakage-resilient AKE protocol LR-AKE.

BBFL-eCK security game: The adversary A interacts with the challenger by issuing any combination of
Send(), SessionKeyReveal(), EphemeralKeyReveal(), Leakage() and Corrupt() queries at will. At some point,
the adversary chooses a λ-BBFL-eCK-fresh oracle and issues a Test() query. Then the adversary may continue
asking the Send(), SessionKeyReveal(), EphemeralKeyReveal(), Leakage() and Corrupt() queries while pre-
serving the freshness of the test session, and finally outputs answer bit b󸀠󸀠 for the challenge.Awins if b󸀠󸀠 = b.
Let SuccA denote the event that the adversaryA wins the above security game.

Definition 5.4 (BBFL-eCK security). A protocol π is said to be BBFL-eCK-secure if there is no PPT adversaryA
that can win the BBFL-eCK security game with non-negligible advantage. The advantage of an adversary A

is defined as AdvBBFL-eCKπ,A (κ) = |2Pr(SuccA) − 1|.

5.2.2 Constructing BBFL-eCK-secure key exchange protocols

In Table 5, we show the generic leakage-resilient variant of the Bergsma et al. [8] AKE protocol. We replace
the CKS-light-secureNIKEwith a BLR-CKS-heavy-secureNIKE, and theUF-CMA-secure signature schemewith
a UF-CMLA-secure signature scheme in the bounded-memory leakage model, to come up with the generic
BBFL-eCK-secure AKE protocol. In this protocol, the final shared key is obtained by xor-ing the intermedi-
ate keys. Since the adversary learns the leakage only from the long-term secret parameters, it is not neces-
sary to use leakage-resilient PRFs for the construction of LR-AKE, following NIKE to AKE transformation of
Bergsma et al.

Let LR-NIKE = (NIKEcommon_setup, NIKEgen, NIKEkey) be the underlying BLR-CKS-heavy-secure NIKE
protocol. Let LR-SIG = (SIGkg, SIGsign, SIGvfy) be the underlying UF-CMLA-secure signature scheme, and
let PRF be a secure pseudo-random function. Since the generic construction of the AKE protocol remains
unchanged with respect to Bergsma et al. [8], except the replacement of the leakage-resilient advancements
of the underlying primitives, in the bounded-memory leakage setting, the security of the resulting AKE still
preserves the eCK-style with the advancements of leakage resiliency in the bounded-memory leakage setting.
Therefore, the security theorem and the flow of the security proof is similar to [8, Appendix A, Theorem 1]
and its proof.

Theorem 5.5. If the underlying NIKE protocol LR-NIKE is BLR-CKS-heavy-secure, the signature scheme LR-SIG
is UF-CMLA-secure in the bounded-memory leakage model and the pseudo-random property holds for the PRF,
then the LR-AKE protocol is BBFL-eCK-secure.

Let d be the number of parties. Eachparty Ui ownsatmost ℓprotocol sessions. LetAbeanadversary against
the above protocol LR-AKE. We construct attackers Bsig, B(1)nike, B

(0)
nike and Bprf against the underlying leakage-

resilient signature scheme, the leakage-resilientNIKEprotocol (matching session exists andnomatching session

194  S. Chakraborty et al., New approach to practical leakage-resilient PKCS. Chakraborty et al., New approach to practical leakage-resilient PKC | 23

exists, respectively) and the pseudo-random function such that

AdvBBFL-eCKLR-AKE,A(κ) ≤ 4d2ℓ2(AdvBLR-CKS-heavyLR-NIKE,B(1)
nike
(κ) + AdvprfPRF,Bprf

(κ))

+ 4AdvBLR-CKS-heavy
LR-NIKE,B(0)

nike
(κ) + 4dAdvUF-CMLALR-SIG,Bsig

(κ).

Proof sketch. To prove Theorem 5.5, we need to consider four types of attackers.
∙ AnA1-type attacker never asks the EphemeralKeyRevealquery for the test session. If there exists a partner

to the test session, it will also never ask the EphemeralKeyReveal query for the partner session.
∙ AnA2-type attacker never asks the EphemeralKeyRevealquery for the test session. If there exists a partner

to the test session, it also never asks the Corrupt query for the owner of the partner session.
∙ An A3-type attacker never asks the Corrupt query to the owner of the test session. If there exists a partner

to the test session, it also never asks the EphemeralKeyReveal query to the partner session.
∙ An A4-type attacker never asks the Corrupt query to the owner of the test session. If there exists a partner

to the test session, it also never asks the Corrupt query to the owner of the partner session.
Each legitimate attacker according to the freshness definition falls into at least on of these categories.

In the LR-AKE protocol, the session key is computed as

k := knike,nike ⊕ knike,tmp ⊕ ktmp,nike ⊕ ktmp,tmp.

The main intuition behind this construction is that we need to reduce the indistinguishability of the shared
key of LR-AKE to the indistinguishability of LR-NIKE. In this simulation, we can easily simulate the leakage
by giving the adversary A the leakage obtained from the underlying leakage-resilient NIKE challenger and
the signature scheme challenger. In the security experiment against the leakage-resilient NIKE, the NIKE-
adversary gets two challenge public keys from the leakage-resilient NIKE challenger. In the reduction, we
need to embed them into the view of the adversaryA, in a way that we can embed the leakage-resilient NIKE-
challenge key into kwhile successfully answering all the legitimateCorrupt and EphemeralKeyRevealqueries.

An A1-type attacker never asks EphemeralKeyReveal queries to the test session and the partner to the
test session. Thus it is possible to embed the public keys from the leakage-resilient NIKE challenger as the
ephemeral public keys of the test session. Then use the challenge key from the leakage-resilient NIKE chal-
lenger as ktmp,tmp.

For the case of an A2-type attacker, embed the public keys from the leakage-resilient NIKE challenger,
one as the ephemeral public key and the other one as the long-termpublic key of the test session. Thenuse the
challenge key as ktmp,nike. Since this embedding involves a long-term secret of one party of the test session,
we need to use an additional PRF, and this long-term secret is used inmany protocol executions involving the
corresponding party. Similarly, A3 and A4-type attackers can be handled by embedding the leakage-resilient
NIKE challenger’s public and challenge keys accordingly.

Thus the four attackers correspond to all possible combinations of Corrupt and EphemeralKeyReveal
queries that are allowed in our BBFL-eCK security model.

Remark 5.6. Our construction of an BBFL-eCK secure AKE protocol is obtained by replacing the building
blocks (i.e., NIKE and one-time signature schemes) in Bergsma et al.’s framework [8] with a (bounded)
leakage-resilient NIKE and a (bounded) leakage-resilient signature scheme. However, such a straightfor-
ward replacement of the underlying primitives with their corresponding leakage-resilient counterparts may
encounter a subtle technical problem: the adversary can use the leakage oracle to break the authentication
mechanism in the “test” session (which corresponds to breaking the UF-CMLA security of the signature
scheme), or it can encode the (description of the) session key derivation function in the leakage function
to leak from the session key. However, it is to be noted that, in our BBFL-eCK security model, the adversary
is not allowed to query the leakage oracle during or after the test session. This is because we consider the
setting of “before-the-fact” leakage in our current work. Hence the above impossibility result can be avoided
in our setting.

24 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

5.2.3 Leakage tolerance of the generic LR-AKE protocol

This generic protocol can tolerate the leakage according to the leakage tolerance of the underlying leakage-
resilient NIKE and the leakage-resilient signature scheme. Our LR-NIKE can tolerate 1 − o(1) leakage, and
the UF-CMLA signature scheme of Katz et al. [26] can tolerate n − nε leakage, for an n-bit key and 1 > ε > 0,
which approaches 1 − o(1) leakage rate for sufficiently large n and small enough ε. Thus the corresponding
instantiation can tolerate an overall leakage rate of 1 − o(1).

5.3 Leakage-resilient low-latency key exchange

Low-latency key exchange (LLKE) can be considered as one of the important practical usages of NIKE proto-
cols, which permits the transmission of cryptographically protected data, without prior key exchange, while
providing perfect forward secrecy (PFS). Leakage resiliency of LLKE remains unstudied.

5.3.1 Bounded-memory leakage LLKE-ma model

We refer to the securitymodel undermutual authentication of Hale et al. [23, Section 5] as LLKE-mamodel. In
this work, we introduce a bounded-memory leakagemodel on top of the LLKE-mamodel (we use the notation
BL-LLKE-ma to identify our model whenever necessary).

Let d be the number of clients and ℓ the number of servers. Each client is represented by a collection of
n oracles Ci,1, . . . , Ci,n, and each server is represented by a collection of k oracles Sj,1, . . . , Sj,k. Each oracle
represents an instance of the protocol. Each principal has a long-term key pair (ski , pki). Let κ be the security
parameter and λ the leakage parameter. Each oracleCi,s ∈ [d] × [n] (orSj,t ∈ [ℓ] × [k], respectively)maintains
(i) two variables ktmp

i and kmain
i to store the temporary and main keys of a session,

(ii) a variable Partneri containing the identity of the intended communication partner,
(iii) variablesMin

i,s andMout
i,s containing messages sent and received by the oracle.

Adversarial powers:
∙ Send(Ci,s/Sj,t ,m): The adversary sends the message m to the requested oracle, the oracle processes m

according to the protocol specification, and the response is returned to the adversary.
∙ Reveal(Ci,s/Sj,t , tmp/main): This query returns the key of the given stage if it has been already computed,

or ⊥ otherwise.
∙ Corrupt(i/j): This query returns the long-term secret key of the server or the client accordingly. If

Corrupt(j/i) is the τ-th query issued by the adversary, we say a party is τ-corrupted. For the parties
that are not corrupted, we define τ := ∞.

∙ Test(Ci,s/Sj,t , tmp/main): This query is used to test a key. If the variable for the requested key is not empty,
the challenger chooses b $← {0, 1}, and if b = 0, then the requested key is returned, else a random key is
returned. Otherwise, ⊥ is returned.

∙ Leakage(i/j, fi): The leakage fi(ski/j) is computed and returns to the adversary iff∑i=1|fi(ski/j)| ≤ λ.
BL-LLKE-ma security game: The adversary interacts with the challenger by issuing any combination of
Send(), Corrupt(), Reveal() and Leak() queries. At some point, the adversary issues a Test() query to an oracle
that holds the conditions in Definition 5.7. Then the adversary may continue asking the Send(), Corrupt(),
Reveal() and Leak() queries, without violating the conditions of Definition 5.7, and finally outputs answer
bit b󸀠󸀠 for the challenge. A wins if b󸀠󸀠 = b. Let SuccA denote the event that the adversary A wins the above
security game.

Definition 5.7 (Leakage-resilient key security (under mutual authentication)). A protocol π is said to be BL-
LLKE-ma-secure if there is no PPT adversary A that can win the BL-LLKE-ma security game with non-negli-
gible advantage, while holding the following conditions.

S. Chakraborty et al., New approach to practical leakage-resilient PKC  195S. Chakraborty et al., New approach to practical leakage-resilient PKC | 23

exists, respectively) and the pseudo-random function such that

AdvBBFL-eCKLR-AKE,A(κ) ≤ 4d2ℓ2(AdvBLR-CKS-heavyLR-NIKE,B(1)
nike
(κ) + AdvprfPRF,Bprf

(κ))

+ 4AdvBLR-CKS-heavy
LR-NIKE,B(0)

nike
(κ) + 4dAdvUF-CMLALR-SIG,Bsig

(κ).

Proof sketch. To prove Theorem 5.5, we need to consider four types of attackers.
∙ AnA1-type attacker never asks the EphemeralKeyRevealquery for the test session. If there exists a partner

to the test session, it will also never ask the EphemeralKeyReveal query for the partner session.
∙ AnA2-type attacker never asks the EphemeralKeyRevealquery for the test session. If there exists a partner

to the test session, it also never asks the Corrupt query for the owner of the partner session.
∙ An A3-type attacker never asks the Corrupt query to the owner of the test session. If there exists a partner

to the test session, it also never asks the EphemeralKeyReveal query to the partner session.
∙ An A4-type attacker never asks the Corrupt query to the owner of the test session. If there exists a partner

to the test session, it also never asks the Corrupt query to the owner of the partner session.
Each legitimate attacker according to the freshness definition falls into at least on of these categories.

In the LR-AKE protocol, the session key is computed as

k := knike,nike ⊕ knike,tmp ⊕ ktmp,nike ⊕ ktmp,tmp.

The main intuition behind this construction is that we need to reduce the indistinguishability of the shared
key of LR-AKE to the indistinguishability of LR-NIKE. In this simulation, we can easily simulate the leakage
by giving the adversary A the leakage obtained from the underlying leakage-resilient NIKE challenger and
the signature scheme challenger. In the security experiment against the leakage-resilient NIKE, the NIKE-
adversary gets two challenge public keys from the leakage-resilient NIKE challenger. In the reduction, we
need to embed them into the view of the adversaryA, in a way that we can embed the leakage-resilient NIKE-
challenge key into kwhile successfully answering all the legitimateCorrupt and EphemeralKeyRevealqueries.

An A1-type attacker never asks EphemeralKeyReveal queries to the test session and the partner to the
test session. Thus it is possible to embed the public keys from the leakage-resilient NIKE challenger as the
ephemeral public keys of the test session. Then use the challenge key from the leakage-resilient NIKE chal-
lenger as ktmp,tmp.

For the case of an A2-type attacker, embed the public keys from the leakage-resilient NIKE challenger,
one as the ephemeral public key and the other one as the long-termpublic key of the test session. Thenuse the
challenge key as ktmp,nike. Since this embedding involves a long-term secret of one party of the test session,
we need to use an additional PRF, and this long-term secret is used inmany protocol executions involving the
corresponding party. Similarly, A3 and A4-type attackers can be handled by embedding the leakage-resilient
NIKE challenger’s public and challenge keys accordingly.

Thus the four attackers correspond to all possible combinations of Corrupt and EphemeralKeyReveal
queries that are allowed in our BBFL-eCK security model.

Remark 5.6. Our construction of an BBFL-eCK secure AKE protocol is obtained by replacing the building
blocks (i.e., NIKE and one-time signature schemes) in Bergsma et al.’s framework [8] with a (bounded)
leakage-resilient NIKE and a (bounded) leakage-resilient signature scheme. However, such a straightfor-
ward replacement of the underlying primitives with their corresponding leakage-resilient counterparts may
encounter a subtle technical problem: the adversary can use the leakage oracle to break the authentication
mechanism in the “test” session (which corresponds to breaking the UF-CMLA security of the signature
scheme), or it can encode the (description of the) session key derivation function in the leakage function
to leak from the session key. However, it is to be noted that, in our BBFL-eCK security model, the adversary
is not allowed to query the leakage oracle during or after the test session. This is because we consider the
setting of “before-the-fact” leakage in our current work. Hence the above impossibility result can be avoided
in our setting.

24 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

5.2.3 Leakage tolerance of the generic LR-AKE protocol

This generic protocol can tolerate the leakage according to the leakage tolerance of the underlying leakage-
resilient NIKE and the leakage-resilient signature scheme. Our LR-NIKE can tolerate 1 − o(1) leakage, and
the UF-CMLA signature scheme of Katz et al. [26] can tolerate n − nε leakage, for an n-bit key and 1 > ε > 0,
which approaches 1 − o(1) leakage rate for sufficiently large n and small enough ε. Thus the corresponding
instantiation can tolerate an overall leakage rate of 1 − o(1).

5.3 Leakage-resilient low-latency key exchange

Low-latency key exchange (LLKE) can be considered as one of the important practical usages of NIKE proto-
cols, which permits the transmission of cryptographically protected data, without prior key exchange, while
providing perfect forward secrecy (PFS). Leakage resiliency of LLKE remains unstudied.

5.3.1 Bounded-memory leakage LLKE-ma model

We refer to the securitymodel undermutual authentication of Hale et al. [23, Section 5] as LLKE-mamodel. In
this work, we introduce a bounded-memory leakagemodel on top of the LLKE-mamodel (we use the notation
BL-LLKE-ma to identify our model whenever necessary).

Let d be the number of clients and ℓ the number of servers. Each client is represented by a collection of
n oracles Ci,1, . . . , Ci,n, and each server is represented by a collection of k oracles Sj,1, . . . , Sj,k. Each oracle
represents an instance of the protocol. Each principal has a long-term key pair (ski , pki). Let κ be the security
parameter and λ the leakage parameter. Each oracleCi,s ∈ [d] × [n] (orSj,t ∈ [ℓ] × [k], respectively)maintains
(i) two variables ktmp

i and kmain
i to store the temporary and main keys of a session,

(ii) a variable Partneri containing the identity of the intended communication partner,
(iii) variablesMin

i,s andMout
i,s containing messages sent and received by the oracle.

Adversarial powers:
∙ Send(Ci,s/Sj,t ,m): The adversary sends the message m to the requested oracle, the oracle processes m

according to the protocol specification, and the response is returned to the adversary.
∙ Reveal(Ci,s/Sj,t , tmp/main): This query returns the key of the given stage if it has been already computed,

or ⊥ otherwise.
∙ Corrupt(i/j): This query returns the long-term secret key of the server or the client accordingly. If

Corrupt(j/i) is the τ-th query issued by the adversary, we say a party is τ-corrupted. For the parties
that are not corrupted, we define τ := ∞.

∙ Test(Ci,s/Sj,t , tmp/main): This query is used to test a key. If the variable for the requested key is not empty,
the challenger chooses b $← {0, 1}, and if b = 0, then the requested key is returned, else a random key is
returned. Otherwise, ⊥ is returned.

∙ Leakage(i/j, fi): The leakage fi(ski/j) is computed and returns to the adversary iff∑i=1|fi(ski/j)| ≤ λ.
BL-LLKE-ma security game: The adversary interacts with the challenger by issuing any combination of
Send(), Corrupt(), Reveal() and Leak() queries. At some point, the adversary issues a Test() query to an oracle
that holds the conditions in Definition 5.7. Then the adversary may continue asking the Send(), Corrupt(),
Reveal() and Leak() queries, without violating the conditions of Definition 5.7, and finally outputs answer
bit b󸀠󸀠 for the challenge. A wins if b󸀠󸀠 = b. Let SuccA denote the event that the adversary A wins the above
security game.

Definition 5.7 (Leakage-resilient key security (under mutual authentication)). A protocol π is said to be BL-
LLKE-ma-secure if there is no PPT adversary A that can win the BL-LLKE-ma security game with non-negli-
gible advantage, while holding the following conditions.

196  S. Chakraborty et al., New approach to practical leakage-resilient PKCS. Chakraborty et al., New approach to practical leakage-resilient PKC | 25

∙ All the conditions in [23, Definition 8].
∙ Before activation of the test session on Ci, for all Leakage(i, fi) queries, ∑i=1|fi(ski)| ≤ λ, and before acti-

vation of the test session on Sj, for all Leakage(j, fi) queries,∑i=1|fi(skj)| ≤ λ.
∙ After activation of the Test session on Ci, no leakage is allowed from ski (same as to the case of Sj).
The advantage ofA is defined as AdvBL-LLKE-ma

π,A (κ) = |2Pr(SuccA) − 1|.

5.3.2 Generic construction of BL-LLKE-ma-secure LLKE from NIKE

In thework ofHale et al., theyhaveused aCKS-light-secureNIKE schemeNIKE andaUF-CMA-secure signature
scheme SIG. We simply replace those primitives with their respective leakage-resilient versions.

Let LR-NIKE = (NIKEcommon_setup, NIKEgen, NIKEkey) be a BLR-CKS-heavy-secure NIKE scheme, and let
LR-SIG = (SIGkg, SIGsign, SIGvfy)be aUF-CMLA-secure signature scheme. Thenwe construct a LLKEprotocol
LR-LLKE = (Gen, KEclientinit , KEclientrefresh, KE

server
refresh) same as the description in Hale et al. [23, Section 6.1].

Since the generic construction of the LLKE protocol remains unchangedwith respect to Hale et al., except
for the replacement of the leakage-resilient advancements of the underlying primitives (in the bounded-
memory leakagemodel), the security of the resulting AKE still preserves the LLKE-ma-style with the advance-
ments of leakage resiliency in the bounded-memory leakage model. Therefore, the security theorem and the
flow of the security proof are similar to [23, Appendix 6.2, Theorem 2] and its proof.

Theorem 5.8. If the underlying NIKE protocol LR-NIKE is BLR-CKS-heavy-secure and the signature scheme
LR-SIG is UF-CMLA-secure in the bounded-memory leakage model, then the LR-LLKE protocol is BK-LLKE-ma-
secure.

Let d be the number of clients and ℓ the number of servers. Each client and each server is represented by
a collection of n and k oracles, respectively. Let A be an adversary against the above protocol LR-LLKE. We
construct attackers Bsig and Bnike against the underlying leakage-resilient signature scheme and the leakage-
resilient NIKE protocol such that

AdvBK-LLKE-ma
LR-LLKE,A (κ) ≤ dℓn(AdvBLR-CKS-heavyLR-NIKE,Bnike

(κ) + 2AdvUF-CMLALR-SIG,Bsig
(κ))

+ dℓn(kAdvBLR-CKS-heavyLR-NIKE,Bnike
(κ) + 2AdvUF-CMLALR-SIG,Bsig

(κ))
+ 2kdℓn(AdvBLR-CKS-heavyLR-NIKE,Bnike

(κ) + 2AdvUF-CMLALR-SIG,Bsig
(κ)) + 4AdvBLR-CKS-heavyLR-NIKE,Bnike

(κ).
Proof sketch. We distinguish between four different attackers:
∙ an A1-type attacker asks the Test query to a client oracle and the temporary key;
∙ an A2-type attacker asks the Test query to a client oracle and the main key;
∙ an A3-type attacker asks the Test query to a server oracle and the temporary key;
∙ an A4-type attacker asks the Test query to a client oracle and the main key.
The four different attackers correspond to all possible combinations of queries that are allowed in our BK-
LLKE-ma security model. The four distinct lines of the equation in Theorem 5.8 corresponds to each of above
cases, respectively. We can easily simulate the leakage by giving the adversary A the leakage obtained from
the underlying leakage-resilient NIKE challenger and the signature scheme challenger. Apart from that, the
simulation is the same as that of Hale et al. [23].

5.3.3 Leakage tolerance of the generic LR-LLKE protocol

This generic protocol can tolerate the leakage according to the leakage tolerance of the underlying leakage-
resilient NIKE and the leakage-resilient signature scheme. Our LR-NIKE can tolerate 1 − o(1) leakage, and
the UF-CMLA signature scheme of Katz et al. [26] can tolerate n − nε leakage, for an n-bit key and 1 > ε > 0,
which approaches 1 − o(1) leakage rate for sufficiently large n and small enough ε. Thus the corresponding
instantiation can tolerate an overall leakage rate of 1 − o(1).

26 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

6 Conclusion and future works

Our work provides a new direction for constructing several leakage-resilient cryptographic primitives, such
as leakage-resilient PKE schemes, AKE protocols and LLKE protocols, using leakage-resilient NIKE protocols
as the main building block. Our construction of LR-NIKE in the bounded leakage setting achieves an opti-
mal leakage rate, i.e., 1 − o(1), and the resulting leakage-resilient constructions from that also preserve the
same leakage rate, upon the appropriate choice of parameters. Ourwork also opens up leakage-resilient LLKE
protocols, and we hope there is much work to be done on this. We leave open the following main problems:
∙ construction of leakage-resilient NIKE in the (1 − o(1))-bounded-memory leakage model, without the

leak-free hardware assumption,
∙ leakage-resilient NIKE in the (1 − o(1))-continuous memory leakage model in the non-split state model.

A Additional preliminaries

A.1 Basics of information theory

Definition A.1 (Min-entropy). The min-entropy of a random variable X, denoted as H∞(X), is defined as
H∞(X) def= − log(maxx Pr[X = x]). This is a standard notion of entropy used in cryptography since it measures
the worst-case predictability of X.

Definition A.2 (Average conditional min-entropy). The average-conditional min-entropy of a random vari-
able X conditioned on a (possibly) correlated variable Z, denoted as H̃∞(X|Z), is defined as

H̃∞(X|Z) = − log(𝔼𝔼z←Z[max
x

Pr[X = x|Z = z]),
H̃∞(X|Z) = − log(𝔼𝔼z←Z[2−H∞(X|Z=z)]).

This measures the worst-case predictability of X by an adversary that may observe a correlated variable Z.

The following bound on average min-entropy was proved by Dodis et al. [17].

Lemma A.3 ([17]). For any random variables X, Y and Z, if Y takes on values in {0, 1}ℓ, then

H̃∞(X|Y, Z) ≥ H̃∞(X|Z) − ℓ and H̃∞(X|Y) ≥ H̃∞(X) − ℓ.

A.2 Leakage-resilient (LR) chameleon hash functions

In this section, we give the definition of LR chameleon hash functions (CHF) in the boundedmemory leakage
model following [39].

LR-CHF in bounded leakagemodel: Informally, a chameleon hash function (CHF) is a collision-resistant hash
function, the only difference being that it is easy to find collision given a trapdoor. Without knowing the
trapdoor, it is hard to find any collision. Leakage-resilient chameleon hash functions (LR-CHF) postulate that
it is hard to find collisions, even when the adversary learns bounded leakage/information about the secret
key. Formally, an λ-LR-CHF ChamH : D × Rcham → I, where D is the domain, Rcham the randomness space
and I the range, consists of the algorithms (Cham.KeyGen, Cham.Eval, Cham.TCF).
(i) Cham.KeyGen(1κ , λ): The key generation algorithm takes as input 1κ and the leakage bound λ as parame-

ters and outputs an evaluation key along with a trapdoor (hk, ck). The public key hk defines a chameleon
hash function, denoted ChamHhk(⋅ , ⋅).

(ii) Cham.Eval(hk,m, r): The hash function evaluation algorithm that takes as input hk, a message m ∈ D
and a randomizer r ∈ Rcham, outputs a hash value h = ChamHhk(m, r).

S. Chakraborty et al., New approach to practical leakage-resilient PKC  197S. Chakraborty et al., New approach to practical leakage-resilient PKC | 25

∙ All the conditions in [23, Definition 8].
∙ Before activation of the test session on Ci, for all Leakage(i, fi) queries, ∑i=1|fi(ski)| ≤ λ, and before acti-

vation of the test session on Sj, for all Leakage(j, fi) queries,∑i=1|fi(skj)| ≤ λ.
∙ After activation of the Test session on Ci, no leakage is allowed from ski (same as to the case of Sj).
The advantage ofA is defined as AdvBL-LLKE-ma

π,A (κ) = |2Pr(SuccA) − 1|.

5.3.2 Generic construction of BL-LLKE-ma-secure LLKE from NIKE

In thework ofHale et al., theyhaveused aCKS-light-secureNIKE schemeNIKE andaUF-CMA-secure signature
scheme SIG. We simply replace those primitives with their respective leakage-resilient versions.

Let LR-NIKE = (NIKEcommon_setup, NIKEgen, NIKEkey) be a BLR-CKS-heavy-secure NIKE scheme, and let
LR-SIG = (SIGkg, SIGsign, SIGvfy)be aUF-CMLA-secure signature scheme. Thenwe construct a LLKEprotocol
LR-LLKE = (Gen, KEclientinit , KEclientrefresh, KE

server
refresh) same as the description in Hale et al. [23, Section 6.1].

Since the generic construction of the LLKE protocol remains unchangedwith respect to Hale et al., except
for the replacement of the leakage-resilient advancements of the underlying primitives (in the bounded-
memory leakagemodel), the security of the resulting AKE still preserves the LLKE-ma-style with the advance-
ments of leakage resiliency in the bounded-memory leakage model. Therefore, the security theorem and the
flow of the security proof are similar to [23, Appendix 6.2, Theorem 2] and its proof.

Theorem 5.8. If the underlying NIKE protocol LR-NIKE is BLR-CKS-heavy-secure and the signature scheme
LR-SIG is UF-CMLA-secure in the bounded-memory leakage model, then the LR-LLKE protocol is BK-LLKE-ma-
secure.

Let d be the number of clients and ℓ the number of servers. Each client and each server is represented by
a collection of n and k oracles, respectively. Let A be an adversary against the above protocol LR-LLKE. We
construct attackers Bsig and Bnike against the underlying leakage-resilient signature scheme and the leakage-
resilient NIKE protocol such that

AdvBK-LLKE-ma
LR-LLKE,A (κ) ≤ dℓn(AdvBLR-CKS-heavyLR-NIKE,Bnike

(κ) + 2AdvUF-CMLALR-SIG,Bsig
(κ))

+ dℓn(kAdvBLR-CKS-heavyLR-NIKE,Bnike
(κ) + 2AdvUF-CMLALR-SIG,Bsig

(κ))
+ 2kdℓn(AdvBLR-CKS-heavyLR-NIKE,Bnike

(κ) + 2AdvUF-CMLALR-SIG,Bsig
(κ)) + 4AdvBLR-CKS-heavyLR-NIKE,Bnike

(κ).
Proof sketch. We distinguish between four different attackers:
∙ an A1-type attacker asks the Test query to a client oracle and the temporary key;
∙ an A2-type attacker asks the Test query to a client oracle and the main key;
∙ an A3-type attacker asks the Test query to a server oracle and the temporary key;
∙ an A4-type attacker asks the Test query to a client oracle and the main key.
The four different attackers correspond to all possible combinations of queries that are allowed in our BK-
LLKE-ma security model. The four distinct lines of the equation in Theorem 5.8 corresponds to each of above
cases, respectively. We can easily simulate the leakage by giving the adversary A the leakage obtained from
the underlying leakage-resilient NIKE challenger and the signature scheme challenger. Apart from that, the
simulation is the same as that of Hale et al. [23].

5.3.3 Leakage tolerance of the generic LR-LLKE protocol

This generic protocol can tolerate the leakage according to the leakage tolerance of the underlying leakage-
resilient NIKE and the leakage-resilient signature scheme. Our LR-NIKE can tolerate 1 − o(1) leakage, and
the UF-CMLA signature scheme of Katz et al. [26] can tolerate n − nε leakage, for an n-bit key and 1 > ε > 0,
which approaches 1 − o(1) leakage rate for sufficiently large n and small enough ε. Thus the corresponding
instantiation can tolerate an overall leakage rate of 1 − o(1).

26 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

6 Conclusion and future works

Our work provides a new direction for constructing several leakage-resilient cryptographic primitives, such
as leakage-resilient PKE schemes, AKE protocols and LLKE protocols, using leakage-resilient NIKE protocols
as the main building block. Our construction of LR-NIKE in the bounded leakage setting achieves an opti-
mal leakage rate, i.e., 1 − o(1), and the resulting leakage-resilient constructions from that also preserve the
same leakage rate, upon the appropriate choice of parameters. Ourwork also opens up leakage-resilient LLKE
protocols, and we hope there is much work to be done on this. We leave open the following main problems:
∙ construction of leakage-resilient NIKE in the (1 − o(1))-bounded-memory leakage model, without the

leak-free hardware assumption,
∙ leakage-resilient NIKE in the (1 − o(1))-continuous memory leakage model in the non-split state model.

A Additional preliminaries

A.1 Basics of information theory

Definition A.1 (Min-entropy). The min-entropy of a random variable X, denoted as H∞(X), is defined as
H∞(X) def= − log(maxx Pr[X = x]). This is a standard notion of entropy used in cryptography since it measures
the worst-case predictability of X.

Definition A.2 (Average conditional min-entropy). The average-conditional min-entropy of a random vari-
able X conditioned on a (possibly) correlated variable Z, denoted as H̃∞(X|Z), is defined as

H̃∞(X|Z) = − log(𝔼𝔼z←Z[max
x

Pr[X = x|Z = z]),
H̃∞(X|Z) = − log(𝔼𝔼z←Z[2−H∞(X|Z=z)]).

This measures the worst-case predictability of X by an adversary that may observe a correlated variable Z.

The following bound on average min-entropy was proved by Dodis et al. [17].

Lemma A.3 ([17]). For any random variables X, Y and Z, if Y takes on values in {0, 1}ℓ, then

H̃∞(X|Y, Z) ≥ H̃∞(X|Z) − ℓ and H̃∞(X|Y) ≥ H̃∞(X) − ℓ.

A.2 Leakage-resilient (LR) chameleon hash functions

In this section, we give the definition of LR chameleon hash functions (CHF) in the boundedmemory leakage
model following [39].

LR-CHF in bounded leakagemodel: Informally, a chameleon hash function (CHF) is a collision-resistant hash
function, the only difference being that it is easy to find collision given a trapdoor. Without knowing the
trapdoor, it is hard to find any collision. Leakage-resilient chameleon hash functions (LR-CHF) postulate that
it is hard to find collisions, even when the adversary learns bounded leakage/information about the secret
key. Formally, an λ-LR-CHF ChamH : D × Rcham → I, where D is the domain, Rcham the randomness space
and I the range, consists of the algorithms (Cham.KeyGen, Cham.Eval, Cham.TCF).
(i) Cham.KeyGen(1κ , λ): The key generation algorithm takes as input 1κ and the leakage bound λ as parame-

ters and outputs an evaluation key along with a trapdoor (hk, ck). The public key hk defines a chameleon
hash function, denoted ChamHhk(⋅ , ⋅).

(ii) Cham.Eval(hk,m, r): The hash function evaluation algorithm that takes as input hk, a message m ∈ D
and a randomizer r ∈ Rcham, outputs a hash value h = ChamHhk(m, r).

198  S. Chakraborty et al., New approach to practical leakage-resilient PKCS. Chakraborty et al., New approach to practical leakage-resilient PKC | 27

(iii) Cham.TCF(ck, (m, r),m󸀠󸀠): The trapdoor collision finder algorithm takes as the trapdoor ck, a message-
randomizer pair (m, r), an additional message m󸀠󸀠, and outputs a value r󸀠󸀠 ∈ Rcham such that

ChamHhk(m, r) = ChamHhk(m󸀠󸀠, r󸀠󸀠).
A λ-LR-CHF must satisfy the following three properties.
∙ Reversibility: The reversibility property is satisfied if r󸀠󸀠 = Cham.TCF(ck, (m, r),m󸀠󸀠) is equivalent to

r = Cham.TCF(ck, (m󸀠󸀠, r󸀠󸀠),m).
∙ Random trapdoor collisions: The random trapdoor collision property is satisfied if, for a trapdoor ck,

an arbitrary message pair (m,m󸀠󸀠) and a randomizer r, we have that r󸀠󸀠 = Cham.TCF(ck, (m, r),m󸀠󸀠) has
uniform probability distribution on the randomness space Rcham.

∙ LR-collision resistance: The LR collision-resistance property is satisfied if, for any PPT adversary A, the
following advantage in negligible:

AdvcollA,ChamH(κ) = |Pr[(hk, ck) ← Cham.KeyGen(1κ , ℓ); (m, r), (m󸀠󸀠, r󸀠󸀠) ← AOκ,λ
ck (hk) :

(m, r) ̸= (m󸀠󸀠, r󸀠󸀠) and ChamHhk(m, r) = ChamHhk(m󸀠󸀠, r󸀠󸀠)]|,
where Oκ,λ

ck is the leakage oracle to which A can adaptively query to learn at most λ bits of information
about the trapdoor ck.

A.3 Pseudo-random functions

F : Σk × Σm → Σn is a (εprf , sprf , qprf) secure pseudo-random function (PRF) if no adversary of size sprf can
distinguish F (instantiated with a random key) from a uniformly random function, i.e., for any A of size sprf
making qprf oracle queries, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Pr
K $←ΣK
[AF(K, ⋅) → 1] − Pr

Rm,n
[ARm,n(⋅) → 1]󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ εprf ,

where R(m, n) is the set of all functions from Σm → Σn.

A.4 UF-CMLA-secure signature schemes

We review the definition of UF-CMLA security according to Katz et al. [26]. The leakage function fi is an
adversary chosen efficiently computable adaptive leakage function, which leaks fi(sk) from a secret key sk.

Definition A.4 (Unforgeability against chosen message leakage attacks (UF-CMLA)). Let κ be the security
parameter and λ the leakage parameter. Let LR-SIG = (SIGkg, SIGsign, SIGvfy) be a signature scheme. We
define the advantage AdvUF-CMLALR-SIG,Bsig

(κ) of any PPT adversaryBsig winning the following game:
(i) (sksig, pksig) $← SIGkg(1κ).
(ii) (m∗, σ∗) ← AO(⋅ , ⋅)(pksig).
(iii) If SIGvfy(pksig,m∗, σ∗) = “true” and m∗ is not been previously signed, thenBsig wins.

Oracle O(m, fi):
∙ σ $← SIGsign(sksig,m).
∙ γi ← fi(sksig).
∙ If∑i=1|γi| ≤ λ,

– γ ← γi,
– γ ← ⊥.

∙ Return (σ, γ).
We say the signature scheme LR-SIG is UF-CMLA-secure if AdvUF-CMLALR-SIG,Bsig

(κ) is negligible.

28 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

Katz et al. [26] constructed a UFCMLA-secure signature scheme in bounded leakage model in which n = 1.
It contains signing and verification operations based on NIZK proofs, where the signature can be generated
with a cost of two exponentiations and verifiedwith a cost of four exponentiations (with a simpleNIZK proof).

B Leakage-resilient cryptography and leakage models

During the past two decades, side-channel attacks have arisen as a popular method of attacking crypto-
graphic systems. In order to abstractly model the side-channel attacks and analyze the security of crypto-
graphic primitives against them, cryptographers have proposed the notion of leakage-resilient cryptography,
introducing various leakage models [2, 6, 29, 30].

In the work of Micali and Reyzin [30], a general framework was introduced to model the leakage that
occurs during computation with secret parameters, which is widely known as the only computation leaks
information (OCLI) axiom. They mentioned that the leakage only occurs from the secret memory portions
which are actively involved in computations. The leakage amount is bounded per computation, though the
adversary is allowed to obtain the leakage from many computations. Therefore, the overall leakage amount
is unbounded. Since this assumption enforces that the leakage only occurs due to computations, this does
not cover the attacks that happen due to the leakage from the memory such as malware attacks, cold-boot
attacks, etc.

Inspired by the cold-boot attacks, Akavia et al. [2] constructed a general framework to model bounded
leakage attacks, which is widely known as bounded-memory leakagemodel. The adversary chooses an arbi-
trary polynomial-time leakage function f and sends it to the leakage oracle. The leakage oracle returns f(sk)
to the adversary, where sk is the secret key. The only restriction here is that the sum of output lengths of all
the leakage functions that an adversary can obtain is bounded by some parameter λ, which is smaller than
the size of sk. This leakagemodel does not address the continuous leakage from thememory, which can often
happen due to attacks such as malware attacks.

Previous works of Zvika et al. [9] and Dodis et al. [14] presented a continual-memory leakage model, in
which it is assumed that the leakage happens from the entire secret memory. The other characteristics of this
model are the same as the OCLI model. This leakage model is stronger than the OCLI model because here the
adversary can obtain the leakage from the entire memory regardless of computations.

Differently, Dodis et al. [16] introduced a leakagemodelwhere the adversary is allowed to obtain the leak-
age as any computationally uninvertible function of the secret key as auxiliary input. That model eliminates
the concept of leakage parameter, but enforces the hardness parameter instead.

C Vulnerability of the NIKE protocol of [19] in the bounded-leakage
setting

In this section, we show that the NIKE protocol of Freire et al. [19] from pairings in the standard model is
completely insecure, even if the adversary is given only a single bit of leakage on the secret key. The attack
exploits the fact that the adversary can ask any arbitrary leakage function as long as the output of the function
is length-shrinking in its input size. In particular, the secret key of a party in the NIKE protocol in Freire et al.
[19] is a field element, i.e., x ∈ ℤp, and one of the components of the public key is Z = gx. The shared key
between two parties IDi and IDj has the structure e(Sxi , Zj), where S is a public element, Zj = gxj and xi and xj
are the secret keys of parties IDi and IDj, respectively.

Now, given thepublic key, the adversary can encode the function that leaks thehardcore bit of thediscrete
logarithm of Z. In other words, he can specify the leakage function in such away that it leaks exactly themost
significant bit (MSB) of x. Note that theMSB of x is actually the hardcore bit of the discrete logarithm function.
So, with a single bit of leakage, the adversary can recover x completely, and hence he can distinguish the

S. Chakraborty et al., New approach to practical leakage-resilient PKC  199S. Chakraborty et al., New approach to practical leakage-resilient PKC | 27

(iii) Cham.TCF(ck, (m, r),m󸀠󸀠): The trapdoor collision finder algorithm takes as the trapdoor ck, a message-
randomizer pair (m, r), an additional message m󸀠󸀠, and outputs a value r󸀠󸀠 ∈ Rcham such that

ChamHhk(m, r) = ChamHhk(m󸀠󸀠, r󸀠󸀠).
A λ-LR-CHF must satisfy the following three properties.
∙ Reversibility: The reversibility property is satisfied if r󸀠󸀠 = Cham.TCF(ck, (m, r),m󸀠󸀠) is equivalent to

r = Cham.TCF(ck, (m󸀠󸀠, r󸀠󸀠),m).
∙ Random trapdoor collisions: The random trapdoor collision property is satisfied if, for a trapdoor ck,

an arbitrary message pair (m,m󸀠󸀠) and a randomizer r, we have that r󸀠󸀠 = Cham.TCF(ck, (m, r),m󸀠󸀠) has
uniform probability distribution on the randomness space Rcham.

∙ LR-collision resistance: The LR collision-resistance property is satisfied if, for any PPT adversary A, the
following advantage in negligible:

AdvcollA,ChamH(κ) = |Pr[(hk, ck) ← Cham.KeyGen(1κ , ℓ); (m, r), (m󸀠󸀠, r󸀠󸀠) ← AOκ,λ
ck (hk) :

(m, r) ̸= (m󸀠󸀠, r󸀠󸀠) and ChamHhk(m, r) = ChamHhk(m󸀠󸀠, r󸀠󸀠)]|,
where Oκ,λ

ck is the leakage oracle to which A can adaptively query to learn at most λ bits of information
about the trapdoor ck.

A.3 Pseudo-random functions

F : Σk × Σm → Σn is a (εprf , sprf , qprf) secure pseudo-random function (PRF) if no adversary of size sprf can
distinguish F (instantiated with a random key) from a uniformly random function, i.e., for any A of size sprf
making qprf oracle queries, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Pr
K $←ΣK
[AF(K, ⋅) → 1] − Pr

Rm,n
[ARm,n(⋅) → 1]󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ εprf ,

where R(m, n) is the set of all functions from Σm → Σn.

A.4 UF-CMLA-secure signature schemes

We review the definition of UF-CMLA security according to Katz et al. [26]. The leakage function fi is an
adversary chosen efficiently computable adaptive leakage function, which leaks fi(sk) from a secret key sk.

Definition A.4 (Unforgeability against chosen message leakage attacks (UF-CMLA)). Let κ be the security
parameter and λ the leakage parameter. Let LR-SIG = (SIGkg, SIGsign, SIGvfy) be a signature scheme. We
define the advantage AdvUF-CMLALR-SIG,Bsig

(κ) of any PPT adversaryBsig winning the following game:
(i) (sksig, pksig) $← SIGkg(1κ).
(ii) (m∗, σ∗) ← AO(⋅ , ⋅)(pksig).
(iii) If SIGvfy(pksig,m∗, σ∗) = “true” and m∗ is not been previously signed, thenBsig wins.

Oracle O(m, fi):
∙ σ $← SIGsign(sksig,m).
∙ γi ← fi(sksig).
∙ If∑i=1|γi| ≤ λ,

– γ ← γi,
– γ ← ⊥.

∙ Return (σ, γ).
We say the signature scheme LR-SIG is UF-CMLA-secure if AdvUF-CMLALR-SIG,Bsig

(κ) is negligible.

28 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

Katz et al. [26] constructed a UFCMLA-secure signature scheme in bounded leakage model in which n = 1.
It contains signing and verification operations based on NIZK proofs, where the signature can be generated
with a cost of two exponentiations and verifiedwith a cost of four exponentiations (with a simpleNIZK proof).

B Leakage-resilient cryptography and leakage models

During the past two decades, side-channel attacks have arisen as a popular method of attacking crypto-
graphic systems. In order to abstractly model the side-channel attacks and analyze the security of crypto-
graphic primitives against them, cryptographers have proposed the notion of leakage-resilient cryptography,
introducing various leakage models [2, 6, 29, 30].

In the work of Micali and Reyzin [30], a general framework was introduced to model the leakage that
occurs during computation with secret parameters, which is widely known as the only computation leaks
information (OCLI) axiom. They mentioned that the leakage only occurs from the secret memory portions
which are actively involved in computations. The leakage amount is bounded per computation, though the
adversary is allowed to obtain the leakage from many computations. Therefore, the overall leakage amount
is unbounded. Since this assumption enforces that the leakage only occurs due to computations, this does
not cover the attacks that happen due to the leakage from the memory such as malware attacks, cold-boot
attacks, etc.

Inspired by the cold-boot attacks, Akavia et al. [2] constructed a general framework to model bounded
leakage attacks, which is widely known as bounded-memory leakagemodel. The adversary chooses an arbi-
trary polynomial-time leakage function f and sends it to the leakage oracle. The leakage oracle returns f(sk)
to the adversary, where sk is the secret key. The only restriction here is that the sum of output lengths of all
the leakage functions that an adversary can obtain is bounded by some parameter λ, which is smaller than
the size of sk. This leakagemodel does not address the continuous leakage from thememory, which can often
happen due to attacks such as malware attacks.

Previous works of Zvika et al. [9] and Dodis et al. [14] presented a continual-memory leakage model, in
which it is assumed that the leakage happens from the entire secret memory. The other characteristics of this
model are the same as the OCLI model. This leakage model is stronger than the OCLI model because here the
adversary can obtain the leakage from the entire memory regardless of computations.

Differently, Dodis et al. [16] introduced a leakagemodelwhere the adversary is allowed to obtain the leak-
age as any computationally uninvertible function of the secret key as auxiliary input. That model eliminates
the concept of leakage parameter, but enforces the hardness parameter instead.

C Vulnerability of the NIKE protocol of [19] in the bounded-leakage
setting

In this section, we show that the NIKE protocol of Freire et al. [19] from pairings in the standard model is
completely insecure, even if the adversary is given only a single bit of leakage on the secret key. The attack
exploits the fact that the adversary can ask any arbitrary leakage function as long as the output of the function
is length-shrinking in its input size. In particular, the secret key of a party in the NIKE protocol in Freire et al.
[19] is a field element, i.e., x ∈ ℤp, and one of the components of the public key is Z = gx. The shared key
between two parties IDi and IDj has the structure e(Sxi , Zj), where S is a public element, Zj = gxj and xi and xj
are the secret keys of parties IDi and IDj, respectively.

Now, given thepublic key, the adversary can encode the function that leaks thehardcore bit of thediscrete
logarithm of Z. In other words, he can specify the leakage function in such away that it leaks exactly themost
significant bit (MSB) of x. Note that theMSB of x is actually the hardcore bit of the discrete logarithm function.
So, with a single bit of leakage, the adversary can recover x completely, and hence he can distinguish the

200  S. Chakraborty et al., New approach to practical leakage-resilient PKCS. Chakraborty et al., New approach to practical leakage-resilient PKC | 29

shared secret key from a random key with probability 1 and win the indistinguishability game. In fact, here,
with only a single bit of leakage, the adversary can perform a key recovery attack, which is stronger than the
attack on the indistinguishability game.

Funding: Janaka would like to acknowledge the university research grant URG/2018/19/E of the Univer-
sity of Peradeniya, Sri Lanka. The authors would like to acknowledge the support of the Indian Institute of
Technology Madras and the University of Peradeniya for this collaborative work.

References
[1] S. Agrawal, Y. Dodis, V. Vaikuntanathan and D. Wichs, On continual leakage of discrete log representations, in: Advances in

Cryptology—ASIACRYPT 2013. Part II, Lecture Notes in Comput. Sci. 8270, Springer, Heidelberg (2013), 401–420.
[2] A. Akavia, S. Goldwasser and V. Vaikuntanathan, Simultaneous hardcore bits and cryptography against memory attacks,

in: Theory of Cryptography, Lecture Notes in Comput. Sci. 5444, Springer, Berlin (2009), 474–495.
[3] J. Alawatugoda, C. Boyd and D. Stebila, Continuous after-the-fact leakage-resilient key exchange, in: Information Security

and Privacy—ACISP 2014, Lecture Notes in Comput. Sci. 8544, Springer, Cham (2014), 258–273.
[4] J. Alawatugoda, D. Stebila and C. Boyd, Modelling after-the-fact leakage for key exchange, in: Proceedings of the 9th ACM

Symposium on Information, Computer and Communications Security—ASIACCS 2014, ACM, New York (2014), 207–216.
[5] J. Alawatugoda, D. Stebila and C. Boyd, Continuous after-the-fact leakage resilient eCK-secure key exchange, in:

Cryptography and Coding, Lecture Notes in Comput. Sci. 9496, Springer, Cham (2015), 277–294.
[6] J. Alwen, Y. Dodis and D. Wichs, Leakage-resilient public-key cryptography in the bounded-retrieval model, in: Advances in

Cryptology—CRYPTO 2009, Lecture Notes in Comput. Sci. 5677, Springer, Berlin (2009), 36–54.
[7] F. Benhamouda, G. Couteau, D. Pointcheval and H. Wee, Implicit zero-knowledge arguments and applications to the

malicious setting, in: Advances in Cryptology—CRYPTO 2015. Part II, Lecture Notes in Comput. Sci. 9216, Springer,
Heidelberg (2015), 107–129.

[8] F. Bergsma, T. Jager and J. Schwenk, One-round key exchange with strong security: an efficient and generic construction in
the standard model, in: Public-Key Cryptography—PKC 2015, Lecture Notes in Comput. Sci. 9020, Springer, Heidelberg
(2015), 477–494.

[9] Z. Brakerski, Y. T. Kalai, J. Katz and V. Vaikuntanathan, Overcoming the hole in the bucket: public-key cryptography resilient
to continual memory leakage, in: 2010 IEEE 51st Annual Symposium on Foundations of Computer Science—FOCS 2010,
IEEE Computer Soc., Los Alamitos, CA (2010), 501–510.

[10] S. Chakraborty, J. Alawatugoda and C. P. Rangan, Leakage-resilient non-interactive key exchange in the
continuous-memory leakage setting, in: Provable Security, Lecture Notes in Comput. Sci. 10592, Springer, Cham (2017),
167–187.

[11] R. Chen, Y. Mu, G. Yang, W. Susilo and F. Guo, Strongly leakage-resilient authenticated key exchange, in: Topics in
Cryptology—CT-RSA 2016, Lecture Notes in Comput. Sci. 9610, Springer, Cham (2016), 19–36.

[12] R. Chen, Y. Mu, G. Yang, W. Susilo and F. Guo, Strong authenticated key exchange with auxiliary inputs, Des. Codes
Cryptogr. 85 (2017), no. 1, 145–173.

[13] W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory IT-22 (1976), no. 6, 644–654.
[14] Y. Dodis, K. Haralambiev, A. López-Alt and D. Wichs, Cryptography against continuous memory attacks, in: 2010 IEEE 51st

Annual Symposium on Foundations of Computer Science—FOCS 2010, IEEE Computer Soc., Los Alamitos, CA (2010),
511–520.

[15] Y. Dodis, K. Haralambiev, A. López-Alt and D. Wichs, Efficient public-key cryptography in the presence of key leakage, in:
Advances in Cryptology—ASIACRYPT 2010, Lecture Notes in Comput. Sci. 6477, Springer, Berlin (2010), 613–631.

[16] Y. Dodis, Y. T. Kalai and S. Lovett, On cryptography with auxiliary input, in: STOC’09—Proceedings of the 2009 ACM
International Symposium on Theory of Computing, ACM, New York (2009), 621–630.

[17] Y. Dodis, R. Ostrovsky, L. Reyzin and A. Smith, Fuzzy extractors: How to generate strong keys from biometrics and other
noisy data, SIAM J. Comput. 38 (2008), no. 1, 97–139.

[18] S. Dziembowski and S. Faust, Leakage-resilient circuits without computational assumptions, in: Theory of Cryptography
Conference, Springer, Berlin (2012), 230–247.

[19] E. S. V. Freire, D. Hofheinz, E. Kiltz and K. G. Paterson, Non-interactive key exchange, in: Public-Key Cryptography—PKC
2013, Lecture Notes in Comput. Sci. 7778, Springer, Heidelberg (2013), 254–271.

[20] A. Fujioka, K. Suzuki, K. Xagawa and K. Yoneyama, Strongly secure authenticated key exchange from factoring, codes, and
lattices, Des. Codes Cryptogr. 76 (2015), no. 3, 469–504.

[21] D. Galindo, Boneh-Franklin identity based encryption revisited, in: Automata, Languages and Programming, Lecture Notes
in Comput. Sci. 3580, Springer, Berlin (2005), 791–802.

30 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

[22] S. Goldwasser and G. N. Rothblum, Securing computation against continuous leakage, in: Advances in
Cryptology—CRYPTO 2010, Lecture Notes in Comput. Sci. 6223, Springer, Berlin (2010), 59–79.

[23] B. Hale, T. Jager, S. Lauer and J. Schwenk, Speeding: On low-latency key exchange, preprint (2015),
https://eprint.iacr.org/2015/1214.

[24] S. Halevi and H. Lin, After-the-fact leakage in public-key encryption, in: Theory of Cryptography, Lecture Notes in Comput.
Sci. 6597, Springer, Heidelberg (2011), 107–124.

[25] A. Juma and Y. Vahlis, Protecting cryptographic keys against continual leakage, in: Advances in Cryptology—CRYPTO 2010,
Lecture Notes in Comput. Sci. 6223, Springer, Berlin (2010), 41–58.

[26] J. Katz and V. Vaikuntanathan, Signature schemes with bounded leakage resilience, in: Advances in
Cryptology—ASIACRYPT 2009, Lecture Notes in Comput. Sci. 5912, Springer, Berlin (2009), 703–720.

[27] E. Kiltz and K. Pietrzak, Leakage resilient ElGamal encryption, in: Advances in Cryptology—ASIACRYPT 2010, Lecture Notes
in Comput. Sci. 6477, Springer, Berlin (2010), 595–612.

[28] B. LaMacchia, K. Lauter and A. Mityagin, Stronger security of authenticated key exchange, in: International Conference on
Provable Security, Springer, Berlin (2007), 1–16.

[29] T. Malkin, I. Teranishi, Y. Vahlis and M. Yung, Signatures resilient to continual leakage on memory and computation, in:
Theory of Cryptography, Lecture Notes in Comput. Sci. 6597, Springer, Heidelberg (2011), 89–106.

[30] S. Micali and L. Reyzin, Physically observable cryptography (extended abstract), in: Theory of Cryptography, Lecture Notes
in Comput. Sci. 2951, Springer, Berlin (2004), 278–296.

[31] H. Morita, J. C. N. Schuldt, T. Matsuda, G. Hanaoka and T. Iwata, On the security of non-interactive key exchange against
related-key attacks, IEICE Trans. Fundam. Electron. Comm. Comput. Sci. 100 (2017), no. 9, 1910–1923.

[32] D. Moriyama and T. Okamoto, Leakage resilient eck-secure key exchange protocol without random oracles, in: Proceedings
of the 6th ACM Symposium on Information, Computer and Communications Security—ASIACCS 2011, ACM, New York
(2011), 441–447.

[33] M. Naor and G. Segev, Public-key cryptosystems resilient to key leakage, in: Advances in Cryptology—CRYPTO 2009,
Lecture Notes in Comput. Sci. 5677, Springer, Berlin (2009), 18–35.

[34] N. Nisan and D. Zuckerman, Randomness is linear in space, J. Comput. System Sci. 52 (1996), no. 1, 43–52.
[35] B. Qin and S. Liu, Leakage-resilient chosen-ciphertext secure public-key encryption from hash proof system and one-time

lossy filter, in: International Conference on the Theory and Application of Cryptology and Information Security, Springer,
Heidelberg (2013), 381–400.

[36] B. Qin and S. Liu, Leakage-flexible CCA-secure public-key encryption: Simple construction and free of pairing, in:
Public-Key Cryptography—PKC 2014, Lecture Notes in Comput. Sci. 8383, Springer, Heidelberg (2014), 19–36.

[37] V. Shoup, OAEP reconsidered, J. Cryptology 15 (2002), no. 4, 223–249.
[38] V. Shoup, Sequences of games: A tool for taming complexity in security proofs, preprint (2004),

https://eprint.iacr.org/2004/332.
[39] Y. Wang and K. Tanaka, Generic transformation to strongly existentially unforgeable signature schemes with leakage

resiliency, in: Provable Security, Lecture Notes in Comput. Sci. 8782, Springer, Cham (2014), 117–129.
[40] J.-D. Wu, Y.-M. Tseng, S.-S. Huang and W.-C. Chou, Leakage-resilient certificateless key encapsulation scheme, Informatica

(Vilnius) 29 (2018), no. 1, 125–155.

S. Chakraborty et al., New approach to practical leakage-resilient PKC  201S. Chakraborty et al., New approach to practical leakage-resilient PKC | 29

shared secret key from a random key with probability 1 and win the indistinguishability game. In fact, here,
with only a single bit of leakage, the adversary can perform a key recovery attack, which is stronger than the
attack on the indistinguishability game.

Funding: Janaka would like to acknowledge the university research grant URG/2018/19/E of the Univer-
sity of Peradeniya, Sri Lanka. The authors would like to acknowledge the support of the Indian Institute of
Technology Madras and the University of Peradeniya for this collaborative work.

References
[1] S. Agrawal, Y. Dodis, V. Vaikuntanathan and D. Wichs, On continual leakage of discrete log representations, in: Advances in

Cryptology—ASIACRYPT 2013. Part II, Lecture Notes in Comput. Sci. 8270, Springer, Heidelberg (2013), 401–420.
[2] A. Akavia, S. Goldwasser and V. Vaikuntanathan, Simultaneous hardcore bits and cryptography against memory attacks,

in: Theory of Cryptography, Lecture Notes in Comput. Sci. 5444, Springer, Berlin (2009), 474–495.
[3] J. Alawatugoda, C. Boyd and D. Stebila, Continuous after-the-fact leakage-resilient key exchange, in: Information Security

and Privacy—ACISP 2014, Lecture Notes in Comput. Sci. 8544, Springer, Cham (2014), 258–273.
[4] J. Alawatugoda, D. Stebila and C. Boyd, Modelling after-the-fact leakage for key exchange, in: Proceedings of the 9th ACM

Symposium on Information, Computer and Communications Security—ASIACCS 2014, ACM, New York (2014), 207–216.
[5] J. Alawatugoda, D. Stebila and C. Boyd, Continuous after-the-fact leakage resilient eCK-secure key exchange, in:

Cryptography and Coding, Lecture Notes in Comput. Sci. 9496, Springer, Cham (2015), 277–294.
[6] J. Alwen, Y. Dodis and D. Wichs, Leakage-resilient public-key cryptography in the bounded-retrieval model, in: Advances in

Cryptology—CRYPTO 2009, Lecture Notes in Comput. Sci. 5677, Springer, Berlin (2009), 36–54.
[7] F. Benhamouda, G. Couteau, D. Pointcheval and H. Wee, Implicit zero-knowledge arguments and applications to the

malicious setting, in: Advances in Cryptology—CRYPTO 2015. Part II, Lecture Notes in Comput. Sci. 9216, Springer,
Heidelberg (2015), 107–129.

[8] F. Bergsma, T. Jager and J. Schwenk, One-round key exchange with strong security: an efficient and generic construction in
the standard model, in: Public-Key Cryptography—PKC 2015, Lecture Notes in Comput. Sci. 9020, Springer, Heidelberg
(2015), 477–494.

[9] Z. Brakerski, Y. T. Kalai, J. Katz and V. Vaikuntanathan, Overcoming the hole in the bucket: public-key cryptography resilient
to continual memory leakage, in: 2010 IEEE 51st Annual Symposium on Foundations of Computer Science—FOCS 2010,
IEEE Computer Soc., Los Alamitos, CA (2010), 501–510.

[10] S. Chakraborty, J. Alawatugoda and C. P. Rangan, Leakage-resilient non-interactive key exchange in the
continuous-memory leakage setting, in: Provable Security, Lecture Notes in Comput. Sci. 10592, Springer, Cham (2017),
167–187.

[11] R. Chen, Y. Mu, G. Yang, W. Susilo and F. Guo, Strongly leakage-resilient authenticated key exchange, in: Topics in
Cryptology—CT-RSA 2016, Lecture Notes in Comput. Sci. 9610, Springer, Cham (2016), 19–36.

[12] R. Chen, Y. Mu, G. Yang, W. Susilo and F. Guo, Strong authenticated key exchange with auxiliary inputs, Des. Codes
Cryptogr. 85 (2017), no. 1, 145–173.

[13] W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory IT-22 (1976), no. 6, 644–654.
[14] Y. Dodis, K. Haralambiev, A. López-Alt and D. Wichs, Cryptography against continuous memory attacks, in: 2010 IEEE 51st

Annual Symposium on Foundations of Computer Science—FOCS 2010, IEEE Computer Soc., Los Alamitos, CA (2010),
511–520.

[15] Y. Dodis, K. Haralambiev, A. López-Alt and D. Wichs, Efficient public-key cryptography in the presence of key leakage, in:
Advances in Cryptology—ASIACRYPT 2010, Lecture Notes in Comput. Sci. 6477, Springer, Berlin (2010), 613–631.

[16] Y. Dodis, Y. T. Kalai and S. Lovett, On cryptography with auxiliary input, in: STOC’09—Proceedings of the 2009 ACM
International Symposium on Theory of Computing, ACM, New York (2009), 621–630.

[17] Y. Dodis, R. Ostrovsky, L. Reyzin and A. Smith, Fuzzy extractors: How to generate strong keys from biometrics and other
noisy data, SIAM J. Comput. 38 (2008), no. 1, 97–139.

[18] S. Dziembowski and S. Faust, Leakage-resilient circuits without computational assumptions, in: Theory of Cryptography
Conference, Springer, Berlin (2012), 230–247.

[19] E. S. V. Freire, D. Hofheinz, E. Kiltz and K. G. Paterson, Non-interactive key exchange, in: Public-Key Cryptography—PKC
2013, Lecture Notes in Comput. Sci. 7778, Springer, Heidelberg (2013), 254–271.

[20] A. Fujioka, K. Suzuki, K. Xagawa and K. Yoneyama, Strongly secure authenticated key exchange from factoring, codes, and
lattices, Des. Codes Cryptogr. 76 (2015), no. 3, 469–504.

[21] D. Galindo, Boneh-Franklin identity based encryption revisited, in: Automata, Languages and Programming, Lecture Notes
in Comput. Sci. 3580, Springer, Berlin (2005), 791–802.

30 | S. Chakraborty et al., New approach to practical leakage-resilient PKC

[22] S. Goldwasser and G. N. Rothblum, Securing computation against continuous leakage, in: Advances in
Cryptology—CRYPTO 2010, Lecture Notes in Comput. Sci. 6223, Springer, Berlin (2010), 59–79.

[23] B. Hale, T. Jager, S. Lauer and J. Schwenk, Speeding: On low-latency key exchange, preprint (2015),
https://eprint.iacr.org/2015/1214.

[24] S. Halevi and H. Lin, After-the-fact leakage in public-key encryption, in: Theory of Cryptography, Lecture Notes in Comput.
Sci. 6597, Springer, Heidelberg (2011), 107–124.

[25] A. Juma and Y. Vahlis, Protecting cryptographic keys against continual leakage, in: Advances in Cryptology—CRYPTO 2010,
Lecture Notes in Comput. Sci. 6223, Springer, Berlin (2010), 41–58.

[26] J. Katz and V. Vaikuntanathan, Signature schemes with bounded leakage resilience, in: Advances in
Cryptology—ASIACRYPT 2009, Lecture Notes in Comput. Sci. 5912, Springer, Berlin (2009), 703–720.

[27] E. Kiltz and K. Pietrzak, Leakage resilient ElGamal encryption, in: Advances in Cryptology—ASIACRYPT 2010, Lecture Notes
in Comput. Sci. 6477, Springer, Berlin (2010), 595–612.

[28] B. LaMacchia, K. Lauter and A. Mityagin, Stronger security of authenticated key exchange, in: International Conference on
Provable Security, Springer, Berlin (2007), 1–16.

[29] T. Malkin, I. Teranishi, Y. Vahlis and M. Yung, Signatures resilient to continual leakage on memory and computation, in:
Theory of Cryptography, Lecture Notes in Comput. Sci. 6597, Springer, Heidelberg (2011), 89–106.

[30] S. Micali and L. Reyzin, Physically observable cryptography (extended abstract), in: Theory of Cryptography, Lecture Notes
in Comput. Sci. 2951, Springer, Berlin (2004), 278–296.

[31] H. Morita, J. C. N. Schuldt, T. Matsuda, G. Hanaoka and T. Iwata, On the security of non-interactive key exchange against
related-key attacks, IEICE Trans. Fundam. Electron. Comm. Comput. Sci. 100 (2017), no. 9, 1910–1923.

[32] D. Moriyama and T. Okamoto, Leakage resilient eck-secure key exchange protocol without random oracles, in: Proceedings
of the 6th ACM Symposium on Information, Computer and Communications Security—ASIACCS 2011, ACM, New York
(2011), 441–447.

[33] M. Naor and G. Segev, Public-key cryptosystems resilient to key leakage, in: Advances in Cryptology—CRYPTO 2009,
Lecture Notes in Comput. Sci. 5677, Springer, Berlin (2009), 18–35.

[34] N. Nisan and D. Zuckerman, Randomness is linear in space, J. Comput. System Sci. 52 (1996), no. 1, 43–52.
[35] B. Qin and S. Liu, Leakage-resilient chosen-ciphertext secure public-key encryption from hash proof system and one-time

lossy filter, in: International Conference on the Theory and Application of Cryptology and Information Security, Springer,
Heidelberg (2013), 381–400.

[36] B. Qin and S. Liu, Leakage-flexible CCA-secure public-key encryption: Simple construction and free of pairing, in:
Public-Key Cryptography—PKC 2014, Lecture Notes in Comput. Sci. 8383, Springer, Heidelberg (2014), 19–36.

[37] V. Shoup, OAEP reconsidered, J. Cryptology 15 (2002), no. 4, 223–249.
[38] V. Shoup, Sequences of games: A tool for taming complexity in security proofs, preprint (2004),

https://eprint.iacr.org/2004/332.
[39] Y. Wang and K. Tanaka, Generic transformation to strongly existentially unforgeable signature schemes with leakage

resiliency, in: Provable Security, Lecture Notes in Comput. Sci. 8782, Springer, Cham (2014), 117–129.
[40] J.-D. Wu, Y.-M. Tseng, S.-S. Huang and W.-C. Chou, Leakage-resilient certificateless key encapsulation scheme, Informatica

(Vilnius) 29 (2018), no. 1, 125–155.

