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1 Introduction

The AJPS public-key encryption scheme

At Crypto 2018, Aggarwal, Joux, Prakash and Santha (AJPS) described a new public-key encryption scheme
based on arithmetic modulo Mersenne numbers [2]. A Mersenne prime is a prime integer p of the form
p = 2n − 1, where n is a prime. The arithmetic modulo p has good properties, and one can establish a corre-
spondence between integers modulo p and binary strings of length n, up to 0n ∼ 1n. In particular, one can
define the Hamming weight of a number as the Hamming weight of the unique binary string associated to it,
i.e. the number of ones in its binary representation. In the earliest version of their work, the authors presented
a public-key encryption scheme (AJPS-1) somewhat similar to the NTRU cryptosystem, but based on a new
assumption, the Mersenne low Hamming ratio assumption. Its security relies on the following assumption:
given H = F/G mod p, where the binary representation of F and Gmodulo p has low Hamming weight, then
H looks pseudorandom; namely, it is hard to distinguish H from a random integer modulo p.

The Beunardeau et al. attack

Even though the authors claimed that the known lattice attacks against NTRU would not apply, very soon,
Beunardeau et al. [3] described a lattice-based attack against the first AJPS proposal. The attack complexity
isO(22h), where h is the Hamming weight of F and G. The attack was further analyzed in [4]; the authors also
described a meet-in-the-middle attack against AJPS-1 based on locality-sensitive hash functions to obtain
collisions; they showed that the lattice attack from [3] is more efficient.

Since AJPS-1 allows to encrypt only a single bit at a time, it is not very efficient. However, in a later version
of the article, published at Crypto 2018 [2], Aggarwal et al. described a variant (AJPS-2) that encrypts many
bits at a time, with much larger security parameters to prevent the lattice attack.
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Our contribution

In this paper, we describe a variant of the Beunardeau et al. attack against AJPS-2, with improved complexity
O(21.75h) instead of O(22h). Instead of recovering the private key, our attack only breaks the indistinguisha-
bility of ciphertexts.

2 The AJPS cryptosystems
In this section, we recall the two versions of the AJPS cryptosystems; see [2] for further details.

AJPS-1: bit-by-bit encryption

Let p = 2n − 1 be a Mersenne prime, where n itself is prime. Let h be an integer. Let F and G be two
random integers modulo p with Hamming weight h such that 4h2 < n ≤ 16h2. Then the public key is
pk = H = F/G mod p and the private key is sk = G. To encrypt, choose two random integers A and B of
Hamming weight h. Encrypt the bit b as

C = (−1)b ⋅ (A ⋅ H + B).
To decrypt, compute d = Ham(C ⋅ G). Output 0 if d ≤ 2h2; otherwise, output 1.

Decryption works because

C ⋅ G = (−1)b ⋅ (A ⋅ H ⋅ G + B ⋅ G) = (−1)b ⋅ (A ⋅ F + B ⋅ G)
which has Hamming weight at most 2h2 if b = 0, and at least n − 2h2 if b = 1. Namely, for any number x of
Hamming weight h, the integer x ⋅ 2z mod p for z ≥ 0 is a cyclic shift of x, and therefore its Hamming weight
remains unchanged. Therefore, the Hamming weight of A ⋅ F is at most h2, and the Hamming weight of B ⋅ G
is also at most h2; therefore, the Hamming weight of C ⋅ G is at most 2h2 for b = 0.

AJPS-2: error correcting codes

Let n be a positive integer such that p = 2n − 1 be aMersenne prime. Let h ∈ ℕ be such that 10h2 < n ≤ 16h2.
Let F, G be two random integers modulo p with Hamming weight h, and let R be a random integer modulo p.
Set

pk = (R, F ⋅ R + G) = (R, T) and sk = F.
To encrypt a message m ∈ {0, 1}h, first generate three random integers A, B1, B2 modulo p, with Hamming
weight h. Then, using the encoding algorithmE : {0, 1}h → {0, 1}n of an error correcting code (E,D), compute
the ciphertext

(C1, C2) = (A ⋅ R + B1, (A ⋅ T + B2) ⊕ E(m)).
To decrypt, computeD((F ⋅ C1) ⊕ C2), whereD is the corresponding decoding algorithm.

Decryption works because

F ⋅ C1 = A ⋅ F ⋅ R + F ⋅ B1 = A ⋅ (T − G) + F ⋅ B1
= (A ⋅ T + B2) − A ⋅ G − B2 + B1 ⋅ F,

and therefore the Hamming distance between A ⋅ T + B2 and F ⋅ C1 is expected to be low, which enables to
recover m with good probability.
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3 The Beunardeau et al. attack

Basic attack

Beunardeau et al. described an attack against AJPS-1 in [3] that recovers the private key from the public key.
More precisely, they consider the following problem.

Definition 3.1 (Mersenne low Hamming ratio search problem (MLHSP)). Let p = 2n − 1 be an n-bit Mersenne
prime and h an integer. Let F, G be two n-bit random strings with Hamming weight h. Given H = F/G mod p,
recover F and G.

Their basic attack is based on the following observation. With probability 2−2h, we have both F < √p and
G < √p, and therefore, given H = F/G mod p, one can recover F and G by applying LLL in dimension 2. In
the original proposal [1], it was recommended to take h = 17 for λ = 120 bits of security. However, here we
have anattack that recovers theprivate key from thepublic keywithprobability2−34; see also [4] for a detailed
analysis.

More precisely, one considers the lattice L generated by the rows of the matrix

[1 H
0 p
] .

We have that detL = p; hence, by the Gaussian heuristic, it contains a vector of norm ≃ (detL) 12 = √p. More-
over, (G, F) is a short vector of the lattice. Therefore, if both F < √p and G < √p, we can recover F and G;
since F and G have Hamming weight h, this happens with probability 2−2h.

We note that a similar attack can also be applied to the encryption equation C = (−1)b ⋅ (A ⋅ H + B).
Namely, if both A < √p and B < √p, then we can recover A and B by applying LLL in dimension 3, hence
the plaintext bit b. Indeed, we have that only one between (H, C) and (−H, C) is an instance of the following
problem.

Definition 3.2 (Mersenne low Hamming combination search problem (MLHCSP)). Let p = 2n − 1 be an n-bit
Mersenne prime, h an integer, R a uniformly random n-bit string, and let F, G have Hamming weight h. Given
the pair (R, F ⋅ R + G mod p), find F, G.
Given R and T = F ⋅ R + G mod p, a variant attack recovers F, G with probability 2−2h. More precisely, the
attack works by considering the lattice L of row vectors

[[
[

2 n
2 0 T
0 1 −R
0 0 p

]]
]
.

We have that (2 n
2 , F, G) belongs to the latticeL. Moreover, detL = 2 n

2 p ≃ 23n
2 . Hence, by the Gaussian heuris-

tic, the latticeL contains a vector of norm ≃ 2 n
2 . Therefore, if both F < √p and G < √p, we can recover F and

G by applying LLL to the lattice L.

Extension with random partitions

The basic attack from [3] is only a weak-key attack that recovers the private key from the public key with
probability2−2h over the set of possible public keys. Similarly, the above variant attack against the encryption
equation can only decrypt a fraction 2−2h of the ciphertexts. Therefore, the authors extended their attack
by considering random partitions, with higher-dimensional lattices. In that case, the attack can recover the
private key from any public key, solving MLHSP, with complexity O(22h). The same partition strategy can be
used for the MLHCSP with the same complexity. In our improved attack in the next section, we will also use
random partitions.
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4 Our new attack
We describe our new attack against AJPS-2. We consider the previous encryption equation

(C1, C2) = (A ⋅ R + B1, (A ⋅ T + B2) ⊕ E(m))
Given the public key (R, T) and a ciphertext (C1, C2), our attack can distinguish between m = 0 and m ̸= 0.
Assume that m = 0 and E(m) = 0. In that case, we have

C1 = A ⋅ R + B1,
C2 = A ⋅ T + B2.

We claim that if A, B1 and B2 are less than 22n
3 , then we can recover A, B1 and B2 with LLL. Namely, we

consider the lattice of row vectors

[[[[
[

22
3 n 0 C1 C2
0 1 −R −T
0 0 p 0
0 0 0 p

]]]]
]

.

We have that detL = 22n
3 p2 ≃ 28n

3 . Therefore, by the Gaussian heuristic, the lattice L contains vectors of
norm ≃ 22n

3 . Moreover, the lattice L contains the vector (22n
3 , A, B1, B2). Therefore if A, B1 and B2 are less

than 22n
3 , we can recover A, B1 and B2 by applying LLL to L.

Since A has Hamming weight h, the probability that A < 22n
3 is ( 23 )h; the same holds for B1 and B2. The

success probability of the attack is therefore

(23)
3h
≃ 2−1.75h

which gives a slightly better success probability than the original attack with 2−2h. Therefore, using the same
partition technique as in [3], the attack complexity to break the indistinguishability of any ciphertext is
O(21.75h) instead of O(22h).

4.1 Working with random partitions

We show that, using the same random partition technique as in [3], we can break the indistinguishability
property of any ciphertext (C1, C2), whereas the basic attack above only works when A, B1 and B2 are less
than 22n

3 , which only happens with probability (23 )3h.
We consider the set [n] = {0, 1, . . . , n − 1}. We say that P = {Pi}ki=1 is an interval-like partition if it is a par-

tition of [n] such that the sets are of the form Pi = {y : c ≤ y ≤ d} or Pi = {d, d + 1, . . . , 0, . . . , c − 1, c} for
c ≤ d ∈ [n]. We define pi as the least element of Pi, namely as c if the interval is of the first type and as d if
it is of the second type. We can use a partition to represent a number E modulo p by a sequence of smaller
integers. More precisely, letting en−1 ⋅ ⋅ ⋅ e0 be the binary representation of e, we can divide it by the partition

ep1−1 ⋅ ⋅ ⋅ epk | epk−1 ⋅ ⋅ ⋅ epk−1 | . . . | ep2−1 ⋅ ⋅ ⋅ ep1 ,
and letting di the number represented by epi−1 ⋅ ⋅ ⋅ epi−1 , we obtain

E =
k
∑
i=1

di ⋅ 2pi .

Consider P, Q, S three interval-like partitions of [n] of cardinality k, ℓ and j, respectively. Let R, T, C1, C2,
A, B1, B2 be as in AJPS-2. We define a family of embedded lattices parameterized with respect to β, P, Q, S as

Lβ,P,Q,S = {(αβ, x, y, z) ∈ ℤ ×ℤk ×ℤℓ ×ℤj : α ⋅ C1 ≡ R ⋅
k
∑
i=1

xi ⋅ 2pi +
ℓ
∑
i=1

yi ⋅ 2qi mod p,

α ⋅ C2 ≡ T ⋅
k
∑
i=1

xi ⋅ 2pi +
j
∑
i=1

zi ⋅ 2si mod p}
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for some scaling factor β ∈ ℤ. The dimension of Lβ,P,Q,S is d = k + ℓ + j + 1, and a basis of this lattice is given
by rows of the matrix

Mβ,P,Q,S =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

β 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 C1 ⋅ 2−q1 0 ⋅ ⋅ ⋅ 0 C2 ⋅ 2−s1
0 1 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 −R ⋅ 2pk−q1 0 ⋅ ⋅ ⋅ 0 −T ⋅ 2pk−s1
0 0 1 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 −R ⋅ 2pk−1−q1 0 ⋅ ⋅ ⋅ 0 −T ⋅ 2pk−1−s1
0

. . . 0 ⋅ ⋅ ⋅ 0 −R ⋅ 2p2−q1 0 ⋅ ⋅ ⋅ 0 −T ⋅ 2p2−s1
0 0 0 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ 0 −R ⋅ 2p1−q1 0 ⋅ ⋅ ⋅ 0 −T ⋅ 2p1−s1
0 0 0 ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 0 −2qℓ−q1 0 ⋅ ⋅ ⋅ 0 0
0 0 0 ⋅ ⋅ ⋅ 0

. . . −2qi−q1 0 ⋅ ⋅ ⋅ 0 0
0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 1 −2q2−q1 0 ⋅ ⋅ ⋅ 0 0
0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 p 0 ⋅ ⋅ ⋅ 0 0

0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 0 −2sj−s1
0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0

. . . −2si−s1
0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 1 −2s2−s1
0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 p

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

.

We claim that we can recover A, B1, B2 by using a lattice of the family {Lβ,P,Q,S}. We define the secret
vector to be

s := (β, a1, . . . , ak , b(1)1 , . . . , b(1)ℓ , b(2)1 , . . . , b(2)j ) ∈ Lβ,P,Q,S ,

where 0 ≤ ai < 2pi , 0 ≤ b(1)i < 2qi , 0 ≤ b(2)i < 2si and

A =
k
∑
i=1

ai ⋅ 2pi , B1 =
ℓ
∑
i=1

b(1)i ⋅ 2qi , B2 =
j
∑
i=1

b(2)i ⋅ 2si .

We will use the notations a = (a1, . . . , ak), b(1) = (b(1)1 , . . . , b(1)ℓ ), b(2) = (b(2)1 , . . . , b(2)j ), e = (a, b(1), b(2))
and s = (β, e).

In the following, we determine under which conditions the secret vector s is the unique shortest vector of
the lattice Lβ,P,Q,S. Given A, B1, B2, we say that the triple (P, Q, S) of partitions of [n] is a lucky triple if there
exists a scaling factor β ∈ ℕ such that the secret vector s is the unique shortest vector ofLβ,P,Q,S. In that case,
Lβ,P,Q,S will be said to be a lucky lattice respect to A, B1, B2. In other words, we aim to establish sufficient
conditions under which a lattice Lβ,P,Q,S is lucky given a ciphertext C = (C1, C2) such that E(m) = 0.

The volume of Lβ,P,Q,S is
vol(Lβ,P,Q,S) = |det(M)| = p2 ⋅ β.

We write β = 2tn; thus we have vol(Lβ,P,Q,S) ≃ 2(2+t)n. By the Gaussian heuristic, we obtain the following
estimate of the length of the shortest vector of Lβ,P,Q,S:

√ d
2πe ⋅ vol(Lβ,P,Q,S) 1d = √ d

2πe ⋅ 2
(2+t)n

d . (4.1)

Since the Hamming weight of A, B1, B2 is the same, we take k = j = ℓ. We note that the lattice Lβ,P,Q,S
contains intrinsic short vectors u = (0, . . . , 0, 2g , −1, 0, . . . , 0) whose norm is ≃ 2g when g is of the form
pi − pi−1 or qi − qi−1 or si − si−1. If we consider partitions with intervals of similar length, we obtain ‖u‖ ≈ 2 n

k .
Therefore, we have to ensure that such vectors are not shorter than our target secret vector.

In low dimensions, we can assume that LLL recovers the shortest vector s of the lattice. From (4.1), we
must therefore ensure

‖s‖ ≤ √ d
2πe ⋅ 2

(2+t)n
d ,

where d = 3k + 1 is the lattice dimension. We expect the entries of the secret vector to be about of the same
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h n log2( ̄y) log2( ̄Y )
3 127 6.5 7.4
6 521 13.0 14.5
7 607 14.6 16.5
9 1279 14.9 16.4

Table 1: Average number ̄y of partitions required to recover the secret values A, B1, B2, compared to the average number ̄Y
required for the original attack. We used 70 samples for h = 3, 6, 7 and 9 samples for h = 9.

size for a lucky triple; hence we take the scaling factor β such that β = 2tn ≃ ‖e‖. Thenwe have approximately

2tn+
1
2 ≤ 2 (2+t)n

3k+1

which gives t ≤ 2
3k − 3k+1

6kn . Therefore, we have the approximative condition to have a lucky triple (P, Q, S) of
partitions

‖e‖ < 22n
3k . (4.2)

It remains to evaluate the probability to find a lucky triple of partitions (P, Q, S). It is actually easier to
assume that the partitions (P, Q, S) are fixed and the ciphertext C = (C1, C2) is random. In that case, from the
bound (4.2), each of the h bits from the integers A, B1 and B2 must land in one of the subintervals of length
2n
3k of the k partition intervals. For a single bit, this happens with probability roughly k ⋅ 2n3k ⋅ 1n = 2

3 . Therefore,
as in the basic attack, the success probability is roughly (23 )3h ≃ 2−1.75h. Therefore, the number of partitions
to try before finding a lucky one is approximately O(21.75h) instead of O(22h) in the original attack from [3].

Security parameter selection

In the latest version of the paper, the authors recommended to take for λ bit of security h = λ in order to
prevent possible improvements of the Beunardeau et al. attack. Then our attack does not affect the choice of
parameter proposed in [2].

4.2 Practical experiments

Wehave performed somepractical experiments for various values of bitsize n andHammingweight h of AJPS-
2 in order to compare our new attack with the original Beunardeau et al. attack. For both attacks, since we
do not know a priori the optimal size of the partition k to recover the secret, we perform a repeated loop over
all possible 1 ≤ k ≤ h. We summarize our results in Table 1, showing that our attack indeed requires fewer
partitions than the original attack.
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