
c© de Gruyter 2007
J. Math. Crypt. 1 (2007), 329–349 DOI 10.1515 / JMC.2007.016

Statistical distribution and collisions of VSH

Ian F. Blake and Igor E. Shparlinski

Communicated by Phong Q. Nguyen

Abstract. The distributional properties and the collision probability for the hash function VSH re-
cently introduced by Contini, Lenstra and Steinfeld, are studied. The study leads to some interesting
number theoretic questions which have apparently not been studied. These and related questions on
VSH are considered in this work.
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1 Introduction

1.1 Motivation

The Very Smooth Hash function, VSH, recently introduced by S. Contini, A. Lenstra
and R. Steinfeld [8] works as follows. Let pi denote the ith prime number and let

Qk =
k∏

i=1

pi

denote the product of the first k primes and set

Rk = Qk+1.

Assume that integers k and n satisfy

Qk < n ≤ Rk. (1.1)

Let ` < 2k, the message length, be a positive integer whose k-bit representation (in-
cluding all leading zeros) is ` = λ1 . . . λk that is

` =
k∑

i=1

λi2i−1.

Then VSH takes an `-bit message m = µ1 . . . µ` and hashes it (in a very efficient
way, via a simple iterative procedure) to

hn(m) ≡
k∏

i=1

pei
i (mod n), 0 ≤ hn(m) < n, (1.2)



330 Ian F. Blake and Igor E. Shparlinski

where L = d`/ke, µs = 0, for ` < s ≤ Lk, µLk+i = λi, for 1 ≤ i ≤ k, and

ei =
L∑

j=0

µjk+i2L−j , i = 1, . . . , k.

It is demonstrated in [8] that hn is very efficient and also admits a rigorous proof of
security against collisions, which is based on some natural number theoretic problems
which are presumed to be hard. The above problem is related to factoring, thus it is
natural to choose n to be a product of two large primes.

One can roughly separate all known hash functions into two categories, although
there are hash functions that are not so clearly categorized (see [15, 19]):

• Hash functions which are based on various Boolean operations and whose design
resembles art more than science. Such functions are usually very fast but have no
proofs of security behind them.

• Hash functions which are based on various algebraic structures. Such functions
are usually much slower but admit at least conditional security proofs.

Thus, the invention of VSH has narrowed the gap between the efficiency of functions
from these families. The effort to obtain algebraic hash functions with a security proof
related to a mathematical problem, believed to be hard, is felt to be a significant area
for further work and has motivated us to consider VSH in greater detail.

Other efforts in this direction include the work of Charles, Goren and Lauter [6]
who define a hash function based upon expander graphs. In one of their constructions,
the collision resistance depends upon the difficulty of computing isogenies between
supersingular elliptic curves. At this point it appears that all such hash functions known
to the authors are very slow in comparison to the non-algebraic ones, although VSH is
promising.

Several interesting properties and potential applications of VSH hn have already
been outlined in [8].

It has been noticed in [8] that if the factorization of n is known then for any message
m one can easily find a second image m̃with hn(m̃) = hn(m). It is also indicated in [8]
that indeed finding collisions is equivalent to either factoring n or solving a discrete
logarithm problem modulo n. Thus if the factorization of the modulus n is known
then collisions can be created by determining the Euler function ϕ(n), since adding a
multiple of ϕ(n) to any of the exponents of the small primes, in the hash representation
of equation (1.2) results in the same hash value. Other potential weaknesses of VSH
are noted in both [8] and [18] and some of these are discussed later.

It is natural that such algebraic hash functions have parameter sets which exhibit
potential weaknesses. A similar situation has existed for such cryptographic systems
such as RSA and elliptic curves where a significant effort over many years has been
expended on precisely the same question of determining suitable parameter sets for
security. Our intention here is to continue the examination of VSH with a view to
further understanding its properties and to promote its development.
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1.2 Our results

To give some rigorous support towards the security and distribution properties of VSH,
we show that for almost all n which are products of two primes and any a, the prob-
ability that for a random `-bit message m, for sufficiently large `, we have h(m) ≡ a
(mod n), is negligible. This bounds the collision probability and also the probability
of finding a second preimage by brute force. Our results are based on the study of the
multiplicative group Hn defined by:

Hn = {〈p1, . . . , pk〉 ⊆ Zn
∗}, (1.3)

the subgroup of Zn
∗ generated by p1, . . . , pk. We consider the class Nk of integers

n = pq where p and q are distinct primes, satisfying the inequality (1.1) that is,

Nk = {n = pq | p, q distinct primes,
k∏

i=1

pi < n ≤
k+1∏
i=1

pi}.

Some well-known number theoretic techniques are used to study the probability of
collisions. As a by-product, we also show that Hn is very “massive” for almost all
n ∈ Nk.

Note that VSH enjoys a type of homomorphic property in that if, using the repre-
sentation of equation (1.2), we define the function

η : F`
2 −→ Zk

≥0 −→ Z
m 7→ (e1, e2, . . . , ek) 7→

∏k
i=1 p

ei
i ,

then this map is an injection and we have

hn(η−1(η(m1)η(m2))) ≡ hn(m1)hn(m2) (mod n). (1.4)

We apply this property in Section 4 in an attempt to create collisions. It is obvious that
if a message is found that hashes to 1 (mod n), it allows the creation of collisions for
any given message, in an obvious manner. Other aspects of this map are also considered
there.

We discuss various approaches to creating collisions which lead to some interesting
number theoretic questions. Although our analysis shows that most of them do not
seem to present a significant threat, they may possibly be modified for creating trap
doors or indicate potentially weak parameters or for other purposes.

In Section 2 we collect some known results about prime numbers (in particular,
about the distribution of prime numbers in arithmetic progressions) and also about
elements of Nk. We also prove one new result which could be of independent interest.
These fundamental results are repeatedly used throughout the paper.

In Section 3, we present some properties of the VSH map (1.2), which can be of
cryptographic significance (in particular they help to rule out several straightforward
attacks on VSH) and also lead to some interesting number theoretic questions of intrin-
sic value.
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Finally, in Section 4 other approaches to creating collisions in VSH that might be
attempted are considered, if only to determine possible weak choices of parameters or
to rule the approaches out as infeasible, by obtaining the relevant estimates. In turn,
these estimates are based on the results and ideas of Section 3. Since it is already
known [8] that finding collisions is equivalent to solving a certain presumably hard
problem, direct weaknesses in VSH are not expected.

We also pose some open questions and have some comments on the efficiency of
VSH.

It should be noted that although our results are asymptotic in nature, all constants
are effective and can be explicitly evaluated. However we doubt the value of such an
exercise since our estimates are of theoretic interest and should be considered as just
indications that VSH has no hidden weaknesses which could affect its characteristics
for large values of parameters. They also indicate that certain naive ways of attacking
VSH are bound to fail, but do not imply any lower bounds on the strength of VSH (in
the latter case obtaining concrete values for the constant involved would certainly be
of great importance).

1.3 Notation

Throughout the paper, the implied constants in symbols ‘O’ and ‘�’ may occasionally,
where obvious, depend on a positive parameter ε, and are absolute otherwise (we recall
that U � V and U = O(V ) are both equivalent to the inequality |U | ≤ cV with some
constant c > 0).

For an integer n, the residue ring modulo n is denoted by Zn, and the group of
invertible elements is denoted by Zn

∗. We always assume that Zn is represented by the
set {0, 1, . . . , n− 1}.

As usual, we use π(x) to denote the number of primes p ≤ x and use π(x, d, a)
to denote the number of primes p ≤ x in the arithmetic progression p ≡ a (mod d)
(although the ordering of the variables in this function is not standard).

We also denote by ω(s) and ϕ(s) the number of distinct prime divisors and the Euler
function, respectively, of an integer s ≥ 2 (with the usual convention that ω(1) = 0).

Recall that an integer s is called y-smooth if all prime divisors of s do not exceed y.
As usual, the number of y-smooth positive integers s ≤ x is denoted by ψ(x, y).

The letters p and q always denote prime numbers.
Finally, for any real number x > 0, we define logx = max{lnx, 1} (where lnx is

the natural logarithm of x).

2 Analytic number theory background

2.1 Distribution of primes

We recall the Prime Number Theorem, PNT, in its simplest form which is sufficient for
our purposes, see [20, Section II.4.1],

π(x) = (1 + o(1))
x

logx
, (2.1)
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as x→∞.
It is also useful to recall that by the PNT (2.1), we have

Rk = exp ((1 + o(1))k log k) . (2.2)

Thus, as has been noticed in [8], we derive from (1.1) and (2.2) that

k = (1 + o(1))
logn

log logn
(2.3)

for any n ∈ Nk.
We also need the Brun–Titchmarsh bound, see [20, Section I. 4.6] which asserts a

tight upper bound on the number of primes in an arithmetic progression

π(x, d, a) � x

ϕ(d) log(x/d)
(2.4)

uniformly over x, d and a. Using this bound and partial summation one can derive that∑
p≤x

p≡1 (mod d)

1
p
� log logx

ϕ(d)
, (2.5)

(also uniformly over x and d), for example, see the bound (3.1) in [10].
The Bombieri–Vinogradov theorem, see [7, Theorem 9.2.1], asserts that for any A >

0 there exists some constant B such that for a sufficiently large x∑
d≤x1/2(log x)−B

max
gcd(a,d)=1

max
z≤x

∣∣∣∣π(z, d, a)− π(z)
ϕ(d)

∣∣∣∣ ≤ x(logx)−A. (2.6)

Also, we need to appeal to the following two famous conjectures.
The Elliott-Halberstam conjecture, see [20, Notes, Chapter II.8], suggests that the

summation can in fact be extended over all d ≤ x1−ε for any ε > 0.
The prime s-tuplets conjecture, see [9, Conjecture 1.2.1], asserts that for any number

s of linear forms air + bi, i = 1, 2, . . . , s, with integers ai and bi such that ai > 0,
gcd(ai, bi) = 1, such that for each prime p ≤ s there is an integer m such that p
does not divide

∏s
i=1(aim+ bi), then there are infinitely many integers n such that the

ain + bi, i = 1, 2, . . . , s are simultaneously prime. Moreover, it is natural to assume
that the number of such values r ≤ x is about cx(logx)−s where c depends only on the
linear forms.

Although there is little doubt in the correctness of these conjectures, it needs to be
noted that neither of them follows from even the Extended Riemann Hypothesis.

2.2 Bounds on some arithmetic functions

Since for any integer s ≥ 1 we have ω(s)! ≤ s, by the Stirling formula we obtain

ω(s) � log s
log log s

, (2.7)
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see [20, Section I.5.3].
Finally, we recall the following well known bound

ϕ(s) � s

log log s
, (2.8)

see [20, Section I.5.4].

2.3 Distribution of smooth numbers

It is well known that in a very wide range of parameters x and y, namely, for x ≥ y ≥
(logx)1+ε, we have

ψ(x, y) = xu−u+o(u) (2.9)

where

u =
logx
log y

,

see [5]. However here we are mostly interested in smaller values of y which are outside
of the range of applicability of (2.9) since in our case y is of order logx. We remark
that (8) in [20, Section III.5.1] with y = α logx reduces to

Z =
logx

log(α) + log logx
log(1 + α) +

α logx
log(α) + log logx

log(1 + 1/α)

= (g(α) + o(1))
logx

log logx

for any fixed α > 0, where

g(α) = log(1 + α) + α log(1 + 1/α).

Accordingly, by [20, Theorem 2, Section III.5.1], we have

ψ(x, α logx) = exp
(

(g(α) + o(1))
logx

log logx

)
. (2.10)

Note that g(1) = 2 log 2. Therefore since, by (2.3) and (2.1) we have that

pk = (1 + o(1))k log k = (1 + o(1)) logn,

the bound (2.10) with α = 1 implies that

ψ(n, pk) = exp
(

(2 log 2 + o(1))
logn

log logn

)
. (2.11)

Many more useful bounds on ψ(x, y) can be found in [12, 13, 20].
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2.4 Properties of the set Nk

It follows immediately from the classical results about the distribution of integers with
a given number of prime factors (see [20, Section II.6.1]) that

#Nk = (1 + o(1))
Rk log logRk

logRk
. (2.12)

For an integer T ≥ 1, let Nk(T ) be the set of n ∈ Nk for which

k∏
i=1

pei
i ≡

k∏
i=1

pfi

i (mod n) (2.13)

for some distinct integer vectors (e1, . . . , ek) and (f1, . . . , fk) with

|ei − fi| < T, i = 1, . . . , k, (2.14)

that is,

Nk(T ) = {n = pq ∈ Nk | ∃(e1, . . . , ek), (f1, . . . , fk) ∈ Zk,

satisfying (2.13) and (2.14)}.

The following result is similar to several more results of this type which are well-
known in the literature (for example, see [14, 16]).

Lemma 2.1. For an integer T ≥ 1, we have

#Nk(T ) � (2T )2k+2(log k)2

(logT )2 .

Proof. We consider the product

W =
T−1∏

x1,... ,xk=0
x1+...+xk>0

∏
I,J

∏
i∈I

pxi
i −

∏
j∈J

p
xj

j


where I, J run over all 2k disjoint partitions of the set {1, . . . , k}; that is, I ∪ J =
{1, . . . , k} and I ∩ J = ∅.

Clearly, any n = pq ∈ Nk(T ) is a divisor of W , in particular

#Nk(T ) ≤ ω(W )2.

Thus we see from (2.7) that it only remains to estimate W .
By the PNT (2.1), each term of the above product satisfies∣∣∣∣∣∣

∏
i∈I

pxi
i −

∏
j∈J

p
xj

j

∣∣∣∣∣∣ ≤
(

k∏
i=1

pi

)T

= exp((1 + o(1))kT log k).
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Hence
W ≤ exp

(
(1 + o(1))k2kT k+1 log k

)
.

Putting everything together, we derive

#Nk(T ) ≤ ω(W )2 �
(

logW
log logW

)2

� (2T )2k+2(log k)2

(logT )2

which concludes the proof.

3 Some properties of the VSH map

3.1 Preimage size

Let Mn(`, a) denote the number of `-bit messages m with hn(m) = a.
Let

ρn(`) = max
1≤a≤n

Mn(`, a)2−`

be the largest probability that a random `-bit messagem has the hash value hn(m) = a.
Note that ρn(`) ≥ 1/n for any `.

Theorem 3.1. For any s such that s ≤ `− 2k and k →∞, the inequality

ρn(`) < 2−s

holds for all but at most 210k+2s+o(k+s) values of n ∈ Nk.

Proof. We can assume that k is large enough. Let us fix n ∈ Nk and an integer a.
Each `-bit message m gives rise to a vector e = (e1, . . . , ek) in the k-dimensional cube
[0, 2L+1 − 1]k, where L = d`/ke. Moreover distinct messages correspond to distinct
vectors e.

We put
T =

⌈
2s/k+3

⌉
.

It is clear that the cube [0, 2L+1 − 1]k can be covered by at most(
2L+1T−1 + 1

)k ≤ (2L−s/k−2 + 1
)k

≤ 2(L−s/k−1)k < 2`−s

aligned unit cubes with the side length T .
Assume that Mn(`, a) ≥ 2`−s for some a ∈ Zn. In this case, we see that at least

one of them contains two vectors e and f corresponding to two `-bit messages m1
and m2 with hn(m1) = hn(m2) = a, which leads to relations (2.13) and (2.14). So,
the inequality ρn(`) ≤ 2−s is possible for at most #Nk(T ) values of n ∈ Nk. Using
Lemma 2.1, we obtain

#Nk(T ) � (2T )2k+2(log k)2

(logT )2 ≤ 2(s/k+5)(2k+2)(log k)2

(logT )2

= 210k+2s+O(s/k+log log k) = 210k+2s+o(k+s),
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which concludes the proof.

Thus we see from (2.12) that for s = o(k log k) the preimage size is exponentially
smaller than the total number of `-bit messages for the overwhelming majority of n ∈
Nk.

3.2 Random collision probability

Let

ϑn(`) = 2−2`
n−1∑
a=0

Mn(`, a)2

be the probability of a random collision hn(m1) = hn(m2) over all `-bit messages m1
and m2.

Using Theorem 3.1 and the identity

n−1∑
a=0

Mn(`, a) = 2`

we derive the following.

Corollary 3.2. For any s such that s ≤ `− 2k and k →∞, the inequality

ϑn(`) < 2−s

holds for all but at most 210k+2s+o(k+s) values of n ∈ Nk.

Since ϑn(`) ≤ 1 for any nwe have that the average probability of a random collision
of `-bit messages over all n ∈ Nk is

1
#Nk

∑
n∈Nk

ϑn(`) ≤ 1
#Nk

(
22s+o(s) + 2−s#Nk

)
for any s with s/k →∞. Defining s by the inequalities

23s ≤ #Nk < 23(s+1)

and remarking that s/k � log k →∞ as k →∞, we obtain:

Corollary 3.3. For ` ≥ k log k, we have

1
#Nk

∑
n∈Nk

ϑn(`) ≤ #N−1/3+o(1)
k , k →∞.

Taking

s =
⌈

logRk

4 log 2

⌉
∼ k log k

4 log 2

in Corollary 3.2, we conclude that even deterministic factoring (in time n1/4+o(1),
see [9, Section 5.5]) is a faster way to attack then finding collisions by brute force
for the overwhelming majority of n ∈ Nk.
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Corollary 3.4. We have,

#{n ∈ Nk : ϑn(`) ≥ n−1/4} ≤ #N−κ+o(1)
k , k →∞,

where

κ =
1

2 log 2
= 0.72134 . . . .

In particular, Corollaries 3.3 and 3.4 mean that at least asymptotically, for almost
all n ∈ Nk finding collisions via brute force search is much slower than factoring the
modulus n. However, it is conceivable that there is a way of choosing messages of
special structure (for example, short messages) which may increase the probability of
collision.

3.3 The cardinality of Hn

Recall the definition of Hn given by (1.3)
Clearly, for every n ∈ Nk we have #Hn ≥ ψ(n, pk) and thus from (2.11) we imme-

diately derive

#Hn ≥ exp
(

(2 log 2 + o(1))
logn

log logn

)
.

Here we show that for almost all n ∈ Nk the group Hk is quite “massive”.

Theorem 3.5. The inequality

#Hn ≥
n

(logn)2(log logn)5 exp
(
−4
√

log 2 logn
)

holds for all but at most o(#Nk) values of n ∈ Nk.

Proof. We say that a prime p ≤ Rk is exceptional if the first k primes generate a
subgroup Hp of size at most

#Hp ≤
p

log p(log log p)2 exp
(
−2
√

log 2 log p
)
.

It follows immediately from a more general Theorem 1.5 of [16] that for any t ≤ Rk

there are at most o(π(t)) exceptional primes p ≤ t.
Let Lk = dlogRke. Then we see that the cardinality of the set Ek of n ∈ Nk which
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are divisible by an exceptional prime does not exceed

#Ek ≤
∑

p≤Rk

p exceptional

∑
q≤Rk/p

1 =
∑

p≤Rk

p exceptional

π(Rk/p)

� Rk

∑
p≤Rk

p exceptional

1
p log(Rk/p)

= Rk

Lk∑
i=0

∑
Rke−i−1<p≤Rke−i

p exceptional

1
p log(Rk/p)

�
Lk∑
i=1

ei

i

∑
Rke−i−1<p≤Rke−i

p exceptional

1 = o(σk),

where

σk ≤
Lk∑
i=1

ei

i
π(Rke

−i) � Rk

Lk∑
i=1

1
i log(Rk/ei)

� Rk

Lk∑
i=1

1
i(Lk − i+ 1)

� Rk

∑
1≤i≤Lk/2

1
i(Lk − i+ 1)

� Rk

Lk

∑
1≤i≤Lk/2

1
i
� Rk logLk

Lk
� Rk log logRk

logRk
� #Nk,

see (2.12). Thus #Ek = o(σk) = o(#Nk).
Let Dk = blog logQkc. We define Fk as the set of n = pq ∈ Nk with gcd(p− 1, q−

1) ≥ Dk. Then, using the Brun–Titchmarsh bound (2.4), we derive

#Fk ≤
∑

d≥Dk

∑
p≤
√

Rk

p≡1 (mod d)

∑
p≤q≤Rk/p

q≡1 (mod d)

1 ≤
∑

d≥Dk

∑
p≤
√

Rk

p≡1 (mod d)

π(Rk/p, d, 1)

� Rk

∑
d≥Dk

∑
p≤
√

Rk

p≡1 (mod d)

1
pϕ(d) log(Rk/pd)

� Rk

logRk

∑
d≥Dk

1
ϕ(d)

∑
p≤
√

Rk

p≡1 (mod d)

1
p
.

Now, using (2.5) and then (2.8) we derive

#Fk �
Rk log logRk

logRk

∑
d≥Dk

1
ϕ(d)2 �

Rk log logRk(log logDk)2

Dk logRk
. (3.1)
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Thus #Fk = o(#Nk).
Finally, for any n = pq ∈ Nk \ (Ek ∪ Fk) we have

#Hn ≥
#Hp#Hq

Dk
≥ n

Dk(logn)2(log logn)4 exp
(
−4
√

log 2 logn
)
.

Remarking that
Dk ≤ log logQk ≤ log logn,

we conclude the proof.

Certainly, the power of log logn in the bound of Theorem 3.5 can be improved.
We remark that the lower bound of Theorem 3.5 on the size of Hn, combined with

well known results about exponential sums over finitely generated subgroups in residue
rings (for example, see [14, Theorem 3.4]), implies that the elements of Hn are very
uniformly distributed modulo n for almost all n ∈ Nk. For instance, for any ε > 0, the
statistical distance between binary vectors formed by about a half of the most signifi-
cant bits of h ∈ Hn and random binary vectors of the same dimension is exponentially
small.

As before we observe that

#Hp ≥ ψ(p, pk) and #Hq ≥ ψ(q, pk)

are distinct modulo p. In the case where n = pq for primes p = 2ur+1 and q = 2vs+1,
r and s distinct primes and

2u < ψ(p, pk) and 2v < ψ(q, pk)

then since #Hp > 2u and #Hp | p− 1 = 2ur then r | #Hp | #Hn. Similarly, s | #Hq |
#Hn and hence

Hn ≥ rs.

It is useful to note that, by using α = 2 in (2.11), for log p ∼ log q ∼ 0.5 logn we have

ψ(p, pk) = exp
(

(0.5 log(27/4) + o(1))
logn

log logn

)
.

A similar bound also holds for ψ(q, pk).

4 Approaches to creating collisions

4.1 General observations

Several problems with VSH in terms of creating collisions have been noted in [8]
and [18]. For example, it is noted in [8] that if the message m is short then the hash
value

hn(m) =
k∏

i=1

pei
i (mod n)
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may not “wrap around” modulo n and hence hash inversion (retrieving the message
from the hash value) is possible. It is also noted that it is easy to obtain messages m
and m′ for which hn(m) = 2hn(m′) (mod n). Such problems are easily overcome by,
for example, a sufficient number of squarings to ensure wrap around for any message
length.

An interesting property of VSH noted in [18] is that if a, b, z are bit strings of equal
length, with z the all-zero string, such that a ∧ b = z then

hn(a ∧ b) ≡ hn(a)hn(b) (mod n).

This property is used to construct an effective time-memory trade-off attack on VSH. It
is also shown there how a partial collision attack, where certain bits of the hash function
are constrained to have certain values, can be turned into a full collision attack.

In both [8] and [18] it is noted that VSH produces a relatively long hash and effective
methods for shortening it would be needed for certain applications. As well, the fact
VSH has a trapdoor (factorization of n) creates certain problems in applications.

Our aim in this section is to consider other potential problems with creating colli-
sions and obtain estimates for their likelihood of occurring.

4.2 False witnesses

In P. Erdős and C. Pomerance [11], an integer a ∈ Zn is called a false witness (also
called a Fermat liar [15]) for an integer n ∈ Z if

an−1 ≡ 1 (mod n) (4.1)

(see also [9]). In case (4.1) does not hold, a is called a witness, since it immediately
implies that n is composite.

Then, much as for adding multiples of ϕ(n) to exponents of a prime in the case the
factorization of n is known, in the hash representation of the equation (1.2), adding
multiples of n− 1 to the exponent of any prime pi, i = 1, . . . , k, that is a false witness
modulo n, does not change the hash and hence corresponds to creating a collision. For
a given set of small primes, one can think of moduli n which make a given small prime
a false witness, as a weak key.

Note that if p − 1 and q − 1 have only small prime divisors then it may not be too
difficult to determine the order of a given small prime, by brute force, and in a similar
manner, create collisions.

We recall that n is called a Fermat pseudoprime to base a if n is composite and (4.1)
holds (see [9]). Pomerance [17] obtained an upper bound on the number of n ≤ x
which are Fermat pseudoprimes to base a = 2. The method can easily be extended to
an arbitrary base a and can even give a uniform bound with respect to a. However for
n ∈ Nk it simplifies and leads to a stronger bound. Let us consider the set

Wk = {n ∈ Nk | at least one of p1, . . . , pk is a false witness for n}.

Theorem 4.1. We have
#Wk � (#Nk)3/4+o(1)

.
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Proof. Let us fix some integer a ∈ [2, Q1/2
k ] and let ta(p) denote the multiplicative

order of a modulo a prime p with gcd(a, p) = 1. We follow the same arguments
as in the proof of [17, Theorem 2] which however we adapt to n ∈ Nk. Clearly, if
n = pq ∈ Nk and (4.1) holds then

n ≡ q ≡ 1 (mod ta(p)).

Thus for every p there are at most Rk/pta(p) possibilities for q (even ignoring the fact
that q is prime). We can also assume that p > n1/2 ≥ Q

1/2
k . Therefore, the number of

n ∈ Nk which are Fermat pseudoprimes to base a, does not exceed

Wk,a ≤ Rk

∑
Rk≥p>Q

1/2
k

1
pta(p)

≤
∑

t≤Rk

1
t

∑
Rk≥p>Q

1/2
k

ta(p)=t

1
p
.

As in the proof of [17, Theorem 1] we conclude from (2.7) that there are at most

J = ω(at − 1) � t log a
log(t log a)

� t log a
log t

primes p with ta(p) = t, and they all satisfy p ≡ 1 (mod t). Therefore, using (2.5), we
obtain ∑

Rk≥p>Q
1/2
k

ta(p)=t

1
p
≤

∑
p≤pJ

p≡1 (mod t)

1
p
� log log pJ

ϕ(t)
� log log(t log a)

ϕ(t)
.

Finally, the bound (2.8) implies that∑
Rk≥p>Q

1/2
k

ta(p)=t

1
p
� (log log t+ log log log a) log log t

t
. (4.2)

We also have the following trivial bound:∑
Rk≥p>Q

1/2
k

ta(p)=t

1
p
≤ ω(at − 1)

Q
1/2
k

� t log a

Q
1/2
k log t

. (4.3)

Let us fix some sufficiently large T . Using (4.3) for t ≤ T and (4.2) for t ≥ T , we
obtain

Wk,a � Rk

 log a

Q
1/2
k

∑
t≤T

1
log t

+
∑
t>T

(log log t+ log log log a) log log t
t2


� Rk

(
T log a

Q
1/2
k logT

+
(log logT + log log log a) log logT

T

)
.
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We now choose
T = Q

1/4
k (logQk)1/2(log a)−1/2 log logQk

getting

Wk,a � RkQ
−1/4
k (logQk)−1/2(log a)1/2 (log logQk + log log log a) .

Therefore

#Wk ≤
k∑

j=1

Wk,pj � kRkQ
−1/4
k (logQk)−1/2(log k)1/2 log logQk

and using (2.12), (2.2) and (2.3), we conclude the proof.

One easily verifies that if for an integer r both p = 6r+1 and q = 12r+1 are prime
then, since 3 is a quadratic residue modulo q, we have

36r ≡ 1 (mod pq).

Hence 3 is a false witness modulo n = pq = 18r(4r+1)+1. Therefore any reasonably
quantitative form of the prime s-tuplets conjecture implies that #Wk � (#Nk)1/2+o(1)

which in fact can be the right order of growth of #Wk.
While, as Theorem 4.1 shows, it is easy to avoid the possibility a prime pi is a false

witness modulo n, it does point out that some care is required in choosing the primes.
Note that it is simple to test for a prime being a false witness for a given n ∈ Z.

Rather than consider a single small prime being a false witness, one may try to
consider products

a =
k∏

i=1

pdi
i ∈ Hn (4.4)

for some randomly chosen integers d1, . . . , dk in a hope that at least one of these prod-
ucts is a false witness for n ∈ Nk which leads to a question of estimating the probability
of this event.

For every positive integer n, the total number of false witnesses is given by

γ(n) =
∏
p |n

gcd(n− 1, p− 1) (4.5)

and has been studied in the literature (see [11] and the references therein). For example,
the average value, the normal order, and some other properties of γ(n) are studied
in [11].

If n = pq ∈ Nk then by (4.5) we see that

γ(n) = gcd(pq − 1, p− 1) gcd(pq − 1, q − 1)

= gcd(p− 1, q − 1)2.
(4.6)
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Thus, as in the proof of Theorem 3.5 (see the bound (3.1) in particular) we see that the
number Ek(Γ) of n ∈ Nk with γ(n) ≥ Γ is at most

Ek(Γ) � #NkΓ
−1/2 log log Γ. (4.7)

We now show that although for almost all n this quantity is rather small, on average
over n ∈ Nk it is quite large (but probably not large enough to become a real weakness).

Theorem 4.2. We have

R
1/2+o(1)
k � 1

#Nk

∑
n∈Nk

γ(n) � R
1/4+o(1)
k .

Proof. To prove the upper bound we use (4.7) and also note that

∑
n∈Nk

γ(n) =
Rk∑
Γ=1

(Ek(Γ)− Ek(Γ + 1)) Γ ≤
Rk∑
Γ=1

Ek(Γ).

To prove the upper bound we fix an arbitrary ε > 0 and define y = R
1/4−ε
k . Using

the Bombieri–Vinogradov theorem (2.6) with x =
√
Rk and A = 3 we see that

π(
√
Rk, r, 1) ≥ π(

√
Rk)

2ϕ(r)
(4.8)

holds for all but at most O(y(logx)−2) primes r ∈ [y, 2y]. Let R be set of prime
numbers in the interval [y, 2y] for which we have (4.8). Then we have

#R = π(2y)− π(y) +O(y(logx)−2) = (1 + o(1))y(log y)−1. (4.9)

For r ∈ R, we now consider the set Pr of primes p ∈ [
√
Qk,

√
Rk] such that p ≡ 1

(mod r) and p 6≡ 1 (mod s) for any other s ∈ R. We have

#Pr = π(
√
Rk, r, 1)− π(

√
Qk, r, 1) +O

(∑
s∈R

π(
√
Rk, rs, 1)

)
.

Using the Brun–Titchmarsh theorem (2.4), we obtain

∑
s∈R

π(
√
Rk, rs, 1) �

∑
s∈R

√
Rk

rs log(
√
Rk/rs)

≤ π(2y)
√
Rk

ry log(
√
Rk/y2)

�
√
Rk

r logRk log y
,

and also

π(
√
Qk, r, 1) �

√
Qk

r logQk
.
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Therefore, recalling (4.8), we deduce

#Pr = π(
√
Rk, r, 1) +O

( √
Rk

r logRk log y
+

√
Qk

r logQk

)
.

Hence

#Pr ≥
π(
√
Rk)

3ϕ(r)
, (4.10)

provided that k is large enough.
Clearly the sets Pr, r ∈ R, are disjoint. Also for two distinct primes p, q ∈ Pr we

have n = pq ∈ Nk and also we see from (4.6) that γ(pq) ≥ r2. Hence,

1
#Nk

∑
n∈Nk

γ(n) ≥ 1
#Nk

∑
r∈R

r2 #Pr(#Pr − 1)
2

� π(
√
Rk)2#R
#Nk

� Rk#R
#Nk logRk

.

Now using the bounds (2.12) and (4.9) together with the fact that ε is arbitrary we
conclude the proof.

We note that P. Erdős and C. Pomerance [11] have shown that the average value of
γ(n) over all composite n ≤ x is much higher:

x exp
(
−(1 + o(1))

logx log log logx
log logx

)
≥ 1
x

∑
n≤x

n composite

γ(n) � x15/23

and they conjecture that the upper bound is in fact tight. Moreover, using modern
bounds [2] on shifted primes without large prime divisors the exponent 15/23 =
0.6521 . . . can be replaced with 0.7039.

We also believe that the upper bound of Theorem 4.2 gives the correct order of mag-
nitude of the average value of γ(n) over n ∈ Nk. Furthermore, under some standard
number theoretic conjectures (such as the Elliott-Halberstam conjecture or the prime
s-tuplets conjecture) this indeed can be proven.

In any case the bound (4.7) and Theorem 4.2 show that the set of false witnesses is
very small for most of n ∈ Nk. Together with Theorem 3.5 we can now conclude that
for a “typical” n ∈ Nk the proportion of false witnesses inside of Hn is negligible. So
random products (4.4) are very unlikely to generate a false witness.

Several very interesting results about the distribution of witnesses and false wit-
nesses can be found in [1, 4, 3].

Slightly more general than the form of (4.1) and (4.4) to find collisions, one can ask
about a possibility of more general relations involving all primes p1, . . . , pk simultane-
ously:
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Open Question 4.3. Given k polynomials f1(X), . . . , fk(X) ∈ Z[X], determine the
size of the set

{n ∈ Nk |
k∏

i=1

p
fi(n)
i ≡ 1 (mod n)}.

4.3 Creating preimages for a given hash value

It is noted in [8] and [18] that by multiplying the hash value of a message by the inverse
modulo n of the power of a small prime or product of a collection of small primes, it
may be possible to determine the hash of a modified (hopefully meaningful) message,
without knowing the message. This might pose a problem in some circumstances.

A simple extension of this observation is the following. Choose a (fairly large) set
of t binary sequences and their corresponding hash values:

mj ∈ F`
2 ∼ (e(j)

1 , e
(j)
2 , . . . , e

(j)
k ) 7→ aj ∈ Zn, j = 1, 2, . . . , t.

Then it is easy to find the preimage of any product of powers of the hash values:
t∏

j=1

a
fj

j (mod n) 7→
t∑

j=1

fj(e
(j)
1 , . . . , e

(j)
k )

7→
k∏

i=1

p
Pt

j=1 fje
(j)
i

i 7→ m ∈ F`0
2

for some overall message length `0. This is a simple application of the hash homomor-
phism (1.4). Thus preimages of a great many hash values can be created. To find a
collision for a given hash value with this approach however, would seem to require the
ability to express the given hash value multiplicatively in terms of the given set of hash
values, modulo n, whose preimages are known. This appears to be a difficult problem,
implying it is unlikely a collision could be found with this approach. However, the
approach remains one of interest for further consideration.

4.4 A smooth numbers approach to creating collisions

As noted previously, the homomorphic property of VSH in (1.4), implies that any
preimage of 1 ∈ Z leads to the easy creation of collisions for any (message,hash)
pair. Suppose a ∈ Zn is a hash obtained from a message corresponding to exponents
ei, i = 1, 2, . . . , k in the representation (1.2)

a ≡
k∏

i=1

pei
i (mod n). (4.11)

If a is viewed as an element of Z (rather than in Zn), and if it is smooth in Z with
respect to pk, so that in addition to equation (4.11) we also have

a =
k∏

i=1

pdi
i ∈ Z
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then (as noted previously) the right hand side of this last equation can be multiplied
by inverses of the pei

i (mod n) to determine a message with a hash of unity modulo
n which would be disastrous. It is thus of interest to determine the likelihood that
the hash of a randomly chosen message (of any length) is smooth with respect to pk.
Fortunately this probability is easily shown to be negligible. We note that by (2.11) the
number of pk-smooth positive integers b < n is a negligible quantity compared to the
total number n of such integers.

It is also natural to assume that the special shape (4.11) does not change this prob-
ability in a substantial way, however a rigorous proof of this is not immediate. This
leads us to the more general:

Open Question 4.4. Given a subgroup H ∈ Zn
∗ and a real y > 0, estimate how many

elements of H are y-smooth.

5 Comments

Certain aspects of VSH have been shown to involve interesting number theoretic ques-
tions and some of these have been pursued in this work to obtain estimates relevant
to the security of VSH. Many other interesting questions remain and we note a few of
these here.

The VSSR (and VSDL) assumptions of [8] are new and interesting ones and central
to the security arguments for VSH. Further work to determine greater insight and a
more precise understanding of their complexity and their relation to other standard
computational problems, such as factoring and modular square roots, would be of great
interest.

The efficiency of VSH is a critical factor in determining its adoption. Any techniques
that improve on the iterative techniques given in [8] would be of value in promoting
VSH.

To conclude, some natural questions arising in considering the security of VSH have
led to interesting number theoretic and implementation questions. It is hoped the esti-
mates obtained in this work related to these questions support the security arguments
for VSH and motivate further interest on this system.
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