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Abstract

We design a probabilistic algorithm for computing endomorphism rings
of ordinary elliptic curves defined over finite fields that we prove has a
subexponential runtime in the size of the base field, assuming solely the
generalized Riemann hypothesis.

Additionally, we improve the asymptotic complexity of previously
known, heuristic, subexponential methods by describing a faster isogeny-
computing routine.

1 Introduction

Endomorphism rings of ordinary elliptic curves over finite fields are central
objects in complex multiplication (CM) theory; as such, they appear in various
computational number-theoretic contexts. For instance, the CM method for
generating curves with a prescribed number of points relies on evaluating so-
called Hilbert class polynomials, for which the state-of-the-art algorithm of [18]
requires an endomorphism-ring-computing subroutine. They are also potentially
relevant security parameters in certain cryptographic applications.

They were first studied by Kohel [12] who, assuming the generalized Riemann
hypothesis (GRH), gave a deterministic method for computing them in time
O(q1/3+ε) where q is the cardinality of the base field. Recently, a probabilistic
algorithm with subexponential complexity in log q was obtained in [2] by relying
on several additional assumptions; its runtime is

L(q)
√
3/2+o(1) where L(x) = exp

√
log x log log x.

Here, we describe a variant of this method that computes endomorphism
rings in proven probabilistic subexponential time, assuming only the GRH; it
“ascends” the lattice of orders in a generic manner, and “tests” orders using
their class group structure. The lattice-ascending procedure is suited to work in
general number fields, which is a necessary step for generalizing this algorithm
to higher-dimensional abelian varieties; for now, only the method of Eisenträger
and Lauter [7] and that of Wagner [20] apply to this setting but they are both
of exponential nature. To prove the complexity of the order-testing method,
we adapt material from Seysen [16] and proofs due to Hafner and McCurley
[9] to make use of a sharp bound derived from the GRH by Jao, Miller, and
Venkatesan [11, Corollary 1.3].
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Additionally, we use a more direct, faster isogeny-computing routine than [2]
which allows us to bring down the exponent in the complexity. Explicitly, on
input an ordinary elliptic curve E defined over a finite field Fq our main algorithm
outputs the structure of its endomorphism ring End E in proven (under the GRH)
probabilistic time

L(q)1+o(1) + L(q)1/
√
2+o(1)

where the first term only accounts for the cost of factoring of a certain integer
less than 4q using the state-of-the-art proven method of Lenstra and Pomerance
[14]; in other words, apart from that factorization, we were able to adapt and
prove under the GRH all parts of the heuristic subexponential method above
while improving its asymptotic complexity.

Section 2 fixes notations on endomorphism rings and orders. Section 3 then
presents the order-testing method using “relations”. Section 4 gives the direct-
but-fast isogeny-computing routine. Section 5 describes our lattice-ascending
procedure and main algorithm. Section 6 proves that class groups are character-
ized by short relations. Section 7 finally shows how orders are determined by
their class groups.

2 Background

Let E be an ordinary elliptic curve defined over a finite field Fq. The Frobenius
endomorphism π acts on geometric points of E by raising their coordinates to
the qth power; its characteristic polynomial χπ(x) is of the form x2 − tx+ q and
computing the integer t is equivalent to finding the number of points on the
curve, namely χπ(1). Schoof showed in [15] how this can be done in deterministic
polynomial time in the size of the base field, log q.

Many endomorphisms stem from the Frobenius endomorphism, as Deuring
proved in [6] that Q⊗ End E ' Q(π). Since the number field K = Q[x]/(χπ(x))
is isomorphic to Q(π), by computing the trace t we have already determined the
endomorphism ring “up to fractions”. From now on, we make this isomorphism
implicit by setting π = x.1

The number field K is called the CM field of E ; the implicit isomorphism
maps End E to an order in K so we have

Z[π] ⊆ End E ⊆ OK
where OK is the ring of integers of K. Conversely, Waterhouse proved in [21,
Theorem 4.2] that all orders containing Z[π] arise as endomorphism rings. The
index [OK : Z[π]] is essentially the square part of the discriminant ∆ = t2 − 4q;
this measures how broad the search-range is: in the worst case, it can be
exponential (in log q).

The orders of K containing Z[π] form a finite lattice (in the set-theoretic
sense) where OK is the maximal order, Z[π] the minimal one, and End E lies in
between. Unfortunately it might have exponentially many orders so we need to
devise a better way of finding End E than testing each in turn; this is the purpose
of the lattice-ascending algorithm of Section 5 which tests only polynomially
many orders. For those orders O, we “test” whether O ⊆ End E with the
methodology of Section 3 which we develop in Sections 6 and 7.

1The conjugate of x might equivalently be taken as π; this choice just needs to be made
once and for all.
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3 The CM approach

We now present the approach of [2] to testing whether O ⊆ End E in a
somewhat more abstract flavor. For the theory of imaginary quadratic orders,
we refer to [5].

In this paper, it is implicitly understood that we exclusively consider ideals
of norm coprime to ∆, so that their images in Z[π] are unramified and invertible.
Since every (invertible) ideal class of each order containing Z[π] has a represen-
tative of this type, this has no effect on our use of class groups, which arises
from the following result of CM theory.

Theorem 3.1. When a is an ideal of End E, denote by φa the isogeny with
kernel

⋂
α∈a kerα. The ideal class group cl(O) acts faithfully and transitively on

the set of isomorphism classes of elliptic curves with endomorphism ring O by
a : E 7→ φa(E).

Intuitively, the structure of the class group dictates that of the isogeny graph;
hence, by looking at the latter, we might deduce things on the former and obtain
information about the endomorphism ring. This action is effective, as embodied
in Proposition 4.4. In this setting, we formalize the notion of “structure” by the
following concept.

Definition. We define relations as multisets of ideals of Z[π]. We say that
a relation R holds in an order O (or that it is a relation of O) if the product∏

a∈R aO is trivial in cl(O); we say that it holds in the isogeny graph if the
composition of the isogenies φaEnd E for a ∈ R fixes E.

The theorem implies that a relation holds in End E if and only if it holds in
the isogeny graph, which gives a way to tell the endomorphism ring apart from
other orders of the lattice (we will see in the next section that φaEnd E can be
computed without knowing End E).

To avoid testing all orders, we rely on this simple result from [5, Chapter 7]:

Lemma 3.2. If a relation holds in some order, it also does in all orders con-
taining it.

Intuitively, as we ascend the lattice of orders, more and more relations hold,
which also translates into class groups getting smaller. This is why we chose
Z[π] to be the ring of our ideals: via the morphism a 7→ aO we can map ideals
of Z[π] to any order above in a way that induces surjective morphisms of class
groups.

To search for the endomorphism ring End E in the lattice, we will “test”
whether orders O lie below it by selecting relations of them and checking whether
they hold in the isogeny graph. Before we describe that procedure in detail, let
us mention how to compute isogenies.

4 Computing the CM action

To make use of Theorem 3.1, we need to work with isomorphism classes
of elliptic curves; for this, we rely on [5, Proposition 14.19] which states that
two ordinary elliptic curves are isomorphic if and only if their cardinalities and
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j-invariants are the same. Computing the cardinality takes polynomial time,
and since the j-invariant is a rational function in the coefficients of a Weierstrass
equation, it does not take longer to evaluate it. In the following, it is implicitly
understood that we work with isomorphism classes via this representation.

To evaluate the action φa(E) of an ideal a, we combine classical tools:

Algorithm 4.1.
Input: An elliptic curve E/Fq with Frobenius polynomial χπ and an ideal a.

Output: The isogenous elliptic curve φa(E).

1. Find a basis (Pi) of the `-torsion of E over Fq`−1 where ` = norm (a).
2. Write the matrix M of the Frobenius endomorphism on the basis (Pi).
3. Compute the eigenspaces of M ∈ Mat2(Z/`Z).
4. Determine which is the kernel of the isogeny φa.
5. Compute this isogeny.

Step 5 computes φa from its kernel, which Vélu’s formulæ [19] do in O(`)
curve operations over Fq`−1 . Step 4 relies on an idea from the SEA algorithm
found in [8, Stage 3]:

Proposition 4.2. Let a be an ideal of O of prime norm `; write it as `O+u(π)O
where the polynomial u is an irreducible factor of χπ mod `. The characteristic
polynomial of the restriction to the kernel of φa of the Frobenius endomorphism
is u.

Since the map a 7→ aO from ideals of Z[π] preserves their norm ` and
polynomial u, there is no need to know O to compute φaO; this is particularly
useful for O = End E .

Step 2 decomposes π(Pi) as
∑
j∈{1,2}MijPj for which a baby-step giant-step

approach requires O(`) operations in E/Fq`−1 . Step 3 is classical and takes
quasi-linear time in log `; it outputs the Fq-rational subgroups of E [`] isomorphic
to Z/`Z.

Finally, Step 1 uses the fact that points of rational subgroups of order ` are
necessarily defined over an extension of degree ` − 1; it proceeds by selecting
random `k-torsion points over this extension and lifting one along the other to
obtain independent `-torsion points. This idea originates from [4, Theorem 1] to
which we refer for details.

Algorithm 4.3.
Input: An elliptic curve E/Fq with Frobenius polynomial χπ and a prime `.

Output: A basis of the `-torsion E [`] of E over Fq`−1 .

a. Decompose #E(Fq`−1) as m`k where ` - m.
b. Let P and Q be m times random points of E(Fq`−1);
c. Compute the order `kP of P and `kQ of Q and assume kP ≥ kQ.
d. Precompute the table (i, i`kP−1P ) for i ∈ Z/`Z.
e. For j from kQ − 1 down to 1:
f. If `jQ = i`kP−1P for some i, set Q← Q− i`kP−j−1P .
g. If Q = 0E then go back to Step b.
h. Return (`kP−1P, `kQ−1Q).

The cardinality of E(Fq`−1) can be computed as Resx(χπ(x), x`−1 − y)(1);
since it is O(q`), extracting random points of it and multiplying them by m
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requires O(` log q) operations in Fq`−1 . Similarly, both kP and kQ are bounded
by k = O(` log q). The lookup in Step f is negligible if an efficient data structure
such as a red-black tree is used to store the precomputed table of Step d. Finally,
the probability of going back to Step b is O(1/`) as proven in [4].

Using fast arithmetic, operations in Fq`−1 take at most (` log q)1+o(1) time,
so we have:

Proposition 4.4. Algorithm 4.1 returns the curve φaEnd E(E) isogenous to

a prescribed curve E/Fq in probabilistic time O(`2+o(1) log2+o(1) q), where ` =
norm (a).

5 Ascending the lattice of orders

Orders in an imaginary quadratic field K are of the form Z + fOK for some
f ∈ N known as the conductor; inclusion of orders corresponds to divisibility of
conductors. Those orders we are interested in contain Z[π] so their conductors
divide the index [OK : Z[π]].

We will be ascending the lattice of orders one step at a time: each step
consists in enumerating all orders lying directly above a prescribed order, that
is, containing it with prime index `. The possible values for ` are the prime
factors of [OK : Z[π]] which can be listed by factoring (the square-part of) the
discriminant ∆, for which the state-of-the-art proven method of Lenstra and
Pomerance [14] uses L(q)1+o(1) operations. Enumerating orders above (resp.
below) then simply amounts to dividing (resp. multiplying) the conductor by
the possible `’s; naturally, since our orders are to contain Z[π], this is subject to
the condition that the conductor remains a factor of the index [OK : Z[π]].

Our strategy to locate the endomorphism ring in this lattice by testing orders
and ascending in corresponding directions works as follows: given some order O′
contained in End E (we start with O′ = Z[π]), find some order O directly above
O′ which lies below End E ; then replace O′ by O and iterate the process. The
ascension ends when no O is contained in End E ; then, we must have End E ' O′.
See Figure 1 where we start from the bottom and ascend towards orders O for
which the statement O ⊆ End E holds.

We formalize this procedure into:

Algorithm 5.1.
Input: An ordinary elliptic curve E over a finite field Fq.

Output: An order isomorphic to the endomorphism ring of E.

1. Compute the Frobenius polynomial χπ(x) of E.
2. Factor the discriminant ∆ and construct the order O′ = Z[π].
3. For orders O directly above O′:
4. If O ⊆ End E set O′ ← O and go to Step 3.
5. Return O′.

Steps 1 and 2 are classical and only require polynomial time in log q, except
the factorization of ∆ which takes L(q)1+o(1) time. Under the GRH, we will
later prove:
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Figure 1: Locating End E by ascending a test-sequence of orders.

Proposition 5.2 (GRH). Let O be an order above Z[π]. One can determine

whether O ⊆ End E in probabilistic time L(q)1/
√
2+o(1) with failure probability

o(1/log2q).

The number of orders directly above Z[π] (to be tested in Step 4) is the
number of prime factors of [OK : Z[π]] and it decreases as O′ grows; the number
of ascending steps (of times Step 3 is reached) is bounded by the sum of the
exponents in the factorization of [OK : Z[π]] into prime powers. These two
quantities are smaller than log2 ∆ so the overall number of tests is at most
quadratic in log q. As a consequence, we have:

Theorem 5.3 (GRH). The endomorphism ring of an ordinary elliptic curve
defined over Fq can be computed, with failure probability o(1), in probabilistic time

L(q)1+o(1) + L(q)1/
√
2+o(1) where the first term only accounts for the complexity

of factoring the discriminant ∆ = O(q).

The output may be unconditionally verified using the certification method
of [2, Section 3.2]. This probabilistic procedure can be adapted to use the
isogeny-computing routing of Section 4 and the proof material of Section 6;

under the GRH, it then requires L(q)1/
√
2+o(1) operations. As a result, we obtain

an algorithm for which the above theorem holds without the “failure probability”
statement; this is sometimes called a Las Vegas algorithm.

The rest of this paper is devoted to the proof of Proposition 5.2.

6 Class groups from short relations

To test whether O ⊆ End E reliably, we characterize O by a set of relations
R that hold in it but not collectively in any order of the lattice not containing it.
We will then test whether they hold in the isogeny graph, so we seek relations
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R for which the (quasi-)quadratic cost of computing the associated isogeny∑
a∈R norm (a)

2
is small.

We start by bounding the norms of ideals to appear in our relations: form
the set B of prime ideals p of Z[π] with norm less than some integer N to be
fixed later, and consider smooth ideals

σ(n) =
∏
p∈B

pnp

for vectors n ∈ ZB. If σO(n) denotes the corresponding ideal class in cl(O), the
kernel of the map σO is a lattice ΛO in ZB consisting of all relations of O formed
of ideals in B: the coordinate np is the multiplicity of the ideal p in the relation.
When σO is surjective, we have

cl(O) ' ZB/ΛO.

Nothing of value is lost by only considering relations R of ΛO since, assuming
the GRH, Bach proved in [1] that σO is indeed surjective provided that N ≥
12 log2 |∆|.

The isogeny chain associated to a relation n ∈ ΛO comprises at most ‖n‖1 =∑
|np| isogenies of degree up to N so the complexity of evaluating it is crudely

bounded by ‖n‖1N2+o(1). This norm can be controlled by a result of Jao,
Miller, and Venkatesan [11, Corollary 1.3] and more specifically its following
specialization found in [3, Theorem 2.1].

Theorem 6.1. Under the GRH, for all positive numbers ε there exists a constant
c > 1 such that, for any imaginary quadratic order O of discriminant D and
integers N ≥ log2+ε |D| and

l ≥ c log |D|
log log |D|

,

the probability, for random vectors n ∈ ZB of norm l, that the ideal class σO(n)
falls in any subset S of cl(O) is at least 1

2
#S

#cl(O) .

Corollary 6.2 (GRH). For N = log2+ε |D| the diameter of the lattice ΛO is
o(log4+ε |D|).

Proof. To prove this, we construct a generating set for ΛO formed byO(log2+ε |D|)
relations of norm o(log2 |D|). Siegel showed in [17] that cl(O) is an abelian
group of order D1/2+o(1) so there exist O(log |D|) ideal classes αi such that
ZB/ΛO '

∏
〈αi〉; we fix these and proceed to write a generating set for ΛO

consisting of:

• relations expressing that α
ord(αi)
i = 1;

• relations expressing the primes p ∈ B in terms of the αi.

First define a map σ−1O by fixing a preimage of norm at most c log |D|/ log log |D|
for each ideal class; it exists by Theorem 6.1. Now use a double-and-add approach
to ensure that norms remain small: for each i, express that αord(αi)

i = 1 by the
relations

7



(i) σ−1O

(
α2j

i

)
− 2σ−1O

(
α2j−1

i

)
for j ∈ {1, . . . , blog2 ord(αi)c};

(ii)
∑
j bjσ

−1
O

(
α2j

i

)
where bj denotes the jth least significant bit of ord(αi).

Now write each p ∈ B on the αi by decomposing its class as a product
∏
αni
i

where ni ∈ {0, . . . , ord(αi)}; noting δp the vector with coordinate one at p and
zero elsewhere, this gives the relations:

(iii) δp −
∑
i

∑
j cijσ

−1
O

(
α2j

i

)
where cij is the jth least significant bit of ni.

Preimages by σO have length o(log |D|) and there are at most
∑
blog2 ord(αi)c =

O(log |D|) terms, therefore each such relation has length o(log |D|)2.

To generate short relations, we simply plug this bound into the algorithm
of Seysen [16] and rely on ingredients of Hafner and McCurley [9] for the proof.
Note that Childs, Jao, and Soukharev [3] proposed a similar algorithm for finding
one relation, while we seek several random relations in order to characterize the
order O.

Algorithm 6.3.
Input: An imaginary quadratic order O of discriminant D.

Output: A quasi-random relation n ∈ ΛO with ‖n‖1 = o(log6+ε |D|).
1. Form the set B of primes p of O with norm less than N = L(q)z.
2. Draw uniformly at random a vector x ∈ ZB with coordinates

|xp| < log4+ε |D| if norm (p) < log2+ε |D|, else xp = 0.
3. Compute the reduced ideal representative a of σO(x).
4. If a factors over B as

∏
pyp then return the vector x− y.

5. Otherwise, go back to Step 2.

Proposition 6.4 (GRH). Let O be an order containing Z[π]; its discrimi-
nant D is then at most ∆ = O(q). The algorithm above requires L(q)z+o(1) +
L(q)1/(4z)+o(1) operations to find a relation of O whose associated isogeny can
be computed in time L(q)2z+o(1).

Proof. Step 4 consists in testing the smoothness of (the norm of) a; Lenstra, Pila,

and Pomerance [13, Corollary 1.2] proved this requires exp
(

log2/3+o(1)N
)

log3 q

operations, that is, L(q)o(1) since N = L(q)z. The probability that this factoriza-
tion is successful, in other words, that the norm of a is N -smooth is L(q)1/(4z)+o(1)

provided that it behaves as a random integer; this follows directly from combining
the corollary above with [16, Proposition 4.4]; see also [9]. The relation involves
o(log4+2+ε q) ideals of norm up to L(q)z, whence the time bound for evaluating
the associated isogeny by Proposition 4.4.

Hopefully, the relations we generate discriminate between orders with distinct
class groups:

Lemma 6.5 (GRH). Take any two orders O and O′; a relation of O generated
by the algorithm above has a probability [ΛO : ΛO ∩ΛO′ ]

−1 + o(1) of also holding
in O′.

Proof. This follows directly from [9, Lemma 2] adapted to the context of our
algorithm, which proves the quasi-randomness of the relations it generates.
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7 Orders from class groups

Our proof of Proposition 5.2 now boils down to exhibiting the following.

Algorithm 7.1.
Input: An ordinary elliptic curve E/Fq and an order O ⊇ Z[π].

Output: Whether O ⊆ End E.

1. Compute a set of 3 log log q relations of O.
2. If one does not hold in the isogeny graph, return false.
3. Check whether O ⊆ End E locally at 2 and 3; if not, return false.
4. Return true.

By Proposition 6.4, Step 1 requires L(q)z+o(1) + L(q)1/(4z)+o(1) operations
to find relations whose associated isogenies are then evaluated by Step 2 in
L(q)2z+o(1). To balance these quantities, we set z = 1/2

√
2 which gives an

overall complexity of L(q)1/
√
2+o(1).

The correctness follows from Lemma 3.2 and Theorem 3.1, in that Steps 1
and 2 determine whether ΛO ⊆ ΛEnd E ; the probability of failure is at most
(2 + o(1))−3 log log q = o(1/ log2 q), by Lemma 6.5 applied to O′ = End E . The
proposition below argues that, combined with Step 3, this really determines
whether O ⊆ End E .

Proposition 7.2. Let O and O′ be two orders in an imaginary quadratic field
K. The lattice ΛO′ contains ΛO if and only if the order O′ contains O or:

1. K = Q(
√
−4) and O′ has conductor 2;

2. K = Q(
√
−3) and O′ has conductor 2 or 3;

3. The prime 2 splits in K and O′ has index 2 in some order above O of odd
conductor.

Intuitively, this means that identifying orders by their class groups has a
single blind spot locally at 2 and 3 where the two biggest orders cannot be
distinguished; Step 3 is thus required in our algorithm to ensure it exactly
determines the endomorphism ring even amongst those orders with identical
class groups. This statement is a straightforward refinement of [2, Proposition 5];
we nevertheless give the proof below for completeness.

Proof. Denote by SO (resp. SO′) the set of primes ` that split into principal
ideals in O (resp. O′). Using relations formed of a single prime ideal, we see that
ΛO ⊆ ΛO′ implies SO ⊆ SO′ . Now SO (resp. SO′) is also the set of primes that
split completely in the ring class field LO of O (resp. LO′). By Chebotarev’s
density theorem SO ⊆ SO′ thus implies LO′ ⊆ LO which means that the class
field theory conductor f(LO′/K) of LO′ divides f(LO/K).

This conductor f(LO/K) is related to that fO of O as follows (see [5, Exer-
cises 9.20–9.23]).

f(LO/K) =


OK , when K = Q(

√
−4) and fO = 2,

OK , when K = Q(
√
−3) and fO = 2 or 3,

uOK , when 2 splits in K and fO = 2u with u odd,

fOOK , otherwise.
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Naturally, the same stands for O′. In the latter case, the fact that f(LO/K)
divides f(LO′/K) implies that fO′ divides fO, in other words O ⊆ O′; the three
other cases correspond, in order, to the exceptions listed in the proposition.

Finally, let us address Step 3. To check whether O ⊆ End E locally at some
prime p, one uses a method of Kohel [12] known as “climbing the volcano”, which
can be done in the traditional “blind” way by following three p-isogeny paths
from E and seeing which hits the “floor of rationality” first, or using the more
advanced technique of [10] to directly determine the kernel of the ascending p-
isogeny by pairing computations. Eventually, both methods return the valuation
at p of the conductor of End E by computing at most O(valp[OK : Z[π]]) isogenies
of degree p; since we use p = 2, 3, this takes polynomial time in log q.
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