
J. Math. Cryptol. 5 (2011), 115–158
DOI 10.1515/JMC.2011.009 © de Gruyter 2011

Functional encryption for public-attribute
inner products: Achieving constant-size ciphertexts

with adaptive security or support for negation

Nuttapong Attrapadung and Benoît Libert

Communicated by Kaoru Kurosawa

Abstract. In functional encryption (FE) schemes, ciphertexts and private keys are asso-
ciated with attributes and decryption is possible whenever key and ciphertext attributes
are suitably related. It is known that expressive realizations can be obtained from a sim-
ple functional encryption flavor called inner product encryption (IPE), where decryption
is allowed whenever ciphertext and key attributes form orthogonal vectors. In this paper,
we construct public-attribute inner product encryption (PAIPE) systems, where ciphertext
attributes are public (in contrast to attribute-hiding IPE systems). Our PAIPE schemes fea-
ture constant-size ciphertexts for the zero and non-zero evaluations of inner products.
These schemes respectively imply an adaptively secure identity-based broadcast encryp-
tion scheme and an identity-based revocation mechanism that both feature short cipher-
texts and rely on simple assumptions in prime order groups. We also introduce the notion
of negated spatial encryption, which subsumes non-zero PAIPE and can be seen as the
revocation analogue of the spatial encryption primitive of Boneh and Hamburg.

Keywords. Functional encryption, identity-based broadcast encryption, revocation, effi-
ciency.
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1 Introduction

Ordinary encryption schemes usually provide coarse-grained access control since,
given a ciphertext, only the holder of the private key can obtain the plaintext. In
many applications, such as distributed file systems, the need for fine-grained and
more complex access control policies frequently arises. To address these concerns,
several kinds of functional public key encryption schemes have been studied.
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Functional encryption can be seen as a generalization of identity-based encryp-
tion (IBE) [9, 29]. In IBE schemes, the receiver’s ability to decrypt is merely con-
tingent on his knowledge of a private key associated with an identity that matches a
string chosen by the sender. In contrast, functional encryption (FE) systems make
it possible to decrypt using a private key skx corresponding to a set x of atomic el-
ements, called attributes, that is suitably related – according to some well-defined
relation R – to another attribute set y specified by the sender.

The goal of this paper is to describe new (pairing-based) functional encryption
constructions providing short ciphertexts (ideally, their length should not depend
on the size of attribute sets) while providing security against adaptive adversaries
or supporting negation (e.g. decryption should be precisely disallowed to holders
of private keys skx for which R.x;y/ D 1).

1.1 Related work

The first flavor of functional encryption traces back to the work of Sahai and
Waters [27] that was subsequently extended in [19,26]. Their concept, called attri-
bute-based encryption (ABE), allows a sender to encrypt data under a set of at-
tributes ! while an authority generates private keys for access control policies T .
Decryption rights are granted to anyone holding a private key for a policy T such
that T .!/ D 1. Identity-based broadcast encryption (IBBE) [2, 11, 16, 28] and re-
vocation (IBR) [23] schemes can also be thought of as functional encryption sys-
tems where ciphertexts are encrypted for a set of identities S D ¹ID1; : : : ; IDnº: in
IBBE (resp. IBR) systems, decryption requires to hold a private key skID for which
ID 2 S (resp. ID 62 S ).

The above kinds of functional encryption systems are only payload hiding in
that they keep encrypted messages back from unauthorized parties, but ciphertexts
do not hide their underlying attribute set. Predicate encryption schemes [13,21,22,
25,30,31] additionally provide anonymity as ciphertexts also conceal the attribute
set they are associated with, which is known to enable [1, 8] efficient searches
over encrypted data. In [21], Katz, Sahai and Waters devised a predicate encryp-
tion scheme for inner products: a ciphertext encrypted for the attribute vector EY
can be opened by any key sk EX such that EX � EY D 0. As shown in [21], inner product
encryption (IPE) suffices to give functional encryption for a number of relations
corresponding to the evaluation of polynomials or CNF/DNF formulae.

1.2 Our contributions

While quite useful, the IPE scheme of [21] strives to anonymize ciphertexts, which
makes it difficult to break through the linear complexity barrier (in the vector
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length n) in terms of ciphertext size. It indeed seems very hard to avoid such a de-
pendency as long as anonymity is required: for instance, anonymous FE construc-
tions [13,20] suffer from the same overhead. A similar problem appears in the con-
text of broadcast encryption, where the only known scheme [4] that conceals the
receiver set also has O.n/-size ciphertexts.

This paper focuses on applications of functional encryption schemes, such as
identity-based broadcast encryption and revocation systems, where the anonymity
property is not fundamental. Assuming public ciphertext attributes rather than ano-
nymity may be useful in other contexts. For instance, suppose that a number of
ciphertexts are stored with varying attributes y on a server and we want to decrypt
only those for which R.x;y/ D 1. Anonymous ciphertexts require to decrypt all
of them whereas public attributes y make it possible to test whether R.x;y/
(which is usually faster than decrypting) and only decrypt appropriate ones.

At the expense of sacrificing anonymity, we thus describe public-attribute inner
product encryption (which we will call PAIPE to distinguish the primitive from
IPE schemes with the attribute hiding property) schemes where the ciphertext over-
head reduces to O.1/ as long as the description of the ciphertext attribute vector
is not considered as being part of the ciphertext, which is a common assumption
in the broadcast encryption/revocation applications (i.e., the list of receivers is not
seen as a ciphertext component). In addition, the number of pairing evaluations to
decrypt is also constant, which significantly improves upon O.n/, since pairings
calculations still remain costly.

Our first PAIPE system achieves adaptive security, as opposed to the selective
model, used in [21], where the adversary has to choose the target ciphertext vector
EY upfront. To acquire adaptive security, we basically utilize the method used in the
Waters’ fully secure IBE [32], albeit we also have to introduce a new trick called
“n-equation technique” so as to deal with the richer structure of PAIPE. Our sys-
tem directly yields the first adaptively secure identity-based broadcast encryption
scheme with constant-size ciphertexts in the standard model. Previous IBBE with
O.1/-size ciphertexts were either only selective-ID secure [2, 11, 16, 28] or in the
random oracle model [18]. Among IBBE systems featuring compact ciphertexts
(including selective-ID secure ones), ours is also the first one relying on simple as-
sumptions in prime order groups: it does not use any “q-type” assumption, where
the input includes a sequence of elements ¹g.a

i /º
q
iD0.

It is worth mentioning that techniques developed by Lewko and Waters [24] can
be applied to the construction of Boneh and Hamburg [11] (as we show in Appen-
dix B) to give fully secure IBBE with short ciphertexts in composite order groups.
However, it was not previously known how to obtain such a scheme in prime order
groups (at least without relying on the absence of computable isomorphism in
asymmetric pairing configurations). Indeed, despite recent progress [17], there is



118 N. Attrapadung and B. Libert

still no black-box way to translate pairing-based cryptosystems from composite
to prime order groups. In particular, Freeman’s framework [17] does not apply
to [24].

Our second contribution is a PAIPE system for non-zero inner products: ci-
phertexts encrypted for vector EY can only be decrypted using sk EX if EX � EY ¤ 0,
which – without retaining anonymity – solves a question left open by Katz, Sahai
and Waters [21, Section 5.4]. The scheme implies the first identity-based revo-
cation (IBR) mechanism [23] with O.1/-size ciphertexts. Like the two schemes
of Lewko, Sahai and Waters [23], its security is analyzed in a non-adaptive model
where the adversary has to choose which users to corrupt at the outset of the game1.
In comparison with [23] where ciphertexts grow linearly with the number of re-
voked users and public/private keys have constant size, our basic IBR construction
performs exactly in the dual way since key sizes depend on the maximal number
of revoked users. Depending on the application, one may prefer one scheme to the
other one. We actually show how to generalize both implementations and obtain a
tradeoff between ciphertext and key sizes (and without assuming a maximal num-
ber of revoked users): the second scheme of [23] and ours can be seen as lying at
opposite extremities of the spectrum. In Appendix E, we also describe a somewhat
simpler variant of our non-zero PAIPE scheme in groups of composite order.

On a theoretical side, our non-zero PAIPE realization turns out to be a particular
case of a more general primitive, that we call negated spatial encryption, which
we define as a negated mode for the spatial encryption primitive of Boneh and
Hamburg [11]. Namely, keys correspond to subspaces and can decrypt ciphertexts
encrypted under points that lie outside the subspace. This generalized primitive
turns out to be non-trivial to implement and we had to use a fully generalized form
of our new “n-equation” technique. The proposed scheme is proven secure under
a non-standard assumption defined in [23].

1.3 Our techniques

The core technique of our non-zero PAIPE scheme will be used throughout the
paper, including in our adaptively secure zero PAIPE scheme. This can be viewed
analogously to fact that Waters’ fully secure IBE [32] uses the revocation tech-
nique of [23]. Our non-zero PAIPE also builds on [23]. However, the fact that non-
zero PAIPE has much richer structure than revocation scheme and the pursued goal
of achieving constant ciphertext size together prevent us from using their tech-
niques directly. To describe the difficulties that arise, we first outline the Lewko–

1 We actually work in a slightly stronger model, called co-selective-ID, where the adversary
chooses which parties to corrupt at the beginning – before seeing the public key – but is not
required to announce the target revoked set until the challenge phase.
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Sahai–Waters revocation scheme in its simplified form where only one user is
revoked.

Construction 1 (A SIMPLIFIED REVOCATION SCHEME).
I Setup: chooses bilinear groups .G;GT / of prime order p and picks g $

�! G
as well as ˛; ˛1; ˛2

$
�! Zp. The public key is

�
g; g˛1 ; g˛2 ; e.g; g/˛

�
. The master

key is g˛.
I KeyGen: chooses t $

�! Zp at random and outputs a private key for an identity
ID 2 Zp as .K0 D gt , K1 D g˛C˛1t , K2 D gt.˛1IDC˛2//.
I Encrypt: encrypts M and specifies a revoked identity ID0 by choosing s $

�! Zp
and computing .E0 D M � e.g; g/˛s , E1 D gs.˛1ID0C˛2/, E2 D gs/.

I Decrypt: decryption computes e.K2; E2/
1

ID�ID0 e.E1; K0/
� 1

ID�ID0 D e.g; g/˛1ts

if ID ¤ ID0. It then computes e.g; g/˛s as e.K1; E2/=e.g; g/˛1ts D e.g; g/˛s .

The scheme can be explained by viewing a key and a ciphertext as forming a
linear system of two equations in the exponent of e.g; g/with variables ˛1ts; ˛2ts,

MID;ID0

 
˛1ts

˛2ts

!
WD

 
ID 1

ID0 1

! 
˛1ts

˛2ts

!
D

 
log.e.K2; E2//
log.e.E1; K0//

!
:

Computing the blinding factor e.g; g/˛1ts amounts to solve the system, which is
possible when det.MID;ID0/ ¤ 0 (and thus ID ¤ ID0, as required). In particular, de-
cryption computes a linear combination (in the exponent) with coefficients from
the first row of M�1ID;ID0 which is . 1

ID�ID0 ;
�1

ID�ID0 /. In [23], this is called “2-equation
technique”. The scheme is extended to n-dimension, i.e., the revocation of n users
¹ID01; : : : ; ID

0
nº, by utilizing n local independent systems of two equations

MID;ID0
j

�
˛1tsj ; ˛2tsj

�>
D
�
log.e.K2; E2;j //; log.e.E1;j ; K0//

�> for j 2 Œ1; n�

that yield 2n ciphertext components .E1;j ; E2;j /, each one of which corresponds
to a share sj of s such that s D

Pn
1 sj . The decryption at j -th system returns

e.g; g/˛1tsi if ID ¤ ID0j . Combining these results finally gives e.g; g/˛1ts .
We aim at constant-size ciphertexts for non-zero PAIPE schemes of dimen-

sion n. When trying to use the 2-equation technique with n dimensions, the fol-
lowing difficulties arise. First, the “decryptability” condition EX � EY ¤ 0 cannot be
decomposed as simply as the condition of the revocation scheme, which is decom-
posable as the conjunction of ID ¤ ID0j for j 2 Œ1; n�. Second, the ciphertext size
was O.n/ and we want to decrease it to O.1/.

Towards solving these problems, we introduce a technique called “n-equation
technique”. First, we utilize n secret exponents Ę D .˛1; : : : ; ˛n/> and let ˛1
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function as the “master” exponent while ˛2; : : : ; ˛n serve as the “perturbed” fac-
tors. Intuitively, we will set up a system of n linear equations of the form

M EX; EY .˛1ts; : : : ; ˛nts/
>
D
�
log.e.Ki1 ; Ej1//; : : : ; log.e.Kin ; Ejn//

�> (1.1)

where ¹Kikº and ¹Ejkº are elements of G defined for a key for EX and a ciphertext
for EY respectively. At first, this generalized system seems to require linear-size ci-
phertexts .Ej1 ; : : : ; Ejn/. A trick to resolve this is to reuse ciphertext elements
throughout the system: we let Ejk D E2 D g

s for k 2 Œ1; n � 1�. This effectively
yields a constraint

M EX; EY D .Q
>

EX
R>/>;

whereQ EX is a .n�1/�nmatrix parameterized only by EX andR is a 1�nmatrix.
The remaining problem is then to choose M EX; EY in such a way that the system has
a solution if EX � EY ¤ 0 (the decryptability condition). To this end, we define

M EX; EY WD

0BBBBBBB@

�
x2
x1

1

�
x3
x1

1
:::

: : :

�
xn
x1

1

y1 y2 y3 � � � yn

1CCCCCCCA
; (1.2)

where it holds that det.M EX; EY / D .�1/
nC1 EX � EY =x1. By translating this conceptual

view back into algorithms, we obtain a basic non-zero PAIPE scheme. From this,
we propose two schemes for non-zero PAIPE: the first one is a special case of
negated spatial encryption in Section 5.1, while the second one is proven secure
under simple assumptions and given in Section 5.2.

1.4 Organization

In the forthcoming sections, the syntax and the applications of functional encryp-
tion are explained in Sections 2 and 3. We describe our zero PAIPE system in
Section 4. Our negated schemes are detailed in Section 5.

2 Definitions

2.1 Syntax and security definition for functional encryption

Let R W †k � †e ! ¹0; 1º be a boolean function, where †k and †e denote “key
attribute” and “ciphertext attribute” spaces. A functional encryption (FE) scheme
for R consists of the following algorithms.
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ı Setup.1�; des/! .pk;msk/: takes as input a security parameter 1� and a
scheme description des (which usually describes the dimension n), and outputs
a master public key pk and a master secret key msk.
ı KeyGen.x;msk/ ! skx: takes as input a key attribute x 2 †k and the master

key msk. It outputs a private decryption key skx.
ı Encrypt.y;M; pk/! C : takes as input a ciphertext attribute y 2 †e, a message

M 2M, and public key pk. It outputs a ciphertext C .
ı Decrypt.C;y; skx;x/ ! M: given a ciphertext C with its attribute y and the

decryption key skx with its attribute x, it outputs a message M or ?.

We require the standard correctness of decryption: that is, for all �, all key pairs
.pk;msk/ Setup.1�/, all x 2 †k, all skx  KeyGen.x;msk/, and all y 2 †e,
ı if R.x;y/ D 1, then Decrypt.Encrypt.y;M; pk/; skx/ D M.
ı ifR.x;y/D 0, Decrypt.Encrypt.y;M; pk/; skx/D?with probability nearly 1.

Terminology and variants. We refer to any encryption primitive A that can be
casted as a functional encryption by specifying its corresponding function

RA
W †A

k �†
A
e ! ¹0; 1º:

For a FE primitive A, we can define two variants:

ı Dual variant, denoted by Dual.A/, is defined by setting†Dual.A/
k WD †A

e as well
as †Dual.A/

e WD †A
k and RA.x;y/ D RDual.A/.y;x/. In a dual variant, the roles

of key and ciphertext attributes are swapped from those of its original primitive.
ı Negated variant, denoted by Neg.A/, is defined by using the same domains

as A and setting RNeg.A/.x;y/ D 1, RA.x;y/ D 0. The condition is thus the
opposite of the original primitive.

Security definition. Since simulation-based definitions of functional encryption
are hard to satisfy (as shown in [12]), we use a game-based security definition
which is derived from the literature on attribute-based encryption [19, 27].

A FE scheme for a function R W †k � †e ! ¹0; 1º is fully secure if no prob-
abilistic polynomial time (PPT) adversary A has non-negligible advantage in the
following game.

Setup. The challenger runs Setup(n) and hands the public key pk to A.

Query Phase 1. The challenger answers private key queries for x 2 †k by return-
ing skx  KeyGen.x;msk/.

Challenge. A submits equal-length messages M0;M1 and a target ciphertext at-
tribute vector y? 2 †e such that R.x;y?/ D 0 for all key attributes x that have
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been queried so far. The challenger then flips a bit ˇ $
�! ¹0; 1º and computes the

challenge ciphertext C ?  Encrypt.y;Mˇ ; pk/ which is given to A.

Query Phase 2. The adversary A is allowed to make further private key queries
x 2 †k under the same restriction as above, i.e., R.x;y?/ D 0.

Guess. The adversary A outputs a guess ˇ0 2 ¹0; 1º and wins if ˇ0 D ˇ. In the
game, A’s advantage is typically defined as AdvA.�/ D jPrŒˇ D ˇ0� � 1

2
j.

(Co-)selective security. We also consider the notion of selective security [5,14],
where A has to choose the challenge attribute y? before the setup phase, but can
adaptively choose the key queries for x1; : : : ;xq . One can consider its “dual” no-
tion where A must output the q key queries for attribute vectors x1; : : : ;xq before
the setup phase, but can adaptively choose the target challenge attribute y?. We
refer to this scenario as the co-selective security model, which is useful in some ap-
plications such as revocation. By definition, both notions are incomparable in gen-
eral and we do not know about their relation yet.

We shall show how one FE primitive can be obtained from another. The follow-
ing useful proposition from [11] describes a sufficient criterion for implication.

Proposition 2.1 (Embedding Lemma [11]). Consider encryption primitives A;B
that can be casted as functional encryption for functions RA; RB, respectively.
Suppose there exists efficient injective mappings

fk W †
A
k ! †B

k and fe W †
A
e ! †B

e

such that RB.fk.x/; fe.y// D 1 , RA.x;y/ D 1. Let …B be a construction
for primitive B. We then construct …A for primitive A from …B by applying map-
pings fk; fe to all key attributes and ciphertext attributes, respectively. More pre-
cisely, we use exactly the same setup algorithm. As for the key generation and
encryption procedures, they can be defined as

…A:KeyGen.x;msk/ WD …B:KeyGen.fk.x/;msk/

and
…A:Encrypt.y;M; pk/ WD …B:Encrypt.fe.y/;M; pk/;

respectively. Then, if …B is secure, so is …A. This holds for adaptive, selective,
co-selective security models. We denote this primitive implication by

B
fk;fe
�! A:

We immediately obtain the next corollary stating that the implication applies to
the negated (resp. dual) variant with the same (resp. swapped) mappings.

Corollary 2.2. B
fk;fe
�! A implies Dual.B/

fe;fk
�! Dual.A/ and Neg.B/

fk;fe
�! Neg.A/.
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2.2 Complexity assumptions in bilinear groups

We consider groups .G;GT / of prime order p with an efficiently computable map
e W G � G ! GT such that e.ga; hb/ D e.g; h/ab for any .g; h/ 2 G � G and
a; b 2 Z and e.g; h/ ¤ 1GT whenever g; h ¤ 1G. In these groups, we assume
the hardness of the (now classical) Decision Bilinear Diffie–Hellman and Decision
Linear [7] problems.

Definition 2.3. The Decision Bilinear Diffie–Hellman Problem (DBDH) in biline-
ar groups .G;GT / is, given .g; g�1 ; g�2 ; g�3 ; �/ 2 G4�GT with �1; �2; �3

$
�! Zp,

to decide whether � D e.g; g/�1�2�3 or � 2R GT .

Definition 2.4. The Decision Linear Problem (DLIN) in G consists in, given a
tuple of elements .g; f; �; g�1 ; f �2 ; �/ 2 G6 with �1; �2

$
�! Zp and f; g; � $

�! G,
deciding whether � D ��1C�2 or � 2R G.

2.3 Some notation

Throughout the paper, we will treat a vector as a column vector, unless specified
otherwise. We use the same notation as in [11]. More precisely, for any vector of
scalars Ę D .˛1; : : : ; ˛n/

> 2 Znp , the notation g Ę stands for the vector of group
elements .g˛1 ; : : : ; g˛n/> 2 Gn. For Ea; Ez 2 Znp , we denote their inner product as
hEa; Ezi D Ea>Ez D a1z1C� � �Canzn. Given EA D gEa and Ez, one can easily compute
EAEz D .gEa/Ez WD ghEa;Ezi, without knowing Ea. We also denote the element-vise prod-

uct as EaEz D .a1z1; : : : ; anzn/. We denote by In the identity matrix of size n.

3 Functional encryption instances and their implications

3.1 Public-attribute inner product encryption and its consequences

We underline the power of PAIPE by showing its implications in this section. Each
primitive is defined by describing the corresponding boolean function R. We then
show how to construct one primitive from another by explicitly describing attribute
mappings. In this way, correctness and security are consequences of the embed-
ding lemma. Basically, the approach follows exactly the same way as [21]. A new
contribution is that we also consider the negated variant of primitives, which will
be useful for non-zero polynomial evaluation and revocation schemes. The impli-
cation for negated variants follows from Corollary 2.2.

Inner product. A public-attribute inner product encryption (PAIPE) scheme
over Znp , for some prime p, is defined as follows. Both attribute domains are de-
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fined to be
†

PAIPEn
k D †PAIPEn

e D Znp:

We consider two distinct PAIPE modes here. The first one is the zero PAIPE where
RZIPEn. EX; EY / D 1 iff EX � EY D 0. The other one is its negated analogue, which we
call the non-zero PAIPE, where the relation RNIPEn is defined in such a way that
RNIPEn. EX; EY / D 1 iff EX � EY ¤ 0.

Polynomial evaluation. Functional encryption for the zero evaluation of poly-
nomials of degree � n is defined as follows. The ciphertext and key attribute do-
mains are defined as

†
ZPoly�n
e D Zp and †

ZPoly�n
k D ¹P 2 ZpŒx� j deg.P / � nº;

respectively. The relation is defined byRZPoly�n.P; x/D 1 iffP.x/D 0. The non-
zero evaluation mode can be defined as its negated primitive Neg.ZPoly�n/.

Given a PAIPE scheme over ZnC1p , one obtains a functional encryption sys-
tem for polynomial evaluation via the following embedding. For the key attribute,
we simply map the polynomial P ŒX� D �0 C �1X C � � � C �nX

n to the vector
EXp D .�0; : : : ; �n/. Regarding ciphertext attributes, each element w 2 Zp is then

mapped onto a vector EYw D .1; w;w2; : : : ; wn/. Correctness and security hold
since P.w/D 0whenever EXp � EYw D 0. The non-zero evaluation case can be anal-
ogously derived from the non-zero PAIPE using the same mappings, due to Corol-
lary 2.2.

We can also consider other variants such as a scheme that supports multivariate
polynomials and a dual variant, where the key attribute corresponds to a fixed point
and the ciphertext attribute corresponds to a polynomial, as in [21].

OR, AND, DNF, CNF formulae. We now consider a FE scheme for some bool-
ean formulae that evaluate disjunctions, conjunctions, and their extensions to dis-
junctive or conjunctive normal forms. As an example, a functional encryption
scheme for the boolean formula ROR�n W Z�nN � ZN ! ¹0; 1º can be defined by
ROR�n..I1; : : : ; Ik/; z/ 7! 1 (for k � n) iff .z D I1/ or � � � or .z D Ik/. This
can be obtained from a functional encryption for the zero evaluation of a univariate
polynomial of degree smaller than n by generating a private key for

fOR;I1;:::;Ik .z/ D .z � I1/ � � � .z � Ik/;

and letting senders encrypting to z.
Other fundamental cases can be considered similarly as in [21] and are shown

below. In [21] only non-negated policies (the first three cases below and their ex-
tensions) were considered. Schemes supporting negated policies (the latter three
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cases below and their extensions) are introduced in this paper. The negated case
can be implemented by PAIPE for non-zero evaluation. One can combine these
cases to obtain DNF, CNF formulae. Below, r $

�! Zp is chosen by KeyGen.2

Policy Implementation
.z D I1/ or .z D I2/ fOR;I1;I2.z/ D .z � I1/.z � I2/ D 0

.z1 D I1/ or .z2 D I2/ fOR;I1;I2.z1; z2/ D .z1 � I1/.z2 � I2/ D 0

.z1 D I1/ and .z2 D I2/ fAND;I1;I2.z1; z2/ D .z1 � I1/r C .z2 � I2/ D 0

.z1 ¤ I1/ or .z2 ¤ I2/ fNOR;I1;I2.z1; z2/ D .z1 � I1/r C .z2 � I2/ ¤ 0

.z ¤ I1/ and .z ¤ I2/ fNAND;I1;I2.z/ D .z � I1/.z � I2/ ¤ 0

.z1 ¤ I1/ and .z2 ¤ I2/ fNAND;I1;I2.z1; z2/ D .z1 � I1/.z2 � I2/ ¤ 0

ID-based broadcast encryption and revocation. Let I be an identity space.
An identity-based broadcast encryption scheme (IBBE) for maximum n receivers
per ciphertext is a functional encryption for RIBBE�n W I � 2I ! ¹0; 1º defined
by RIBBE�n W .ID; S/ 7! 1 iff ID 2 S . An IBBE system can be constructed by
a functional encryption for RDual.OR�n/. To encrypt a message for the receiver set
S D ¹ID1; : : : ; IDkº, the sender encrypts using the access policy

.z D ID1/ or � � � or .z D IDk/:

Likewise, identity-based revocation (IBR) [23] for at most n revocations per
ciphertext can be casted as a negated IBBE, i.e., RIBR�n W .ID; R/ 7! 1 iff ID 62 R.

3.2 Spatial encryption

We now recall the concept of spatial encryption [11]. For an n � d matrix M of
which elements are in Zp and a vector Ec 2 Znp , we define its corresponding affine
space as Aff.M; Ec/ D ¹M Ew C Ec j Ew 2 Zdp º. Let Vn � 2

.Znp/ be the collection of
all affine spaces inside Znp . That is, Vn is defined as

Vn D ¹Aff.M; Ec/ jM 2Mn�d ; c 2 Znp; d � nº;

where Mn�d is the set of all n � d matrices in Zp.
A spatial encryption system in Znp is a functional encryption scheme for a rela-

tion RSpatial W Vn � Znp ! ¹0; 1º defined by RSpatial W .V; Ey/ 7! 1 iff Ey 2 V .
The notion of spatial encryption was motivated by Boneh and Hamburg [11].

It has many applications as it notably implies broadcast HIBE and multi-authority
schemes. Nevertheless, its connection to inner-product encryption has not been

2 As noted in [21], the AND (and NOR) case will not work in the adaptive security model since
the information on r leaks.



126 N. Attrapadung and B. Libert

investigated so far. In Section 4.1, we prove that spatial encryption implies inner
product encryption by providing a simple attribute mapping.

As a result of independent interest, we also consider the negated spatial encryp-
tion primitive (namely, FE that is defined by RNeg.Spatial/ W .V; Ey/ 7! 1 iff Ey 62 V )
and provide a construction in Section 5.1. From this scheme and Corollary 2.2 to-
gether with our implication result of zero PAIPE from spatial encryption, we then
obtain a non-zero PAIPE construction.

4 Functional encryption for zero PAIPE

4.1 Warm-up: Selectively secure zero PAIPE from spatial encryption

We first observe that the spatial encryption primitive implies public-attribute inner
product encryption with zero evaluation. Indeed, for the key attribute, we map a
vector EX D .x1; : : : ; xn/> 2 Znp onto an .n � 1/-dimension affine space

V EX D Aff.M EX ;
E0n/ D ¹M EX Ew C

E0n j Ew 2 Zn�1p º

with the matrix M EX 2 Zn�.n�1/p

M EX D

 
�
x2
x1
;�x3

x1
; : : : ;�xn

x1

In�1

!
: (4.1)

For any vector EY D .y1; : : : ; yn/
> 2 Znp , we then have EX � EY D 0 , EY 2 V EX

since

EX � EY D 0 , y1 D y2 �

�
�
x2

x1

�
C � � � C yn �

�
�
xn

x1

�
, EY DM EX � .y2; : : : ; yn/

>
, EY 2 V EX :

By the embedding lemma, we can therefore conclude its implication.
In [11], Boneh and Hamburg described a selectively secure construction of spa-

tial encryption that achieves constant-size ciphertexts (by generalizing the Boneh–
Boyen–Goh HIBE [6]). From their scheme, we thus immediately obtain a selec-
tively secure zero PAIPE scheme with constant-size ciphertext as shown below.

We first give some notations here. For a vector Ea D .a1; : : : ; an/> 2 Znp , we
write gEa to denote the vector .ga1 ; : : : ; gan/>. Given gEa; Ez, one can easily com-
pute .gEa/Ez WD ghEa;Ezi, where hEa; Ezi denotes the inner product Ea � Ez D Ea>Ez.

Construction 2 (SELECTIVELY SECURE ZERO PAIPE).
I Setup.1�; n/: chooses bilinear groups .G;GT / of prime order p > 2� with a
generator g $

�! G. It chooses ˛; ˛0; : : : ; ˛n
$
�! Zp at random and defines the vec-
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tor Ę D .˛1; : : : ; ˛n/. The public key is defined to be

pk D
�
g; g˛0 ; EH D g Ę ; Z D e.g; g/˛

�
and the master secret key is msk D g˛.
I KeyGen. EX;msk; pk/: chooses t $

�! Zp and parses EX as .x1; : : : ; xn/ and
returns ? if x1 D 0. It outputs the private key as sk EX D .D0;D1; K2; : : : ; Kn/,
where

D0 D g
t ; D1 D g

˛C˛0t ; ¹Ki D .g
�˛1

xi
x1 g˛i /tºiD2;:::;n:

I Encrypt. EY ; pk/: the encryption algorithm first picks s $
�! Zp. It parses EY as

.y1; : : : ; yn/ and computes the ciphertext as

E0 D M � e.g; g/˛s; E1 D .g
˛0gh Ę;

EY i/s; E2 D g
s:

I Decrypt.C; EY ; sk EX ;
EX; pk/: to decrypt, the algorithm computes the blinding

factor e.g; g/˛�s as

e.D1K
y2
2 � � �K

yn
n ; E2/

e.E1;D0/
D e.g; g/˛�s:

The selective security of this scheme is a consequence of a result given in [11].

Theorem 4.1. Construction 2 is selectively secure under the n-Decisional Bilinear
Diffie–Hellman Exponent assumption (see [10, 11] for a description of the latter).

4.2 Adaptively secure zero PAIPE under simple assumptions

We extend the above selectively secure zero PAIPE to acquire adaptive security
by applying the Waters’ dual system method [32]. However, we have to use our
“n-equation technique” as opposed to 2-equation technique used for IBE in [32].
The reason is that we have to deal with the difficulties arising from the richer
structure of PAIPE and the aggregation of ciphertexts into a constant number of
elements, analogously to what we described in Section 1.

The scheme basically goes as follows. A ciphertext contains a random tag tagc
in the element E1 while each private key contains n � 1 tags (tagki for each Ki
element) that are aggregated into tagk D

Pn
iD2 tagkiyi upon decryption of a ci-

phertext intended for EY . The receiver is able to decrypt whenever tagk ¤ tagc
(and EX � EY D 0), which occurs with overwhelming probability.

Construction 3 (ADAPTIVELY SECURE ZERO PAIPE).
I Setup.1�; n/: chooses bilinear groups .G;GT / of prime order p > 2�. It then
picks generators g; v; v1; v2

$
�! G and chooses ˛; ˛0; ˛1; : : : ; ˛n; a1; a2; b

$
�! Zp.
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Let Ę D .˛1; : : : ; ˛n/ and EH D .h1; : : : ; hn/ D g Ę . The public key consists of

pk D

0BB@
g;w D g˛0 ; Z D e.g; g/˛�a1�b; EH D g Ę ; A1 D g

a1 ;

A2 D g
a2 ; B D gb; B1 D g

b�a1 ; B2 D g
b�a2 ;

�1 D v � v
a1
1 ; �2 D v � v

a2
2 ; T1 D �

b
1 ; T2 D �

b
2

1CCA :
The master key is defined to be msk D .g˛; g˛a1 ; v; v1; v2/.

I Keygen. EX;msk; pk/: parses EX as .x1; : : : ; xn/ and returns ? if x1 D 0. Oth-
erwise, it randomly picks r1; r2

$
�! Zp, z1; z2

$
�! Zp, tagk2; : : : ; tagkn

$
�! Zp, sets

r D r1Cr2 and generates sk EX D .D1; : : : ;D7; K2; : : : ; Kn; tagk2; : : : ; tagkn/ by
computing

skcore D
®
Ki D

�
g
�˛1

xi
x1 � g˛i � g˛0�tagki

�r1¯
iD2;:::;n

;

skadapt D

 
D1 D g

˛a1 � vr ; D2 D g
�˛
� vr1 � g

z1 ; D3 D B
�z1 ;

D4 D v
r
2 � g

z2 ; D5 D B
�z2 ; D6 D B

r2 ; D7 D g
r1

!
:

I Encrypt. EY ;M; pk/: to encrypt M 2 GT under EY D .y1; : : : ; yn/ 2 .Zp/n, pick
s1; s2; t; tagc $

�! Zp and compute C D .C1; : : : ; C7; E0; E1; E2; tagc/, where

Ccore D
�
E0 D M �Zs2 ; E1 D .g

˛0�tagc
� gh Ę;

EY i/t ; E2 D g
t
�
;

Cadapt D

 
C1 D B

s1Cs2 ; C2 D B
s1
1 ; C3 D A

s1
1 ; C4 D B

s2
2 ;

C5 D A
s2
2 ; C6 D �

s1
1 � �

s2
2 ; C7 D T

s1
1 � T

s2
2 � w

�t

!
:

I Decrypt.C; EY ; sk EX ;
EX; pk/: computes tagk D tagk2y2 C � � � C tagknyn and

then

W1 D

5Y
jD1

e.Cj ;Dj / �

 
7Y

jD6

e.Cj ;Dj /

!�1
D e.g; g/˛�a1�b�s2 � e.g;w/r1t ;

as well as

W2 D

 
e.K

y2
2 � � �K

yn
n ; E2/

e.E1;D7/

! 1
tagk�tagc

D e.g;w/r1t :

It finally recovers the plaintext as

M D E0=Z
s2 D E0=e.g; g/

˛�a1�b�s2  E0 �W2 �W
�1
1 :
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The correctness of W2 at decryption is shown in Appendix A.1, while the rest
follows from [32]. As we can see, ciphertexts have the same size as in the IBE
scheme of [32], no matter how large the vector EY is. Also, decryption entails a
constant number of pairing evaluations (whereas ciphertexts cost O.n/ pairings to
decrypt in [21]).

Theorem 4.2. Construction 3 is adaptively secure under the DLIN and DBDH
assumptions.

Proof. Similarly to [32], the proof uses the dual system methodology, which in-
volves ciphertexts and private keys that can be normal or semi-functional.

ı Semi-functional ciphertexts are generated as in [32] by first computing a nor-
mal ciphertext .C 01; : : : ; C

0
7; E

0
0; E

0
1; E

0
2; tagc0/ and then choosing � $

�! Zp
before replacing .C 04; C

0
5; C

0
6; C

0
7/, respectively, by

C4 D C
0
4 � g

ba2�; C5 D C
0
5 � g

a2�;

C6 D C
0
6 � v

a2�
2 ; C7 D C

0
7 � v

a2b�
2 :

(4.2)

ı From a normal key .D01; : : : ;D
0
7; K

0
2; : : : ; K

0
n; tagk02; : : : ; tagk0n/, semi-func-

tional keys are obtained by choosing  $
�! Zp and replacing .D01;D

0
2;D

0
4/

by

D1 D D
0
1 � g

�a1a2 ; D2 D D
0
2 � g

a2 ; D4 D D
0
4 � g

a1 : (4.3)

The proof proceeds with a game sequence starting from GameReal, which is the
actual attack game. The following games are defined below.

Game0 is the real attack game, but the challenge ciphertext is semi-functional.
Gamek (for 1 � k � q) is identical to Game0 except that the first i private key

generation queries are answered by returning a semi-functional key.
GameqC1 is as Gameq , but the challenge ciphertext is a semi-functional encryp-

tion of a random element of GT instead of the actual plaintext.

We prove the indistinguishability between two consecutive games under some as-
sumptions. The sequence ends in GameqC1, where the challenge ciphertext is in-
dependent of the challenger’s bit ˇ, hence any adversary has no advantage.

The indistinguishability of GameReal and Game0 as well as that of Gameq and
GameqC1 can be proved exactly in the same way as in [32] and the details are
given in Appendix C for completeness.

Lemma 4.3. If DLIN is hard, Game0 is indistinguishable from GameReal.
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Lemma 4.4. For any 1 � k � q, if an adversary A can distinguish Gamek from
Gamek�1, we can build a distinguisher for the DLIN problem.

This lemma is the most non-trivial part in the theorem. The main issue is that,
in order to enable adaptive security, the reduction must be done in such a way that
the simulator B can create semi-functional keys for any vector EX , including those
for which EX � EY ? D 0. However, the crucial point is that we must prevent B from
directly deciding whether the kth queried private key is normal or semi-functional
by generating a semi-functional ciphertext for itself. Indeed, if this were possible,
the reduction from A would not be established.

To resolve this, we use a secret exponent vector E� 2 Znp and embed the DLIN
instance in such a way that B can only answer the kth private key query for EX using
a vector of tags .tagk2; : : : ; tagkn/ and the challenge ciphertext for EY ? using a tag
tagc? that satisfies the relation

.tagk2; : : : ; tagkn; tagc?/> D �M EX; EY ?
E�;

whereM EX; EY is the n�nmatrix defined in equation (1.2). We thereby conceptually
use the n-equation technique here. A particular consequence is that, if we have
EX � EY ? D 0, then it holds that

tagk D
nX
iD2

tagkiy
?
i D �1

nX
iD2

xi

x1
y?i �

nX
iD2

�iy
?
i D �1 � .�y

?
1 /�

nX
iD2

�iy
?
i D tagc?;

which is the exact condition under which decryption is hampered. In this situation,
B cannot distinguish the kth private key by itself, as desired. We are now ready to
describe the proof of Lemma 4.4.

Proof of Lemma 4.4. The distinguisher B receives .g; f; �; g�1 ; f �2 ; �/ and de-
cides if � D ��1C�2 .
Setup. Algorithm B picks ˛; a1; a2; ıv1 ; ıv2

$
�! Zp and sets

g D g; Z D e.f; g/˛a1 ;

A1 D g
a1 ; A2 D g

a2 ; B D gb D f; v1 D �
a2 � gıv1

B1 D g
ba1 D f a1 ; B2 D g

ba2 D f a2 ; v D ��a1a2 ; v2 D �
a1 � gıv2 ;

�1 D vv
a1
1 D g

ıv1a1 ; �2 D vv
a2
2 D g

ıv2a2 ; �b1 D f
ıv1a1 ; �b2 D f

ıv2a2 :

Next, algorithm B chooses

ıw
$
�! Zp; E� D .�1; : : : ; �n/

$
�! Znp; Eı D .ı1; : : : ; ın/

$
�! Znp;

then defines w D g˛0 D f �gıw , and hi D g˛i D f �i �gıi for i D 1; : : : ; n. Note
that, as in the proof of Lemma 2 in [32], B knows msk D .g˛; g˛a1 ; v; v1; v2/.
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Key Queries. When A makes the j th private key query, B does as follows:

[Case j > k] It generates a normal key, using the master secret key msk.
[Case j < k] It creates a semi-functional key, which it can do using ga1a2 .
[Case j D k] It defines tagk2; : : : ; tagkn as tagki D �1 �

xi
x1
� �i for i D 2; : : : ; n,

which implies that

.h
�xi=x1
1 � hi � w

tagki / D g�ı1.xi=x1/CıiCıw tagki for i D 2; : : : ; n.

Using these tags, it generates a normal private key .D01; : : : ;D
0
7; K

0
2; : : : ; K

0
n/ us-

ing random exponents r 01; r
0
2; z
0
1; z
0
2

$
�! Zp. Then, it sets

D1 D D
0
1 � �
�a1a2 ; D2 D D

0
2 � �

a2 � .g�1/ıv1 ; D3 D D
0
3 � .f

�2/ıv1 ;

D4 D D
0
4 � �

a1 � .g�1/ıv2 ; D5 D D
0
5 � .f

�2/ıv2 ; D6 D D
0
6 � f

�2 ;

as well as D7 D D07 � .g
�1/ and Ki D K 0i � .g

�1/�ı1.xi=x1/CıiCıw tagki for indices
i D 2; : : : ; n.

If � D ��1C�2 , then sk EX D .D1; : : : ;D7; K2; : : : ; Kn; tagk2; : : : ; tagkn/ is eas-
ily seen to form a normal key where r1 D r 01C�1, r2 D r 02C�2, z1 D z01� ıv1�2,
z2 D z

0
2�ıv2�2 are the underlying random exponents. If � 2R G, it can be written

� D ��1C�2 � g

for some  2R Zp, so that sk EX is distributed as a semi-functional key. We note
that tagk2; : : : ; tagkn are independent and uniformly distributed since �1; : : : ; �n
(which are the solutions of a system of n � 1 equations with n unknowns) are
uniformly random and perfectly hidden from A’s view.

Challenge. Once the first phase is over, A outputs M0;M1 2 GT along with a
target vector EY ? D .y?1 ; : : : ; y

?
n/. Then, B flips a coin ˇ $

�! ¹0; 1º and computes
the tag

tagc? D �h EY ?; E�i

for which B will be able to prepare the semi-functional ciphertext. To this end, B

first computes a normal encryption

.C 01; : : : ; C
0
7; E

0
0; E

0
1; E

0
2; tagc?/

of Mˇ using exponents s01; s
0
2; t
0. It then chooses � $

�! Zp and computes

C4 D C
0
4 � f

a2��; C5 D C
0
5 � g

a2��; C7 D C
0
7 � �

�ıw �a1�a2�� � f ıv2 �a2��;

C6 D C
0
6 � v

a2��
2 ; E2 D E

0
2 � �

a1�a2��; E1 D E
0
1 � .�

ıw �tagc?Ch EY ?;Eıi/a1�a2��:
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We claim that .C 01;C
0
2;C

0
3;C4;C5;C6;C7;E0;E1;E2; tagc?/ is a semi-functional

ciphertext with underlying exponents �, s1 D s01, s2 D s02, t D t 0Clogg.�/a1a2�.
To prove this, we observe that

C7 D T
s1
1 � T

s2
2 � w

�t
� v
a2b�
2

D T
s1
1 � T

s2
2 � w

�t 0�logg.�/a1a2� � .�a1 � gıv2 /a2b�

D T
s1
1 � T

s2
2 � w

�t 0
� .f � gıw /� logg.�/a1a2� � .�a1 � gıv2 /a2b�

D C 07 � �
�ıwa1a2� � f ıv2a2�;

where the unknown term in va2b�2 is canceled out by w�t . Also,

E1 D E
0
1 �
�
h
y?1
1 � � � h

y?n
n � w

tagc?�logg.�/a1a2�

D E 01 �
�
.f �1gı1/y

?
1 � � � .f �ngın/y

?
n � .fgıw /�h

EY ?;E�i
�logg.�/a1a2�

D E 01 � .�
h EY ?;EıiCıw �tagc?/a1a2�;

where the unknown f logg.�/ vanishes due to our definition of tagc?. It then re-
mains to show that tagc?; tagk2; : : : ; tagkn are still n-wise independent. But this
holds since their relations form a system

M � E� WD

0BBBBBBB@

�
x2
x1

1

�
x3
x1

1
:::

: : :

�
xn
x1

1

y?1 y?2 y?3 � � � y?n

1CCCCCCCA

0BBBBBBB@

�1

�2
:::

�n�1

�n

1CCCCCCCA
D �

0BBBBBBB@

tagk2
tagk3
:::

tagkn
tagc?

1CCCCCCCA
;

which has a solution in E� whenever det.M/ D .�1/nC1 EX � EY ?=x1 ¤ 0.
Eventually, A outputs a bit ˇ0 and B outputs 0 if ˇ D ˇ0. As in [32], we see

that A is playing Gamek�1 if � D ��1C�2 and Gamek otherwise.

Lemma 4.5. If DBDH is hard, Gameq and GameqC1 are indistinguishable.

4.3 Comparisons

In this section, we give a detailed comparison among the various IPE and PAIPE
that can be found in the literature. This is shown in Table 1. Their efficiency is mea-
sured in terms of ciphertext and key sizes as well as the number of exponentiations
and pairing evaluations to decrypt.
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IPE/PAIPE Ciphertext Private key Decryption Attribute Security
schemes overhead size cost hiding?

KSW [21], OT [25] O.n/� jGj O.n/� jGj O.n/ p. Yes Selective
LOSTW [22] O.n/� jGj O.n/� jGj O.n/ p. Yes Adaptive

This work O.1/� jGj O.n/� jGj O.1/ p. CO.n/ exp. No Adaptive

n: dimension, p.: pairing applications, exp.: group exponentiations.

Table 1. Performances of IPE and PAIPE schemes.

Table 2 also summarizes the features of all identity-based broadcast encryption
schemes that have been described in prime order groups. Comparisons are given
in terms of performances and security guarantees. As for the latter criterion, three
dimensions are considered depending on the strength of underlying assumptions
(i.e., simple assumptions vs. q-type assumptions), on whether security holds in the
standard model or the random oracle model, as well as in the adaptive or selective
sense.

IBBE Ciphertext Private key Decryption Security RO? Assumptions
schemes overhead size cost

AKN [2] O.1/� jGj O.n2/� jGj O.1/ p. Selective No q-type
CO.n/ exp.

Del.� [16] O.1/� jGj O.1/� jGj O.1/ p. Selective Yes q-type
CO.n/ exp.

BH [11] O.1/� jGj O.n/� jGj O.1/ p. Selective No q-type
CO.n/ exp.

GW [18] O.1/� jGj O.1/� jGj O.1/ p. Adaptive Yes q-type
CO.1/� jGT j CO.1/� jZp j CO.n/ exp.

This work O.1/� jGj O.n/� jGj O.1/ p. Adaptive No Simple
CO.n/ exp.

n: number of users, p.: pairing applications, exp.: group exponentiations.
� The scheme of [28] is basically identical to [16], but its proof is in the generic

group model.

Table 2. Performances of IBBE systems.

Our system is asymptotically on par with the Boneh–Hamburg realization [11]
in all efficiency metrics, with the advantage of providing full security under simple
assumptions (which appears to be a unique property in existing IBBE schemes).

In Appendix B, we describe a less efficient but conceptually simpler (notably
in its similarity with Construction 2) variant of our PAIPE scheme in groups of
composite order. It is derived from an adaptively secure spatial encryption system
obtained by applying the Lewko–Waters techniques [24] to the construction of
Boneh and Hamburg.
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5 Functional encryption for non-zero PAIPE

5.1 Negated spatial encryption

We begin this section by providing a co-selectively-secure construction of nega-
ted spatial encryption, which is motivated by its implication of non-zero PAIPE.
At a high-level, our scheme can be viewed as a “negative” analogue of the Boneh–
Hamburg spatial encryption [11], in very much the same way as the Lewko–
Sahai–Waters revocation scheme [23] is a negative analogue of the Boneh–Boyen
IBE [5]. The intuition follows exactly from Section 1 above, where we have to
use “n-equation technique”. In spatial encryption, we have to deal with, in gen-
eral, how we can set up a system of n equations similarly to equation (1.1). To this
end, we confine the vector subspaces that we can use as follows. Our construction
is a functional encryption for the relation

RNeg.Spatial/
W Wn � Znp ! ¹0; 1º;

for a collection Wn � Vn of vector subspaces in Znp defined as

Wn D ¹Aff.M; E0/ 2 Vn j rank.M.�1// D n � 1º;

where M.�1/ denotes the matrix obtained by deleting the first row M1 2 Z1�dp

of M .

Construction 4 (CO-SELECTIVELY SECURE NEGATED SPATIAL ENCRYPTION).
I Setup.1�; n/: chooses a bilinear group G of prime order p > 2� with a ran-
dom generator g $

�! G. It randomly chooses exponents ˛; ˛1; : : : ; ˛n
$
�! Zp. Let

Ę D .˛1; : : : ; ˛n/. The public key consists of

pk D
�
g; g Ę ; g˛1 Ę ; e.g; g/˛

�
:

The corresponding master secret key is msk D .˛; Ę/.
I KeyGen.V;msk; pk/: suppose V D Aff.M; E0/, from a matrix M 2 .Zp/n�d .
The algorithm picks t $

�! Zp and outputs skV D .D0;D1; EK/ 2 GdC2, where

D0 D g
t ; D1 D g

˛Ct˛21 ; EK D gtM
> Ę :

I Encrypt. Ey;M; pk/: picks s $
�! Zp and computes .C0; C1; C2; C3/ as

C0 D M � e.g; g/˛s; C1 D g
s˛1h Ey; Ęi; C2 D g

s; C3 D g
˛1s:

I Decrypt.C; Ey; skV ; V; pk/: the algorithm first obtains M from V . We also re-
call the notation ofM1, which is the vector of the first row ofM . It first solves the
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system of equations in Ew from M.�1/ Ew D .y2; : : : ; yn/
>, which it can do since

V 2 Wn. It computes the message blinding factor as

e.g; g/˛s D e.D1; C2/ �

 
e.C1;D0/

e. EK Ew ; C3/

! 1
M1 Ew�y1

D e.g˛Ct˛
2
1 ; gs/ �

 
e.gs˛1h Ey; Ęi; gt /

gt Ew
>M> Ę ; g˛1s/

! 1
M1 Ew�y1

:

COMPUTABILITY. We claim that the decryption can be computed if y 62 V . In-
deed, we prove that if y 62 V , then M1 Ew � y1 ¤ 0 (and the above equation is
well-defined). To prove the contrapositive, suppose that M1 Ew � y1 D 0. Then,
we must have Ey 2 V since

M Ew D
h
M1
M.�1/

i
Ew D

h
M1 Ew

M.�1/ Ew

i
D Ey:

CORRECTNESS. We verify that decryption is correct as follows. First, we note that
due to our definition of Ew, we have hM Ew � Ey; Ęi D .M1 Ew � y1/˛1: Therefore,
the correctness follows from the fact that 

e.gs˛1h Ey; Ęi; gt /

e.gt Ew
>M> Ę ; g˛1s/

! 1
M1 Ew�y1

D

 
1

e.g; g/ts˛1hM Ew�Ey; Ęi

! 1
M1 Ew�y1

D e.g; g/�st˛
2
1 :

SECURITY. The co-selective security of the scheme relies on a q-type assumption
defined in [23].

Definition 5.1 (cf. [23]). The q-Decision Multi-Exponent Bilinear Diffie–Hellman
Problem (or q-MEBDH) in .G;GT / is, given Z 2 GT and a set of elements

P D

8̂<̂
:

g; gs; e.g; g/˛

81�i;j�q gai ; gais; gaiaj ; g˛=a
2
i

81�i;j;k�q;i¤j gaiaj s; g˛aj =a
2
i ; g˛aiaj =a

2
k ; g˛a

2
i
=a2
j

9>=>; ;
where g $

�! G and s; ˛; a1; : : : ; aq
$
�! Zp, to decide whether Z D e.g; g/˛s or

Z 2R GT .

Theorem 5.2. Construction 4 above is co-selectively secure under the q-Decisio-
nal Multi-Exponent Bilinear Diffie–Hellman assumption, where q is the number of
key queries. (The proof is given in Appendix D).



136 N. Attrapadung and B. Libert

IMPLICATIONS. For a vector EX 2 Znp , the embedding V EX D Aff.M EX ;
E0n/ defined

in equation (4.1) is easily seen to be in the limited domain Wn since .M EX /.�1/ is
an identity matrix of size n� 1 and hence rank..M EX /.�1// D n� 1. From Corol-
lary 2.2, the above scheme thus implies non-zero PAIPE.

5.2 Non-zero PAIPE under simple assumptions

We proved the co-selective security of our negated spatial encryption scheme un-
der a non-standard q-type assumption introduced in [23]. In this section, we show
that the dual system technique [32] makes it possible to rest on simple assumptions
such as DBDH and DLIN.

The scheme is very similar to the zero PAIPE scheme of Section 4.2 and we
only state the differences. Again, the intuition follows exactly from Section 1 and
the security proof uses similar techniques as in [23]. In Appendix E, we describe
an intuitively simpler variant of the scheme in composite order groups.

Construction 5 (CO-SELECTIVELY SECURE NON-ZERO PAIPE).
I Setup.1�; n/: outputs pk exactly as in Construction 3 except that we define
w D g˛1.D h1/ in this scheme, instead of g˛0 .
I Keygen. EX;msk; pk/: outputs sk EX D .skadapt; skcore/, where skadapt is the same
as in Construction 3 (with w D g˛1) and

skcore D ¹Ki D
�
g
�˛1

xi
x1 � g˛i

�r1
ºiD2;:::;n:

Namely, it parses EX as .x1; : : : ; xn/ and returns? if x1 D 0. Otherwise, it chooses
r1; r2; z1; z2

$
�! Zp. It sets r D r1 C r2 and outputs

sk EX D .D1; : : : ;D7; K2; : : : ; Kn/;

where

D1 D g
˛a1 � vr ; D2 D g

�˛
� vr1 � g

z1 ; D3 D B
�z1 ;

D4 D v
r
2 � g

z2 ; D5 D B
�z2 ; D6 D B

r2 ; D7 D g
r1 ;

and
¹Ki D

�
w�xi=x1 � hi

�r1
ºiD2;:::;n:

I Encrypt. EY ;M; pk/: outputsC D .Cadapt; Ccore/, whereCadapt is as in Construc-
tion 3 (with w D g˛1) and

Ccore D
�
E0 D M �Zs2 ; E1 D .g

h Ę; EY i/t ; E2 D g
t
�
:

In more details, to encrypt M 2 GT under the vector EY D .y1; : : : ; yn/ 2 .Zp/n,
pick s1; s2; t

$
�! Zp and compute the ciphertext C D .C1; : : : ; C7; E0; E1; E2/,
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where

E0 D M �Zs2 ; C1 D B
s1Cs2 ; C2 D B

s1
1 ; C3 D A

s1
1 ;

C4 D B
s2
2 ; C5 D A

s2
2 ; C6 D �

s1
1 � �

s2
2 ; C7 D T

s1
1 � T

s2
2 � w

�t
(5.1)

and

E1 D
�
wy1 � h

y2
2 � � � h

yn
n

�t
D
�
wy1 � g˛2y2C���C˛nyn

�t
; E2 D g

t : (5.2)

I Decrypt.C; EY ; sk EX ;
EX; pk/: computes W1 as in Construction 3 and W2 as

W2 D

 
e.K

y2
2 � � �K

yn
n ; E2/

e.E1;D7/

!� x1
EX � EY

D e.g;w/r1t :

The correctness of the scheme is showed in Appendix A.2. Its security proof re-
lies on the DLIN and DBDH assumptions.

Theorem 5.3. Construction 5 is co-selectively secure under the DLIN and DBDH
assumptions.

Proof. The proof uses exactly the same sequence of games as in Theorem 4.2.
Semi-functional ciphertexts and keys are also defined identically to those of the
previous scheme, i.e., as those stated in equation (4.2, 4.3), except that no tag com-
ponents are used.

The proofs of indistinguishability between GameReal and Game0 as well as that
of Gameq and GameqC1 proceed almost as those of Lemma 4.3 and 4.4.

Lemma 5.4. Game0 is indistinguishable from GameReal under the DLIN assump-
tion.

Proof. The proof is identical to the one of Lemma 4.3 since the switch from nor-
mal to semi-functional ciphertexts only affects elements .C4; C5; C6; C7/ and, in
their normal or semi-functional form, these ciphertexts components are identical
to those of the PAIPE scheme of Section 4.

Lemma 5.5. For any 1 � k � q, if an adversary A can distinguish Gamek from
Gamek�1, we can build a distinguisher for the DLIN problem.

Proof. The distinguisher B takes as input a DLIN instance .g; f; �; g�1 ; f �2 ; �/
and has to decide whether � D ��1C�2 or not.

Init. The adversary A first outputs the vectors to be queried EX1; : : : ; EXq . We parse
the kth vector EXk as .x1; : : : ; xn/.
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Setup. The algorithm B first randomly chooses ˛; a1; a2; ıv1 ; ıv2
$
�! Zp and sets

g D g,

A1 D g
a1 ; A2 D g

a2 ; B D gb D f; v1 D �
a2 � gıv1 ;

B1 D g
ba1 D f a1 ; B2 D g

ba2 D f a2 ; v D ��a1a2 ; v2 D �
a1 � gıv2 ;

as well as e.g; g/˛a1b D e.f; g/˛a1 , which allows defining

�1 D vv
a1
1 D g

ıv1a1 ; �2 D vv
a2
2 D g

ıv2a2 ; �b1 D f
ıv1a1 ; �b2 D f

ıv2a2 :

Next, B chooses ıw ; ı1; : : : ; ın
$
�! Zp, and defines w D f � gıw ,

hi D w
xi=x1 � gıi for i D 2; : : : ; n:

As in the proof of Lemma 4.4 and the one of Lemma 2 in [32], the simulator B

knows the master secret key msk D .g˛; g˛a1 ; v; v1; v2/ of the system.

Key Queries. When A makes the j th private key query, B does as follows.

[Case j > k] It generates a normal key, using the master secret key msk.
[Case j < k] It creates a semi-functional key using ga1a2 .
[Case j D k] In this case, it generates a key by computing

D1 D D
0
1 � �
�a1a2 ; D2 D D

0
2 � �

a2 � .g�1/ıv1 ; D3 D D
0
3 � .f

�2/ıv1 ;

D4 D D
0
4 � �

a1 � .g�1/ıv2 ; D5 D D
0
5 � .f

�2/ıv2 ; D6 D D
0
6 � f

�2 ;

and D7 D D07 � .g
�1/, as well as elements

Ki D K
0
i � .g

�1/ıi for i D 2; : : : ; n;

which are computable since wxi=x1 � hi D gıi and

Ki D K
0
i � .g

�1/ı1 D .wxi=x1hi /
r 01C�1 ;

with r 01 D logg.D
0
7/. As in the proof of Lemma 4.4, if � D ��1C�2 , we observe

that sk EX D .D1; : : : ;D7; K2; : : : ; Kn/ forms a normal key where r1 D r 01 C �1,
r2 D r 02 C �2, z1 D z01 � ıv1�2, z2 D z02 � ıv2�2 are the implicitly defined
underlying exponents. On the other hand, if � is random, it can be expressed as
� D ��1C�2 �g for some  2R Zp, so that sk EX is distributed as a semi-functional
key.

Challenge. At the challenge phase, A outputs messages M0;M1 2 GT along with
a vector EY ? D .y?1 ; : : : ; y

?
n/ such that EXi � EY ? D 0 for each i 2 ¹1; : : : ; qº. At
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this stage, the algorithm B flips a coin ˇ $
�! ¹0; 1º and generates a normal encryp-

tion .C 01; : : : ; C
0
7; E

0
0; E

0
1; E

0
2/ of Mˇ . It then chooses � $

�! Zp and computes a per-
turbed ciphertext as

C4 D C
0
4 � f

a2��; C5 D C
0
5 � g

a2��; C6 D C
0
6 � v

a2��
2 ;

C7 D C
0
7 � �

�ıw �a1�a2�� � f ıv2 �a2�� D T
s01
1 � T

s02
2 � w

�t 0
� ��ıw �a1�a2�� � f ıv2 �a2��;

E1 D E
0
1 � .�

Pn
iD2 y

?
i
ıi /a1�a2��; E2 D E

0
2 � �

a1�a2��:

As in the proof of Lemma 4.4, the semi-functional component C7 is created by im-
plicitly setting t D logg.E2/ as t D t 0C logg.�/a1a2�. The termE1 is computed
as above since

E1 D
�
wy

?
1 � h

y?2
2 � � � h

y?n
n

�t
D
�
wy

?
1 � .wx2=x1gı2/y

?
2 � � � .wxn=x1gın/y

?
n
�t

D
�
w
EX � EY ?=x1 � .gı2/y

?
2 � � � .gın/y

?
n
�t
D
�
g
Pn
jD2 ıjy

?
j
�t

D E 01 � .�
Pn
iD2 y

?
i
ıi /a1�a2��;

where the unknown term wt disappears due to the requirement EX � EY ? D 0 on the
challenge vector EY ?. We conclude that .C 01; C

0
2; C

0
3; C4; C5; C6; C7; E0; E1; E2/

is properly distributed as a semi-functional ciphertext.
Eventually, A outputs a bit ˇ0 and B outputs 0 if ˇ D ˇ0. As in [32], we see

that A is playing Gamek�1 if � D ��1C�2 and Gamek otherwise.

Lemma 5.6. If the DBDH assumption holds, no PPT distinguisher can tell apart
Gameq and GameqC1.

Proof. Mutatis mutandis, the proof is identical to the one of Lemma 4.5. As in
the case of Lemma 5.4, variable assignments are unchanged since all values that
are implicitly defined (i.e., not explicitly known to the simulator) appear in key or
ciphertext components that are identical to those of the zero PAIPE scheme. The
only difference is that no tags are introduced in keys or ciphertexts.

5.3 A generalization of the scheme and its application

Extended ciphertext attribute domain. The above scheme is a functional en-
cryption for the relation RNIPEn W Znp � Znp ! ¹0; 1º. It can be extended so as to
support relations of the form

RNIPE�n W Znp � .Z
n
p/
d
! ¹0; 1º;

for some d 2 poly.�/, and defined as RNIPE�n. EX; . EY1; : : : ; EYd // D 1 if and only if
EX � EYi ¤ 0 for all i D 1; : : : ; d .
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We construct this extended system by setting up exactly the same public and pri-
vate keys (for EX ) as in the original scheme. To encrypt to . EY1; : : : ; EYd /, the scheme
generates Cadapt and E0 as usual with the underlying exponents s1; s2; t . Then, it
chooses t1; : : : ; td

$
�! Zp so that t D t1 C � � � C td and, for each i 2 ¹1; : : : ; dº,

parses EYi D .yi;1; : : : ; yi;n/ and computes

E1;i D .g
h Ę; EYi i/ti D .h

yi;1
1 � � � h

yi;n
n /ti and E2;i D g

ti

in such a way that the ciphertext is .C1; : : : ; C7;E0; ¹E1;i ;E2;iºiD1;:::;d /. Decryp-
tion requires to first compute

W2;i D

 
e.K

yi;2
2 � � �K

yi;n
n ; E2;i /

e.E1;i ;D7/

!� x1
EX � EYi

D e.g;w/r1ti for i D 1; : : : ; d ;

from which the receiver obtains3 W2 D W2;1 � � �W2;d D e.g;w/
r1t . The remain-

ing calculations are carried out as in the basic scheme and we now explain how the
security proof must be adapted.

The proof of co-selective security is almost identical to the proof of Lemma 5.5,
except that simulating the challenge ciphertext is instead done as follows. First, re-
call that the challenge vector set . EY1; : : : ; EYd / is legal iff, for each private key query
EX` (` 2 Œ1; q�), there exists j 2 Œ1; d � such that EX` � EYj D 0. Let us consider the kth

query as in the proof of Lemma 5.5 and let j 2 Œ1; d � be such that EXk � EYj D 0.
For all i 2 Œ1; d � such that i ¤ j , the simulator B picks ti

$
�! Zp and com-

putes E1;i , E2;i as specified by the scheme. We let t 00 D
P
i¤j ti be the sum of

these values. The simulator then implicitly defines the exponent tj D t 0 � t 00 C

logg.�/a1a2�. Analogously to the proof of Lemma 5.5, it can compute

E1;j D E
0
1 � .g

�t 00
� �a1a2�/

Pn
iD2 y

?
i
ıi and E2;j D E

0
2 � g

�t 00
� �a1a2�

(where E 01; E
0
2 are part of a normal ciphertexts obtained as in the basic scheme)

in such a way that the term wtj is canceled out due to EX � EYj D 0. The rest of the
proof then follows similarly.

Applications. We can obtain an identity-based revocation scheme with parame-
ter tradeoff from the aforementioned extension. The instantiation of ID-based re-
vocation scheme (IBR�n) from our non-zero inner-product system NIPEnC1 yields

3 If n < r1=2, the receiver can more efficiently compute

W2 D

Qn
jD2 e

�
Kj ;

Qd
iD1E

�yi;j �x1=. EX � EYi /

2;i

�
e
�Qd

iD1E
�x1=. EX � EYi /
1;i ;D7

� ;

so that only O.n/ pairing evaluations are required (instead of O.r=n/).
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a construction with O.1/-size ciphertexts and O.n/-size private keys, where n de-
notes the maximal number of revoked users.

From our extended scheme NIPE�nC1, we can obtain an ID-based revocation
scheme IBRpoly.�/, without a fixed maximal number of revoked users. To revoke
the setR where jRj D r , we divide it into a disjointed unionR D R1[� � �[Rr=n,
where jRi j D n for all i (we assume that n divides r). We then simply construct
the vector EYi from the revocation subset Ri for each i 2 Œ1; r=n�, in the same way
as we use NIPEnC1 to instantiate IBR�n. We then finally encrypt using the set of
vectors . EY1; : : : ; EYr=n/. The correctness and security properties are easily seen to
hold since we have

RIBR�n.ID; R/ D 1 , ID 62 R , 8i 2 Œ1; r=n� W ID 62 Ri

, R
IBRpoly.�/.ID; .R1; : : : ; Rr=n// D 1:

As far as efficiency goes, the construction has O.r=n/-size ciphertexts and
O.n/-size private keys. Interestingly, we note that the second scheme described
by Lewko, Sahai and Waters [23] (which indeed inspires ours) can be viewed as a
special case of our scheme where n D 1.

Comparison between revocation schemes. Table 3 provides a comparative ef-
ficiency between the two revocation schemes described by Lewko, Sahai and Wa-
ters [23] and our constructions.

From a security point of view, all schemes are proven secure in the standard
model and in a non-adaptive sense. Comparisons are thus given w.r.t. the same
metrics as in Section 4.3 as well as according to whether the number of revocations
must be fixed in advance or not.

Revocation Ciphertext Private Decryption Assumption Bounded number
schemes overhead key size cost of revocations?

LSW1 [23] O.r/� jGj O.1/� jGj O.1/ p. q-MEBDH No
CO.r/ exp.

LSW2 [23] O.r/� jGj O.1/� jGj O.1/ p. DLIN No
CO.r/ exp. + DBDH

Basic O.1/� jGj O.rmax/� jGj O.1/ p. DLIN Yes
scheme CO.r/ exp. + DBDH
Tradeoff O

�
r
n

�
� jGj O.n/� jGj O

�
min. r

n
; n/

�
p. DLIN No

scheme CO.r/ exp. + DBDH

n: any parameter, r : number of revoked users, rmax: maximum size of r (if required),
p.: pairing applications, exp.: group exponentiations.

Table 3. Performances of revocation systems.
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6 Conclusion

This paper proposed new constructions of functional encryption with short cipher-
texts in the public attribute setting, where ciphertexts do not have to be anonymous.
In prime order groups, these new schemes gave rise to the first adaptively secure
identity-based broadcast encryption scheme with constant-size ciphertexts in the
standard model. In their negated counterpart, they imply the first (identity-based)
revocation schemes featuring constant-size ciphertexts, no matter how many users
are revoked. We also introduced a revocation analogue of the spatial encryption
primitive of Boneh and Hamburg, which we showed to imply revocation.

In composite order groups, we also described conceptually simpler variants of
the above constructions using the Lewko–Waters techniques. Our fully secure zero
PAIPE scheme (Construction 3) was notably generalized into an adaptively secure
spatial encryption system, which provides a simpler answer to a question left open
by Boneh and Hamburg.

These results leave a few open problems. First, it would be nice to completely
(namely, with a proper delegation mechanism) implement fully secure spatial en-
cryption in groups of prime order with any (i.e., not only asymmetric) pairing
configuration. This would require new ideas to eliminate tags or get the delegation
technique of [11] to suitably interact with them. Another open problem is to move
beyond the co-selective model when it comes to prove the security of our negated
schemes. In particular, it would be interesting to have adaptively secure negated
spatial encryption realizations (ideally, under simple assumptions).

A Verifying correctness in decryption

A.1 For the zero PAIPE scheme of Section 4.2

W2 D

 
e.
Qn
iD2K

yi
i ; E2/

e.E1;D7/

! 1
tagk�tagc

D

 
e
�Qn

iD2.g
�˛1

xi
x1 g˛iwtagki /r1yi ; gt

�
e
��
gh Ę; EY i � wtagc

�t
; gr1

�
! 1

tagk�tagc

D

 
e
�
.g
�˛1

x2y2C���Cxnyn
x1 g˛2y2C���C˛nynwtagk2y2C���Ctagknyn/r1 ; gt

�
e
��
g˛1y1C˛2y2C���C˛nyn � wtagc

�t
; gr1

� ! 1
tagk�tagc

D e
�
g
�˛1.

x2y2C���xnyn
x1

Cy1/w.tagk�tagc/; g
� r1t

tagk�tagc

D e
�
g
�˛1

EX � EY
x1 w.tagk�tagc/; g

� r1t

tagk�tagc
D e.g;w/r1t :
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A.2 For the non-zero PAIPE scheme of Section 5.2

W2 D

 
e.
Qn
iD2K

yi
i ; E2/

e.E1;D7/

!� x1
EX � EY

D

 
e
�Qn

iD2.g
�˛1

xi
x1 g˛i /r1yi ; gt

�
e
��
g˛1y1C���C˛nyn

�t
; gr1

� !� x1
EX � EY

D

 
e
�
.w
�
x2y2C���Cxnyn

x1 g˛2y2C���C˛nyn/r1 ; gt
�

e
��
wy1 � g˛2y2C���C˛nyn

�t
; gr1

� !� x1
EX � EY

D e
�
w
EX � EY
x1 ; g

�r1t � x1EX � EY
D e.g;w/r1t :

B Adaptively secure spatial encryption in composite order groups

The Lewko–Waters techniques [24] apply to provide a simpler realization (that
avoids the use of tags and achieves perfect correctness) of our PAIPE scheme in
groups whose order is a product N D p1p2p3 of three distinct primes.

However, as shown in Section 4.1, spatial encryption is a more general primitive
than PAIPE as it includes zero PAIPE as a special case. For this reason, we only
describe a fully secure spatial encryption construction in composite order groups,
a special case of which is a fully secure zero PAIPE with a similar efficiency and
based on the same assumptions.

In a nutshell, the idea is to use groups of order N D p1p2p3 to turn the selec-
tively secure scheme of Boneh and Hamburg [11] into an adaptively secure scheme.

B.1 Construction

We briefly recall the concept of spatial encryption [11]. For a matrix M 2 Zn�dN

and a vector Ec 2 ZnN , one considers the affine space

Aff.M; Ec/ D ¹M Ew C Ec j Ew 2 ZdN º:

Let Vn � 2
.Znp/ be the collection of all affine spaces inside ZnN . That is, Vn is

defined as
Vn D ¹Aff.M; Ec/ jM 2Mn�d ; c 2 ZnN ; d � nº;

where Mn�d is the set of all n � d matrices in ZN .
In a spatial encryption scheme, private keys correspond to affine subspaces and

ciphertexts are associated with a vector and can be decrypted by any private key
associated with a subspace containing that vector. In addition, a private key cor-
responding to an affine subspace V1 allows deriving (using algorithm Delegate
below) a private key for any subspace V2 such that V2 � V1.
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In [11], Boneh and Hamburg gave a construction of spatial encryption with
short ciphertexts. It is inspired by the Boneh–Boyen–Goh hierarchical identity-
based encryption scheme [6].

We show that the Lewko–Waters techniques [24] indeed apply to tweak the
Boneh–Hamburg construction and render it adaptively secure.

The description hereafter thus uses groups .G;GT / of order N D p1p2p3. In
this kind of group, for each i; j 2 ¹1; 2; 3º, we denote by Gpi the subgroup of G
of order pi while Gpipj stands for the subgroup of order pipj .

Ciphertexts are generated exactly in the same way as in [11], but they live in the
subgroup of order p1. Private keys are also generated as in the underlying basic
schemes and are then multiplied by a random element of order p3. These random-
izers of order p3 vanish upon decryption since pairing two elements of order pi
and pj , with i ¤ j , always gives the identity element 1GT .

The security proof relies on the fact that, at the first transition in the sequence of
games, normal ciphertexts are indistinguishable from semi-functional ones, where
ciphertexts components live in the subgroup Gp1p2 according to a certain distri-
bution. In addition, at some step of the sequence of games, normal private keys
are computationally indistinguishable from semi-functional keys, the elements of
which have a non-trivial component of order p2.

Construction 6 (FULLY SECURE SPATIAL ENCRYPTION).

I Setup.n/: chooses bilinear group .G;GT / of orderN D p1p2p3. It then picks
a random generator g $

�! Gp1 and X3
$
�! Gp3 . It randomly chooses

˛; ˛0; : : : ; ˛n
$
�! ZN :

Let Ę D .˛1; : : : ; ˛n/ 2 ZnN . The public key is pk D
�
g; g Ę ; e.g; g/˛; X3

�
. The

master secret key is msk D g˛.

I KeyGen.V;msk; pk/: suppose V D Aff.M; Ec/, from a matrix M 2 .Zp/n�d

and a vector Ec 2 ZnN . The algorithm chooses

t
$
�! ZN ; R00; R

0
1

$
�! Gp3 and ER0

$
�! Gd

p3
:

It outputs the private key as skV D .D0;D1; EK/ 2 GdC2
p1p3

, where

D0 D g
tR00; D1 D g

˛Ct.˛0ChEc; Ęi/R01;
EK D gtM

> Ę ER0:

I Delegate.msk; pk; V1;DV1 ; V2/: takes as input two subspaces

V1 D Aff.M1; Ec1/ and V2 D Aff.M2; Ec2/
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for some matrices M1 2 Zn�d1N and M2 2 Zn�d2N . It outputs ? if it turns out that
V2 6� V1. Otherwise, we must have M2 D M1T and Ec2 D Ec1 CM1 Ex for some
efficiently computable matrix T 2 Zd1�d2N and some vector Ex 2 Zd1N . Given

DV1 D .D0;D1;
EK/ 2 Gd1C2

p1p3
;

these allow computing DV2 D .D
0
0;D

0
1;
EK 0/ 2 Gd2C2

p1p3 as

DV2 D
�
D0 � g

t1 �R000; D1 �
EKx
>

� g˛0t1 � gt1h Ec2; Ęi �R001;
EKT
>

� gt1M
>
2 Ę � ER00

�
D
�
gt
0

�R0000 ; g
˛
� g˛0t

0

� gt
0h Ec2; Ęi �R0001 ; g

t 0M>2 Ę � ER000
�
; where t 0 D t C t1,

for some randomly drawn t1
$
�! Zp, R000; R

00
1

$
�! Gp3 , ER00 $

�! Gd2
p3 .

I Encrypt. EY ;M; pk/: picks s $
�! ZN and computes the ciphertext as

C0 D M � e.g; g/˛s; C1 D g
s.˛0Ch EY ; Ęi/; C2 D g

s:

I Decrypt.C; EY ; skV ;V; pk/: the decryption algorithm first obtainM 2Zn�dN and
Ec 2 ZnN from V . Suppose that EY 2 V (so that decryption is possible). Therefore,
there must exist Ew 2 ZdN such that M Ew C Ec D EY . It then solves this system of
linear equations to obtain Ew. It then computes the message blinding factor as

e.D1 EK
Ew> ; C2/

e.C1;D0/
D e.g; g/˛s:

The correctness of the scheme can be verified by observing that

e.D1 � EK
Ew> ; C2/

e.C1;D0/
D
e.g˛Ct.˛0ChEc; Ęi/gt Ew

>M> Ę ; gs/

e.gs.˛0Ch EY ; Ęi/; gt /

D
e.g˛Ct.˛0ChEcCM Ew; Ęi/; gs/

e.gs.˛0Ch EY ; Ęi/; gt /
D e.g; g/˛s:

B.2 Security proof

The above spatial encryption is adaptively secure under Assumptions 1, 2 and 3
stated by Lewko and Waters in [24], which are described as follows.
(1) Given g $

�! Gp1 , X3
$
�! Gp3 , and T 2 G, decide if T 2 Gp1 �Gp2 or Gp1 .

(2) Let g;X1
$
�! Gp1 , X2; Y2

$
�! Gp2 , X3; Y3

$
�! Gp3 . Given g;X1X2; X3; Y2Y3,

and T 2 G, decide if T 2 Gp1 �Gp2 �Gp3 or Gp1 �Gp3 .
(3) Let g $

�! Gp1 , X2; Y2; Z2
$
�! Gp2 , X3; Z3

$
�! Gp3 and ˛; s $

�! ZN . Given
elements g; g˛X2; X3; gsY2; Z2Z3, and T 2 GT , decide if T D e.g; g/˛s or
not.
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The proof follows exactly the same strategy as that of [24]. It uses the same
sequence of games as in Theorem 4.2, except only that we insert one more game
namely GameRestricted between GameReal and Game0. This game, GameRestricted,
will be the same as GameReal, except that the adversary is not allowed to ask
for keys of EX such that M Ew C Ec D EY ? mod p2 for some Ew 2 Zdp2 . The semi-
functional ciphertexts and keys are defined as follows. Let g2 denote a generator
of Gp2 .

ı Semi-functional ciphertexts are generated from a normal one .C 00; C
0
1; C

0
2/ by

choosing random x; zc
$
�! ZN and setting

C0 D C
0
0; C1 D C

0
1 � g

xzc
2 ; C2 D C

0
2 � g

x
2

ı Semi-functional keys are obtained from a normal key .D00;D
0
1;D

0
2;
EK 0/ by

choosing random ; zk
$
�! ZN , Ez $

�! ZdN and setting

D0 D D
0
0 � g


2 ; D1 D D

0
1 � g

zk
2 ; EK D EK 0 � g

 Ez
2

We note that if one attempts to decrypt a semi-functional ciphertext with a semi-
functional key, the output from decryption will be the correct mask e.g; g/˛s mul-
tiplied by the perturbation factor e.g2; g2/x.zkChEz; Ewi�zc/.

The indistinguishability between games GameReal=GameRestricted as well as be-
tween games GameRestricted=Game0 and Gameq=GameqC1 can be proved almost
exactly in the same way as in [24]. These proofs rely on Assumption 1 and 2, As-
sumption 1, Assumption 3, respectively. We thus omit them here and focus on the
following lemma.

Lemma B.1. For any 1 � k � q, if an adversary A can distinguish Gamek from
Gamek�1, we can build an algorithm B that breaks Assumption 2 given in [24].

Proof. The distinguisher B takes in a problem instance .g;X1X2; X3; Y2Y3; T /
for Assumption 2. Its task will be to decide whether T 2 Gp1 � Gp2 � Gp3 or
T 2 Gp1 �Gp3 .

Setup. Algorithm B first picks ˛; ˛0; : : : ; ˛n
$
�! ZN at random and prepares the

public key pk D
�
g; g Ę ; e.g; g/˛; X3

�
as usual. It sends pk to A.

Key Queries. When A makes the j th private key query, B does as follows.

[Case j > k] B generates a normal key as in the construction. This can be done
since it knows the master key msk D g˛.

[Case j < k] In this case, B creates a semi-functional key. To do so, it first com-
putes a normal private key .D00;D

0
1;
EK 0/. It then chooses Q; zk

$
�! ZN , Ez $

�! ZdN
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and sets

D0 D D
0
0 � .Y2Y3/

Q ; D1 D D
0
1 � .Y2Y3/

Qzk ; EK D EK 0 � .Y2Y3/
Q Ez :

This is a properly distributed semi-functional key with g2 D Y
Q
2 .

[Case j D k] The distinguisher B picks u $
�! ZN , Eu $

�! ZdN and constructs the
private key .D0;D1;D2; K2; : : : ; Kn/ as

D0 D T; D1 D g
˛
� T ˛0ChEc; Ęi �Xu3 ;

EK D TM
> Ę
�X Eu3 :

If T 2 Gp1 �Gp3 , then this is a normal key with gt being equal to the Gp1 com-
ponent of T . If T 2 Gp1 �Gp2 �Gp3 , then this is a semi-functional key with g2
being equal to the Gp2 component of T and

zk D ˛0 C hEc; Ęi mod p2; Ez DM> Ę mod p2:

We note that Ę mod p1 is not correlated with Ę mod p2 and these values are prop-
erly distributed.

Challenge. In the challenge phase, A outputs messages M0;M1 2 GT along with
her target EY ?. Then, B flips a coin ˇ $

�! ¹0; 1º and forms the challenge ciphertext
as

C0 D Mˇ � e.X1X2; g/
˛; C1 D .X1X2/

˛0Ch EY
?; Ęi; C2 D X1X2:

We claim that this is a properly distributed semi-functional ciphertext with

gs D X1; gx2 D X2 and zc D ˛0 C h EY
?; Ęi:

To prove this, we must show that zk; Ez (from each queried private key) and zc are
all independently distributed from A’s view. Hence, it suffices to show that0B@1 Ec>

E0 M>

1 . EY ?/>

1CA ˛0
Ę

!
D

0B@zk

Ez

zc

1CA mod p2

has always a solution in .˛0; Ę/ modulo p2. To this end, it suffices to show that,
in the matrix of the left-hand side member, the last row (which relates to the infor-
mation revealed by the challenge ciphertext) is independent of all the other rows.
This is guaranteed by the fact thatM EwCEc ¤ EY ? mod p2 for any Ew 2 Zdp2 , which
is exactly our requirement in the game.

Eventually, the adversary A outputs a bit ˇ0 and B outputs 0 if ˇ D ˇ0. As
in [24], we see that A is playing Gamek�1 in the event that T 2 Gp1 �Gp3 and
Gamek otherwise (i.e., T 2 Gp1 �Gp2 �Gp3).
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B.3 Zero PAIPE in composite order groups

As a special case of the fully secure spatial encryption system, we outline a sim-
ple construction of PAIPE scheme which is very similar to the selectively-secure
scheme of Section 4.1.

Construction 7 (SIMPLER FULLY SECURE ZERO PAIPE).
I Setup.n/: proceeds almost as in Appendix B.1. Namely, it chooses a bilinear
group .G;GT / of order N D p1p2p3 and picks random g

$
�! Gp1 , X3

$
�! Gp3 .

It chooses ˛; ˛0; : : : ; ˛n
$
�! ZN . Let Ę D .˛0; : : : ; ˛n/. The public key consists

of pk D
�
g; g Ę ; e.g; g/˛; X3

�
. The master key consists of msk D g˛.

I KeyGen. EX;msk; pk/: chooses t $
�! ZN and R00; R

0
1; R2; : : : ; Rn

$
�! Gp3 . The

algorithm parses EX as a vector .x1; : : : ; xn/ 2 .ZN /n. Then, it outputs the private
key as sk EX D .D0;D1; K2; : : : ; Kn/, where

D0 D g
tR00; D1 D g

˛C˛0tR01; ¹Ki D .g
�˛1

xi
x1 g˛i /tRiºiD2;:::;n:

I Encrypt. EY ;M; pk/: the encryption algorithm first picks s $
�! ZN at random and

parses EY D .y1; : : : ; yn/. It then computes the ciphertext as

C0 D M � e.g; g/˛s; C1 D .g
˛0g˛1y1g˛2y2 � � �g˛nyn/s; C2 D g

s:

I Decrypt.C; EY ; sk EX ;
EX; pk/: computes the message blinding factor as

e.D1K
y2
2 � � �K

yn
n ; C2/

e.C1;D0/
D e.g; g/˛s:

If EX � EY D 0, correctness can be verified almost identically to Appendix A. Indeed,
since C2;D0 2 Gp1 , we have that the elements in Gp3 from the keys will be can-
celed out when computing pairing, and the computation is thus exactly the same
as that of the selectively secure scheme.

C Proofs of Lemmas 4.3 and 4.5

C.1 Proof of Lemma 4.3

The proof proceeds identically to that of [32, Lemma 1]. The simulator B is given
a DLIN instance .g;f; �; g�1;f �2; � ‹

D ��1C�2/. It first sets g D g,A1D ga1 D f ,
A2 D g

a2 D � and chooses random exponents ˛; b; ıv; ıv1 ; ıv2
$
�! Zp to define

B D gb; B1 D g
ba1 D f b; B2 D g

ba2 D �b;

v D gıv ; v1 D g
ıv1 ; v2 D g

ıv2 ;
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which allow calculating �1; �2; �b1 ; �
b
2 and Z D e.g; g/˛�a1�b D e.g; f /˛�b . Fi-

nally, B picks random group elements w; h1; : : : ; hn
$
�! G, which completes the

generation of mpk. Since B knows the entire master secret key

msk D .g˛; g˛�a1 ; v; v1; v2/;

it is able to generate normal private keys for any vector EX throughout the game.
To generate the challenge ciphertext for the adversarially-chosen vector EY ?,

B first computes a normal ciphertext .C 01; : : : ; C
0
7; E

0
0; E

0
1; E

0
2; tagc/ using ran-

dom exponents s01; s
0
2; t
0 $
�! Zp. The adversary A is given

C D .C1; C2; C3; C4; C5; C6; C7; E0; E1; E2; tagc/;

where

E0 D E
0
0 �
�
e.g�1 ; f / � e.g; f �2/

�b�˛
; C1 D C

0
1 � .g

�1/b;

C2 D C
0
2 � .f

�2/�b; C3 D C
0
3 � .f

�2/�1; C4 D C
0
4 � �

b; C5 D C
0
5 � �;

C6 D C
0
6 � .g

�1/ıv � .f �2/�ıv1 � �ıv2 ; C7 D C
0
7 �
�
.g�1/ıv � .f �2/�ıv1 � �ıv2

�b
and .E1; E2/ D .E 01; E

0
2/. As in [32, Lemma 1], the challenge ciphertext C has

the distribution of a normal ciphertext (where s1 D ��2Cs01, s2 D s02C�1C�2 and
s D �1 C s

0
1 C s

0
2 are the implicitly defined encryption exponents) if � D ��1C�2 .

On the other hand, if � 2R G, C has the shape of a semi-functional ciphertext.

C.2 Proof of Lemma 4.5

The simulator B receives a DBDH instance .g; g�1 ; g�2 ; g�3 ; �/ and has to decide
whether � D e.g; g/�1�2�3 .

To prepare the master public key mpk, B chooses a1; b; ıv; ıv1 ; ıv2 ; ıw
$
�! Zp.

It sets g D g, Z D e.g; g/˛�a1�b D e.g�1 ; g�2/a1�b , w D gıw and

B D gb; A1 D g
a1 ; A2 D .g

�2/; B1 D g
ba1 D Ba1 ;

B2 D .g
�2/b; v D gıv ; v1 D g

ıv1 ; v2 D g
ıv2 ;

which implicitly define ˛ D �1�2, a2 D �2, and chooses EH D .h1; : : : ; hn/ 2 Gn

at random. In the reduction, B does not entirely know the master secret key since
parts g˛ D g�1��2 and g˛�a1 D g�1��2�a1 are not available. Nevertheless, it will be
able to compute semi-functional keys (recall that generated ciphertexts and private
keys are all semi-functional in Gameq and GameqC1).

To generate a private key for some vector EX D .x1; : : : ; xn/, B randomly draws
r1; r2; z1; z2

$
�! Zp, tagk2; : : : ; tagkn

$
�! Zp and  0 $

�! Zp, sets r D r1 C r2 and
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calculates

D1 D .g
�2/�

0�a1 � vr ; D2 D .g
�2/

0

� vr1 � g
z1 ; D3 D .g

b/�z1 ;

D4 D .g
�1/a1 � ga1�

0

� vr2 � g
z2 ; D5 D .g

b/�z2 ; D6 D g
r2�b; D7 D g

r1 ;

K2 D .h
x2=x1
1 � h2 � w

tagk2/r1 ; : : : ; Kn D .h
xn=x1
1 � hn � w

tagkn/r1 :

The above forms a valid key sk EX D .D1; : : : ;D7; K2; : : : ; Kn; tagk2; : : : ; tagkn/,
where the variable (which acts as a randomizer making the key semi-functional) is
implicitly set to  D �1 C  0.

At the challenge phase, A outputs a vector EY ? D .y?1 ; : : : ; y
?
n/ and a pair of

messages M0;M1 2 GT . Then, B picks ˇ $
�! ¹0; 1º and setsE0 D Mˇ ��

a1�b . Next,
it chooses a tag tagc $

�! Zp, encryption exponents s1; t
$
�! Zp and another expo-

nent �0 $
�! Zp that will be used to implicitly define � D ��3 C �0. It computes

C1 D g
s1�b � .g�3/b; C2 D g

b�a1�s1 ; C3 D g
a1�s1 ;

C4 D .g
�2/�

0�b; C5 D .g
�2/�

0

; C6 D �
s1
1 � .g

�3/ıv � .g�2/ıv2 ��
0

;

C7 D .�
b
1 /
s1 � .g�3/ıv �b � .g�2/ıv2 ��

0�b
� w�t

and
E1 D .h

y?1
1 � � � h

y?n
n � w

tagc/t ; E2 D g
t :

As in the proof of Lemma 3 in [32], if � D e.g; g/�1�2�3 , the game mirrors Gameq
where the encryption exponent s2 is set to be �3. In contrast, if � 2R GT , the game
corresponds to GameqC1.

D Proof of Theorem 5.2

Towards a contradiction, we assume there is a co-selective adversary A with non-
negligible advantage and show that it implies an algorithm B that solves the De-
cision q-MEBDH problem in G. Algorithm B is given a q-MEBDH challenge
.Z; P /. Let Ea D .a1; : : : ; aq/>. It proceeds as follows.

Init. The co-selective security game begins with A first choosing V1; : : : ; Vq ,
where Vk D Aff.M .k/; E0n/ is an affine subspace corresponding to the kth query.

Setup. First, for each k D 1; : : : ; q, it solves a linear equation system with vari-
ables .b2;k; : : : ; bn;k/:

.M .k//> Ebk WD .M
.k//>.1; b2;k; � � � ; bn;k/

>
D E0:
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This can be done since rank.M .k/

.�1/
/ D n � 1. It then defines an n � q matrix

B D ŒEb1; Eb2; : : : ; Ebq�, which comprises Ebk as the kth column. It chooses a random
vector Eı D .ı1; : : : ; ın/>

$
�! Znp and implicitly defines the vector Ę D B EaC BEı,

where Ea D .a1; : : : ; aq/
> is the unknown vector of exponents from the problem

instance, by defining public key components as

g˛1 D ga1C���CaqCı1C���Cıq ;

g˛1 Ę D g˛1B Eag˛1B
Eı
D gB.a1C���CaqCı1C���Cıq/Eag˛1B

Eı ;

which are computable from elements gai ; gaiaj that are available from the prob-
lem instance, just like e.g; g/˛ that completes the public key.

Key Queries. To compute a private key for kth query, B does as follows. It chooses
t 0
k

$
�! Zp and implicitly defines tk D t 0k � ˛=a

2
k

by setting

D0 D g
t 0
kg�˛=a

2
k ; D1 D g

˛Ctk˛
2
1 D g˛C.t

0
k
�˛=a2

k
/˛21 D .g˛

2
1 /t
0
k � g˛.1�˛

2
1/=a

2
k

as well as

EK D gtk.M
.k//> Ę

D gtk.M
.k//>.B EaCB Eı/

D gt
0
k
.M .k//>B Ea

� g
�
˛.M.k//>BEa

a2
k � gtk.M

.k//>B Eı :

The term D1 can be computed from g˛=a
2
k ; g˛a

2
j
=a2
k for 1 � j; k � n from the

instance. We then claim that the term ak does not appear in .M .k//>B Ea. From
this claim, one can see that the middle term g�˛.M

.k//>B Ea=a2
k (which is the only

non-trivial one here) can be computed from the term g˛aj =a
2
k for j ¤ k from the

instance. Indeed, more importantly, the unknown term g˛=ak is canceled out here.
The claim is justified by the fact that the coefficient column vector of ak is exactly
the kth column of .M .k//>B , which is indeed .M .k//> Ebk D E0.

Challenge. Eventually, A outputs M0;M1 2 GT along with a vector Ey?. Recall
that A is required to choose the latter in such a way that Ey? 2 Vk for all k 2 Œ1; q�.
Hence, for all k 2 Œ1; q�, there must exist Ewk 2 Zn�1p such that Ey? DM .k/ Ewk . To
construct the challenge ciphertext, B flips a coin ˇ $

�! ¹0; 1º and chooses s0 $
�! Zp

to compute

C0 D Mˇ �Z � e.g; g/
˛s0 ;

C1 D g
s˛1h Ey

?; Ęigs
0˛1h Ey

?; Ęi
D gs˛1. Ey

?/
>
B Eags˛1. Ey

?/
>
B Eıgs

0˛1h Ey
?; Ęi;

C2 D g
sgs
0

;

C3 D g
sa1 � � �gsaq � .gs/ı1C���Cıq � .g˛1/s

0

:
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We claim that gs˛1. Ey
?/
>
B Ea (which is the only non-trivial term inC1 since elements

of the form gsa
2
i are not given) equals 1. The claim follows from the fact that, for

each k 2 Œ1; q�, the coefficient of ak in . Ey?/>B Ea is 0. Indeed, this coefficient of
ak is exactly the kth element of the vector . Ey?/>B , which equals . Ey?/> Ebk . Since
we have

. Ey?/
> Ebk D .M

.k/
Ewk/
>
Ebk D . Ewk/

>.M .k//> Ebk D . Ewk/
>E0 D 0;

by our definition of Ebk , the claim is established.
Finally, A outputs ˇ0 2 ¹0; 1º. If we have ˇ D ˇ0, then B outputs 1 (meaning

that Z D e.g; g/˛s). Otherwise, it outputs 0 (meaning that Z is random in GT ).
We easily see that, if Z 2R GT , then PrŒB.Z; P / D 0� D 1

2
. In contrast, if we

have Z D e.g; g/˛s , then jPrŒB.Z; P / D 0� � 1
2
j � �. It follows that B has ad-

vantage at least � in solving q-MEBDH problem.

E Co-selectively secure non-zero PAIPE in composite order groups

As in Appendix B, we consider groups .G;GT / of composite orderN D p1p2p3.
In this setting, we rely on the following three assumptions. The first one and the
last one were already used in Appendix B whereas the second one is analogous to
the one use in [32, Appendix E].

Assumption 1. Given g $
�! Gp1 ,X3

$
�! Gp3 , and T 2 G, decide if T 2 Gp1�Gp2

or T 2 Gp1 .

Assumption 2. Let g;w; gt ; X1
$
�! Gp1 with t $

�! ZN , X2; Y2; Z2
$
�! Gp2 and

X3; Y3; Z3
$
�! Gp3 . Given elements .g; w; gt ; X1X2; X3; Y2Y3/, and T 2 G, de-

cide if T D wtZ3 or T D wtZ2Z3.

Assumption 3. Let g $
�! Gp1 , X2; Y2; Z2

$
�! Gp2 , X3

$
�! Gp3 , and ˛; s $

�! ZN .
Given .g; g˛X2; X3; gsY2; Z2/, and T 2 GT , decide if T D e.g; g/˛s or not.

Using the above assumptions, a relatively simple non-zero PAIPE can then be
obtained as follows in the co-selective model.

Construction 8 (CO-SELECTIVELY SECURE NON-ZERO PAIPE IN COMPOSITE

ORDER GROUPS).
I Setup.n/: given a security parameter � 2 N and an integer n 2 poly.�/, choose
bilinear groups .G;GT / of order N D p1p2p3, where pi > 2� for i 2 ¹1; 2; 3º.
Choose ˛ $

�! ZN , g $
�! Gp1 , Xp3

$
�! Gp3 , hi

$
�! Gp1 for i D 0; : : : ; n. The mas-

ter public key is defined to be pk WD
�
g; e.g; g/˛; ¹hiºiD0;:::;n

�
while the master

secret key consists of msk WD
�
g˛; Xp3

�
.
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I KeyGen. EX;msk; pk/: on input of EX D .x1; : : : ; xn/ 2 ZnN and the master pri-
vate key msk D

�
g˛; Xp3

�
, choose r $

�! ZN , R3; R03
$
�! Gp3 and R3;i

$
�! Gp3 for

i D 1; : : : ; n, and compute

D1 D g
˛
� hr0 �R3; D2 D g

r
�R03; ¹Ki D

�
h
xi
0 � hi

�r
�R3;iº

n
iD1

before returning sk EX D
�
D1;D2; ¹Kiº

n
iD1

�
.

I Encrypt. EY ;M; pk/: to encrypt M 2 GT under EY D .y1; : : : ; yn/ 2 .ZN /n, pick
s

$
�! ZN and compute

C0 D M � e.g; g/˛�s; C1 D g
s; C2 D

�
h
y1
1 � � � h

yn
n

�s
:

The ciphertext is C D .C0; C1; C2/.
I Decrypt.C; EY ; sk EX ;

EX; pk/: parse sk EX as .D1;D2;D3/, compute

K 0 D

nY
iD1

K
yi
i D

�
h
EX � EY
0 � h

y1
1 � � � h

yn
n

�r
;

and compute

e.g; g/˛�s D e.D1; C1/ �

�
e.K 0; C1/

e.C2;D2/

�� 1
EX � EY

as well as M D C0=e.g; g/
˛s .

The correctness of the scheme is showed by observing that

e.K 0; C1/ D e.g; h0/
r �s� EX � EY

� e

 
nY
iD1

h
xi
i ; g

rs

!
D e.g; h0/

r �s� EX � EY
� e.C2;D2/

and e.D1; C1/ D e.g; g/˛�s � e.g; h0/r �s .

Lemma E.1. Any PPT adversary distinguishing GameReal from Game0 with non-
negligible advantage contradicts Assumption 1.

Proof. Let B be an algorithm that receives .g;X3;T / and aims at deciding whether
T 2R Gp1p2 or T 2R Gp1 .

To prepare the public key mpk, B chooses ˛ $
�! ZN as well as ai

$
�! ZN for

i D 0; : : : ; n. Then, it computes e.g; g/˛ and sets Xp3 D X3 as well as hi D gai
for i D 0; : : : ; n. Since B knows msk D

�
g˛; X3

�
, it is able to answer all key gen-

eration queries.
At the challenge step, A outputs a pair of messages M0;M1 2 G as well as a

vector EY D .y1; : : : ; yn/ 2 .ZN /n. To generate the challenge ciphertext, B flips
a random coin ˇ $

�! ¹0; 1º and computes

C1 D T; C2 D T
Pn
iD1 aiyi and C0 D Mˇ � e.T; g/

˛:
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If T 2R Gp1p2 , the challenge ciphertext has the same distribution as in Game0
whereas B is playing GameReal if T 2R Gp1 .

Lemma E.2. For each k 2 ¹0; : : : ; qº, any PPT distinguisher A between Gamek
from GamekC1 can be used to break Assumption 2.

Proof. We show an algorithm B that takes as input .g; w; gt ; X1X2; X3; Y2Y3; T /
and uses A to decide whether

T D wtZ2Z3 2R Gp1p2p3 or T D wtZ3 2R Gp1p3 :

Init. As in the proof of Lemma 5.5, the co-selective security game begins with the
adversary A announcing the set of private key queries EX1; : : : ; EXq that she intends
to make and we parse as EXk D .x1; : : : ; xn/ the kth of these private key queries.

Setup. To prepare the public key pk, the algorithm B uses EXk D .x1; : : : ; xn/. It
begins by choosing ˛ $

�! ZN as well as ai
$
�! ZN for each i D 1; : : : ; n. It sets

Xp3 D X3, h0 D w and hi D h
�xi
0 gai for i D 1; : : : ; n.

Challenge. At some point, the adversary A chooses messages M0;M1 and a vec-
tor Ey D .y1; : : : ; yn/. Then, B flips a random coin ˇ $

�! ¹0; 1º and constructs the
challenge ciphertext as

C0 D Mˇ � e.X1X2; g/
˛; C1 D X1X2; C2 D .X1X2/

Pn
iD1 aiyi ;

which is easily seen to form a semi-functional ciphertext for which zc D
Pn
iD1aiyi

(note that this value is taken modp2 and is thus uncorrelated to the values of
ai mod p1) since we must have EX � EY D 0 for each private key query EX .

Key Queries. To respond private key queries for vectors EX D .x1; : : : ; xn/, B con-
siders three cases depending on the index j of the query:

[Case i < k] B generates a semi-functional key by choosing r; z1
$
�! ZN as well

as R3
$
�! Gp3 and R3;i

$
�! Gp3 for i D 1; : : : ; n and computing

D1 D g
˛hr0 � .Y2Y3/

z1 ; D2 D g
r
�R3; ¹Ki D .h

xi
0 � hi /

r
�R3;iº

n
iD1:

[Case i > k] B computes a normal key using msk D
�
g˛; X3

�
.

[Case i D k] if i D k, the algorithm B uses the input element T . Namely, it
chooses R3

$
�! Gp3 and R3;i

$
�! Gp3 for i D 1; : : : ; n. Then, it computes

D1 D g
˛
� T; D2 D g

t
�R03; ¹Ki D .g

t /ai �R3;iº
n
iD1:

We easily observe that the challenger is playing Gamek if T D wtZ3. If it turns
out that T D wtZ2Z3, B is rather playing GamekC1 since T .
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Lemma E.3. Any PPT algorithm A distinguishing Gameq from GameqC1 implies
a distinguisher B for Assumption 3.

Proof. We outline an algorithm B that takes as input .g; g˛X2; X3; gsY2; Z2; T /
with the aim of deciding whether T D e.g; g/˛s or T 2R GT using its interaction
with A. To this end, B generates the public key mpk D

�
g; e.g; g/˛; ¹hiºiD0;:::;n

�
by choosing a0; : : : ; an

$
�! ZN and setting Xp3 D X3, e.g; g/˛ D e.g˛X2; g/ as

well as hi D gai for i D 0; : : : ; n.
When the adversary A makes a private key query EX D .x1; : : : ; xn/, B chooses

r; w
$
�! ZN , R3; R03

$
�! Gp3 , R3;i

$
�! Gp3 , for i D 1; : : : ; n, and computes

D1 D .g
˛X2/ � h

r
0 �R3; D2 D g

r
�R03; ¹Ki D .h

xi
0 � hi /

r
�R3;iº

n
iD1;

which has the distribution of a semi-functional key.
At the challenge phase, A outputs M0;M1 2 GT and EY D .y1; : : : ; yn/. To con-

struct the challenge ciphertext, B chooses ˇ $
�! ¹0; 1º and computes

C0 D Mˇ � T; C1 D g
sY2; C2 D .g

sY2/
Pn
iD1 aiyi :

Similarly to the proof of Lemma 8 in [24], the game is easily seen to correspond
to Gameq if T D e.g; g/˛s and to GameqC1 if T 2R GT .

In GameqC1, the adversary’s advantage is easily seen to be zero since the chal-
lenge ciphertext carries no information on ˇ 2 ¹0; 1º.
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