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Abstract. In the context of unfitted finite element discretizations the realization of high order
methods is challenging due to the fact that the geometry approximation has to be sufficiently ac-
curate. Recently a new unfitted finite element method was introduced which achieves a high order
approximation of the geometry for domains which are implicitly described by smooth level set func-
tions. This method is based on a parametric mapping which transforms a piecewise planar interface
(or surface) reconstruction to a high order approximation. In the paper [C. Lehrenfeld, A. Reusken,
Analysis of a High Order Finite Element Method for Elliptic Interface Problems, arXiv 1602.02970,
Accepted for publication in IMA J. Numer. Anal.] an a priori error analysis of the method applied
to an interface problem is presented. The analysis reveals optimal order discretization error bounds
in the H1-norm. In this paper we extend this analysis and derive optimal L2-error bounds.
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1. Introduction. In recent years there has been a strong increase in the research
on development and analysis of unfitted finite element methods, cf. for example [1, 5,
8, 15, 16, 17, 19, 27]. The design, realization and analysis of unfitted finite elements
methods which are higher order accurate is a challenging task. Especially in a setting
where geometries are only implicitly described, e.g. by a zero level of a level set
function, accurate numerical integration is difficult. Different techniques have been
developed to overcome this difficulty [29, 26, 32, 30, 6, 9, 12, 3, 5, 14]. For a further
discussion of the relevant literature we refer to [24, Section 1.2].

Recently, in [22], we introduced a new high order unfitted finite element method
for scalar interface problems based on isoparametric mappings which is suitable for
level set descriptions and higher order unfitted finite elements. The method is geome-
try based and is applicable to a wide range of problems, e.g. Stokes interface problems
[21], fictitious domain problems [23] or surface PDEs [13].

A detailed a-priori error analysis of the method applied to a scalar elliptic interface
model problem is given in [24]. Optimal H1-norm discretization error bounds are
derived for the case of a polygonal domain. In this paper we consider the same
elliptic interface problem as in [24] and extend the existing analysis in two directions.
First, we allow for a piecewise smooth, not necessarily polygonal, domain, which is
approximated with a higher order isoparametric boundary approximation. Secondly,
we complement the existing analysis with optimal L2-estimates.

The paper is organized as follows. In Section 2 we introduce the model interface
problem. We assume a level set description of the interface and discuss a standard
piecewise planar interface approximation in Section 3. A key ingredient in the higher
order unfitted finite element method is the isoparametric mapping used to obtain
higher order geometry approximations. In Section 4 we present the construction of
this mapping and the isoparametric unfitted finite element method for the elliptic
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interface problem. In particular it is explained how the same extension technique,
which is a standard component in isoparametric finite element methods for high order
approximation of smooth boundaries, is applied both for the boundary and interface
mesh transformation. A main contribution of this paper is the error analysis of the
method, i.e. the derivation of optimal H1- and L2-error bounds. The H1-error results
obtained in [24] (for a polygonal domain) form the basis for this analysis. In Section 5
we recall the most important results from [24] and adapt these to the case of a higher
order isoparametric boundary approximation. The L2 error analysis is presented in
Section 6. Finally, in Section 7 we give results of a numerical experiment.

We are aware of the fact that parts of the paper contain results that are essentially
the same as in [24]. In particular the material given in the sections 3, 4.1, 4.2 and
4.4 can also be found in [24]. We decided to include this material to make this paper
more self-contained and thus improve its readability.

2. Model interface problem. We consider the model problem

−div(αi∇u) = fi in Ωi, i = 1, 2, (2.1a)

[[α∇u]]Γ · nΓ = 0, [[u]]Γ = 0 on Γ, (2.1b)

u = 0 on ∂Ω. (2.1c)

Here, Ω1 ∪ Ω2 = Ω ⊂ Rd, d = 2, 3, is a nonoverlapping partitioning of the domain,
Γ = Ω1 ∩ Ω2 is the interface and [[·]]Γ denotes the usual jump operator across Γ. The
source terms fi are given on each subdomain Ωi, i = 1, 2. In the remainder we also
use the source term f on Ω which we define as f |Ωi = fi, i = 1, 2. We assume Γ to
be characterized as the zero level of a level set function (not necessarily a distance
function). The diffusion coefficient α is assumed to be piecewise constant, i.e. it has a
constant value αi > 0 on each sub-domain Ωi. The weak formulation of this problem
is as follows: determine u ∈ H1

0 (Ω) such that∫
Ω

α∇u · ∇v dx =

∫
Ω

fv dx for all v ∈ H1
0 (Ω).

In the error analysis we assume that Ω1 is strictly contained in Ω, i.e., Γ = ∂Ω1 and
dist(Γ, ∂Ω) > 0. Furthermore, we assume Γ to be (globally) smooth and ∂Ω to be
piecewise smooth.

3. Boundary parametrization and level set representation of the inter-
face. The domain Ω, which has a (piecewise) smooth boundary is approximated with
a family of polygonal approximations {Ωlin

h }h>0 corresponding to a family {Th}h>0

of simplicial shape regular triangulations of {Ωlin

h }h>0 which are not fitted to Γ,
cf. Fig. 4.2. In the analysis we assume quasi-uniformity of the triangulations, hence,
h ∼ hT := diam(T ), T ∈ Th. In the remainder we take a fixed Ωlin

h with corresponding
triangulation Th and, to simplify the presentation, drop the index h.

The standard finite element space of continuous piecewise polynomials up to de-
gree k with respect to the domain Ωlin is denoted by V kh :

V kh := { vh ∈ C(Ωlin) | vh|T ∈ Pk for all T ∈ T , vh|∂Ωlin = 0 }.

The nodal interpolation operator in V kh is denoted by Ik. In the remainder we take a
fixed k ≥ 1. We are particularly interested in k ≥ 2. This k denotes the polynomial
degree of the finite element functions used in our finite element method (explained
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in Section 4.4). To obtain a high order finite element discretization of (2.1) we need
sufficiently accurate representations of ∂Ω and Γ. We now addresss these representa-
tions.

For simplicity we assume that all boundary vertices of ∂T = ∂Ωlin are located on
∂Ω (this assumption is not essential, cf. [4], Sect. 4.7). On ∂T we assume a given
parametrization of the exact boundary ∂Ω of the form

gb(x) = x+ χb(x), (3.1)

such that gb : ∂T → ∂Ω is a bijection. We assume that ∂Ω has smoothness properties
such that the function χb can be chosen piecewise smooth on ∂T and satisfies

‖χb‖∞,∂T + h‖Dχb‖∞,∂T . h2 and max
F∈F(∂T )

‖Dlχb‖∞,F . 1, l = 2, .., k + 1. (3.2)

holds. Here F(∂T ) denotes the set of all boundary edges (d = 2) or boundary faces
(d = 3). Note that χb(xi) = 0 at all boundary vertices xi of ∂Ωlin. The function χb
will be input for the parametric mapping used in our method.

We assume that the smooth interface Γ is the zero level of a smooth level set
function φ : Ω→ R, i.e., Γ = {x ∈ Ω | φ(x) = 0 } and Ωi = {x ∈ Ω | φ(x) ≶ 0}. This
level set function is not necessarily close to a distance function, but has the usual
properties of a level set function:

‖∇φ(x)‖ ∼ 1 , ‖D2φ(x)‖ ≤ c for all x in a neighborhood U of Γ. (3.3)

In the error analysis we assume that the level set function has the smoothness property
φ ∈ Ck+2(U). As input for the parametric mapping we need an approximation
φh ∈ V kh of φ, and we assume that this approximation satisfies the error estimate

max
T∈T
|φh − φ|m,∞,T∩U . hk+1−m, 0 ≤ m ≤ k + 1. (3.4)

Here | · |m,∞,T∩U denotes the usual semi-norm on the Sobolev space Hm,∞(T ∩ U)
and the constant used in . depends on φ but is independent of h. Note that (3.4)
implies the estimate

‖φh − φ‖∞,U + h‖∇(φh − φ)‖∞,U . hk+1. (3.5)

The zero level of the finite element function φh (implicitly) characterizes the discrete

interface. The piecewise linear nodal interpolation of φh is denoted by φ̂h = I1φh.
Hence, φ̂h(xi) = φh(xi) at all vertices xi in the triangulation T . The low order
geometry approximation of the interface, which is needed in our discretization method,
is the zero level of this function:

Γlin := {φ̂h = 0}.

The subdomains corresponding to Γlin are denoted by Ωlin
i = {x ∈ Ωlin | φ̂h(x) ≶ 0}.

Note that Ωlin
1 ∪Ωlin

2 = Ωlin 6= Ω. All elements in the triangulation T which are cut by
Γlin are collected in the set T Γ := {T ∈ T |T ∩ Γlin 6= ∅}. The corresponding domain
is ΩΓ := {x ∈ T |T ∈ T Γ}.

We note that ∂Ωlin and Γlin are (only) second order accurate approximations of
∂Ω and Γ, respectively. To achieve higher order accuracy with respect to the interface
and the boundary approximation we consider a parametric mesh transformation in
section 4.3.
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4. Isoparametric mapping. The isoparametric mapping Θh, defined on Ωlin,
that is used in the finite element method is based on a local mapping ΘΓ

h on ΩΓ which
is combined with a suitable extension technique. The latter is taken such that ΘΓ

h is
“smoothly” extended and Θh yields a sufficiently accurate boundary approximation.
In the error analysis we need a mapping Ψ : Ωlin → Ω which is sufficiently close
(in a higher order sense) to Θh and has the properties Ψ(Γlin) = Γ, Ψ(∂Ωlin) =
∂Ω. The construction of this Ψ is also based on a local mapping ΨΓ, that is very
similar to ΘΓ

h, which is extended with the same technique as used in the extension
of ΘΓ

h. The mappings Θh and Ψ for the case without boundary approximation (i.e.,
Ω is polygonal) are explained in detail in [24]. In the subsections below we explain
how the construction of [24] can be extended to allow for isoparametric boundary
approximation.

In section 4.1 we recall the definitions of the local mappings ΘΓ
h, ΨΓ, which

are the same as in [24]. In section 4.2 we discuss a general boundary data extension
technique, which is essentially the same as the extension method used in isoparametric
finite elements [25, 2]. In section 4.3 this extension technique is applied to both ΘΓ

h

and ΨΓ resulting in the global mappings Θh and Ψ. We give some results, e.g., on
the smoothness of the extensions and on the approximation error in Θh ≈ Ψ, which
are derived in [24]. These results are used in the error analysis.

4.1. Local mappings. In the construction of the local mapping ΘΓ
h we need a

projection step from a function which is piecewise polynomial but possibly discontin-
uous (across element interfaces) to the space of continuous finite element functions.
Let C(T Γ) :=

⊕
T∈T Γ

C(T ) and V kh (ΩΓ) := V kh |ΩΓ . We introduce a projection operator

PΓ
h : C(T Γ)d → V kh (ΩΓ)d. The projection operator relies on a nodal representation of

the finite element space V kh (ΩΓ). The set of finite element nodes xi in T Γ is denoted
by N (T Γ), and N (T ) denotes the set of finite element nodes associated to T ∈ T Γ.
All elements T ∈ T Γ which contain the same finite element node xi form the set
denoted by ω(xi) := {T ∈ T Γ | xi ∈ N (T ) }, xi ∈ N (T Γ). Let | · | denote the
cardinality of the set ω(xi) and let ψi be the nodal basis function corresponding to
xi. We define the projection operator PΓ

h : C(T Γ)d → V kh (ΩΓ)d as

PΓ
h v :=

∑
xi∈N (T Γ)

Axi(v)ψi, with Axi(v) :=
1

|ω(xi)|
∑

T∈ω(xi)

v|T (xi), xi ∈ N (T Γ). (4.1)

This is a simple and well-known projection operator considered also in e.g., [28,
Eqs.(25)-(26)] and [11].

The construction of ΘΓ
h is motivated by the following mapping ΨΓ ∈ C(ΩΓ),

defined in (4.3) below. We introduce the search direction G := ∇φ and a function
d : ΩΓ → R defined as follows: d(x) is the (in absolute value) smallest number such
that

φ(x+ d(x)G(x)) = φ̂h(x) for x ∈ ΩΓ. (4.2)

(Recall that φ̂h is the piecewise linear nodal interpolation of φh.) Given the function
dG ∈ C(ΩΓ)d ∩H1,∞(ΩΓ)d we define:

ΨΓ(x) := x+ d(x)G(x), x ∈ ΩΓ. (4.3)

Note that the function d and mapping ΨΓ depend on h, through φ̂h in (4.2). We do
not show this dependence in our notation. By construction the mapping ΨΓ has the
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property ΨΓ(Γlin) = Γ. Further properties of ΨΓ are derived in [24, Corollary 3.2 and
Lemma 3.4] and given in the following lemma.

Lemma 4.1. The following holds:

|d(xi)| . hk+1 for all vertices xi of T ∈ T Γ, (4.4a)

‖ΨΓ − id‖∞,ΩΓ + h‖DΨΓ − I‖∞,ΩΓ . h2, (4.4b)

max
T∈T Γ

‖DlΨΓ‖∞,T . 1, l ≤ k + 1. (4.4c)

The mapping ΨΓ will be used in the error analysis, cf. section 4.3.
We now explain the construction of ΘΓ

h, which consists of two steps. In the first
step we introduce a discrete analogon of ΨΓ defined in (4.3), denoted by ΨΓ

h. Based on
this ΨΓ

h, which can be discontinuous across element interfaces, we obtain a continuous
transformation ΘΓ

h ∈ C(ΩΓ)d by averaging with the projection operator PΓ
h . For the

construction of ΨΓ
h we need an efficiently computable and accurate approximation of

G = ∇φ on T Γ. For this we consider the following two options

Gh(x) = ∇φh(x), or Gh(x) = (PΓ
h∇φh)(x), x ∈ T ∈ T Γ. (4.5)

Let ETφh be the polynomial extension of φh|T . We define a function dh : T Γ → [−δ, δ],
with δ > 0 sufficiently small, as follows: dh(x) is the (in absolute value) smallest
number such that

ETφh(x+ dh(x)Gh(x)) = φ̂h(x), for x ∈ T ∈ T Γ. (4.6)

Clearly, this dh(x) is a “reasonable” approximation of the steplength d(x) defined in
(4.2). Given the function dhGh ∈ C(T Γ)d we define

ΨΓ
h(x) := x+ dh(x)Gh(x) for x ∈ T ∈ T Γ, (4.7)

which approximates the function ΨΓ defined in (4.3). To remove possible discontinu-
ities of ΨΓ

h in ΩΓ we apply the projection to obtain

ΘΓ
h := PΓ

h ΨΓ
h = id + PΓ

h (dhGh). (4.8)

The approximation result in the following lemma is from Lemma 3.6 in [24].
Lemma 4.2. The estimate

k+1∑
r=0

hr max
T∈T Γ

‖Dr(ΘΓ
h −ΨΓ)‖∞,T . hk+1 (4.9)

holds.

4.2. Finite element boundary data extension method. Let T̂ ⊂ T be a
subset of the triangulation such that Ω̂lin := ∪T∈T̂ T is a connected subdomain of Ωlin.

We also need the notation ∂T̂ = ∂Ω̂lin, T̂ bnd := {T ∈ T̂ | T ∩ ∂T̂ 6= ∅}, T̂ int = T̂ \
T̂ bnd, cf. Figure 4.1 (left). Given such a connected triangulation T̂ , boundary data g ∈
C(∂Ω̂lin) and a polynomial degree k ≥ 1, a linear extension operator Ek(T̂ , g) is treated
in [24], which is essentially the same as the finite element extension technique studied
in [25, 2]. This type of extension operator is a standard component in isoparametric
finite element methods for high order boundary approximations.

5



T ∈T̂

T ∈T̂ int

T ∈T̂ bnd

∂T̂

T ∈T Γ

T ∈T1

T ∈T2

Γlin

Fig. 4.1. Connected subtriangulation T̂ ⊂ T with T̂ int, T̂ bnd and ∂T̂ (left) and decomposition
of a triangulation T into T Γ, T1 and T2 (right).

This operator is local, meaning that it is applied elementwise for T ∈ T̂ bnd. Its
construction is hierarchical in the sense that first an extension based on values at
vertices lying on ∂T̂ is determined, then an extension from edges lying on ∂T̂ and
finally (for the three-dimensional case) an extension of the data from faces lying on
∂T̂ is determined. For a precise definition of this operator we refer to [24]. In the
following lemma we summarize some properties of this operator which are derived in
[24, 25, 2].

Lemma 4.3. Let V(∂T̂ ) denote the set of vertices in ∂T̂ and F(∂T̂ ) the set of
all edges (d = 2) or faces (d = 3) in ∂T̂ . For E(g) := Ek(T̂ , g) the following holds

E(g) ∈ C(Ω̂lin), E(g) = 0 on T̂ int, E(g)|∂T̂ = g. (4.10a)

For all T ∈ T̂ bnd : if T ∩ ∂T̂ ∈ V(∂T̂ ) then E(g) ∈ P1(T ). (4.10b)

For all T ∈ T̂ bnd : if g ∈ Pk(T ∩ ∂T̂ ) then E(g) ∈ Pk(T ). (4.10c)

Furthermore,

‖DnE(g)‖∞,Ω̂lin . max
F∈F(∂T̂ )

k+1∑
r=n

hr−n‖Drg‖∞,F

+ h−n max
xi∈V(∂T̂ )

|g(xi)|, n = 0, 1, (4.10d)

max
T∈T̂
‖DnE(g)‖∞,T .

k+1∑
r=n

hr−n‖Drg‖∞,F , n = 2, . . . , k + 1, (4.10e)

for all g ∈ C(∂T̂ ) such that g ∈ Ck+1(F ) for all F ∈ F(∂T̂ ).

The results in (4.10a)-(4.10c) give basic structural properties of the extension opera-
tor. In particular the result in (4.10c) yields that piecewise polynomial boundary data
result in piecewise polynomial extensions of the same degree. The results in (4.10d),
(4.10e) measure smoothness properties of the extension in terms of the smoothness of
the boundary data.

4.3. Global isoparametric mapping. We use the local mappings ΘΓ
h, ΨΓ on

ΩΓ and the boundary parametrization χb as in (3.1), and combine these with the
extension technique to obtain global mappings Θh and Ψ. For this we decompose the
triangulation T into disjoint subsets as follows

T = T Γ ∪T1 ∪T2, with T1 := {T ∈ T | (φ̂h)|T < 0 }, T2 := {T ∈ T | (φ̂h)|T > 0 }.
6



We assumed that Ω1 (where φ < 0 holds) is strictly contained in Ω. Hence (for
h sufficiently small) we have that T1 is strictly contained in Ω. On ∂T1 we have
boundary data Θh and ΨΓ, which will be extended to T1, cf. below. The boundary
of T2 consists of two disjoint parts, namely ∂T2 = ∂T ∪ (∂T2 \ ∂T ), cf. Figure 4.1
(right). On (∂T2 \ ∂T ) ⊂ ∂T Γ we have boundary data Θh and ΨΓ. On ∂T we have
boundary data given by the parametrization χb. Below, boundary data on the two
parts ∂T2 \ ∂T and ∂T of ∂T2 are denoted as a pair of functions (g1, g2). Using
the extension technique, the local mappings ΨΓ and ΘΓ

h on ΩΓ we can define global
mappings Ψ, Θh as follows:

Ψ :=


ΨΓ on T Γ,
id +Ek

(
T1, (Ψ

Γ − id)
)

on T1,
id +Ek

(
T2, (Ψ

Γ − id, χb)
)

on T2,
(4.11a)

Θh :=


ΘΓ
h on T Γ,

id +Ek
(
T1, (Θ

Γ
h − id)

)
on T1,

id +Ek
(
T2, (Θ

Γ
h − id, Ikχb)

)
on T2.

(4.11b)

Here Ikχb denotes the piecewise polynomial nodal interpolation of the boundary
parametrization χb on the edges (d = 2) or faces (d = 3) that are on ∂T .

Ω1,h

Ω2,h

Γh

Θh←−

Ωlin
1

Ωlin
2

Γlin
Ψ−→

Ω1

Ω2

Γ

∂Ωh

Ωh Θh←−
∂Ωlin

Ωlin

Th
Ψ−→

∂Ω

Ω

boundary approximation

interface approximation

Fig. 4.2. Sketch of geometries. The basis is the polygonal approximation (center) of the bound-
ary (top row) and the interface (bottom row). The parametric mapping Θh (left) is used in the
discretization method and essential for the higher order accuracy. The mapping Ψ (right) maps
the discrete boundary and interface approximations to the exact geometries and is used in the error
analysis below.

4.4. Isoparametric unfitted finite element method. We introduce the isopara-
metric unfitted finite element method, based on the isoparametric mapping Θh, for
the discretization of the model elliptic interface problem (2.1). We define the isopara-
metric Nitsche unfitted FEM as a transformed version of the original Nitsche unfitted
FE discretization [17] with respect to the interface approximation Γh = Θh(Γlin). We
introduce some further notation. The standard unfitted space w.r.t. Γlin is denoted
by

V Γ
h := V kh |Ωlin

h,1
⊕ V kh |Ωlin

h,2
.
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To simplify the notation we do not explicitly express the polynomial degree k in V Γ
h .

The isoparametric unfitted FE space is defined as

V Γ
h,Θ := { vh ◦Θ−1

h | vh ∈ V Γ
h } = { ṽh | ṽh ◦Θh ∈ V Γ

h }. (4.12)

Note that functions from V Γ
h,Θ are defined on the isoparametrically transformed do-

main Ωh = Ω1,h ∪ Ω2,h, with Ωi,h := Θh(Ωlin
i ). Based on this space we formulate a

discretization of (2.1) using the Nitsche technique [17] with Ωi,h, i = 1, 2, as numerical
approximation of the subdomains Ωi: determine uh ∈ V Γ

h,Θ such that

Ah(uh, vh) := ah(uh, vh) +Nh(uh, vh) = fh(vh) for all vh ∈ V Γ
h,Θ, (4.13)

with the bilinear and linear forms

ah(u, v) :=

2∑
i=1

αi

∫
Ωi,h

∇u · ∇v dx, (4.14a)

Nh(u, v) := N c
h(u, v) +N c

h(v, u) +Ns
h(u, v), (4.14b)

N c
h(u, v) :=

∫
Γh

{{−α∇v}} · n[[u]] ds, Ns
h(u, v) := ᾱ

λ

h

∫
Γh

[[u]][[v]] ds, (4.14c)

for u, v ∈ V Γ
h,Θ + Vreg,h with Vreg,h := H1(Ωh)∩ (H2(Ω1,h)∪H2(Ω2,h)). Furthermore,

n = nΓh denotes the outer normal on the boundary Γh of Ω1,h and ᾱ = 1
2 (α1 + α2)

the mean diffusion coefficient. For the averaging operator {{·}} there are different
possibilities. We use {{w}} := κ1w|Ω1,h

+ κ2w|Ω2,h
with a “Heaviside” choice where

κ1 + κ2 = 1 with κ1 = 1 if |T1| > 1
2 |T | and κ1 = 0 otherwise. Here, Ti = T ∩Ωlin

i , i.e.
the cut configuration on the undeformed mesh is used. This choice in the averaging
renders the scheme in (4.13) stable (for sufficiently large λ) for arbitrary polynomial
degrees k, independent of the cut position of Γ (Lemma 5.2 in [24]). A different choice
for the averaging which also results in a stable scheme is κi = |Ti|/|T |.

In order to define the right hand side functional fh we first assume that the source
term fi : Ωi → R in (2.1a) is (smoothly) extended to Ωi,h. This extension is denoted
by fi,h and satisfies fi,h = fi on Ωi. We define fh on Ω by fh|Ωi,h := fi,h, i = 1, 2,
hence,

fh(v) :=

∫
Ωh

fhv dx =
∑
i=1,2

∫
Ωi,h

fi,hvdx. (4.15)

Remark 1. For the implementation of this method we use the same technique
as in standard isoparametric finite element methods. In the integrals we apply a
transformation of variables y := Θ−1

h (x). For example, the bilinear form ah(u, v) then
results in

ah(u, v) :=
∑
i=1,2

αi

∫
Ωlin
i

DΘ−Th ∇u ·DΘ−Th ∇v det(DΘh) dy. (4.16)

Based on this transformation the implementation of integrals is carried out as for the
case of the piecewise planar interface Γlin. The additional variable coefficients DΘ−Th ,
det(DΘh) are easily and efficiently computable using the property that Θh is a finite
element (vector) function.
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5. Preliminaries for the error analysis. In this section we collect results
from [24] that we need in the proof of the L2-estimate in Section 6. In [24] the case
without an isoparametric boundary approximation is considered. It turns out that
the results that we need from [24] also hold for the case with isoparametric boundary
approximation, i.e., with the mapping Θh in (4.11b), and that the proofs given in [24]
require only minor modifications. In the proofs below we refer to the analysis given
in [24] and explain only the modifications needed due to the additional isoparametric
boundary approximation.

In the error analysis we use the norm

‖v‖2h := |v|21 + ‖[[v]]‖21
2 ,h,Γh

+ ‖{{α∇v}}‖2− 1
2 ,h,Γh

, (5.1)

with ‖v‖2± 1
2 ,h,Γh

:= (ᾱ/h)
±1 ‖v‖2L2(Γh) and |v|21 :=

∑
i=1,2

αi‖∇v‖2L2(Ωi,h). (5.2)

Note that the norms are formulated with respect to Ωi,h = Θh(Ωlin
i ) and Γh = Θh(Γlin)

and include a scaling depending on α. The norm ‖·‖h and the bilinear forms in (4.14)
are well-defined on V Γ

h,Θ + Vreg,h.

Lemma 5.1 (Ellipticity and continuity). For λ sufficiently large the estimates

Ah(u, u) & ‖u‖2h for all u ∈ V Γ
h,Θ, (5.3a)

Ah(u, v) . ‖u‖h‖v‖h for all u, v ∈ V Γ
h,Θ + Vreg,h (5.3b)

hold.

Proof. The proof given in [24, Lemma 5.2] applies without any modifications. We
note that a crucial component in the proof is the assessment that L2 and H1 norms on
Ωi,h and Γh are equivalent to corresponding norms of mapped functions on Ωlin

i and
Γlin, cf. [24, Lemma 3.12]. Due to this the ellipticity and continuity can equivalently
be shown on a piecewise linear interface approximation with Γlin.

In the remainder we assume that λ is taken sufficiently large such that the results in
Lemma 5.1 hold. Then the discrete problem (4.13) has a unique solution.

A key component of the error analysis in [24] is the mapping Φh := Ψ ◦Θ−1
h . For

the derivation of properties of this mapping we first derive useful results for Ψ.

Theorem 5.2. For Ψ the following holds:

‖Ψ− id‖∞,Ω + h‖DΨ− I‖∞,Ω . h2, (5.4)

max
T∈T
‖DlΨ‖∞,T . 1, 0 ≤ l ≤ k + 1. (5.5)

Proof. On T Γ the results are a direct consequence of Lemma 4.1. On T1 ∪ T2

the result in (5.5) for l = 0, 1 follows from (5.4) and for l ≥ 2 it follows from (4.10e)
combined with (4.4c) and (3.2). It remains to derive the estimate as in (5.4) on T1∪T2.
We consider T2 and write E(ΨΓ − id, χb) := Ek

(
T2, (Ψ

Γ − id, χb)
)
. Using (4.10d) and

9



χb(xi) = 0 at vertices xi ∈ ∂T we get

‖Ψ− id‖∞,T2
+ h‖DΨ− I‖∞,T2

=‖E(ΨΓ − id, χb)‖∞,T2 + h‖DE(ΨΓ − id, χb)‖∞,T2

(4.10d)

.
k+1∑
r=0

hr
(

max
F∈F(∂T2\∂T )

‖Dr(ΨΓ − id)‖∞,F + max
F∈F(∂T )

‖Drχb‖∞,F
)

+ max
xi∈V(∂T2\∂T )

|(ΨΓ − id)(xi)|

. ‖ΨΓ − id‖∞,T Γ + h‖DΨΓ − I‖∞,T Γ︸ ︷︷ ︸
.h2 (Lemma 4.1)

+h2 max
2≤l≤k+1

max
T∈T Γ

‖DlΨΓ‖∞,T︸ ︷︷ ︸
.1 (Lemma 4.1)

+

k+1∑
r=0

hr max
F∈F(∂T )

‖Drχb‖∞,F︸ ︷︷ ︸
.h2 (3.2)

+ max
xi∈V(T Γ)

|d(xi)|︸ ︷︷ ︸
.h2 (Lemma 4.1)

. h2.

For T1 similar arguments can be applied.

The proof above generalizes the one given in [24] since it allows a boundary approxi-
mation via the function gb(x) = x+ χb(x).

From (5.4) it follows that, for h sufficiently small, Ψ is a bijection on Ω. Fur-
thermore this mapping induces a family of (curved) finite elements that is regular of
order k, in the sense as defined in [2]. The corresponding curved finite element space
is given by

Vh,Ψ := { vh ◦Ψ−1
h | vh ∈ V kh }. (5.6)

Due to the results in Theorem 5.2 the analysis of the approximation error for this
finite element space as developed in [2] can be applied. Corollary 4.1 from that paper
yields that there exists an interpolation operator Πh : Hk+1(Ω)→ Vh,Ψ such that

‖u−Πhu‖L2(Ω) + h‖u−Πhu‖H1(Ω) . hk+1‖u‖Hk+1(Ω) for all u ∈ Hk+1(Ω). (5.7)

For h sufficiently small, the mapping Φh = Ψ ◦ Θ−1
h : Ωh → Ω is a bijection

and has the property Φh(Γh) = Γ, cf. Fig. 4.2. In the remainder we assume that
h is sufficiently small such that Φh is a bijection. It has the smoothness property
Φh ∈ C(Ωh)d ∩ Ck+1(Θh(T ))d. In the following lemma we derive further properties
of Φh that will be needed in the error analysis.

Lemma 5.3. The following holds:

‖Θh −Ψ‖∞,Ωlin + h‖D(Θh −Ψ)‖∞,Ωlin . hk+1, (5.8)

‖Φh − id‖∞,Ωlin + h‖DΦh − I‖∞,Ωlin . hk+1. (5.9)

Proof. The estimate (5.8) follows by using the linearity of the extension operator
Ek, cf. (4.11), and then using argmuments very similar to the ones used in the proof
of Theorem 5.2. Note that Φh − id = (Ψ − Θh)Θ−1

h . From the results in (5.4) and
(5.8) it follows that ‖Θ−1

h ‖∞,Ωh . 1, ‖DΘ−1
h ‖∞,Ωh . 1. Hence, the estimate in (5.9)

follows from the one in (5.8).
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We define Vreg := H1(Ω) ∩H2(Ω1 ∪ Ω2). Related to Φh we define the following
transformed unfitted finite element space, cf. (4.12),

V Γ
h,Φ := {v ◦ Φ−1

h , v ∈ V Γ
h,Θ} ⊂ H1(Ω1 ∪ Ω2),

and the linear and bilinear forms

A(u, v) := a(u, v) +N(u, v), f(v) =

∫
Ω

fv dx, u, v ∈ V Γ
h,Φ + Vreg, (5.10)

with the bilinear forms a(·, ·), N(·, ·) as in (4.14) with Ωi,h and Γh replaced with Ωi
and Γ, respectively. In the following lemma a consistency result is given.

Lemma 5.4 (Consistency). Let u ∈ Vreg be a solution of (2.1). The following
holds:

A(u, v) = f(v) for all v ∈ V Γ
h,Φ + Vreg. (5.11)

Proof. Proof is given in [24]. No modifications are needed.

We introduce the subdomain

Uδ := {x ∈ Ω | dist(x,Γ) ≤ δ or dist(x, ∂Ω) ≤ δ },

with δ > 0 (sufficiently small), consisting of a tubular neigborhood of the interface Γ
and a strip adjacent to ∂Ω. To bound the consistency errors with respect to Ah we
use the following result.

Lemma 5.5. For δ > 0 sufficiently small and u ∈ H1(Ω1 ∪ Ω2) there holds

‖u‖L2(Uδ) ≤ cδ
1
2 ‖u‖H1(Ω1∪Ω2). (5.12)

Proof. See [10, Lemma 4.10].

With this result a consistency bound from [24] can be improved.
Lemma 5.6 (Consistency bounds). Let u ∈ Vreg be a solution of (2.1). We

assume f ∈ H1,∞(Ω1 ∪ Ω2) and a data extension fh, used in (4.15), that satisfies
‖fh‖H1,∞(Ω1,h∪Ω2,h) . ‖f‖H1,∞(Ω1∪Ω2). The following estimates hold for wh ∈ V Γ

h,Θ +
Vreg,h:

|A(u,wh ◦ Φ−1
h )−Ah(u ◦ Φh, wh)| . hk‖u‖H2(Ω1∪Ω2)‖wh‖h, (5.13a)

|f(wh ◦ Φ−1
h )− fh(wh)| . hk+1‖f‖H1,∞(Ω1∪Ω2)‖wh‖h. (5.13b)

Proof. In [24, Lemma 5.13] equation (5.13a) is derived for the case without
isoparametric boundary approximation. The proof applies, without modifications,
also to the case with isoparametric boundary approximation. In [24, Lemma 5.13]
a bound as in (5.13b) with hk+1 replaced by hk is derived. We now show how one
obtains the improved bound in (5.13b). Define ∆h := Uδh , which δh := ch and c > 0
sufficiently large such that Φ−1

h 6= id only on ∆h. Note that

|f(wh ◦ Φ−1
h )− fh(wh)| =

∣∣∣∣∫
Ω

f(wh ◦ Φ−1
h ) dx−

∫
Ωh

fhwh dx

∣∣∣∣
≤

2∑
i=1

∣∣∣∣∣
∫

Ωi

fi(wh ◦ Φ−1
h ) dx−

∫
Ωi,h

fi,hwh dx

∣∣∣∣∣ .
11



For i = 1, 2 and using fi,h = fi on Ωi we get:∣∣∣∣∣
∫

Ωi

fi(wh ◦ Φ−1
h ) dx−

∫
Ωi,h

fi,hwh dx

∣∣∣∣∣ =

∣∣∣∣∣
∫

Ωi,h

(
det(DΦh)(fi,h ◦ Φh)− fi,h

)
wh dx

∣∣∣∣∣
≤
∫

∆h∩Ωi,h

|(det(DΦh)− I)fi,hwh| dx+

∫
∆h∩Ωi,h

|det(DΦh)((fi,h ◦ Φh)− fi,h)wh| dx

≤ |∆h|
1
2 ‖ det(DΦh)− I‖∞,Ωh‖fh‖∞,Ωh‖wh‖L2(∆h)

+ |∆h|
1
2 ‖det(DΦh)‖∞,Ωh‖fh‖H1,∞(Ω1,h∪Ω2,h)‖Φh − id‖∞,Ωh‖wh‖L2(∆h)

. hk+ 1
2 ‖f‖H1,∞(Ω1,h∪Ω2,h)‖wh‖L2(∆h).

In the last inequality we used the properties of the transformation Φh from (5.9).

Next, we apply Lemma 5.5 to gain another factor h
1
2 :

‖wh‖L2(∆h) . ‖wh ◦ Φ−1
h ‖L2(Φh(∆h)) ≤ ‖wh ◦ Φ−1

h ‖L2(Uδh )

. δ
1
2

h ‖wh ◦ Φ−1
h ‖H1(Ω1∪Ω2) . h

1
2 ‖wh‖H1(Ω1,h∪Ω2,h) . h

1
2 ‖wh‖h.

(5.14)

Combining these results completes the proof.

The main result of [24] is given in the following theorem.
Theorem 5.7 (Discretization error bound). Let u be the solution of (2.1) and

uh ∈ V Γ
h,Θ the solution of (4.13).We assume that u ∈ Hk+1(Ω1 ∪ Ω2) and the data

extension fh satisfies the condition in Lemma 5.6. Then the following holds:

‖u ◦ Φh − uh‖h . hk(‖u‖Hk+1(Ω1∪Ω2) + ‖f‖H1,∞(Ω1∪Ω2)), (5.15)

|u− uh ◦ Φ−1
h |H1(Ω1∪Ω2) . hk(‖u‖Hk+1(Ω1∪Ω2) + ‖f‖H1,∞(Ω1∪Ω2)). (5.16)

Proof. The result (5.16) easily follows from (5.15) using the definition of the
norm ‖ · ‖h and properties of Φh. The proof of (5.15) in [24] applies with only minor
modifications. A key ingredient in the proof is the following approximation property,
which holds for arbitrary u ∈ Hk+1(Ω1 ∪ Ω2):

inf
vh∈V Γ

h,Θ

‖u ◦ Φh − vh‖h . hk‖u‖Hk+1(Ω1∪Ω2), (5.17)

which is based on the isoparametric interpolation error bound (5.7).

6. L2-error bound. In this section we present an L2-norm discretization error
bound for the unfitted finite element method in (4.13). The key ingredients are a
duality argument, the already available H1-error bound given in Theorem 5.7 and the
consistency error bound (5.13a)-(5.13b).

In the remainder we assume that the smoothness conditions on the solution u
and the right hand side f as formulated in Theorem 5.7 are satisfied. We define the
discretization error eh := u − uh ◦ Φ−1

h ∈ H1(Ω1 ∪ Ω2) and consider the (adjoint)
problem:

−div(αi∇z) = eh in Ωi, i = 1, 2, (6.1a)

[[α∇z]]Γ · nΓ = 0, [[z]]Γ = 0 on Γ, (6.1b)

z = 0 on ∂Ω. (6.1c)
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We assume that Γ and ∂Ω are sufficiently smooth such that the following regularity
property holds:

‖z‖H2(Ω1∪Ω2) . ‖eh‖L2(Ω), (6.2)

cf. [18, 7, 20]. From Lemma 5.4 we obtain the identity ‖eh‖2L2(Ω) = A(z, eh). The

L2-error analysis is based on the following splitting, with zh ∈ V Γ
h,Θ:

‖eh‖2L2(Ω) = A(z, eh)

= A(z, eh)−Ah(z ◦ Φh, eh ◦ Φh) (6.3a)

+Ah(z ◦ Φh − zh, eh ◦ Φh) (6.3b)

+Ah(u ◦ Φh, zh)−A(u, zh ◦ Φ−1
h ) (6.3c)

+ f(zh ◦ Φ−1
h )− fh(zh). (6.3d)

In the lemmas below we derive bounds for the terms in (6.3a)-(6.3d).
Lemma 6.1. The estimate

|A(z, eh)−Ah(z ◦ Φh, eh ◦ Φh)| . h2k
(
‖u‖Hk+1(Ω1∪Ω2) + ‖f‖H1,∞(Ω1∪Ω2)

)
‖eh‖L2(Ω)

holds.
Proof. Note that eh ◦ Φh ∈ V Γ

h,Θ + Vreg,h. We use (5.13a) with wh = eh ◦ Φh,
z instead of u and combine this with the regulariy estimate (6.2) and the result in
Theorem 5.7. This yields

|A(z, eh)−Ah(z ◦ Φh, eh ◦ Φh)| . hk‖z‖H2(Ω1∪Ω2)‖eh ◦ Φh‖h
. h2k

(
‖u‖Hk+1(Ω1∪Ω2) + ‖f‖H1,∞(Ω1∪Ω2)

)
‖eh‖L2(Ω),

which completes the proof.

In the terms (6.3b)-(6.3d) we need a suitable zh ∈ V Γ
h,Θ. For this we take zh ∈ V Γ

h,Θ

such that the following holds, cf. (5.17):

‖z ◦ Φh − zh‖h . h‖z‖H2(Ω1∪Ω2) . h‖eh‖L2(Ω). (6.4)

Lemma 6.2. Let zh be as in (6.4). The estimate

|Ah(z ◦ Φh − zh, eh ◦ Φh)| . hk+1
(
‖u‖Hk+1(Ω1∪Ω2) + ‖f‖H1,∞(Ω1∪Ω2)

)
‖eh‖L2(Ω)

holds.
Proof. Using the continuity result in (5.3b), the result in Theorem 5.7 and the

estimate (6.4) we obtain

|Ah(z ◦ Φh − zh, eh ◦ Φh)| . hk‖z ◦ Φh − zh‖h
(
‖u‖Hk+1(Ω1∪Ω2) + ‖f‖H1,∞(Ω1∪Ω2)

)
. hk+1

(
‖u‖Hk+1(Ω1∪Ω2) + ‖f‖H1,∞(Ω1∪Ω2)

)
‖eh‖L2(Ω).

Lemma 6.3. Let zh be as in (6.4). The estimate

|Ah(u ◦ Φh, zh)−A(u, zh ◦ Φ−1
h )| . hk+1‖u‖H2(Ω1∪Ω2)‖eh‖L2(Ω) (6.5)
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holds.
Proof. We use the splitting

Ah(u ◦ Φh, zh)−A(u, zh ◦ Φ−1
h )

= Ah(u ◦ Φh, zh − z ◦ Φh)−A(u, zh ◦ Φ−1
h − z) (6.6)

+Ah(u ◦ Φh, z ◦ Φh)−A(u, z). (6.7)

For the term in (6.6) we use the approximation result (5.13a) and (6.4):

|Ah(u ◦ Φh, zh − z ◦ Φh)−A(u, zh ◦ Φ−1
h − z)| . hk‖u‖H2(Ω1∪Ω2)‖zh − z ◦ Φh‖h

. hk+1‖u‖H2(Ω1∪Ω2)‖eh‖L2(Ω).

For the term in (6.7) we use [[u]] = [[z]] = 0 and thus get:

Ah(u ◦ Φh, z ◦ Φh)−A(u, z)

=

2∑
i=1

αi

(∫
Ωi,h

∇(u ◦ Φh) · ∇(z ◦ Φh) dx−
∫

Ωi

∇u · ∇z dx
)

=

2∑
i=1

αi

∫
Ωi

C∇u · ∇z dx,

with the matrix C := det(B−1)BTB − I, B := DΦh. We have C 6= 0 only on
∆h := Uδh , with δh = ch, for suitable c > 0. Furthermore, ‖C‖∞,Ω . hk holds,
cf. [24, Proof of Lemma 5.6]. Using this and Lemma 5.5 we obtain

|Ah(u ◦ Φh, z ◦ Φh)−A(u, z)| . hk‖u‖H1(∆h)‖z‖H1(∆h)

. hk+1‖u‖H2(Ω1∪Ω2)‖z‖H2(Ω1∪Ω2)

. hk+1‖u‖H2(Ω1∪Ω2)‖eh‖L2(Ω).

Combing these results completes the proof.

Lemma 6.4. Let zh be as in (6.4). The estimate

|f(zh ◦ Φ−1
h )− fh(zh)| . hk+1‖f‖H1,∞(Ω1∪Ω2)‖eh‖L2(Ω) (6.8)

holds.
Proof. Using (5.13b) we get

|f(zh ◦ Φ−1
h )− fh(zh)‖ . hk+1‖f‖H1,∞(Ω1∪Ω2)‖zh‖h

Furthermore, using (6.4) we get

‖zh‖h ≤ ‖zh − z ◦ Φh‖h + ‖z ◦ Φh‖h . h‖eh‖L2(Ω) + ‖z‖H2(Ω1∪Ω2) . ‖eh‖L2(Ω).

Thus we obtain the bound in (6.8).

Combining the previous results we obtain the following main result.
Theorem 6.5 (L2-error bound). We assume that the smoothness conditions on

the solution u and on the data f, fh as formulated in Theorem 5.7 are satisfied and
that Γ and ∂Ω are sufficiently smooth such that we have the regularity property (6.2)
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for the solution of the problem (6.1). The following bound holds for the discretization
error:

‖u− uh ◦ Φ−1
h ‖L2(Ω) ' ‖u ◦ Φh − uh‖L2(Ωh)

. hk+1(‖u‖Hk+1(Ω1∪Ω2) + ‖f‖H1,∞(Ω1∪Ω2)).
(6.9)

7. Numerical experiment. Results of numerical experiments that confirm the
optimal hk+1 convergence in the L2-norm for the interface problem (2.1) are given
in [22, 24]. However, In these examples the domain boundary is polygonal. In the
experiment presented in this section we consider a case where the curved domain
boundary is approximated by isoparametric elements.

The domain is a disk around the origin with radius R = 2, Ω = B2((0, 0)). The
domain is divided into an inner disk Ω1 = B1((0, 0)) and an outer ring Ω2 = Ω \ Ω1.
Hence, the interface is a circle described with the level set function φ(x) = ‖x‖2 − 1,
Γ = {φ(x) = 0}. We approximate φ by φh ∈ V kh by interpolation. We set (α1, α2) =
(π, 2) and take the right hand-side f such that the exact solution is given by (with
r(x) = ‖x‖2)

u(x) =

{
2 + (cos(π2 r(x))− 1) x ∈ Ω1,

2− r(x) x ∈ Ω2.
(7.1)

Note that u fulfills the interface conditions. For the Nitsche stabilization parameter we
choose λ = 20k2 and measure the L2 error on the curved mesh Ωh which is obtained
by applying the isoparametric mapping Θh. To measure the errors we use domain-
wise the canonical extension of u leading to ue as in (7.1) with Ωi replaced by Ωi,h.
Starting from a coarse initial mesh, see Figure 7.1 (top left), we apply three succesive
mesh refinements and use polynomial degrees k = 1, .., 5. To solve the arising linear
systems we used a direct solver. The method has been implemented in the add-on
library ngsxfem to the finite element library NGSolve [31].

The results are shown in Figure 7.1. We observe the predicted optimal O(hk+1)
behavior.
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