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Abstract

One of the most challenging problems in applied mathematics is the approximate solution
of nonlinear partial differential equations (PDEs) in high dimensions. Standard deterministic
approximation methods like finite differences or finite elements suffer from the curse of di-
mensionality in the sense that the computational effort grows exponentially in the dimension.
In this work we overcome this difficulty in the case of reaction-diffusion type PDEs with a
locally Lipschitz continuous coervice nonlinearity (such as Allen-Cahn PDEs) by introducing
and analyzing truncated variants of the recently introduced full-history recursive multilevel
Picard approximation schemes.
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1 Introduction

One of the most challenging problems in applied mathematics is the approximate solution of non-
linear partial differential equations (PDEs) in high dimensions. Standard deterministic approxima-
tion methods like finite differences or finite elements suffer from the curse of dimensionality in the
sense that the computational effort grows exponentially in the dimension. Linear parabolic PDEs
of second order can be solved approximately without the curse of dimensionality by means of Monte
Carlo averages. In the last few years, several probabilistic approximation methods, which seem
in certain situations to be capable of efficiently approximating high-dimensional nonlinear PDEs,
have been proposed. For instance, the articles [6], 18], 20, 21] propose and study approximation
methods based on stochastic representations of solutions of PDEs by means of branching diffusion
processes (cf., for example, [32], 35, B7] for theoretical relations and cf., for example, [36] for a
related method), the articles [11, 2, 3], 4, (5], [8, 9] 12} 13}, 14}, 15, 16, 17, 19, 22, 27, 29, 30, 31, 33 34]
propose and study approximation methods based on the reformulation of PDEs as stochastic
learning problems involving deep artificial neural networks, and the articles [10} [1T), 23, 24, [25], 26]
propose and study full-history recursive multilevel Picard (MLP) approximation methods. In par-
ticular, the articles [24] 25] prove that MLP approximation schemes do indeed overcome the curse
of dimensionality in the numerical approximation of semilinear parabolic PDEs. More formally,
Theorem 3.8 in [24] shows that MLP approximation schemes are able to approximate the solutions
of semilinear parabolic PDEs with a root mean square error of size ¢ € (0, 00) and a computational
effort which grows at most polynomially both in the dimension as well as in the reciprocal 1/ of
the desired approximation accuracy. However, the articles [24] 25] are only applicable in the case
where the nonlinearity is globally Lipschitz continuous and, to the best of our knowledge, there
exists no result in the scientific literature which shows for every 7' € (0, 00) that the solution of a
semilinear parabolic PDE with a non-globally Lipschitz continuous nonlinearity can be efficiently
approximated at time 7" without the curse of dimensionality.

In this work we overcome this difficulty by introducing a truncated variant of the MLP approx-
imation schemes introduced in [10, 24] and by proving that this truncated MLP approximation
scheme succeeds in approximately solving reaction-diffusion type PDEs with a locally Lipschitz
continuous coercive nonlinearity (such as Allen—Cahn type PDEs) without the curse of dimension-
ality. More specifically, Theorem in Section [3 below, which is the main result of this article,
proves under suitable assumptions that for every § € (0,00), € € (0,1] it holds that the proposed
truncated MLP approximations can achieve a root mean square error of size at most £ with a
computational effort of order de~**% . To illustrate the findings of this article in more detail, we
now present in Theorem [T below a special case of Theorem [£.5.

Theorem 1.1. Let 6,k,T € (0,00), © = UpenZ®, f € CHR,R), (f1)gen € C(R,R), (ug)gen C
C([0,T] x R4 R), assume that f' is at most polynomially growing, assume for every d € N,
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€ (0,T], z € R, v € R that vf(v) < k(1 +v?), [ua(0,2)] < K, uglorxre € C-*((0,T] x
R?, R), mfceR(Supse{OT] SUD, (g gyt (€T (5, y)[) < o0, fa(v) = f(min{In(1 +

.....

In(d)), max{—In(1 + In(d)), }( ), and

(Frua)(t, 2) = (Doua)(t, z) + f(ualt, ), (1)

let (Q, F,P) be a probability space, let R?: @ — [0,1], 6§ € O, be independent Uy 1)-distributed
random variables, let W: [0,T] x @ — R? d € N, § € ©, be independent standard Brownian
motions, assume that (R%)pce and (W )(d,g)eNX@ are independent, let R?: [0,T] x Q — [0,T],
0 € O, satisfy for every § € ©, t € [0,T] that R? = tR, for everyd € N, s € [0,T], t € [s,T],
x€RY €0 let XIY,: Q— R satisfy Xof, = o+ V2(W —Wa0) let UG, [0, T] xR x Q —

R, d,M € N, § € ©, n € Ny, satisfy for every d,n,M € N, § € ©, t € [0,T], z € R? that
Ué{’&(t,x) =0 and

Gknﬂ (6,k,m) d,(0,k,m)
nM t .T Z Mn k I: — < ( (Rt ’XRie’k’m),t,:L‘))

d,(0,—k,m) 0,k,m) d 0.k,m
_ fM (Uk (1 M (R( 5 R((ka,m)?tw)))

(2)

1 [& d,(0,0,—m)
b | 2 (O X ) 41 50)
and for every d,M € N, n € Ny let €4, € Ny be the number of realizations of scalar stan-
dard normal random variables which are used to compute one realization of Ug:?M(T,O): Q—=R

(cf. Corollary [53 for a precise definition). Then there exist N: (0,1] — N and ¢ € R such that
for every d € N, ¢ € (0,1] it holds that Cqm_ ;. < cde~+9) and

sup ( UUm (T, x) — uq(T, SL’)‘ )1/2 <e. (3)

zcRd

Theorem [Tl above is an immediate consequence of Corollary in Section Bl below. Corol-
lary follows from Corollary [B.1] which, in turn, is deduced from Theorem [£.5] the main result
of this article. Theorem [[LT] establishes under suitable assumptions that for every ¢ € (0, 00) there
exists ¢ € (0,00) such that for every d € N the solution ug: [0,7] x R? — R of the reaction-
diffusion type partial differential equation in ([Il) can be approximated by the MLP approximation
scheme in (2]) with a root mean square error of size ¢ € (0,00) while the computational effort is
bounded by cde=*9. The numbers €4, 1, d, M € N, n € Ny, in Theorem [Tl model the com-
putational effort. The nonlinearity f: R — R in Theorem [[.1] is required to be locally Lipschitz
continuous (which follows from the hypothesis in Theorem [T that f” is continuous) and to satisfy
a coercivity type condition in the sense that there exists x € R such that for all v € R it holds
that vf(v) < k(1 + v?). This coercivity type condition together with the growth assumption on
the solutions ug: [0,7] x RY — R, d € N, allows us to deduce in Section 2 that the solutions
ug: [0,T] x R — R, d € N, are uniformly bounded. In particular, Corollary 24 in Section
yields that there exists 9t € N such that for every M € [, 00) NN, d € N, t € [0,T], z € R?
it holds that (Zug)(t,z) = (Ayua)(t, z) + far(ua(t, z)). The fact that for every d, M € N it holds
that (Zuq)(t, :E) (Agug)(t, )+ far(ug(t, ), (t,x) € [0,T] x R?, is a parabolic PDE with a glob-
ally Llpschitz continuous nonlinearity then permits us to bring the machinery from [24] into play.
This will finally allow us to prove Theorem [[T] (see Sections [2 and B] for details). We note that
although Theorem [[LT] uses the assumption that the nonlinearity f: R — R satisfies the coercivity
type condition that there exists £ € R such that for all v € R it holds that vf(v) < k(1 + v?),
explicit knowledge of the coercivity constant k is not required for the implementation of the MLP
approximation scheme.



The remainder of this article is organized as follows. In Section 2] we present elementary a
priori bounds for classical solutions of reaction-diffusion type PDEs with coercive nonlinearities.
In Section Bl we introduce truncated MLP approximation schemes and we provide upper bounds for
the root mean square distance between the truncated MLP approximations and the exact solution
of the PDE under consideration. In Section [l we combine the error estimates from Section [ with
estimates for the computational effort for truncated MLP approximations to show under suitable
assumptions that for every § € (0,00) a root mean square error of size ¢ € (0, 1] can be achieved
by truncated MLP approximations with a computational effort of order de~*+%. In Section [ we
specialize our findings to Allen—Cahn type PDEs.

2 A priori bounds for reaction-diffusion equations with
coercive nonlinearity

For convenience of the reader, we recall the following well-known maximum principle for subsolu-
tions of the heat equation (cf., e.g., John [28, Pages 216-217 in Section 1 in Chapter 7]).
Lemma 2.1. Let d € N, T € (0,00), v € C([0,T] x R, R), assume that v|rxre € C**((0,T] X
R R), assume for every t € (0,T], x € R? that

(Z0)(t,2) < (A0)(t,2), (4)
let ||| : R? — [0, 00) be the d-dimensional Euclidean norm, and assume that
inf  sup (e u(t,2)) < . (5)

a€R (1 z)e[0,T]) xRd

Then it holds that

sup  v(t,x) = sup v(0, x). (6)
(t,2)€[0,T] xR¢ pERd

Proof of Lemma[2.1. Throughout this proof assume w.l.o.g. that

sup v(0, z) < oo, (7)
rER?

let ®.: [0,7] x R — R, ¢ € (0,00), be the functions which satisfy for every ¢ € (0, 00), t € [0, 7],
r € R? that

B.(t, ) = [4m(T + = — ] exp($) , ®)

and let w. r: [0,T] x RY — R, e, M € (0,00), be the functions which satisfy for every e, M €
(0,00), t € [0,T], z € R that

wep(t,x) =v(t,x) — MO (t, z) — et. 9)
Observe that for every ¢ € (0,00), t € [0,7], z € R? it holds that

x
2(T +¢e—1)
This implies that for every ¢ € (0,00), t € [0,T], x = (x1,...,74) € R? it holds that

(200 2) = (20.) () [%1 + ®.(t, x) lﬁ]

(VP )(t,z) = D.(t, x) [ . (10)

T 2 1
= ®.(t,2) l—)l + Ot ) lm] (11)

) |$k|2 1
- 0.(1.2) <4(T+s 0 T e —t>> |
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Therefore, we obtain that for every ¢ € (0,00), t € [0,T], x = (x1,...,74) € R? it holds that

(8,®.) (1) = > (=% (1, )

_ [Els d
= 2e(t,2) (4(T+e—t) * 2(T+e—t)> '

Moreover, observe that for every ¢ € (0,00), t € [0,T], x € R? it holds that

(5®)(t,7) = —§[4W<T+€ — )] 4] M%)

+[4W(T+E—t)]_d/Qexp< =1 )L( 1 ]

AT +e—1t) T+¢e—1t)?

= [Ar(T +e—t)] exp <4(T”+x—’f—t)> [—g <47T(T_fz _ t)) + AT !ﬂz_ t)2]

= d [E2k
N (2(T+e —1) + AT +e— t)2> d.(t,x).

Combining this with (IZ)) ensures that for every ¢ € (0,00), t € [0, 7], z € R? it holds that

(5:P)(t,2) = (A o) (t, ). (14)
This, @), and (@) imply that for every £, M € (0,00), t € (0,T], x € R? it holds that

(13)

)(tv ZL’) o M(%q)€><t7 z
o)t @) = M(A:2)(t, 56) (15)
< (A;,ﬂ))(t,:l}) _M(A )( ) )_8_ (A:vws,M)(t,l’>—5-

In addition, observe that (Bl) ensures that there exist C' € [0,00) and a € (0, 00) such that for
every t € [0,T], € R? it holds that

o(t, z) < CelI? (16)

To prove () we distinguish between the case T < —a and the case T' > 4-. We first prove (@) in
the case T' < 1=. Observe that (8), (@) and (I0) imply that for every ¢ € (0 +~—T), M € (0,00),
t € [0,T], x € R it holds that

wep(t,x) <wv(t,x) — MO(t, )

) M el
= olbo) = e — e P <m>

= U5 [4n(T + )2 “P\ LT + o) (17)
M ex( ] )
4 (T + )2 “P\ g7+ 2)

~ o= ey agmen (1ot [ o] )|
5)

< Cetllel?




Furthermore, observe that the hypothesis that v € C'([0, T] x R? R) and the fact that the interval
[0, 7] is compact ensure that inf,cpmv(s,0) € R. Hence, we obtain that for every ¢, M € (0, 00)
it holds that

. . M
mln{(), Lel[%,fT] v(s, 0)] —eT — W} e R. (18)
This and the fact that for every € € (0, ﬁ —T) it holds that a < m imply that there exists a

function R = (Re u)(e.ane(0,00)2 - (0,00)% = (0, 00) such that for every e € (0, 2 —T), M € (0, 00)
it holds that

e (|

. . M
< mln{o, [Sé%fT} 'U(S, 0)‘| — el — W} .

(19)

Combining this with (8) and (@) proves that for every e € (0,4 —T), M € (0,00), ¢t € [0,T] it
holds that

M M
. M T M
< sel[rol,fT]v<3’O>] = ey = Lé[rol,fﬂv(‘s’())] T ey
M M (20)
<| inf - < o(t,0) — et —
= Léf&,n”(s’o)l il s 7R G A e g 76

=v(t,0) —et — MP.(t,0) = we p(t,0) < sup we (S, ).
(s,2)€[0,T)xR?,
[ <Re,a

This, (I7), and (I9) ensure that for every ¢ € (0, — 1), M € (0,00), t € [0,T], z € R* with
|z]| > R it holds that

o it 7) < eI [C = m eXlo(HﬂfH2 [ﬁ - “D}

al|z||? M 2 1
< eal=l [C_—[47T(T+e)]d/2 exp<|RE7M| [74(T+5) —a])]

o M 1 (21)
=0 lc  [4n(T + €] eXp<|RE’M| [4(T +e) “m

< osup wenm(s,y).
(s,y)€[0,T]x R4,

lyl|<Re,mr
Therefore, we obtain that for every e € (0, & — T'), M € (0,00) it holds that
sup we,M(ta {L‘) = sup wa,M(ta {L‘) (22)
(t,x)€[0,T]xR4 (t,x)€[0,T]xRY,
[ <Re,a

The fact that for every e € (0, & —T), M € (0,00) it holds that the function w, y: [0, 7] x R* —
R is continuous hence demonstrates that for every e € (0, ﬁ —T), M € (0,00) there exists
(tear, e nr) € [0, T] x R? such that it holds that

sup  wen(t, ) = we (e nrs Tenr)- (23)
(t,2)€[0,T] x R4
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The fact that for every € € (0, 2= =T, M € (0,00) it holds that w. | rjxre € C2((0,T] xRY, R)

therefore ensures that for every e € (0, = —T), M € (0,00), v € R* with t. 5y > 0 it holds that
(Bwen)(tenrwenr) =0 and  ((Zgwenr)(tear, 700) ) (v,0) 0. (24)
Hence, we obtain that for every € € (0, = — T), M € (0, 00) with ¢. 3 > 0 it holds that
(Frwe,nr) (tep, Tepr) > 0 (25)
and J
(Apwenr)(tenr, Teonr) Z azk2w5M te s Tenr) < 0. (26)

This and (I8) imply that for every € € (0, & — T'), M € (0,00) with ¢. 5 > 0 it holds that

0 < (8tw5 M)(te,Ma xe,M) S (Axwa,M)(ta,Maxa,M) — £ S —e < 0. (27)
Hence, we obtain for every e € (0, & —T'), M € (0,00) that .5 = 0. Combining this with (23)
proves that for every £ € (0, = — T), M € (0,00) it holds that
sup  wen(t,x) = wenr(tenss Ter) = We g (0, 2 ar) < sup we (0, ). (28)
(t,x)€[0,T]xR4 r€ER?

This and (@) imply that for every ¢t € [0,T], z € R%, e € (0,-+ — T), M € (0,00) it holds that

1
4a

v(t,x) = wep(t, ) + MP(t,x) + et <

sup we (0, y)] + M (t,x) + et

vere (29)
sup v(0, y)] + MO (t,x) + et.
yER?
Therefore, we obtain that for every t € [0,T], z € R%, € € (0, ﬁ —T) it holds that
v(t,x) < liminf <[sup v(0, y)] + M (t,x) + st) = [sup v(0, y)] + et. (30)
M\O yERd yERd
Hence, we obtain that for every ¢t € [0,7], z € R it holds that
v(t,z) < liminf <[sup v((),y)] + 5t> = sup v(0,y). (31)
€ yERd yERd

This establishes (@) in the case T < ;-. We now prove (@) in the case 7' > ;-. For this let k£ € N
and T € (0, =] be the real numbers Whlch satisfy that

k

T =— 32
T (32)
let ; € R, 1€{0,1,...,k+ 1}, be the real numbers which satisfy for all [ € {0,1,...,k} that
[
T = % and T+l = T, (33)

and let v;: [0,741 — 7] x R — R, [ € {0,1,...,k}, be the functions which satisfy for all [ €
{0,1,...,k}, t €[0,741 — 7], € R? that

o,(t,x) =v(t + 7, x). (34)
7



Next we claim that for every [ € {0,1,...,k + 1} it holds that

sup  v(t, ) = sup v(0, 7). (35)
(t,z)€[0,m] xR zeRd

We now prove (33]) by induction on [ € {0,1,...,k+ 1}. Observe that the fact that

sup  o(t,z)= sup o(t,z)= sup v(0,x) (36)
(t,z)€l0,mo] xR (t,z)e{0} xR2 z€R4

establishes (B3) in the base case [ = 0. For the induction step {0,1,...,k} 21 — I+ 1 €
{1,2,...,k+ 1} assume that there exists [ € {0,1,...,k} such that

sup  o(t,x) = sup v(0, z). (37)
(t,x)€[0,7;] x R4 z€R

In addition, note that (@), (I6]), and (34) ensure that for every t € (0,741 — 7], € R? it holds
that

(500)(t, ) = (F0)(t +7,2) < (Apv)(t+ 7, 2) = (Agwr)(t,2) (38)
and
sup (el Py, (¢, 2)) = sup (e=llPy(t, z)) < C < . (39)
(t,:L‘)E[O,TlJFl*Tl]XRd (t,I)E[Tl,Tl+1]XRd

This, (7), and (@) in the case T' < ;- show that

sup v(t,x) = sup v,(t,z) = sup v;(0,2) = sup v(7, )
(t,x)G[Tl,Tl+1}XRd (t,x)G[O,Tl+1le}><]Rd z€R4 zCcRd (40)
< sup  v(t,x) = sup v(0, z).
(t,z)€[0,m] x R4 z€R4
Therefore, we obtain that
sup v(t, r) = max sup (¢, x), sup u(t, )
(t,I)E[O,Tl+1]XRd (t,!L‘)E[O,Tl}XRd (t,x)G[Tl,Tl+1}XRd
= max{ sup v(0, x), sup v(t, x) (41)
{L‘GRd (t,iB)G[Tl,TH,l]XRd
< sup v(0, x).
z€eR

Induction hence proves ([B3]). Furthermore, note that (35]) and the fact that T' = 7,1 imply that

sup  o(t,x) = sup v(t,z) = sup v(0, x). (42)
(t,2)€[0,T] x R4 (t,2)€[0,T41] X RE z€eR
This establishes ([6]) in the case T' > ﬁ. The proof of Lemma [2.1] is thus completed. O

Corollary 2.2. Letd € N, T € (0,00), v € C([0, T]xR%, R), assume that v rjxre € C2((0,T] %
R? R), assume for every t € (0,T], x € R? that

(o)t 2) < (A)(t, @), (43)
let ||| : R? — [0,00) be a norm, and assume that
inf  sup  (e"Pu(t,2)) < . (44)

a€R (¢ 2)e[0,T]x R4

Then it holds that
sup  v(t,x) = sup v(0, x). (45)
(t,x)€[0,T] xR zeR?
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Proof of Corollary[Z2. Throughout this proof let [||-||: R¢ — [0,00) be the d-dimensional Eu-

clidean norm and let ¢ € (0, 00) be the real number which satisfies that

_ < ] )
c= sup :
rera\ {0y \ [[[]]
Note that (44) ensures that there exists a € (—oo, 0] such that

sup (el (t, ) < .
(t,2)€[0,T] x R4

In addition, observe that (@8] implies that for all z € R¢\ {0} it holds that

[N 2
aHxHQ:al— " = ac®[l(]".

Il

Combining this with (@7) demonstrates that for every ¢ € [0, T], z € R? it holds that

Iy (1 2) < eI max {0, v(t, )}
< ea||l‘||2 max{o’ U(t, {L‘)}
= maX{O, ea”m”20<t7 37)}
< maX{O, sup (e“”y"QU(Say))} < 0.
(5,9)€[0,T]x R4

This ensures that

sup (6“02|‘|$‘”20(t, r)) < maX{O, sup (el Py (e, :1:))} < 0.

(t,z)€[0,T] x R4 (t,z)€[0,T)xR4

Hence, we obtain that

inf  sup (eo‘mm”'Qv(t, x)) < 00.
@€R (¢ 2)€]0,T] xR

Combining this with (43]) enables us to apply Lemma 2] to obtain that

sup  v(t,x) = sup v(0, z).
(t,z)€[0,T] x R4 zEeR

The proof of Corollary is thus completed.

(46)

(47)

(48)

(50)

(51)

(52)

O

Theorem 2.3. Let d € N, T € (0,00), c € R, let f: [0,T] x R? x R — R be a function, assume

for every t € [0,T], r € RY, y € R that

yf(t.z,y) <c(l+y?),

(53)

let w e C([0,T] x R, R), assume that u|grjxre € CH*((0,T] x R4, R), let ||| : R — [0,00) be a

norm, assume that

inf  sup (e |u(t, 2)]) < oo,
a€R (¢,2)€[0,T]xRd

and assume for every t € (0,T], x € R? that
(%)(t, I) = (Aru> (tv ZL’) + f<t7 T, u<t7 x))
Then it holds for every t € [0,T) that

1/2 1/2
sup Ju(t, 7)] < sup<1+|u<t,x>|2>] Sedlwsupm(o,xn?] |

rER4 - rER4 zERY
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Proof of Theorem[Z.3. Throughout this proof let v: [0, 7] x R? — R be the function which satisfies
for every t € [0,T], » € R? that

v(t,z) = e 21 + |u(t, x)|?). (57)
Note that (54) ensures that there exists a € (—o0, 0] such that
0 < e
Moreover, observe that (B3) demonstrates that ¢ > 0. Combining this with (&7) and (58) implies
that

sup (62“””5”21)(75, x))
(t,z)€[0,T]|xRd

= sup (e (14 fu(t,2)?))

(t,2)€[0,T]x R4

< sup e2alel® (1 4 | t,z)|?
(t,x)e[o,T}de( ( [ult, )l )) (59)

< L’ )sup (€2allrll2)] + [ Sup (e2allxll2|u(t’x)|2)1

t,z)€[0,T] x R4 (t,z)€[0,T]xR4
2

=1+ [ sup (e“”x”2|u(t,x)|) < 0.
(t,z)€[0,T] xR
Hence, we obtain that ,
inf  sup  (e?l"7u(t,2)) < oo. (60)

€R (¢ 2)el0,T]x R4

Next observe that (57), the hypothesis that u € C([0,T] x R% R), and the hypothesis that
ul (o 1)xre € CH2((0,T] x R? R) ensure that

v e C([Oa T] X RdaR) and v|(0,T}><Rd S 0172((07T] X RdaR)' (61)

Furthermore, note that (57) demonstrates that for every ¢ € (0,7], x € R? it holds that v(0,z) =
1+ |u(0,z)* and

(FV)(t,2) = =2ce(1+ [u(t, 2)[*) + 2 *u(t, 2)(5) (¢, ©). (62)
This, (55), and (B3) imply that for every ¢t € (0,T], x € R? it holds that
(%v)(t, 1) = —2ce (1 + |u(t, x)|?) + 2e > u(t, x) (Agu)(t, z) + f(t, z,u(t, x)))
< —2ce (1 + |u(t, 2)|?) + 2e 2 Mu(t, ) (Auu) (t, 2) + 2ce (1 + |u(t, z)|?) (63)
= 2e u(t, 2)(Ayu)(t, ).

The fact that for every twice differentiable function w: R? — R and every = = (z1,...,14) € R?
it holds that

=3 [ @) + 20() (@)
k:ld J (64)
=1 |<£w><x>|2] + 2u(e) |3 (o))



therefore implies that for every t € (0,T], z = (x1,...,24) € R? it holds that

(20)(t.z) < e (2u(t, 2)(A,u)(t, )

5
:em<( (1)t li ol D (65)
— (Auo)(t,2) — 267 [Z GE06F] < Qoina)

Combining this with (60) and (61I) enables us to apply Corollary [22] to obtain that

0<  sup  wv(t,x) < supv(0,7) =1+ sup |u(0,z)]% (66)
(t,z)€[0,T] xR r€R zeR4

Therefore, we obtain that for every t € [0, 7] it holds that

1/2 1/2
sup e, )| = [sup a0} < [sum (14 utt. o))
zeRd r€R4 r€R4
1/2 1/2
= e [sup (e_w (1 + |u(t, $)|2))] = [sup v(t, x)] (67)
zER4 r€R
1/2 1/2
<e sup  v(s,x) “11 + sup |u(0,x)|2] .
(s,2)€[0,T] x R4 zeRI
The proof of Theorem is thus completed. O

Corollary 2.4. Letd € N, T € (0,00), c € R, let ||-]| : R — [0, 00) be a norm, let f: [0,T] x R% x
R — R be a function which satisfies for everyt € [0,T], x € RY, y € R that yf(t,x,y) < c(1+y?),
and letu € C([0, T)xR%, R) satisfy for everyt € [0,T), x € R* that u|j 7)xre € C2([0, T)xR%, R),

inf,cr sup(s,y)E[O,T]XRd(ea”?’HQ|u(s,y)|) < 00, and
(Zu)(t,z) + 3(Agu)(t, x) + f(t, z,u(t,z)) =0. (68)
Then it holds for every t € [0,T) that

1/2 1/2

< eI [1 + sup |u(T,x)]?| . (69)

zcRd

sup |u(t, z)| < |sup (1 + Ju(t, z)|*)
zcRd xcRd

Proof of Corollary[2.7 Throughout this proof let U: [0,7] x R? - R and F: [0,T] x R*xR — R
be the functions which satisfy for every ¢t € [0,T], x € R, y € R that U(t,z) = u(T —t, %) and
F(t,z,y) = f(T —t,7,y). Observe that the assumption that for every ¢ € 0,T],z € R y eR

it holds that vf(t, z, y) < ¢(1 + y?) implies for every t € [0,T], z € R%, y € R that
yF(t,z,y) =yf(T —t,%,y) <c(1+¢?). (70)

Moreover, observe that the hypothesis that inf,cg sup )E[O,T]XRd(ea”y”Q lu(s,y)|) < oo ensures that

there exists o € R which satisfies that

s7y

sup eo‘”m”2|u(t, :c)|) < 00. (71)
(t,z)€[0,T]x R4
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This implies that
sup (e%”x”2|U(t, x)|) = sup (eo‘”z/ﬁ”2|u(T —t, %)D < 0. (72)
(t,x)€[0,T]xR4 (t,z)€[0,T]xR4

Hence, we obtain that

inf  sup ( “”35”2|U(t,x)|) < 0. (73)

a€R (¢ 2)€[0,T]xRd

In addition, note that the hypothesis that v € C([0,T] x R?,R), the hypothesis that u|j r)xgra €
C12([0,T) x R4, R), the chain rule, and (68) ensure that for every ¢t € (0, 7], x € R? it holds that
U € C([0,T] x RY,R), that Ul qxre € CH*((0,T] x R, R), and that

(2U)(t,z) = (AU)(t,2) + F(t,z,U(t,z)). (74)
Combining this, (70), and (73) with Theorem [Z3] (with f = F, u = U in the notation of Theo-
rem 2.3) demonstrates for every t € [0, T] that

1/2 1/2
sup |u(t, z)| = [1 + sup |u(t,:c)|2] = [1 + sup |U(T —t, :1:)\2]

zeR? zeR? zeR?
1/2 1/2 (75)
< eI ll + sup \U(O,x)\Q] = T-Y) [1 + sup |u(T, :c)|2] :
r€R4 zeRd
This completes the proof of Corollary 241 O

3 Truncated full-history recursive multilevel Picard (MLP)
approximations

In this section we present and analyze a (truncated) MLP approximation scheme for reaction-
diffusion type PDEs with coercive nonlinearity (see Setting B.I] below for details). The error
analysis relies on results in [24] Section 3] (cf. also Proposition 3.4 below) in combination with a
Feynman—Kac representation (cf. Lemma B3]) and the a priori estimates in Section 2] above.

Setting 3.1 (Setting and algorithm). Let d € N, T € (0,00), © = U,enZ®, f € C([0,T] x R x
R,R), g € C(R%LR), letf,: [0, T|xRIxR — R, r € (0,00), satisfy for everyr € (0,00), t € [0,T],
r €RY ueR that

£.(t,x,u) = f(t,z, min{r, max{—r,u}}), (76)

let (0, F,P) be a probability space, let R?: Q@ — [0,1], 6 € O, be independent Uy 1 -distributed
random variables, let W9: [0,T] x Q — R?, 0§ € O, be independent standard Brownian motions,
assume that (R%)gco and (W?)geco are independent, let R?: [0, T] x Q — [0,T], 6 € O, satisfy for
every 0 € ©, t € [0,T] that RY =t + (T — t)R?, for every 0 € ©, t € [0,T], s € [t,T], v € R?
let X7, ,:Q —)Rd satisfy X, , = x4+ W —W¢, and let U] ;- [0,T] xR x Q = R, 6 € O,

neNy, M eN, re(0,00), satzsfyfor every € ©, n, M € N, r € (0,00), t € [0,T], xeRd that
U§ ypp(t,2) =0 and

1 M7 0,0,—m 0,0,m) 0,0,m
Ur o (t0) = 502 [Z (X5 + (@ = 1) (RO, X000, 0))
m=1
-1 Mn—F
— (I —1t) ka 0,k,m (0,k,m) ka Ok

0,k,m 6,k,m (6,—k,m 0,k,m 0,k,m
_f(R§ X U (R >,Xt<7R§9,k?m)7x))>].
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The next result, Lemma below, is an adaptation of [24, Theorem 3.5] to Setting B.1l

Lemma 3.2 (Convergence rate for stochastic fixed point equations). Assume Setting [31, let
€ (0,00), let L: (0,00) — [0, 00) satisfy for every r € (0,00), t € [0,T], € R, v,w € [—r,7]

that
|f(t,x,v)—f(t,x,w)| SL(T)|U—’LU|, (78)

let u € C([0,T] x R4, R) satisfy for every r € [p,00), t € [0,T], x € R? that
0 g 0 y2])7?
EW@MQH+A(MW@XMaw)dS
+ e
ot u(t0) =B|a(X0p.) + [ (5. X0 (s, X2, a5 (50)

Then it holds for everyn € Ny, M € N, r € [p,00), © € R? that

SXO

tsa:’

(s Xtom )’+‘f s stx, )Hds<oo

(EUUS,M,T(O, :L’) — U(O, x)‘2i| )1/2
(EllFl) +f‘/ [1£(s, X3, 0)[?] ds

S eL(T’)T

Proof of Lemma[32. Throughout this proof let P,: R — R, r € (0,00), be the functions which
satisfy for every v € R that P,(v) = min{r, max{—r,v}} and assume w.l.o.g. that there exists a
standard Brownian motion W: [0, 7] x Q — R¢ which satisfies that (R?)geco, (W?)sco, and W
are independent. Observe that for every r € (0, 00) it holds that P,: R — R is the projection onto
the closed convex interval [—r, r|. Therefore, we obtain for every r € (0,00), v,w € R that

|Pr(v) = Br(w)] < o —w] (82)

(cf., e.g., Brézis [7, Proposition 5.3]). This, (76), and (78) imply for every r € (0,00), ¢t € [0, 7],
r € RY v, w € R that

‘fr<tvxvv) - fr(t,az,w)| = ‘f(t,:l},PT(U)) - f(

b, P(w))|
L(r)|P(v) — Py(w)| < L (83)

()0 —wl.

This and [24, Theorem 3.5] (withd =d, T =T, L = L(r), ¢ =z, F = (C([0,T] x R4, R) > v
([0,7] x R? 5 (t,2) = f.(t,z,0(t,2)) € R) € C([0,T] x RY,R)), (Q, F,P) = (O, F,P), g = g,
u=u =0, W =W’ =R R =R U, =U:,, for0 €O neNy MeNin the

notation of [24, Theorem 3.5]) ensure for every n, M € N, r € [p, ), # € R? that

1/2

(B[1U231,(0.2) = u(0,2)])
< MO (E[|g(XS1,)17]) +f’/ £ (s, X000 0)?] ds

M/

1/2] leM/2(1+2L(T)T)n (84)

Moreover, note that (83) and [24, Lemma 3.4] (withd =d, T =T, L = L(r), { =z, F =
(C([0,T] x RER) 3 v — ([0,7] x RT > (t,z) — f.(t,z,0(t,z)) € R) € C([0,T] x R R)),
QLFP)=QFP),g=gu=u0=0 W =W’ Y =R R =R, Ug,M = UfL,Mm for
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0 € ©,n € Ny, M € Nin the notation of [24, Lemma 3.4]) yield that for every M € N, r € [p, 00),
2 € R? it holds that

(E“UgvM,r(O, ) — u(0, JE)ﬂ)l/z

% (85)
< O (E[lg(x3r)P]) " + VT ‘ / £ (s, X0, 0)I7] ds ]
Combining this with (84]) establishes (8I]). The proof of Lemma B.2]is thus completed. O

Lemma 3.3 (Feyman—Kac formula). Letd € N, T € (0,00), u,h € C([0, T] x R% R), let (2, F,P)
be a probability space, let W: [0, T] x Q — R? be a standard Brownian motion, for every t € [0,T],
s € [t,T], = € R et Xisz: 0 — R? satisfy Xise = ¢+ Wy — W, and assume for every
t € [0,T), z € R? that sup,c(o 1) yepa lu(s, y)| < oo, B[ |h(s, Xis2)| ds] < oo, o m)xrd €
CH2([0,T) x R4 R), and

(Zu)(t,z) + 3(Apu)(t, z) + h(t,z) = 0. (86)

Then it holds for every t € [0,T], x € R? that
T
ult, ) = E[u(T, Xora) + / h(s, Xys0) ds]. (87)
¢

Proof of Lemma[3:3. Throughout this prooflet (-,-): R?xR? — R be the Euclidean scalar product
on R? let || - ||: R? — [0,00) be the Euclidean norm on R%, and for every r € (0,00), t € [0,T],
r € R with t < T — 1/; let the function 75%: Q — [t,T — 1/;] satisfy that 70¢ = inf({s €
[t,T]: || Xise—2| > 7}U{T—1/r}). Observe that [td’s formula and the hypothesis that u|y 7)xre €
C*2([0,T) x R% R) ensure that for every r € (0,00), t € [0,T], z € R? with ¢ < T — 1/» it holds
P-a.s. that

u(T:J:aXt ) = u t T +/ V ’LL s thx) dWS> o /Tr h(saXt,S,x) ds. (88)
sTr t

This implies for every r € (0,00), t € [0,7], z € R? with ¢ < T — 1/r that
U(t, .I‘) = ElU<T:’x, Xt,Tt x —|— / 8 Xt ,S m d ‘| . (89)

Combining the fact that for every t € [0, T], z € R it holds P-a.s. that limsup, .. |[75* —T| = 0
and the hypothesis that u: [0,7] x R — R is a bounded continuous function with Lebesgue’s
dominated convergence theorem hence implies that for every ¢t € [0, T], z € R? it holds that

hmsupEHu X e o) —u(l, Xy rg)

r—00

| =0 (90)

In addition, note that the fact that for every ¢ € [0, 7], x € R? it holds P-a.s. that lim sup,._, . |75~
t| = 0, the hypothesis that h: [0,7] x RY — R is a continuous function, the hypothesis that for
every t € [0,T], + € R? it holds that [ E[|h(s, X;s.)|]]ds < oo, and Lebesgue’s dominated
convergence theorem ensure for every t € [0, 7], z € R? that

t,x

E[/t h(s, Xys0) ds] - E[/tT h(s, Xy a) ds]
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This, (89), and (@0) imply for every t € [0,7T), z € R? that

U(t,l‘) = rllﬁn(}o (E [U(T£7$7Xt7th +/ 5 thx ds ])

(92)
= E[u(T, Xir2) +/ h(s,Xt757$)ds].
t

This establishes (87). The proof of Lemma is thus completed. O
Proposition 3.4 (Convergence rate for Allen-Cahn PDEs). Assume Setting[31, let p € (0, 00),
c € [0,00), let ||| : R — [0,00) be a norm, let L: (0,00) — [0,00) satisfy for every r € (0,00),

te[0,T], z € RY, v,w € [—r,7] that
[f (@t 0) = [t 2, w)] < L{r)fv —wl, (93)

let u € C([0,T] x RY, R) satisfy that infaeg [sup,ep 1 supxeRd(e“”m”Q|u(t, r)])] < 00 and ulp ryxra €
CH2([0,T) x R R), and assume for everyt € [0,T), v € RY, v € R that p > €T (1 + |g(x)|?)"?,
0f(t,2v) < (1 + %), [T B[ f(s, X2,.,,0)[]ds < o0, u(T,z) = g(x), and

(at u)(t, ) + 5(Au)(t, ) + f(t,z,ult,z)) = 0. (94)
Then it holds for every n € Ng, M € N, r € [p,0), x € R that

(E“USJ/[,T(O, :L‘) — U(O, l‘)|2} )1/2
o) “F}/ [1£(5. X500 O] ds

M

1/2] [eM/Q(l+2L(r)T)" (95)

Proof of Proposition[37) First, observe that the hypothesis that sup,cga |g(z)| < oo implies that
for every x € R? it holds that

E||9(Xg.0)] < oo. (96)
Next note that Corollary 24l (with d =d, T =T, c=c, ||| = ||I-|l, f = f, v = u in the notation
of Corollary [Z4)) ensures for every ¢ € [0, T] that
1/2 1/2
sup fu(t, 7)] < T [1 tsup (T, 0P| < e [1 + sup |g<as>|2] <o ()
z€RY z€R4 z€RY

Combining this with (76]) yields for every r € [p,0), t € [0,T], z € R that

£, u(t,2)) = £t 2 min{r, max{—r, u(t, 2)}}) = F(t, 2, ult, ). (98)
This and ([@4) demonstrate that for every r € [p, ), t € [0,T), x € R? it holds that
(gt )(t, z) + %(Axu)(t,x) +f.(t,z,u(t,z)) = 0. (99)

Next observe that the fact that sup,c(o 7y .era [u(t, 2)| < p and (33) ensure that for every r € [p, c0),
t € [0,T], x € R? it holds that (E[|u(s, XO )7 < p < 0o and

OS$
/1

<E

E

(5, X0, uls, X?sg)\ds]

/tT
/f'f(S XDy >|ds] + L(r)Tp < oc.
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Hence, we obtain that (@9) and Lemma B3 (withd =d, T =T, u = u, h = ([0, T] xR¢ > (t, ) —
f.(t,z,u(t,x)) € R), (Q,F,P) = (Q,F,P), W = Wo, Xise = Xtosx for t € [0,T), s € [t,T],

NS Rd in the notation of Lemma [B.3)) demonstrate that for every r € [p,00), t € [0,T], x € R? it
holds that

u(t, ) :El (XPr.2) +/ s Xf”, (s, Xf”)) ds]. (101)
Lemma B2 (with p = p, L = L, u = u in the notation of Lemma [3.2)), (O6), and (I00) hence
establish ([@5]). The proof of Proposition B4l is thus completed. O

Proposition 3.5. Let d € N, p,T € (0,00), ¢ € [0,00), © = UpenZ®, f € C([0,T] x R? x R, R),
(£ )re000) € C([0,T] x R* x R,R), u € C([0,T] x R4, R), let ||-]| : R* — [0,00) be a norm on
R?, let L: (0,00) — [0,00) be a function, let (Q, F,P) be a probability space, let R?: Q — [0, 1],
0 € ©, be independent Uy y)-distributed random variables, let W2 [0,T] x 2 — R4, 0 € O, be
independent standard Brownian motions, assume that (R%)gco and (W%)geo are independent, let
RY:[0,T] x Q —[0,T], 0 € O, satisfy for every 0 € ©, t € [0,T] that R? = tRY, for every § € O,

€[0,7], t € [s,T], € R let X!, : Q@ — R? satisfy X!, , = x + V2(W/ — W?), assume for

everyr € (0,00), t € (0,7, x € Rdsgjxe R, w, 10 € [—r,7] thatvf(t,:c,v) < c(1+0%), |f(t,z,w)—
f(tvxvm” < L<T)|w o m‘, fO Hf(s Xsotmv )HdS < o0, fr(t,x,v) = f(t,x,min{'r, max{—r,v}}),

6CT(1+|U(0a {L')|2)1/2 < P; u|(O,T}><]Rd € ct 2((0a T]XRdaR)7 infaER[Supse[O,T] SupyERd(6a||y”2|u($7y)|)] <
oo, and

(Fu)(t,x) = (Ayu)(t, ) + f(t,z,u(t,z)), (102)
and let UfL,M’rz 0, T]xRIxQ =R, 0€0,neNy, MeN, re (0,0), satisfy for every § € O,
n,M eN, re(0,00),tel0,T], z€R that U 5, ,.(t,z) =0 and

Mn
Ut anst:0) = 577 | 2 (w0 X 40 (RO XG0, 0))]
m=1
ol Mt Ok;m) < (0,k,m) O.km) [ p(0.km) < (0,k,m)
+ Z Mn—k; Z f R X 9 k,m) b Uk M?" (Rt 7XR(9,k,m) ¢ :I:) (103)
kf:l m:l t thd)

0,k,m) 0,k,m 0,—k,m) 6,k,m 6,k,m
— g (B X0, U0k (R >,X;<9,k,g)tm)))].
t sby

Then it holds for everyn € Ny, M €N, r € [p,0), v € R? that

(EUUS,M,T(T, z) — u(T, x)|2D V2 LT

eM?(1 4 2L(r)T)" ]
M/
1/2] (104)

(E[lu(0, X37.)12))” + VT ‘/OTIEUf(s,XgT,x, 0)[2] ds

Proof of Proposition[33. Throughout this proof let v: [0,7] x R? — R be the function which
satisfies for every ¢t € [0, T], z € R? that v(t,z) = u(T —t,2v/2), let F: [0, T] x R¢ xR — R be the
function which satisfies for every ¢ € [0, 7], x € R, w € R that F(t,z,w) = f(T —t,2v/2,w), let
F,: [0, T]xRIxR — R, r € (0,00), be the functions which satisfy for every r € (0,00), t € [0, 7],
r € RY w € R that F.(¢t,7,w) = F(t,z, min{r, max{—r,w}}), let S¢: Q@ — [0,1], § € O, satisfy
for every § € © that S’ =1 —RY, let SY: [0,T] x Q — [0,T], § € O, satisfy for every 6 € O,

t €[0,T] that SY =t + (T —t)S?, for every # € ©,t € [0,T], s € [t,T], z € R let Y/, ,: Q—)Rd
satisfythatﬁemzx}—Xg oT—tavi = =x+Wi_,—Wi_ =+ (Wi-Wi_)— (Wi—WF_,), and

let V7 [OT]dexQ—HR 0 e€0,neNy MeN,re (0,00) satisty for every n, M € N,
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0€0,re(0,00),tel0,T],zeR that V), (t,2) = Uy, (T —t,xv2). Note that (I02) hence
ensures for every ¢t € [0,T), x € R? that v € C([0,T] x RY,R), v 1)<zt € C2([0,T) x R%R),

infaeR[sup(Svy)e[QT}XRd(e“”y”2\v(s,y)|)] < 00, and
(%v)(t x) + %(Axv)(t, x) + F(t,z,v(t,x))

= —(2)T —t,2v2) + (Au)(T — t,2v2) + f(T — t,2v2,u(T — t,2v2)) = 0. (105)

In addition, note that the hypothesis that for every t € [0,7], x € R? w € R it holds that
wf(t,r,w) < c(1 + w?) guarantees that for every t € [0, 7], z € RY, w € R it holds that

wF(t,z,w) = wf(T —t,2v2,w) < ¢(1 + w?). (106)
Moreover, observe that it holds for every ¢t € [0,T], § € © that
SO=t4+(T-)S"=t+T-t)1-RH=T-(T-t)R =T —-R,_,. (107)

Next observe that the assumption that for every r € (0,00), t € [0,7], z € RY w, 10 € [—r,7]
it holds that |f(¢,z,w) — f(t,z,t0)| < L(r)|lw — w| implies that for every r € (0,00), ¢t € [0,T],
r € R4 w,w € [—r,r] it holds that

\F(t, 2, w) — F(t,2,0)| = | f(T — t,av/2,w) — f(T — t,av/2,w)| < L(r)|w —w|.  (108)

In addition, note that

1/2
<» (109)

reR4 z€R4

1/2
et ll + sup |v(T, x)|2] =T ll + sup |u(0, 2v/2)?

Furthermore, note that for every ¢ € [0, 7], x € R? it holds that

T T—t
[ B[ Y0l ds = [ B[P - 5,00 0)]] ds
b " Tt (110)
= | E[fG VROl ds = [ E[If(s X005 0)l] ds < oo

and
T T
/0 E“F(Sv YVOO,S,Z/\/Ev O)|2} ds = /0 E|:|f(T -5, \/5%?5,1/\/57 O)|2:| ds
111)
T T (
= [E[AT = 5 X0 0P| ds = [ E[1(s, X000, 0)] ds.
0 o 0 o

Moreover, observe that (I03) guarantees for every n, M € N, § € ©, r € (0,00), t € [0,T], x € R?
that

UT?,,M,T(T - ta {L’\/ﬁ)

1 [ (8,0,—m) (0,0m) 1(8,0,m)
~ Mn LL2=1 (u(O, XO,Tft,m\/ﬁ) +(T—1) f<RT—t ’XRé‘?;Ot’m),Tft,x\/ﬁ’ 0)>
n—1 M=k
Tt (6.km) - (0,m) (0.km) ( (@ kam) - (0km) (112)

_t (R(G,hm)’X(G,k,nQ 7U(@—k,m) R(Gik,m)’X(G,k,@ ) .
Tt RYE™ 1t ayz Tk 17Mv7"( Tt R ),T—m\/ﬁ)
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The fact that for every § € ©, ¢ € [0,T], s € [t,T], x € R it holds that X/ - =+2Y2 .,

and (I07) therefore imply that for every n, M € N, § € ©, r € (0,00), t € [0,T], z € R? it holds
that

Urel,MJ’(T - t7 l’\/§)

— 1 |35 (0. vRYEE ) + (=) (1 - 00 Vo, L))

-1 Mn—k
+ 3 g | 3 (6 (st vav e, o (r - s vaves, )) 0
k=1

m=1

-6 (T s A, o (- st v, )|

Combining this with (I03)) and the fact that for every M € N, § € ©, n € Ny, r € (0,00),
t € [0,7], x € R* it holds that V), (t,x) = Uf (T —t x\/_) yields hat for every 6 € O,
n,M €N, r e (0,00), t €[0,T], z € R it holds that V097M7r(t,:c) =0 and

V?f,M,r<t7‘r)
1 il 0,0,—m 0,0,m) 0,0,m
:WL;( (0.vV2Y 3™ + (T =) f(T - S, \/iw (90;) 0))
[ M (0.km) ka) (ka (O.km) (ka) (114)
k=1 m=1

—f<T Gk, er(’ZZ”L> ,VéelﬁT( [, %Z(IZ% )))]

This and the fact that for every r € (0,00), t € [0,7], z € R%, w € R it holds that u(0,7v/2) =
v(T,z) and F,(t,z,w) = F(t,z,min{r, max{—r,w}}) = f(T — t,2/2, min{r, max{—r,w}}) =
f.(T — t,2v/2,w) demonstrate that for every # € ©, n, M € N, r € (0,00), t € [0,T], € R? it
holds that V', .(t, ) = 0 and

1 M —m m m
mwmwzﬁﬂzcwm%:Bﬂf4w@”%§$%ﬁm]

m=1

m=1

(T —t) | " (O,k;m) ~-(6,k,m) (O,km) { (Osm) < (0,k,m)
+ Z Nn—F [ > Fr( t 7}/;7S£6,k,m)7 Vs (St 7}/;7550,k,m)7m)) (115)

0,k;m 0,k,m (6,—k,m 0,k,m 0.k,m
_F(< ) YOk Ok (5o 0k )))

0.k, 0.k,
S0k g £,5{0F ™) 4

This, (I05)-(III), and Proposition B4l (withd = d, T =T,0 =0, f =F, g = (R! > 2 —
(T,x)_u(o,xf)eR) f.=F, (O,FP) = (Q]—"IP’) RY =8, Wo'— ([ T x Q3 (t,w) —
Wi(w) = Wi y(w) €RY), X7, =Y, R = 8% Uy, = neMrap pre=cllI=I, L=L,

u=wvforf €O, r e (0, oo) t e [0 T], s € [t T] x € R? in the notation of Proposition BZI)
demonstrate that for every n € Ny, M € N, r € [p, 00), € R? it holds that
eM?(1 + 2L(r)T)"

M/

(E“VT?,M,T(O?x/\/E) — (0, 96/\/§)|2D1/2 <
1/2 T 1/2 (116)
LT ( “U(T Y()Tx/f)‘ D + ﬁ‘/o E“F(Sayo(?s,x/\/g,())ﬂ ds ]
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Combining this with (III) and the fact that for every § € ©, n € Ng, M € N, r € (0,00),
t € [0,T], € R? it holds that u(t,x) = v(T —t,%/va), Ul . (t,x) = VI3 (T —t,7/v3), and
V2 Yor. s = X0 1, establishes (I04). The proof of Proposition is thus completed. O

4 Computational cost analysis for truncated MLP approx-
imations

Our next goal is to estimate the overall complexity of the MLP approximation scheme. This is
achieved in Theorem [0 below. We first quote an elementary result (see [24, Lemma 3.6]) which
provides a bound for the computational cost. Lemma [4.2-Lemma (.4 are technical statements
needed for the proof of Theorem (4.5l

Lemma 4.1 (Computational cost). Let d € N, (&, ar)neng.men € Ny satisfy for every n, M € N
that €y pr = 0 and

n—1
Conr < (2d+1)M™ + > M (d+ 1+ €pr + o) - (117)
=1

Then it holds for every n, M € N that €,y < d(5M)™.

Proof of Lemma[{.4. This is an immediate consequence of [24, Lemma 3.6] (with d = d, RV,, ;s =
€, for n € No, M € N in the notation of [24, Lemma 3.6]). The proof of Lemma [£1] is thus
completed. O

Lemma 4.2. Let o, 3,¢,k,p € (0,00), K € Ny, (Vn)nen C [0,00), (€n,r)nenrepo) S [0,00), let
L: (0,00) — [0,00) be a function, assume for every n € N, r € [p,00) that v, < (an)" and
nr < el (14 BL(r))"n~"2, and let o: N — (0,00) satisfy that

liglﬁsolip [ILH((Q;)) + é] =0. (118)

Then there exist M: (0,1] — N and ¢: (0,00) — [0,00) such that for every § € (0,00), ¢ € (0,1]
it holds that sup,cp m_ 4 k)N Tn < cse ) and SUD,, e[, ,00) N Enyon < €-

Proof of Lemma[{.2. Throughout this proof let a5 € [0, 00], § € (0,00), and b € [0, 00) satisfy for
every 0 € (0,00) that

1 1 (n+1)
a(s:c“”sup[[m“{a’ Hn o D erten 20 (1 4 81(0,))]" @+ (119)
neN n
and
b = [max{a, 1}(K 4 1)]5E+D, (120)

First, observe that the fact that for every ¢ € (0,00) it holds that In(¢) <t — 1 and (II8)) ensure
that
lim sup {ln(ceL(Q")/{"(l + BL(gn))"n_n/Q)}

n—o0

= limsup |In(c) + L(o,) +nln(x) + nln(1l + BL(o,

n— o0

~—
~—

- (121)
< limsup |In(c) + L(0,) + nln(k) +nBL(0n) —

n
n—oo L 2

. ' In(c) | L(e) , In(s)  BL(en) 1
:hinﬂsogp _nln(n) (nln(n) nln(n) = In(n) * In(n) 2)] -
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This and the fact that lim, , . e® = 0 imply that

0 < limsup {ceL(Q")/i"(l + BL(gn))"n_n/Q}

n—o0

= lim sup {exp(ln(ceL(Q”) "(1+ BL(on))"n _n/Q))} = 0.

n— o0

(122)

Hence, we obtain that there exist N. € N, € € (0, 00), which satisfy for every ¢ € (0, 00) that

N. = min{n e N:  sup {ceL(g’”)mm(l + 6L(gm))mm_m/2} < 5}. (123)

me[n,00)NN

Moreover, the assumption that liminf, .. 0, = oo implies that there exists n € N which satisfies
that inf,cpoo)m 00 > p. Next let 5 € (0, 00) satisfy that n < ceX@)k™(1 + BL(g,))"n"2. This
implies for every € € (0,7] that N. > n. Hence, we obtain that for every e € (0,7] it holds that
inf e[, 0o)ny 0n > infrcm o) 0n > p. This, the assumption that for every n € N, r € [p, 00) it
holds that €,, < cel’™x™(1+ BL(r))"n~"/?, and (IZ3)) ensure that for every ¢ € (0,7] it holds that

SUD  €ng, < sup  [eeP @1+ BL(g,))"n? < €. (124)
n€[Ne,00)NN n€[Ne,00)NN

Next let £ = {e € (0,00): N. > 1}. Observe that (I23) yields for every € € E that
(Ne = D) < ZeHove (1 4 BL oy 1))) . (125)
5

This and the assumption that for every n € N it holds that 7,, < (an)™ imply that for every ¢ € F,
9 € (0,00) it holds that
sup Y, < sup  (an)" < sup  (max{a, 1}n)"

n€[l,Ne+K]NN n€[l,N.+K]NN n€[l,N.+K]NN

[max{c, 1}(N, + K)|V-+E
(N, — 1)(NE—1)(1+5)

[max{a, 1}(N, + K)]Ne+E 2420 ~

N (N, — 1)(N-=1)(1+9) ~2425 eHloN=— )2 151 4 BL (o, —1))] N DEH20) (126)

max{a, 1}(n + K + 1)]("+E+D
nn(1+9)

= [max{a, 1}(N. + K]V = (N. — 1)Ne=D1+9)

< 02+268—(2+26) sup [ eL(Qn)(2+26) [/i(l + BL<Qn))]n(2+26)]
neN

= Cl(sE_(2+26).

Next observe that the fact that for every ¢ € (0,00) it holds that In(t) < ¢ — 1 and (II8)) ensure
once again that for every § € (0, 00) it holds that

n+K+1
[ln<[max{oz, 1}Hn J(rli)+ 1)](n+E+ )eL(Qn)(2+25) k(1 + 6L(gn))]n(2+25)>]
nn

lim sup
n—oo

= lim sup [(n + K + 1) In(max{a,1}) + (n+ K+ 1)In(n+ K+ 1) —n(1+6)In(n)

n—o0

+ L(00)(2 + 26) + n(2 + 26) In(k) + n(2 + 20) In(1 + BL(QH))] (127)

< lim sup

n—oo

[nln(n)<<n+K+ 1) In(max{c, 1}) n n+K+1ln+K+1) (1+6)

nln(n) n In(n)
L(on)

* In(n)

(2+28) + (2 + 26) in“) +(2+ 25)5?”)] — .



This, (I18), and (I19) imply for every ¢ € (0, 00) that

ntK+1
a5 = A sup [max{a, 1}(n +(i§)+ 1))t )eL(gn)(2+25) k(1 + BL(0n))]"E+2)
neN nr

<oo. (128)

Next observe that the assumption that for every n € N it holds that v, < (an)™ and (I20) ensure
that for every € € (0,7] \ E, § € (0,00) it holds that

(2+25)

n = b2 —(2+20)  (199)

SUp Yp = sup  Yp < [max{a, 1}(K + 1)]E+D .

n€[l,N.+K]NN ne[l,K+1]NN

Combining this with (I19), (I20), (I124), and (I26) we obtain that for every § € (0,00), € € (0, 7]
it holds that sup,,¢(n. ooy €nen < € and

sup 7y, < e (@) max{ag, bn(2+25)}. (130)
n€[l,Ne+K|NN

Next let 9. € Ny, € € (0, 1], satisfy for every e € (0, 1] that

(131)

N = N, :0<e<n
N, n<e<l.

This and (I30) ensure that for every ¢ € (0,00), € € (n,1] it holds that sup,cm. ooy €npn =
SupnG[Nn,oo)ﬂN €n,pn < n <e and

sup  yu = sup 9, < max {ag, b}~ = max {am~ . p

n€[1,MN.+K|NN n€[l,Ny+K]NN (132)

< max {a(m—(2+2‘5), b} g (2+20)
Combining this with (I30) and (I3T)) establishes that for every ¢ € (0,00), € € (0,1] it holds that

sup Y < (max{l,n2+25} max{am’@*z‘s), b}) e %) and  sup €, <& (133)
ne[l,N+K|NN n€Me,00)NN

The proof of Lemma is thus completed. O
Lemma 4.3. Let a € [1,00). Then it holds for every n € N that 35, (am)™ < 2(an)".

Proof of Lemma[{.3 First, note that the claim is clear in the case n = 1. Next observe that for
all n € NN [2,00) it holds that an > 2. This implies that for all n € NN [2,00) it holds that

n (am)m n ( m n — n—1<1>k
< = = - < -] <2 (134)
mZ:1 (an)" mZ:1< mZ:1 g l;) 2

The proof of Lemma [4.3] is thus completed. O
Lemma 4.4. Let o, 3,¢,k,p € (0,00), K € Ny, (Vn)nen C [0,00), (€n,r)nenrepo) < [0, ) let
L: (0,00) — [0,00) be a function, assume for every n € N, r € [p,00) that v, < (an)"
nr < cePMEM1+ BL(r))"n"2, and let o: N — (0, 00) satisfy lim supnﬂoo(fé(%) + Qin) =0. Then
there exist MN: (0,1] — N and ¢: (0,00) — [0, 00) such that for every 6 € (0,00), € € (0, 1] it holds

that Y2 v, < ¢5e7 20 gnd SUDy e[, 00) N Enon < E-
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Proof of Lemma[{4 First, observe that for every n € N it holds that v, < (max{a,1l}n)"
Lemma A2 (with @« = max{a,1}, =06, c=¢, k =k, p=p, K=K, L =1L, 0, = 0n, Yn =
(max{a, 1}n)", €,, = €, for r € [p,00), n € N in the notation of LemmalLZ) therefore guarantees
that there exist M. € N, ¢ € (0,1], and ¢5 € [0,00), 0 € (0,00), such that for every § € (0,00),
e € (0, 1] it holds that sup,,¢(; g, 4 oy (max{a, 1}n)" < cse 22 and SUD e, 00)N €njon < €. The
fact that for every n € N it holds that -, < (max{a, 1}n)", the fact that for every N € N it holds
that sup,c; yon(max{a, 1}n)” = (max{a,1}N)", and Lemma hence imply that for every
e € (0,1] it holds that sup,,cm_ co)n €n.on < € and

N+ K N+ K
S 4, < Y (max{a, 1}n)" < 2(max{a, 1}(M. + K)TT) < 2¢5e~ (420, (135)
The proof of Lemma [4.4] is thus completed. O

Theorem 4.5. Let p, T € (0,00), ¢,v,p € [0,00), K € Ny, © = UpenZ®, (fa)aen, (£ar)denre0,00) C
C([0,T] x R* x R, R), let L: (0,00) — [0,00) be a function, let (2, F,P) be a probability space, let
RY: Q2 —[0,1], 8 € O, be independent Uy 1)-distributed random variables, let W?: [0,T] x @ —
R? d € N, § € O, be independent standard Brownian motions, assume that (R%)gco and
(W) 4pyenxe are independent, let R?: [0,T] x @ — [0,T], 0 € O, satisfy for every 6 € O,
t € 10,T) that R? =tR?, for everyd €N, 0 € ©, s € [0,T], t € [s,T], x € R? let Xffgg 0 — R?
satisfy Xj’gx = 24+ V2(WH — W), assume for every d € N, r € (0,00), t € (0,T], = € RY,
u,v € [—r,7], w € R that wfy(t,z,w) < c(1 +w?), £5,.(t,z,w) = fa(t,z, min{r, max{—r,w}}),
E[f | fa(s, thox,O)\ds] < 00, and |fy(t,x,u) — fa(t,x,v)| < L(r)|lu —v|, let uqg € C([0,T] x
R4 R), d € N, satisfy for every d € N, t € (0,T], z € R? that eT(1 + |uqa(0,2)>)"* < p,
infaeR[supse[(],T] SUPy—(y, yd)ERd(6a(|y1|2+"'+‘yd|2)|Ud(8,y)m < 00, Udl(o1)xra € C'2((0,7] x R%, R),
and

.....

(Fua)(t, ) = (Agua)(t,2) + fa(t,z,uat, 7)), (136)
let USZ?WJ: [0, T]xR¥xQ - R,d,M €N, § € ©,n e Ny, r e (0,00), satisfy for everyd,n, M € N,
0 €0,re(0,00),te(0,T], x€R? that Uyy,,(t,x) =0 and

1 [ ,(6,0,—m 0.0m) d,(0.0,m
U80,00:0) = 1z | 35 (ual0. ) (RO X 0))

m=1

n—1 Mn—k
t 0.km) 57, (6,k,m (0.6.m) ( p(O.km) 57, (6,k,m
+ Z M"_k |: Z (fdr(R( R((Glcm) )t Uk M,r (R( R((Okm) )t )) (137)
k=1

m=1

Y

£y, (R§9,k,m)7 i (OJem) Ut (ﬁ Mk‘rm (R(e ) (0 m) )))

REQ,k,M)J R(Q,kﬁn)’t7$

let 0: N — (0,00) satisfy limsup, . (22 + L)y =0, and let Canm € No, d, M € N, n € Ny,

In(n) on

satisfy for every d,n, M € N that g0 = 0 and

n—1
Canar < 2d+ )M+ > M (d+ 1+ Capar + Cay1,m)- (138)
=1

Then there exist M: (0,1] — N and ¢: (0,00) — [0,00) such that for every d € N, § € (0,00),
W(s/dm”(

e € (0,1, x € R with (Jy E[|fa(s, XI9,.0)[2]ds)> < ~d¥ it holds that 3, Cinm <
c(Sd14r11>(2+5)67(2+5) and
1/2
sup (E[JULS, (T, 2) — ua(T,2)]*]) | <e. (139)

nG[‘ﬁ(E/dp) ,00)NN
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Proof of Theorem[7.5. Throughout this proof let X; C R?, d € N, satisfy for every d € N that

T d,0 2 v
X, =z R (/ Eﬂfd(s,Xs’Tx,O)”ds> <A, (140)
O 1=

let €,, € [0,00], n € N, 1 € (0, 00), satisfy for every n € N, r € (0, 00) that

€ny = sup({ ( UUSELT (T, z) — ug(T, x)’ ])1/2 cx € Xg,d € N} U {O}), (141)

and let v, € [0,00], n € N, satisfy for every n € N that

In = sup <€d;l"v">. (142)

Note that Lemma AT demonstrates that for every d,n, M € N it holds that €4, » < d(5M)™.
This implies for every n € N that

Cann d(5n)"
yn:sup< d(’i’ ) §32§< (;) >:(5n)”<oo. (143)

deN

Next observe that Proposition (withd=d, T=T,0=0, f=fs, £ =1, (LFP) =
(Q,F,P), R? =R, W = W, R’ = R, stx—X:lfm, Uf vt 7) = Uy, (8,2), p=p, c = ¢,
= R >y = (g va) = P+ +Jgal? €R), L=L, u=ugfor i, MeN, €0,
n € Ny, r € (0,00), t € [0,T], s € [t,T] r € R? in the notation of Proposition [B.5]) ensures that

it holds for every d, M € N, n € Ny, r € [p,00), z € R? that

(E“USZ&J(T, x) — ug(T, x)PDlh < e"2(1 L?L/I;(T)T)n

(E[ua(0, X¢2.)12])” + VT

. eL(r)T

T 1/2 (144)
[l oo |

This implies that for every n € N, r € [p, c0) it holds that
1 d,0 21\7?
€nr = SUD( | ( DUMH,(T, x) — ug(T, SL’)‘ ) cx € X4,d e Ny U{0}

n/2 1 AL(ATI™ L(r)T
< sup (6 (1 +2L(r)T)" e lsup sup |um (0, x)| +7\/po]> (145)

deN n"/? dP | meN zeRrd

re?
< Ksup sup |ud(0,x)|> +7\/_] (1 +2L(r)T)" < 00.

deN geRrd n'/?

This, (IZ3), and Lemma B4 (with o = 5, 8 = 2, ¢ = 1 4+ supyey SUP,ega [1a(0, 2)| + VT, & = /e,
p=p K=K, L(s) = L(S)T, Yo = Vn, €nr = €nr, 0n = 0n for n € N, r € [p,00), s € (0,00)
in the notation of Lemma [.2)) guarantee that there exist 9t: (0,1] — N and ¢: (0, 00) — [0, 00)
which satisfy that for every ¢ € (0,00), € € (0,1] it holds that

2420 and SUD  €n,, <€ (146)

N+ K B
< ¢5¢ =
n€Me,00)NN

> T
n=1

This implies that for every d € N, § € (0,00), € € (0,1], z € X, it holds that

[W(E/dm”(

n=1

— C5d1+p(2+26)5_(2+26) (147)

e (2426)
d,n,n ]

dr

<C5d[
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and

sup (B[, (T.2) — wa(Ta) ) <

n,M,0n
nE[m(E/dp) ,00)NN

sup en,gn} < d”% =c.  (148)

nE[m(E/dp),OO)ﬁN -

This establishes (I39). The proof of Theorem L5 is thus completed. O

5 MLP approximations for Allen—Cahn type partial dif-
ferential equations

In this section we consider sample applications of Theorem This provides us with examples
of Allen—-Cahn PDEs for which the curse of dimensionality can be broken in numerical approxi-
mations.

Corollary 5.1. Let T' € (0,00), ¢,p € [0,00), K € Ny, © = UpenZ”, f € C(R,R), (£)re(0,00) €
C(R,R), let L: (0,00) — [0,00) be a function, assume for every r € (0,00), u,v € [—r,r], w € R
that wf(w) < c(1 + w?), f.(w) = f(min{r, max{—r,w}}), and |f(u) — f(v)] < L(r)|u — v|, let
0: N — (0,00) satisfy lim supnﬂoo(fé(%) + gin) =0, let ug € C([0,T] x R4 R), d € N, satisfy for
every d € N, t € [0,T], z € R? that T (1 + |ug(0,2)|*)"* < p, ualr)xre € CV2((0,T] x R4, R),

infoer [SUPseo 77 SUPy— (4, yd)eRd(e“(|y1|2+"'+‘yd|2)|ud(3,y)\)] < 00, and

(grua)(t,x) = (Agua)(t, x) + f(ua(t, 7)), (149)

let (0, F,P) be a probability space, let R?: Q — [0,1], 6 € O, be independent Uy 1 -distributed
random variables, let W®: [0,T] x Q — R?, d € N, 0 € O, be independent standard Brownian
motions, assume that (R%)gco and (W% )(dﬂ)eNX@ are independent, let R?: Q — [0,t], 0 € O,
te[0,T7], satzsfy for every t € |0, T] that RY = tRY, for everyd € N, t E 0, T] s€[t,T], v € RY,
0 €0 let X0, Q— RY satisfy X[, = v+ V2(WE — W), let Uy, [0,T) x RTx Q — R,
0€0,d MeN,neNy, re(0,00), satisfy for every d,n, M € N, § € ©, r € (0,00), t € [O,T],
x € ]Rd that Uod;fd,r(t, z) =0 and

.....

—_ Mnfk
ittt = £ e S (vt xge )
= m . (150)
d,(0,—k,m) ; 5(0,k,m)  ~rd,(0,k,m 1 d,(6,0,—m
— £, (UE i (R, XR;,,C,M?W)))] + 2 L; (ua(0, X315 7™) + ¢ f<0>)] ,
and let g € Ny, d, M € N, n € Ny, satisfy for every d,n, M € N that €59 = 0 and
n—1
Q:d,n,M < (2d—|— 1)Mn + Z Mnil (d + 1+ Q:d,l,M + Q:d,lfl,M). (151)
=1
Then
(1) it holds for every d, M € N, n € Ny, r € [p,00) that
1/2
Suﬂgj (EUUZ:?M,T(Ta SL’) - ud(T7 .§L’>|2})
" (152)

< eL(T)T [Sup |ud(0,l’)| + T‘f<0)‘ Mm/2

z€R4

] leM/Q(l +2L(r)T)"

and
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(i1) there exist M: (0,1] — N and c¢: (0,00) — [0,00) such that for every d € N, 6 € (0,00),
e € (0,1] 4t holds that X215 €400 < dese™ ) and

sup lsup (E“US:&QH (T, x) — uq(T, :U)|2D1/2 <e. (153)

n€MNe,00)NN [2zcRe

Proof of Corollary 5. Throughout this proof let Fy: [0, T]| xR xR — R, d € N, be the functions
which satisfy for every d € N, t € [0,T], x € R?, w € R that

Fy(t,x,w) = f(w). (154)

Observe that the fact that for every d € N, z € R? it holds that |u4(0, )| < p < oo and (I54) ensure
that for every d € N, t € [0,T], z € RY, w € R it holds that f.(w) = Fy(t, z, min{r, max{—r,w}}),
E[fg [Fa(s, X21, 0) ds] = t]f(0)] < oo, (Elfy |Fals, X7, 0)|” ds])* = VT|f(0)], and

1/2
< sup [uq(0,§)[ + TIf(0)].  (155)

£€Rd

(E“ud((}, ng%a;ﬂﬂ)l/g +VT /TEUFd(S, ij%x, O)ﬂ ds
0

This and Theorem EH (with p = p, T =T, c=c¢, v =VT|f(0),p=0, K =K, ©=0,L =L,
fa=Fy £, = ([0,T] x REx R > (t,2,9) = £.(y) € R), ug = ug, 0 = 0, (Q, F,P) = (Q, F,P),
RG = Rg, Wdﬂ = Wd767 RG = R67 Xtcfﬁan = Xtcfﬁam Ug:id7r<t7 .T) = Ug:id7r<t7 .T), de,n,M = Q:d,n,M for

d,MeN,0 €O, neNyre(0,00),t€[0,T],s€[tT], x €R?in the notation of Theorem AH)
ensure that

(I) for every d, M € N, n € Ny, r € [p,00), x € R? it holds that

(B[JU2, (T ) — wa(T, )] )

] leM/Q(l + 2L(r)T)"] (156)

< e s 0,9 + 71700 | | 2

¢eRd

and

(IT) there exist M: (0,1] — N and ¢: (0,00) — [0, 00) such that for every d € N, 6 € (0, 00),
e € (0,1], z € R? it holds that

Ne+K 1/2
[ Canm| < csde™ ) and sup (EUUnd’g on (T 1) — ug(T), x)\zD/ <e. (157)
n=1 n€[Me,00)NN Y
This establishes Items () and (). The proof of Corollary [5.1]is thus completed. U

Corollary 5.2. Let T € (0,00), ¢ € [0,00), K € Ny, © = UpenZ®, f € C(R,R), (f)neny C
C(R,R), let o: N — (0,00) satisfy thUPn—m(m(ﬁW) < oo = liminf, o 0n, assume for
every n € N, u,v € R that |f(u) — f(v)] < e(1 + |ul® + [v]9)|u — v|, vf(v) < (1 + v?),
and £,(v) = f(min{o,, max{—g,,v}}), let ug € C([0,T] x RLR), d € N, satisfy for every

.....

|ud<07x>| <c ud‘(O,T]de € CLZ((OuT] X RdvR>; and

(srua)(t, x) = (Agua)(t, x) + f(ua(t, 7)), (158)

let (Q, F,P) be a probability space, let R?: Q — [0,1], 0 € O, be independent Uo,1)-distributed
random variables, let W32 [0,T] x Q — R? d € N, 0 € O, be independent standard Brownian
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motions, assume that (R%)gce and (W) 0enxe are independent, let R%: [0,T] x Q — [0,T],
0 € O, satisfy for every 0 € ©, t € [0,T] that R? = tR?, for every d € N, t € [0,T)], s € [t,T],
reRY 0O let X,fffm: Q — RY satisfy X,fffm = 24+ V2WE — W), let U,‘i’?u: [0, T] x R¥x Q —
R, d, M € N, § € ©, n € Ny, satisfy for every dyn,M € N, 0 € ©, t € [0,T], x € R? that
Uod;fd(t, x) =0 and

n—1 Mk
t
d,6 d,(0,k,m 0,k;m)  ~-d,(0,k,m)
Un,M(tax) = ; Mn—k { Z (fM (ka(w )(Rt( )’XRg(“”’“vm>,t,m))

m . (159)
d,(0,—k;m) [ 1 (0,km) ~rdo(6,k,m 1 4,(6,0,—m)
— fy (Uk_&,M '(REE, XRge,k,m)}tﬁm))ﬂ tam| X (a0, X557 7™) + £ £(0))]
and let g € No, d, M € N, n € Ny, satisfy for every d,n, M € N that €49 = 0 and
n—1
Canar < 2d+ )M+ > M (d+ 1+ Capar + Cag1,m)- (160)
1=1

Then there exist M: (0,1] — N and ¢: (0,00) — [0,00) such that for every d € N, § € (0,00),
e € (0,1] it holds that

N+ K 21\ /2
> Cinn| < cde= ) and sup sup (EUUS:?L(T, x) — ugq(T, x)‘ ]) <e. (161)
n=1 n€MNe,00)NN [2cRe

Proof of Corollary[2.2. Throughout this proof let L: (0,00) — [0, 00) satisfy for every r € (0, c0)
that L(r) = c¢(1 + 2r°), let F,: R — R, r € (0,00), be the functions which satisfy for every
r € (0,00), v € R that F.(v) = f(min{r, max{—r,v}}), and let V,g’]‘\g/[’r: 0,7] x RT x Q — R,
d,M €N, § € ©, n € Ny, satisfy for every d,n, M €N, § € ©, r € (0,00), t € [0,T], x € R? that
V,j’]@,,,(O, x) =0 and

Vﬁ’z@,r(t,fb’) = Ak

RO 4 o

d,(0,k,m) | 15(0.k,m)  ~-d,(0,km
(Fr(vk,fu,r (RO, 3k )
(162)
d,(0,—k;m) [ (0.km)  ~rdo(0,m
(vt (e, i )

t

1 = d,(0,0,—m)
+WL§I (a0, XG5°7™) + £ £(0))|-

Next observe that the hypothesis that lim sup,, Hoo<1n(1iﬁ) < oo implies that there exists v €

(0, 00) which satisfies that for every n € [3, 00) NN it holds that g, < yIn(In(n)). This yields that

o [0 o [ 20y (i)
c 1 1 c
< lim sup ! + lim sup 2(vIn(In(n))) = 279°lim sup M = 0.
n—00 ln(n) n—00 ln(n) n—00 ln(n)
Next let A C Ny be the set given by
B CForalld, M eN,0 € ©,keNyn[0,n—1],t€[0,T],z € R
A= {n & N it holds that Ug:j‘\}(t, x) = chf’&w (t,x) ' (164)

Note that the fact that for every d, M € N, § € ©, t € [0,T], z € RY, r € (0,00) it holds that
V({l}&,r(t, x) =0 = Ué{’f\z(t,x) ensures that 1 € A. Moreover, note that (I59), (I62), and (I64)
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ensure that for every d, M € N, § € ©, n € A, t € [0,T], x € R? it holds that

n—1 Mn—Fk
4.0 l d,(0,k,m) ; 1(0,k,m 0,k,m
Unfu(ti2) = X > | (TR RO X, )
k=1 m=1
gy, (U0 (@m) e (@.5m) 1 [ 0, X2@O-my Ly £(g
I Vk—1m R(Okm)t) Tam Z(Ud( 0,t.a )+t f( ))
n—1 Mk
_ Z t Z F (Vd .(6,k,m) (R(G,k,m) Xd,(@,k,m) )) (165)
o MRS w2 PR e
r (yho—km (R(ka s (0.km) ) —i—i %( 0. xLO0-m)y O)
~ Pom \ Ve-1,M 01 P X ROk M| & ua(0, Xtz )+t £(0)
4.6
= n,Mng(t’x)'

Hence, we obtain that for every n € A it holds that n+ 1 € A. Combining this with the fact that
1 € A and induction ensures that A = N. This yields that for every d, M € N, § € ©, n € N,
t € [0,T], x € R? it holds that

Vit (%) = U (1, 2). (166)
The fact that for all » € (0, 00), w, w € [—r,7] it holds that | f(w)— f(w)| < L(r)|w—mw|, (IG3)), and

Corollary 511 (with p = exp(T sup, g ( 1+(§2)))[1 + SUPgey SUP,era |Ua(0, )22, ¢ = supveR(qi(vg)

T=T K=K, 0=0,f=f f=f L=L |,= [, 0 0 = s, (@ FP)= (9, FP)
RO = RO, W =W XM = X, UL, (tx) = Vi, (ta), Conn = Cap for d, M €N,
0 e€0,neNy,re|(0, oo) tel0,T], z€ R? in the notation of Corollary [.1)) therefore guarantee
that there exist M: (0,1] — N and c¢: (0,00) — [0,00) such that for every d € N, § € (0, 00),

e € (0,1] it holds that 715 ¢, < ¢;de=2) and

Sup)”N [Sup <E{|U352(Ta z) — ug(T, :E)IQDI/Q]

ne[Ne,00 zeRY

(167)
d,0 2]/
= sup sup (EUVnn on (T, 1) — ug(T, )| D <e.
n€[MN.,00)NN [xeRe
The proof of Corollary is thus completed. O

Corollary 5.3. Let ¢,T € (0,00), K € Ny, © = U,enZ", for every d € N let |||, : R — [0, 00)
be a norm on R?, let ug € C([0,T] x R4 R), d € N, satisfy for everyd € N, t € [0,T], z € R?
that |ug(0,2)| < ¢, infaer[SUpP,cpo 77 SUD,—(,, yd)eRd(e“(|y1|2+“'+‘yd|2)\ud(s,y)\)] < 00, Udl(or]xre €
CH2((0,T] x R4 R), and

.....

(%ud)(t, x) = (Ayug)(t, x) + ug(t,x) — (ud(t,x))?’, (168)

let 0: N — (0,00) be a function which satisfies that lim SuPn%oo(ln(lle) < oo = liminf, - on,
let f,: R — R, n € N, be the functions which satisfy for every n € N, v € R that f,(v) =
(min{ g,,, max{—g,,v}})—(min{g,, max{—og,,v}})3, let (Q, F,P) be a probability space, let R’: Q0 —
0,1], 6 € ©, be independent Uy 1)-distributed random variables, let W*?: [0,T] x Q@ — R¢, d € N,
6 € ©, be independent standard Brownian motions, assume that (R%)seo and (Wd’a)(dﬂ)eNX@
are independent, let R?: Q x [0,T] — [0,T], 6 € O, satisfy for every § € O, t € [0,T] that
R = tRY, for everyd € N, s € [0,T], t € [s,T], z € R% 0 € © let Xi’f: Q — R? satisfy
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X =+ V2WH — W), et UL [0, T]xRIx Q- R, d, M €N, § € ©, n € Ny, satisfy
for every d,n, M €N, § € ©, r € (0,00), t € [0,T], x € R¢ that U&’]@(t,x) =0 and

n—1 t Mk
0 d,(0,k,m) ([ p(0,km)  ~-d,(0,km
Unm(t,2) =) s > (fM (Uk,](\/l,r )(ng g XRg(G,k,m)?t7$))
k=1 m=1
" (169)
d.(0,—k;m) [ (0,km) ~rdo(6,k,m 1 d,(0,0,—m
— fu (Uk—(l,M )(R§ )aXR<(e,k,m),)t,x))> Ry > ug(0, X510
m=1
and let g € Ny, d, M € N, n € Ny, satisfy for every d,n, M € N that €49 =0 and
n—1
Camm < (2d+1)M" + > M (d+ 1+ €apnr + Caprm)- (170)

=1

Then there exist M: (0,1] — N and ¢: (0,00) — [0,00) such that for every d € N, § € (0,00),
e € (0,1) it holds that

1/2

N+ K
[ <e. (171)

Z Qd,n,n
n=1

< dese= @) and sup [sup (E“Uﬁf:g(T, x) —uq(T, :E)|2D

n€[MNe,00)NN [2eRI

Proof of Corollary[2.3. First, observe that for every r € (0,00), v,w € [—r,r] it holds that

(0 =0") = (w=w’)| = (v - w)(1 =&’ —wo = V)| < (L+ o + [l +Jwol)fo —w|
<21+ of? + w)o — w]. (172)
Moreover, note that for every v € R it holds that v(v — v3) = v? — v < 1 4+ ¢%. This, the
hypothesis that for every d € N, z € R it holds that |ug(0,z)| < ¢, the fact that for every d € N
it holds that |||, and the Euclidean norm on R? are equivalent, (I72), and Corollary (with
T=T,c=max{c,2}, K=K, 0=0, f=(R3u—u—u®€eR), fiy = fu, 0= 0, ug = ug,
(Q,F,P) = (U F,P), RO =R, W = Wil RO = RO X, = X, UM, (t,2) = UL, (t,2),
Conn = Capar for d, M € N, € ©,n € Ny, r € (0,00), t € [0,7], s € [0,¢], € R? in the
notation of Corollary B.]) ensure that there exist 9: (0,1] — N and ¢: (0,00) — [0, 00) such that
for every d € N, 0 € (0,00), € € (0,1] it holds that

Ne+K 1/2
[ > Qdm,n] < ¢sde %) and sup lsup (E“Vj’g(T, x) — vg(T, x)|2D/ <e. (173)
n=1 n€MNe,00)NN [ 2R '
The proof of Corollary is thus completed. O
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