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Abstract

This paper develops an efficient and robust solution technique for the steady Boussinesq
model of non-isothermal flow using Anderson acceleration applied to a Picard iteration. After
analyzing the fixed point operator associated with the nonlinear iteration to prove that certain
stability and regularity properties hold, we apply the authors’ recently constructed theory for
Anderson acceleration, which yields a convergence result for the Anderson accelerated Picard
iteration for the Boussinesq system. The result shows that the leading term in the residual is
improved by the gain in the optimization problem, but at the cost of additional higher order
terms that can be significant when the residual is large. We perform numerical tests that illus-
trate the theory, and show that a 2-stage choice of Anderson depth can be advantageous. We
also consider Anderson acceleration applied to the Newton iteration for the Boussinesq equa-
tions, and observe that the acceleration allows the Newton iteration to converge for significantly
higher Rayleigh numbers that it could without acceleration, even with a standard line search.

1 Introduction

Flows driven by natural convection (bouyancy) occur in many practical problems including ven-
tilation, solar collectors, insulation in windows, cooling in electronics, and many others [8]. Such
phenomena are typically modeled by the Boussinesq system, which is given in a domain Ω ⊂ Rd
(d=2 or 3) by

ut + (u · ∇)u− ν∆u+∇p = Ri〈0, θ〉T + f,

∇ · u = 0,

θt + (u · ∇)θ − κ∆θ = γ, (1.1)

with u representing the velocity field, p the pressure, θ the temperature (or density), and with
f and γ the external momentum forcing and thermal sources. The kinematic viscosity ν > 0 is
defined as the inverse of the Reynolds number (Re = ν−1), and the thermal conductivity κ is given
by κ = Re−1Pr−1 where Pr is the Prandtl number and Ri is the Richardson number accounting
for the gravitational force. Appropriate initial and boundary conditions are required to determine
the system. The Rayleigh number is defined by Ra = Ri · Re2 · Pr, and higher Ra leads to more
complex physics as well as more difficulties in numerically solving the system.

Finding accurate solutions to the Boussinesq system requires the efficient solution of a discretized
nonlinear system based on (1.1). We restrict our attention to those nonlinear systems arising from
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the steady Boussinesq system, since for nonlinear solvers, this is the more difficult case. In time
dependent problems, for instance, linearizations may be used which allow one to avoid solving
nonlinear systems [1]. If one does need to solve the nonlinear system at each time step (e.g. in
cases where there are fast temporal dynamics), then our work below is relevant, and the analysis
as it is developed here generally applies as the time derivative term only improves the properties of
the system. Moreover, at each time step one has access to good initial iterates to each subsequent
nonlinear problem (e.g., the solution at the last time step).

We will consider the Picard iteration for solving the steady Boussinesq system: Given initial
u0, define uk, θk, k ≥ 1, by

(uk−1 · ∇)uk − ν∆uk +∇pk = Ri〈0, θk〉T + f, (1.2)

∇ · uk = 0, (1.3)

(uk−1 · ∇)θk − κ∆θk = γ, (1.4)

with uk, θk satisfying appropriate boundary conditions. Our analysis will consider this iteration
together with a finite element discretization. A critical feature of this iteration is that the mo-
mentum/mass equations are decoupled in each iteration from the energy equation. At each Picard
iteration, one first solves the linear system (1.4), and then solves the linear system (1.2)-(1.3), which
will be much more efficient than the Newton iteration (add (uk−uk−1)·∇uk−1 and (uk−uk−1)·∇θk−1

to the momentum and energy equations, respectively). The difficulty with the Newton iteration
is that it is fully coupled: at each iteration the linear solve is for (uk, pk, θk) together. Such block
linear systems can be difficult to solve since little is known about how to effectively precondition
them.

The decoupled iteration (1.2)-(1.4), on the other hand, requires solving an Oseen linear system
and a temperature transport system; many methods exist for effectively solving these linear systems
[5, 6, 9]. However, even if each step of the decoupled iteration is fast, convergence properties for
this iteration are not as good as those for the Newton iteration (provided a good initial guess).
This motivates accelerating the nonlinear iteration for the decoupled scheme to achieve a method
where each linear solve is fast, and which produces a sequence of iterates that converges rapidly to
the solution. The purpose of this paper is to consider the decoupled Boussinesq iteration (1.2)-(1.4)
together with Anderson acceleration.

Anderson acceleration [2] is an extrapolation technique which, after computing an update step
from the current iterate, forms the next iterate from a linear combination of m previous iterates
and update steps. The parameter m is referred to as the algorithmic depth of the iteration. The
linear combination is chosen as the one which minimizes the norm of the m most recent update
steps. The technique has increased in popularity since its efficient implementation and use on a
variety of applications was described in [21]. Convergence theory can be found in [14, 20], and its
relation to quasi-Newton methods has been developed in [11, 12]. As shown in [10, 16, 17], as well
as [20], the choice of norm used in the inner optimization problem plays an important role in the
effectiveness of the acceleration. Local improvement in the convergence rate of the iteration can
be shown if the original fixed-point iteration is contractive in a given norm. However, as further
discussed in [17], the iteration does not have to be contractive for Anderson acceleration to be
effective.

Herein, we extend the theory of improved convergence using Anderson acceleration to the
Boussinesq system with the iteration (1.2)-(1.4), and demonstrate its efficiency on benchmark
problems for natural convection. Our results show that applied in accordance with the developed
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theory of [17], the acceleration has a substantial and positive impact on the efficiency of the iteration,
and even provides convergence when the iteration would otherwise fail.

Additionally, although the focus of the paper is for the Picard iteration (1.2)-(1.4), numerical
testing of Anderson acceleration for the related Newton iteration is also performed. Anderson accel-
eration has been (numerically) shown on several test problems to enlarge the domain of convergence
for Newton iterations, although it can locally slow convergence, reducing the natural quadratic or-
der of convergence to subquadratic, in the vicinity of a solution [10, 18]. Our results show that
Anderson acceleration applied to the Newton iteration for the Boussinesq system substantially
improves the performance of the solver at higher Rayleigh numbers.

The remainder of the paper is organized as follows: In section 2 we provide some background on
a stable finite element spatial discretization for the steady Boussinesq equations, and on Anderson
acceleration applied to a general fixed point iteration. In section 3 we give a decoupled fixed point
iteration for the steady Boussinesq system under the aforementioned finite element framework, and
show that this iteration is Lipschitz Fréchet differentiable and satisfies the assumptions of [17].
Subsection 3.3 states the Anderson accelerated iteration specifically for, and as it is applied to
the steady Boussinesq system, and presents the convergence results for this problem. In section 4
we report on results of a heated cavity problem with varying Rayleigh number for the decoupled
iteration of the steady Boussinesq system, and show that Anderson acceleration can have a notable
positive impact on the convergence speed, especially for problems featuring a large Rayleigh number.
Section 5 shows numerical results for Anderson acceleration applied to the related Newton iteration.

2 Notation and Mathematical Preliminaries

This section will provide notation, mathematical preliminaries and background, to allow for a
smooth analysis in later sections. First, we will give function space and notational details, followed
by finite element discretization preliminaries, and finally a brief review of Anderson acceleration.

The domain Ω ⊂ Rd is assumed to be simply connected and to either be a convex polytope or
have a smooth boundary. The L2(Ω) norm and inner product will be denoted by ‖ · ‖ and (·, ·),
respectively, and all other norms will be labeled with subscripts. Common boundary conditions for
velocity and temperature are the Dirichlet conditions given by

u = g(x) on ∂Ω, T = h(x) on ∂Ω, (2.1)

and mixed Dirichlet/Neumann conditions

u = g(x) on ∂Ω, T = h(x) on Γ1, ∇T · n = 0 on Ω\Γ1, (2.2)

where Γ1 ⊂ ∂Ω, |Γ1| > 0, and g(x), h(x) are given functions. For simplicity, we consider the
homogeneous case where g(x) = 0 and h(x) = 0, and note that our results are extendable to the
non-homogeneous case.

2.1 Mathematical preliminaries

In this subsection, we consider the system (1.2)-(1.4), coupled with the Dirichlet conditions (2.1),
and present some standard results that will be used later. These results additionally hold for system
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(1.2)-(1.4) with the mixed boundary conditions (2.2), which can by seen by an integration by parts.
The natural function spaces for velocity, pressure, and temperature are given by

X = H1
0 (Ω)d := {v ∈ L2(Ω)d : ∇v ∈ L2(Ω)d×d, v = 0 on ∂Ω},

Q = L2
0(Ω) := {q ∈ L2(Ω) :

∫
Ω
q dx = 0},

W = H1
0 (Ω).

The Poincaré inequality is known to hold in both X and W [15]: there exists CP > 0 dependent
only on the domain Ω satisfying

‖v‖ ≤ CP ‖∇v‖,

for any v ∈ X, or v ∈W .
Define the trilinear form: b : X ×X ×X → R such that for any u, v, w ∈ X

b(u, v, w) :− 1

2
((u · ∇v, w)− (u · ∇w, v)).

The operator b is skew-symmetric and satisfies

b(u, v, v) = 0, (2.3)

b(u, v, w) ≤M‖∇u‖‖∇v‖‖∇w‖, (2.4)

for any u, v, w ∈ X, withM depending only on Ω [15, Chapter 6]. Similarly, define b∗ : X×W×W →
R such that for any v ∈ X,φ, ψ ∈W

b∗(v, φ, ψ) :=
1

2
((v · ∇φ, ψ)− (v · ∇ψ, φ)).

One can easily check that b∗ also satisfies (2.3)-(2.4).
We will denote by τh a regular, conforming triangulation of Ω with maximum element diameter

h. The finite element spaces will be denoted as Xh ⊂ X,Qh ⊂ Q,Wh ⊂W , and we require that the
(Xh, Qh) pair satisfies the usual discrete inf-sup condition [7]. Common choices are Taylor-Hood
elements [7], Scott-Vogelius elements on an appropriate mesh [4, 23, 22], or the mini element [3].

Define the discretely divergence-free subspace Vh by

Vh := {v ∈ Xh, (∇ · vh, qh) = 0 ∀qh ∈ Qh}. (2.5)

Utilizing the space Vh will help simplify some of the analysis that follows. The discrete stationary
Boussinesq equations for (u, θ) ∈ (Vh,Wh) can now be written in weak form as:

b(u, u, v) + ν(∇u,∇v) = Ri(〈0, θ〉T , v) + (f, v), (2.6)

b∗(u, θ, χ) + κ(∇θ,∇χ) = (γ, χ), (2.7)

for any (v, χ) ∈ (Vh,Wh). One can easily check that

‖∇u‖ ≤ K1 := RiC2
P ν
−1κ−1‖γ‖−1 + ν−1‖f‖−1 and ‖∇θ‖ ≤ K2 := κ−1‖γ‖−1, (2.8)

by choosing v = u, χ = θ in (2.6)-(2.7). We next present a set of sufficient conditions to guarantee
the uniqueness of the solution for the discrete stationary Boussinesq equations.
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Lemma 2.1 (Small data condition). The following are sufficient conditions for the system (2.6)-
(2.7) to have a unique solution

ν−1M
(
2K1 + κ−1MK2

2

)
< 1, ν−1κ−1Ri2C4

P < 1. (2.9)

The following stronger condition will also be used in the sequel in order to simplify some of the
constants. Define η := min{ν, κ}, then by the definition of K1,K2 in (2.8), we have the following
inequality

ν−1M
(
2K1 + κ−1MK2

2

)
≤ η−2M

(
2(RiC2

Pκ
−1‖γ‖−1 + ‖f‖−1) + κ−2M‖γ‖2−1

)
,

ν−1κ−1Ri2C4
P ≤ η−2Ri2C4

P .

Then a stronger sufficient condition for uniqueness of solutions to (2.6)-(2.7) is given by

η−2M
(
2(RiC2

Pκ
−1‖γ‖−1 + ‖f‖−1) + κ−2M‖γ‖2−1

)
< 1, η−1RiC2

P < 1, (2.10)

which implies κ−1RiC2
P < 1.

Proof. Assume (u, θ), (w, z) ∈ (Vh,Wh) are solutions to the (2.6)-(2.7). Subtracting these two
systems produces

b(u, u− w, v) + b(u− w,w, v) + ν(∇(u− w),∇v) = Ri(〈0, θ − z〉T , v),

b∗(u, θ − z, χ) + b∗(u− w, z, χ) + κ(∇(θ − z),∇χ) = 0.

Setting v = u− w,χ = θ − z eliminates the first nonlinear terms in both equations and yields

ν‖∇(u− w)‖2 ≤ ν−1Ri2C4
P ‖∇(θ − z)‖2 + 2MK1‖∇(u− w)‖2,

κ‖∇(θ − z)‖2 ≤ κ−1M2K2
2‖∇(u− w)‖2,

thanks to the Cauchy-Schwarz and Poincaré inequalities, together with (2.4) and (2.8). Combining
these bounds, we obtain(

1− 2ν−1MK1 − ν−1κ−1M2K2
2

)
ν‖∇(u− w)‖2 +

(
1− ν−1κ−1Ri2C4

P

)
κ‖∇(θ − z)‖2 ≤ 0. (2.11)

Under the conditions (2.9), both terms on the left-hand side of (2.11) are nonnegative, and in fact
positive unless u = w and θ = z, implying the solution is unique.

In the remainder, we will assume either (2.9) or (2.10) holds, to guarantee the well-posedness
of the system (2.6)-(2.7). For notational simplicity, we prefer using the stronger (2.10). All of the
results in section 3 hold as well for (2.9) with minor differences in the constants.

2.2 Anderson acceleration

The extrapolation technique known as Anderson acceleration, which is used to improve the conver-
gence of a fixed-point iteration, may be stated as follows [20, 21]. Consider a fixed-point operator
g : Y → Y where Y is a normed vector space.
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Algorithm 2.2 (Anderson iteration). Anderson acceleration with depth m ≥ 0 and damping factors
0 < βk ≤ 1.
Step 0: Choose x0 ∈ Y.
Step 1: Find w1 ∈ Y such that w1 = g(x0)− x0. Set x1 = x0 + w1.
Step k: For k = 2, 3, . . . Set mk = min{k − 1,m}.

[a.] Find wk = g(xk−1)− xk−1.
[b.] Solve the minimization problem for {αkj }

k−1
k−mk

min

∥∥∥∥∥
(

1−
k−1∑

j=k−mk

αkj

)
wk +

k−1∑
j=k−mk

wj

∥∥∥∥∥
Y

. (2.12)

[c.] For damping factor 0 < βk ≤ 1, set

xk = (1−
k−1∑

j=k−mk

αkj )xk−1 +
∑k−1

j=k−mk
αkjxj−1 + βk

(
(1−

k−1∑
j=k−mk

αkj )wk +
k−1∑

j=k−mk

αkjwj

)
, (2.13)

where wj = g(xj−1)− xj−1 may be referred to as the update step or as the nonlinear residual.

Depth m = 0 returns the original fixed-point iteration. For purposes of implementation with
depth m > 0, it makes sense to write the algorithm in terms of an unconstrained optimization
problem rather than a constrained problem as in (2.12) [12, 17, 21]. Define matrices Ek and Fk,
whose columns are the consecutive differences between iterates and residuals, respectively.

Ek−1 :=
(
ek−1 ek−2 · · · ek−mk

)
, ej = xj − xj−1, (2.14)

Fk :=
(

(wk − wk−1) (wk−1 − wk−2) · · · (wk−mk+1 − wk−mk
)
)
. (2.15)

Then defining γk = argminγ∈Rm ‖wk − Fkγ‖Y , the update step (2.13) may be written as

xk = xk−1 + βkwk − (Ek−1 + βkFk)γ
k = xαk−1 + βkw

α
k , (2.16)

where wαk = wk − Fkγk and xαk−1 = xk−1 −Ek−1γ
k, are the averages corresponding to the solution

from the optimization problem. The optimization gain factor ξk may be defined by

‖wαk ‖ = ξk‖wk‖. (2.17)

The gain factor ξk plays a critical role in the recent theory [10, 17] that shows how this acceleration
technique improves convergence. Specifically, the acceleration reduces the contribution from the
first-order residual term by a factor of ξk, but introduces higher-order terms into the residual
expansion of the accelerated iterate.

The next two assumptions, summarized from [17], give sufficient conditions on the fixed point
operator g, for the analysis presented there to hold.

Assumption 2.3. Assume g ∈ C1(Y ) has a fixed point x∗ in Y , and there are positive constants
C0 and C1 with

1. ‖g′(x)‖ ≤ C0 for all x ∈ Y , and

2. ‖g′(x)− g′(y)‖ ≤ C1 ‖x− y‖ for all x, y ∈ Y .
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Assumption 2.4. Assume there is a constant σ > 0 for which the differences between consecutive
residuals and iterates satisfy

‖wk+1 − wk‖Y ≥ σ‖xk − xk−1‖Y , k ≥ 1.

Under Assumptions 2.3 and 2.4, the following result summarized from [17] produces a one-step
bound on the residual ‖wk+1‖ in terms of the previous residual ‖wk‖.

Theorem 2.5 (Pollock, Rebholz, 2019). Let Assumptions 2.3 and 2.4 hold, and suppose the di-
rection sines between columns of Fj defined by (2.15) are bounded below by a constant cs > 0, for
j = k−mk, . . . , k− 1. Then the residual wk+1 = g(xk)−xk from Algorithm 2.2 (depth m) satisfies
the following bound.

‖wk+1‖ ≤ ‖wk‖

(
ξk((1− βk) + C0βk) +

CC1

√
1− θ2

k

2

(
‖wk‖h(ξk)

+ 2
k−1∑

n=k−mk+1

(k − n) ‖wn‖h(ξn) +mk ‖wk−mk
‖h(ξk−mk

)

))
, (2.18)

where each h(ξj) ≤ C
√

1− ξ2
j + βjξj, and C depends on cs and the implied upper bound on the

direction cosines.

The one-step estimate (2.18) shows how the relative contributions from the lower and higher
order terms are determined by the gain ξk from the optimization problem. The lower order terms

are scaled by ξk and the higher-order terms are scaled by
√

1− ξ2
k. Greater algorithmic depths

m generally give smaller values of ξk as the optimization is run over an expanded search space.
However, the reduction comes at the cost of both increased accumulation and weight of higher order
terms. If recent residuals are small, then this may be negligible and greater algorithmic depths m
may be advantageous (to a point). If the previous residual terms are large however (e.g., near the
beginning of an iteration), then greater depths m may slow or prevent convergence in many cases.

3 A decoupled fixed point iteration for the Boussinesq system

All results in this section hold for both Dirichlet boundary conditions (2.1), and mixed boundary
conditions (2.2), with minor differences in the constants. We will use the Dirichlet boundary
conditions for illustration. One can easily extend the analysis for the mixed boundary conditions.

We will consider the following fixed point iteration: Given u0, θ0, for k = 1, 2, 3, ..., find
(uk, pk, θk) ∈ (Xh, Qh,Wh) satisfying for all v ∈ Xh, q ∈ Qh, χ ∈Wh,

b(uk−1, uk, v) + ν(∇uk,∇v)− (pk,∇ · v) = Ri
(
〈0, θk〉T , v

)
+ (f, v), (3.1)

(∇ · uk, q) = 0, (3.2)

b∗(uk−1, θk, χ) + κ(∇θk,∇χ) = (γ, χ). (3.3)

For finite element spaces Xh, Qh satisfying the discrete inf-sup condition as described in subsection
2.1, we have the equivalent formulation in the discretely divergence-free space (2.5): for any v ∈
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Vh, χ ∈Wh,

b(uk−1, uk, v) + ν(∇uk,∇v) = Ri
(
〈0, θk〉T , v

)
+ (f, v), (3.4)

b∗(uk−1, θk, χ) + κ(∇θk,∇χ) = (γ, χ). (3.5)

The following subsections develop a framework which will allow us to analyze this iteration.

3.1 A solution operator G corresponding to the fixed point iteration

We will consider the solution operator of the system (3.4)-(3.5) as the fixed-point operator defining
the iteration to be accelerated. To study this operator, we next formally define it in a slightly more
abstract way.

Given f ∈ H−1(Ω)d, γ ∈ H−1(Ω), and (u, θ) ∈ (Vh,Wh), consider the problem of finding
(ũ, θ̃) ∈ (Vh,Wh) satisfying

b(u, ũ, v) + ν(∇ũ,∇v) = Ri
(
〈0, θ̃〉T , v

)
+ (f, v), (3.6)

b∗(u, θ̃, χ) + κ(∇θ̃,∇χ) = (γ, χ), (3.7)

for any v ∈ Vh, χ ∈Wh.

Lemma 3.1. For f ∈ H−1(Ω)d and γ ∈ H−1(Ω), the system (3.6)-(3.7) is well-posed, and solutions
satisfy the bounds

‖∇ũ‖ ≤ K1 and ‖∇θ̃‖ ≤ K2, (3.8)

where K1, K2 are given in (2.8).

Proof. We begin with a priori bounds. Suppose solutions exist, and choose χ = θ̃ and v = ũ. By
construction, this vanishes the trilinear terms in each equation. After applying Cauchy-Schwarz,
Poincaré and Hölder inequalities, it can be seen that

ν‖∇ũ‖2 ≤ C2
PRi‖∇θ̃‖‖∇ũ‖+ ‖f‖−1‖∇ũ‖,

κ‖∇θ̃‖2 ≤ ‖γ‖−1‖∇θ̃‖.

The second bound reduces to ‖∇θ̃‖ ≤ κ−1‖γ‖−1, and inserting this into the first bound produces

‖∇ũ‖ ≤ C2
PRiν

−1κ−1‖γ‖−1 + ν−1‖f‖−1.

Since the system (3.6)-(3.7) is linear in ũ and θ̃, and finite dimensional, these bounds are sufficient
to imply solution uniqueness and therefore existence.

Definition 3.2. Define G : (Vh,Wh) → (Vh,Wh) to be the solution operator of (3.6)-(3.7). That
is,

(ũ, θ̃) = G(u, θ).

By Lemma 3.1, G is well defined. The Boussinesq fixed point iteration (3.4)-(3.5) can now be
written as

(uk, θk) = G(uk−1, θk−1).

Before we give a norm on (Vh,Wh), we recall scalar multiplication on the ordered pair (u, θ) ∈
(Vh,Wh) satisfies α · (u, θ) = (αu, αθ), for any α ∈ R.
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Definition 3.3. Define the norm ‖(·, ·)‖B : (Vh,Wh)→ R by

‖(v, w)‖B :=
√
ν‖∇v‖2 + κ‖∇w‖2.

The weights used in the norm definition come from the natural energy norm of the Boussinesq
system, and this norm will be referred to as the B-norm. Using this weighted norm both sim-
plifies the analysis and improves the practical implementation, as this norm will be used in the
optimization step of the accelerated algorithm.

3.2 Continuity and Lipschitz differentiability of G

We now prove that G satisfies Assumptions 2.3 and 2.4. We begin with Lipschitz continuity.

Lemma 3.4. There exists a positive constant CG such that ‖G(u, θ) − G(w, z)‖B ≤ CG‖(u, θ) −
(w, z)‖B for any (u, θ), (w, z) ∈ (Vh,Wh). The constant CG is defined by

CG = ν−1/2η−1/2M
√

2K2
1 + 3K2

2 .

Proof. For any (u, θ) ∈ (Vh,Wh), denote (G1(u, θ), G2(u, θ)) as the components of G(u, θ). Let
(u, θ), (w, z) ∈ (Vh,Wh). Set G(u, θ) = (G1(u, θ), G2(u, θ)) and G(w, z) = (G1(w, z), G2(w, z)).
Then for all (v, χ) ∈ (Vh,Wh) we have

b(u,G1(u, θ), v) + ν(∇G1(u, θ),∇v) = Ri(〈0, G2(u, θ)〉T , v) + (f, v), (3.9)

b∗(u,G2(u, θ), χ) + κ(∇G2(u, θ),∇χ) = (γ, χ), (3.10)

b(w,G1(w, z), v) + ν(∇G1(w, z),∇v) = Ri(〈0, G2(w, z)〉T , v) + (f, v), (3.11)

b∗(w,G2(w, z), χ) + κ(∇G2(w, z),∇χ) = (γ, χ). (3.12)

Subtracting (3.11)-(3.12) from (3.9)-(3.10) gives

b(u,G1(u, θ)−G1(w, z), v) + b(u− w,G1(w, z), v) + ν (∇(G1(u, θ)−G1(w, z)),∇v)

=Ri(〈0, G2(u, θ)−G2(w, z)〉T , v), (3.13)

b∗(u,G2(u, θ)−G2(w, z), χ) + b∗(u− w,G2(w, z), χ) + κ (∇(G2(u, θ)−G2(w, z)),∇χ) = 0,
(3.14)

Choosing χ = G2(u, θ)−G2(w, z) in (3.14) eliminates the first term, then applying (2.4) and (3.8)
gives

‖∇(G2(u, θ)−G2(w, z))‖ ≤ κ−1MK2‖∇(u− w)‖. (3.15)

Similarly, choosing v = G1(u, θ)−G1(w, z) in (3.13) eliminates the first nonlinear term, and applying
(2.4), Hölder and Poincaré inequalities produces

‖∇(G1(u, θ)−G1(w, z))‖ ≤ ν−1C2
PRi‖∇(G2(u, θ)−G2(w, z))‖+ ν−1M‖∇(u− w)‖‖∇G1(w, z)‖

≤ ν−1M(κ−1K2RiC
2
P +K1)‖∇(u− w)‖

≤ ν−1M(K1 +K2)‖∇(u− w)‖, (3.16)

thanks to (3.8) of Lemma 3.1 and (2.10). Combining (3.15)-(3.16) gives

‖G(u, θ)−G(w, z)‖B ≤ ν−1/2η−1/2M
√

2K2
1 + 3K2

2‖(u, θ)− (w, z)‖B.

Thus G is Lipschitz continuous with constant CG = ν−1/2η−1/2M
√

2K2
1 + 3K2

2 .
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Next, we show that G is Lipschitz Fréchet differentiable. We will first define a mapping G′, and
then in Lemma 3.6 confirm that it is the Fréchet derivative operator of G.

Definition 3.5. Given (u, θ) ∈ (Vh,Wh), define an operator G′(u, θ; ·, ·) : (Vh,Wh)→ (Vh,Wh) by

G′(u, θ;h, s) :=
(
G′1(u, θ;h, s), G′2(u, θ;h, s)

)
,

satisfying for all (h, s), (v, χ) ∈ (Vh,Wh),

b(h,G1(u, θ), v) + b(u,G′1(u, θ;h, s), v) + ν(∇G′1(u, θ;h, s),∇v) = Ri(〈0, G′2(u, θ;h, s)〉T , v),

(3.17)

b∗(h,G2(u, θ), χ) + b∗(u,G′2(u, θ;h, s), χ) + κ(∇G′2(u, θ;h, s),∇χ) = 0. (3.18)

Once it is established that G′ is well-defined and is the Fréchet derivative of G, it follows that
G′(u, θ; ·, ·) is the Jacobian matrix of G at (u, θ). From the partially decoupled system (3.17)-(3.18),
it is clear that G′(u, θ; ·, ·) is a block upper triangular matrix. Applied to any (h, s) ∈ (Vh,Wh), the
resulting G′(u, θ;h, s) can be written componentwise as (G′1(u, θ;h, s), G′2(u, θ;h, s)) ∈ (Vh,Wh).

Lemma 3.6. The Boussinesq operator G is Lipschitz Fréchet differentiable: there exists a constant
ĈG such that for all (u, θ), (w, z), (h, s) ∈ (Vh,Wh)

‖G′(u, θ;h, s)‖B ≤ CG‖(h, s)‖B, (3.19)

and

‖G′(u+ h, θ + s;w, z)−G′(u, θ;w, z)‖B ≤ ĈG‖(h, s)‖B‖(w, z)‖B, (3.20)

where CG is defined in Lemma 3.4.

Proof. The first part of the proof shows that G is Fréchet differentiable, and (3.19) holds. We
begin by finding an upper bound on the norm of G′ and then showing G′ is well-defined. Setting
χ = G′2(u, θ;h, s) in (3.18) eliminates the second nonlinear term and gives

‖∇G′2(u, θ;h, s)‖ ≤ κ−1M‖∇h‖‖∇G2(u+ h, θ + s)‖ ≤ κ−1MK2‖∇h‖, (3.21)

thanks to Lemma 3.1. Similarly, setting v = G′1(u, θ;h, s) in (3.17) eliminates the second nonlinear
term and yields

‖∇G′1(u, θ;h, s)‖ ≤ ν−1RiC2
P ‖∇G′2(u, θ;h, s)‖+ ν−1M‖∇h‖‖∇G1(u, θ)‖

≤ ν−1M
(
κ−1K2RiC

2
P +K1

)
‖∇h‖

≤ ν−1M(K1 +K2)‖∇h‖, (3.22)

thanks to Lemma 3.1, (3.21) and the small data condition (2.10). Combining the bounds (3.21)-
(3.22) yields

‖G′(u, θ;h, s)‖B ≤ CG‖(h, s)‖B. (3.23)

Since system (3.17)-(3.18) is linear and finite dimensional, (3.23) is sufficient to imply the system
is well-posed. Therefore, G′ is well-defined and uniformly bounded over (Vh,Wh), since the bound
is independent of (u, θ).
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Next, we prove G′ given by definition 3.5 is the Fréchet derivative operator of G. That is, given
(u, θ) ∈ (Vh,Wh), there exists some constant C such that for any (h, s) ∈ (Vh,Wh)

‖G(u+ h, θ + s)−G(u, θ)−G′(u, θ;h, s)‖B ≤ C‖(h, s)‖2.

For notational ease, set g̃1 = G1(u+h, θ+ s)−G1(u, θ)−G′1(u, θ;h, s) and g̃2 = G2(u+h, θ+ s)−
G2(u, θ)−G′2(u, θ;h, s). To construct the left hand side of the inequality above, we begin with the
following equations: for any (u, θ), (h, s), (v, χ) ∈ (Vh,Wh),

b(u+ h,G1(u+ h, θ + s), v) + ν(∇G1(u+ h, θ + s),∇v) = Ri(〈0, G2(u+ h, θ + s)〉T , v) + (f, v),

(3.24)

b∗(u+ h,G2(u+ h, θ + s), χ) + κ(∇G2(u+ h, θ + s),∇χ) = (γ, χ), (3.25)

b(u,G1(u, θ), v) + ν(∇G1(u, θ),∇v) = Ri(〈0, G2(u, θ)〉T , v) + (f, v), (3.26)

b∗(u,G2(u, θ), χ) + κ(∇G2(u, θ),∇χ) = (γ, χ). (3.27)

Subtracting (3.24)-(3.25) from (3.26)-(3.27) and (3.17)-(3.18), and then choosing v = g̃1, χ = g̃2,
we obtain by application of (2.4), Hölder and Sobolev inequalities [15, Chapter 6] that

ν‖∇g̃1‖2 = −b(h,G1(u+ h, θ + s)−G1(u, s), g̃1) +Ri(〈0, g̃2〉T , g̃1)

≤M‖∇h‖‖∇(G1(u+ h, θ + s)−G1(u, θ)‖‖∇g̃1‖+RiC2
P ‖∇g̃2‖‖∇g̃1‖,

κ‖∇g̃2‖2 = −b(h,G2(u+ h, θ + s)−G2(u, θ), g̃2),

which reduces to

κ‖∇g̃2‖2 ≤ κ−1M2‖∇h‖2‖∇(G2(u+ h, θ + s)−G2(u, θ))‖2, (3.28)

and

ν‖∇g̃1‖2

≤ 2ν−1M2‖∇h‖2
(
‖∇(G1(u+ h, θ + s)−G1(u, θ)‖2

+Ri2C4
Pκ
−2‖∇(G2(u+ h, θ + s)−G2(u, θ))‖2

)
≤ 2η−1ν−1M2‖∇h‖2‖∇(G(u+ h, θ + s)−G(u, θ))‖2B, (3.29)

thanks to Young’s inequality and (2.10). Combining bounds (3.28)-(3.29) produces

‖(g̃1, g̃2)‖2B ≤ 3η−2M2‖∇h‖2‖∇(G(u+ h, θ + s)−G(u, θ))‖2B ≤ 3η−3M2C2
G‖(h, s)‖4B.

By the definitions of g̃1, g̃2, this shows

‖G(u+ h, θ + s)−G(u, θ)−G′(u, θ;h, s)‖B ≤ 2η−3/2MCG‖(h, s)‖2B, (3.30)

which demonstrates Fréchet differentiability of G at (u, θ). As (3.30) holds for arbitrary (u, θ), we
have that G is Fréchet differentiable on all of (Vh,Wh).
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The second part of the proof shows that G′ is Lipschitz continuous over (Vh,Wh). By the
definition of G′, the following equations hold

b(w,G1(u, θ), v) + b(u,G′1(u, θ;w, z), v) + ν(∇G′1(u, θ;w, z),∇v) =

Ri(〈0, G′2(u, θ;w, z)〉T , v), (3.31)

b∗(w,G2(u, θ), χ) + b∗(u,G′2(u, θ;w, z), χ) + κ(∇G′2(u, θ;w, z),∇χ) = 0, (3.32)

b(w,G1(u+ h, θ + s), v) + b(u+ h,G′1(u+ h, θ + s;w, z), v)

+ν(∇G′1(u+ h, θ + s;w, z),∇v) = Ri(〈0, G′2(u+ h, θ + s;w, z)〉T , v), (3.33)

b∗(w,G2(u+ h, θ + s), χ) + b∗(u+ h,G′2(u+ h, θ + s;w, z), χ)

+κ(∇G′2(u+ h, θ + s;w, z),∇χ) = 0, (3.34)

for all (u, θ), (w, z), (h, s), (v, χ) ∈ (Vh,Wh). Letting e1 := G′1(u+h, θ+s;w, z)−G′1(u, θ;w, z), e2 :=
G′2(u+ h, θ + s;w, z)−G′2(u, θ;w, z) and subtracting (3.31)-(3.32) from (3.33)-(3.34) gives

b(w,G1(u+ h, θ + s)−G1(u, θ), v) + b(h,G′1(u, θ;w, z), v) + b(u+ h, e1, v) + ν(∇e1,∇v) =

Ri(〈0, e2〉T , v),

b∗(w,G2(u+ h, θ + s)−G2(u, θ), χ) + b∗(h,G′2(u, θ;w, z), χ) + b∗(u+ h, e2, χ) + κ(∇e2,∇v) = 0.

Setting v = e1, χ = e2 eliminates the last nonlinear terms in both equations and produces

ν‖∇e1‖2 ≤ RiC2
P ‖∇e2‖‖∇e1‖+M‖∇w‖‖∇(G1(u+ h, θ + s)−G1(u, θ))‖‖∇e1‖

+M‖∇h‖‖∇G′1(u, θ;w, z)‖‖∇e1‖,
κ‖∇e2‖2 ≤M‖∇w‖‖∇(G2(u+ h, θ + s)−G2(u, θ))‖‖∇e2‖+M‖∇h‖‖∇G′2(u, θ;w, z)‖‖∇e2‖,

thanks to (2.4). Thus from (3.15)-(3.16), (3.21)-(3.22), (3.23) and Lemma 3.4, we obtain

‖∇e2‖ ≤ 2M2κ−2K2‖∇w‖‖∇h‖,
‖∇e1‖ ≤ ν−1RiC2

P ‖∇e2‖+ 2ν−2M2(K1 +K2)‖∇h‖∇w‖
≤ 2ν−1η−1M2(K1 + 2K2)‖∇w‖‖∇h‖.

Combing these bounds gives

‖(e1, e2)‖2B ≤ 4ν−2η−3M4(2K2
1 + 9K2

2 )‖(h, s)‖2B‖(w, z)‖2B = Ĉ2
G‖(h, s)‖2B‖(w, z)‖2B

where ĈG = 2ν−1η−3/2M2(2K2
1 + 9K2

2 )1/2 is the Lipschitz constant of G′. Thus G′(u, θ; ·, ·) is
Lipschitz continuous with constant ĈG. As the bound holds for arbitrary (u, θ), we have that G is
Lipschitz continuously differentiable on (Vh,Wh) with constant ĈG.

It remains to show that Assumption 2.4 is satisfied for the solution operator G. This amounts
to finding a constant σ > 0 such that for any (u, θ), (w, z) ∈ (Vh,Wh) with ‖∇u‖, ‖∇w‖ ≤ K1

‖F (u, θ)− F (w, z)‖B ≥ σ‖(u, θ)− (w, z)‖B, (3.35)

where F (u, θ) := G(u, θ)− (u, θ).

Lemma 3.7. Assume the problem data is such that G is contractive, i.e. CG < 1. Then there exists
a constant σ > 0 such that (3.35) holds for any (u, θ), (w, z) ∈ (Vh,Wh) with ‖∇u‖, ‖∇w‖ ≤ K1.
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Proof. Since G is contractive, it follows from Remark 4.2 in [17] that (3.35) holds with σ = 1 −
CG.

This shows that Assumption 2.4 is satisfied under the data restriction that CG < 1, which is
similar but not equivalent to the uniqueness conditions in section 2. However, in our numerical
tests, which used data far larger than these restrictions, the σk’s calculated at each iteration (i.e.
(3.35) with u = uk, θ = θk, w = uk−1, z = θk−1) were in general no smaller than 10−3. Hence it
may be possible to prove that Assumption 2.4 holds under less restrictive data restrictions.

3.3 Accelerating the decoupled Boussinesq iteration

In this section, we provide the algorithm of Anderson acceleration applied to the decoupled Boussi-
nesq system (3.4) - (3.5) with either Dirichlet (2.1) or mixed boundary conditions (2.2). The
one-step residual bound is stated below for Boussinesq solve operators G.

Algorithm 3.8 (Anderson accelerated iterative method for Boussinesq equations).

Step 0 Give an initial u0 ∈ Xh, θ0 ∈Wh.

Step 1a) Find θ̃1 ∈Wh satisfying for all χ ∈Wh

b∗(u0, θ̃1, χ) + κ(∇θ̃1,∇χ) = (γ, χ).

Step 1b) Find ũ1 ∈ Vh satisfying for all v ∈ Vh

b(u0, ũ1, v) + ν(∇ũ1,∇v) = Ri
(
〈0, θ̃1〉T , v

)
+ (f, v).

Then set u1 = ũ1, θ1 = θ̃1, and w1 = ũ1 − u0, z1 = θ̃1 − θ0.

Step k For k = 2, 3, . . . , set mk = min{k − 1,m}.

[a. ] Find θ̃k ∈Wh by solving

b∗(uk−1, θ̃k, χ) + κ(∇θ̃k,∇χ) = (γ, χ), (3.36)

[b. ] Find ũk ∈ Vh by solving

b(uk−1, ũk, v) + ν(∇ũk,∇v) = Ri
(
〈0, θ̃k〉T , v

)
+ (f, v), (3.37)

and then compute wk = ũk − uk−1, zk = θ̃k − θk−1.

[c. ] Solve the minimization problem

min ‖(wαk , zαk )‖B (3.38)

for {αkj }
k−1
j=k−mk

where (wαk , z
α
k ) :=

(
1−

k−1∑
j=k−mk

αkj

)
(wk, zk) +

k−1∑
j=k−mk

αk+1
j (wj , zj).
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[d. ] For damping factor 0 < βk ≤ 1, set

(uk, θk) =

1−
k−1∑

j=k−mk

αkj

 (uk−1, θk−1) +
k−1∑

j=k−mk

αkj (uj−1, θj−1)

+ βk

1−
k−1∑

j=k−mk

αkj

 (wk, zk) +
k−1∑

j=k−mk

αk+1
j (wj , zj)

 .

As the Boussinesq operator G satisfies Assumptions 2.3 and 2.4, we have the following conver-
gence result of Algorithm 3.8 by directly applying Theorem 5.5 from [17].

Theorem 3.1 (Convergence result for Algorithm 3.8). The kth step residual (wk, zk) generated
from Algorithm 3.8 satisfies

‖(wk+1, zk+1)‖B ≤ ‖(wk, zk)‖B

(
ξk(1− βk + K̂gβk) +

CĈG

√
1− ξ2

k

2

(
‖(wk, zk)‖Bh(ξk)

+ 2
k−1∑

j=k−mk+1

(k − j)‖(wj , zj)‖Bh(ξj) +mk−1‖(wk−mk
, zk−mk

)‖Bh(ξk−mk
)

))
,

where ξk := ‖(wαk , zαk )‖B /‖(wk, zk)‖B, h(ξj) ≤ C
√

1− ξ2
j + βjξj, and C depends on a lower bound

of the direction sine between (wj+1, zj+1)− (wj , zj) and span{(wn+1, zn+1)− (wn, zn)}j−1
n=j−mk+1.

4 Numerical experiments for Anderson accelerated Picard itera-
tions

We now demonstrate the Anderson accelerated Picard iteration for the Boussinesq system on a
benchmark differentially heated cavity problem from [8], with varying Rayleigh number. The
domain for the problem is the unit square, and for boundary conditions we enforce no slip velocity
on all walls, ∇T · n = 0 on the top and bottom, and T (1, y) = 1, T (0, y) = 0. The initial iterates
u0 = 0 and T0 = 0, are used for all tests. No continuation method or pseudo time stepping is
employed.

The discretization uses (P2, P
disc
1 ) velocity-pressure Scott-Vogelius elements, and P2 tempera-

ture elements. The mesh is created by starting with a uniform triangulation, refining along the
boundary, then applying a barycenter refinement (Alfeld split, in the language of Fu, Guzman and
Neilan [13]). The resulting mesh is shown in figure 1, and with this element choice provides 89,554
total degrees of freedom. We show results below for varying Rayleigh numbers, which come from
using parameters ν = 0.01 and κ = 0.01, and varying Ri. Plots of resolved solutions for varying
Ra are shown in figure 2.

In our tests, we consider both constant algorithmic depts m, and also a 2-stage strategy that
uses a smaller m (1 or 2) when the nonlinear residual is larger than 10−3 in the B-norm, and
m = 20 when the residual is smaller. The 2-stage approach is motivated by Theorem 3.1, which
suggests that greater depths m can be detrimental early in the iteration due to the accumulation
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Figure 1: The mesh used for all numerical tests.
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Figure 2: The resolved solution’s velocity streamlines (top) and temperature contours (bottom),
for Ra = 105, Ra = 5 · 105, and Ra = 106, from left to right.

of non-negligible higher order terms in the residual expansion. Once the residual is sufficiently
small, then the reduction of the first order terms from a greater depth m can be enjoyed without
noticeable pollution from the higher-order terms, which essentially results in an improved linear
convergence rate.

We test here Algorithm 3.8, i.e. the Anderson accelerated Picard iteration for the Boussinesq
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Figure 3: Convergence results for the differentially heated cavity with varying m, for several
Rayleigh numbers.

system, for varying choices of depth m and damping parameter β, and for several Rayleigh numbers:
Ra = 105, 5 · 105, 106, 2 · 106. For each Ra, we tested with m = 0 (no acceleration) and each fixed
damping parameter β = 0.05, 0.1, 0.15, ..., 1, and then used the best β from all tests with that Ra.
Respectively, for Ra = 105, 5 · 105, 106, 2 · 106, these parameters were β = 0.3, 0.05, 0.05, 0.05.
Convergence results for varying m are shown in figure 3, displayed in terms of the B-norm of the
nonlinear residual versus iteration number. We note that the usual Picard iteration, i.e. m = 0
and β = 1, did not converge for any of these Ra numbers; after 500 iterations, the B-norm was still
larger than 10−1. With the appropriately chosen relaxation parameters, the Picard iteration did
converge for each case except when Ra = 2 · 106.

Convergence results for the lowest Rayleigh number, Ra = 105, are shown in the top left of
figure 3 for different values of m and fixed β = 0.3. Here, we observe the unaccelerated method
converges rather quickly, and the accelerated methods that converged faster were m = 1 and m = 2
and the 2-stage method that uses m = 1 and then switches to m = 20, with the 2-stage method
giving the best results. Anderson accelerated Picard with m = 5, 10, 20 all converged, but slower
than if no acceleration was used.

Results for Ra = 5 · 105 also show lower values of m improving convergence but higher values
slowing convergence. Indeed, m = 1, 2, 5 along with 2-stage methods that used m = 1 then 20
and m = 5 then 20, all outperformed the unaccelerated iteration, while m = 10 and m = 20

16



slowed convergence. For Ra = 106, the methods with smaller constant m = 1, 2, 5 converged, all in
roughly the same number of iterations as the unaccelerated method, while the methods run with
larger m = 10, 20 did not converge within 400 iterations. Once again, significant improvement is
seen from using 2-stage choices of m, and this gave the best results.

With Ra = 2 · 106, results showed more improvement from the acceleration, as compared to
those with lower Ra. Here, the unaccelerated Picard iteration did not converge, and neither does
the iteration with m = 1. Again, the best results come from using a 2-stage choice of m, using a
lesser depth at the beginning of the iteration, and a greater depth once the residual is sufficiently
small.

The results described above show a clear advantage from using Anderson acceleration with the
Picard iteration, especially for larger Rayleigh numbers. These results are also in good agreement
with our theory

which demonstrates that Anderson acceleration decreases the first order term, but then adds
higher order terms, to the residual bound. Hence using greater algorithmic depths when the residual
is large can sufficiently pollute the solution so that the improvement found in the reduction of the
first order term is outweighed by the additional contributions from higher order terms. In all cases,
m = 10, 20 slowed convergence compared to m = 0, if the m = 0 iteration converged. Both theory
and these experiments also suggest that early in the iteration, moderate choices of algorithmic
depth can be advantageous. The best results shown here come from the 2-stage strategy, which
takes advantage of the reduction in the first-order residual term, but only once the residual is small
enough that the higher-order contributions are negligible in comparison.

5 Acceleration of the Newton iteration for the Boussinesq system

While the theory for this paper focuses on the Picard iteration, it is also of interest to consider the
Newton iteration for the Boussinesq system, which takes the form

(uk−1 · ∇)uk + (uk · ∇)uk−1 − (uk−1 · ∇)uk−1 − ν∆uk +∇pk = Ri〈0, θk〉T + f, (5.1)

∇ · uk = 0, (5.2)

(uk−1 · ∇)θk + (uk · ∇)θk−1 − (uk−1 · ∇)θk−1 − κ∆θk = γ, (5.3)

together with appropriate boundary conditions.
The Newton iteration is often superior for solving nonlinear problems, particularly if one can

find an initial guess sufficiently close to a solution. However, for Boussinesq systems, the Newton
iteration also comes with a significant additional difficulty in that the linear systems that need to
be solved at each iteration are fully coupled. That is, one needs to solve larger block linear systems
for (uk, pk, θk) simultaneously, whereas for the Picard iteration one first solves for θk, and then
solves a Navier-Stokes type system for (uk, pk). Hence each iteration of Picard is significantly more
efficient than each iteration of Newton.

We proceed now to test Anderson acceleration applied to the Newton iteration, using the same
differentially heated cavity problem and discretization studied above. While theory to describe how
Anderson acceleration can improve the performance of Newton iterations has yet to be developed,
evidence for the efficacy of the method has been described in [10, 18]. While the acceleration
can be expected to interfere with Newton’s quadratic convergence in the vicinity of a solulution,
the advantage explored here is the behavior of the algorithm outside of that regime. In the far-
field regime, outside the domain of asympotically quadratic convergence, the Newton iteration
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may converge linearly [19], or, of course, not at all. In comparing acccererated Newton with
Newton augmented with a linesearch, we demonstrate how the acceleration can effectively enlarge
the domain of convergence for Newton iterations. As shown in the experiments below, a damped
accelerated Newton iteration with algorithmic depth m = 10 can also solve the Boussinesq system
with Ra = 2 · 106.

In the following tests, convergence was declared if the nonlinear residual fell below 10−8 in the
B-norm. If residuals grew larger than 104 in the B-norm, the iteration was terminated, and the
test was declared to fail due to (essentially) blowup, and is denoted with a ‘B’ in the tables below.
If an iteration did not converge within 200 iterations but its residuals all stayed below 104 in the
B-norm, we declared it to be a failure and denote it with an ‘F’ in the tables below.

We first tested Anderson acceleration applied to the Newton iteration, with varying m and
no relaxation (β = 1). Results are shown in table 1, and a clear improvement can be seen in
convergence for higher Ra as m increases. For comparison, we also show results of (unaccelerated)
Newton with a line search, and give results from two choices of line searches: LS1 continuously
cuts the Newton step size ratio in half (up to 1/64), until either finding a step that decreases
the nonlinear residual of the finite element problem, or using a step size ratio of 1/64 otherwise.
LS2 uses ‘fminbnd’ from MATLAB (golden section search and parabolic interpolation) to use the
step size ratio from [0.01,1] that minimizes the nonlinear residual of the finite element problem.
While the line searches do help convergence of the Newton iteration, they do not perform as well
as Newton-Anderson (m =5 or 10) for higher Ra values.

Ri Ra m = 0 m = 1 m = 2 m = 5 m = 10 m = 0 + LS1 m = 0 + LS2

1 1e+4 9 9 11 14 17 7 7

10 1e+5 B 17 19 81 38 B 11

20 2e+5 B B B 34 36 B 20

50 5e+5 B B B 44 56 B B

100 1e+6 B B B B B B B

150 1.5e+6 B B B B B B B

200 2e+6 B B B B B B B

Table 1: Iterations required for Anderson accelerated Newton iterations to converge, with β = 1
and varying m. Results of the unaccelerated Newton method with line searches are also shown.

We next considered Anderson acceleration to Newton, but using relaxation of β = 0.3. Re-
sult are shown in table 2, and we observe further improvement compared to the case of β =
1. Lastly, we considered Anderson acceleration applied to Newton, but choosing the β from
{0.0625, 0.125, 0.25, 0.5, 1} that has the smallest residual in the B-norm. This is essentially a look-
ahead step, which increases the cost of each step the accelerated Newton algorithm by a factor
of 4. Results from choosing β this way were significantly better than for constant β = 1, and
somewhat better than β = 0.3, although not worth the extra cost except when using β = 0.3 failed.
A clear conclusion for this section is that Anderson acceleration with a properly chosen depth and
relaxation can significantly improve the ability for the Newton iteration to converge for larger Ra.
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Ri Ra m = 0 m = 1 m = 2 m = 5 m = 10

1 1e+4 13 11 10 11 13

10 1e+5 B 18 18 23 52

20 2e+5 B 41 32 22 44

50 5e+5 B B B 74 134

100 1e+6 B B B 95 F

150 1.5e+6 B B B B 141

200 2e+6 B B B B 156

Table 2: Iterations required for Anderson acclerated Newton iterations to converge to a nonlinear
residual of 10−8 in the B-norm, with β = 0.3 and varying m. B denotes the nonlinear residual
growing above 104, and F denotes no convergence after 200 iterations.

Ri Ra m = 0 m = 1 m = 2 m = 5 m = 10

1 1e+4 8 9 9 13 24

10 1e+5 F 13 14 20 38

20 2e+5 123 21 27 32 61

50 5e+5 35 59 31 65 93

100 1e+6 B 42 F 68 106

150 1.5e+6 B B B F 112

200 2e+6 B B B F 150

Table 3: Iterations required for Anderson acclerated Newton iterations to converge to a nonlinear
residual of 10−8 in the B-norm, with β being chosen as the best from a set of five values, and
varying m. B denotes the nonlinear residual growing above 104, and F denotes no convergence
after 200 iteraitons.

6 Conclusions

In this paper, we studied Anderson acceleration applied to the Picard iteration for Boussinesq
system. The Picard iteration is advantageous compared to the Newton iteration for this problem
because it decouples the linear systems into easier to solve pieces. Since convergence of Picard
iterations is typically slow, it is a good candidate for acceleration. In this work we showed that the
Anderson acceleration analysis framework developed in [17] was applicable to this Picard iteration,
by considering each iteration as the application of a particular solution operator, and then proving
the solution operator had the required properties laid out in [17]. This in turn proved one-step
error analysis results from [17] hold for Anderson acceleration applied to the Boussinesq system,
and local convergence of the accelerated method under a small data condition. Numerical tests
with the 2D differentially heated cavity problem showed good numerical results demonstrating the
convergence behavior was consistent with our theory, and in particular that a 2-stage choice of
Anderson depth works very well. Anderson acceleration applied to the related Newton iteration
was also considered in numerical tests and it was found that Anderson acceleration allowed for
convergence at significantly higher Rayleigh numbers than the usual Newton iteration with common
line search techniques.
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