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1 Motivation and context

The purpose of this article is to lay the mathematical foundations of a well known numer-
ical approach in computational statistical physics, namely the parallel replica dynamics,
introduced by A.F. Voter in [18] and improved and popularized in the context of Molecular
Dynamics simulations in [19, 10, 17, 16], for example. The aim of the approach is to effi-
ciently generate a coarse-grained evolution (in terms of state-to-state dynamics) of a given
stochastic process. The approach formally consists in concurrently considering several re-
alizations of the stochastic process, and tracking among the realizations that which, the
soonest, undergoes an important transition. Using specific properties of the dynamics gen-
erated, a computational speed-up is obtained. In the best cases, this speed-up approaches
the number of realizations considered.

By drawing connections with the theory of Markov processes and, in particular, exploit-
ing the notion of quasi-stationary distribution, we provide a mathematical setting appro-
priate for assessing theoretically the performance of the approach, and possibly improving
it.

1.1 Description of the parallel replica dynamics

Consider a stochastic dynamics Xt in R
d. In the following, we will focus on the overdamped

Langevin dynamics:
dXt = −∇V (Xt) dt+

√

2β−1dWt, (1)

driven by a potential energy V : Rd → R. However, the algorithm we study equally applies
to a Langevin equation or a kinetic Monte-Carlo (KMC) dynamics.
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Intuitively, the dynamics (1) may be seen as the motion of Xt in the energy landscape
defined by the potential V . Such a landscape typically exhibits many wells. The process
Xt progressively discovers and successively explores these wells. The time spent by the
process in a well before it hops to another one might be computationally prohibitively
long, thus the need for an alternative numerical approach to the direct simulation of the
process. The parallel replica dynamics is such an approach (others are discussed in [19]).

We henceforth assume that V : Rd → R is a smooth potential, such that
∫

exp(−βV ) <
∞. We consider an application

S : Rd → N

that associates to a given position x a state S(x) in a discrete space, say N. In practice
and for instance, S maps a position x to the local minimum reached by the gradient
dynamics (ẏ = −∇V (y)) starting from x, and these local minima are numbered (as they
are discovered as the algorithm proceeds). For simplicity, we may think of S as any discrete
valued map. The state-to-state dynamics we will henceforth consider as reference dynamics
is (S(Xt))t≥0.

The aim of the parallel replica dynamics is to generate a trajectory (St)t≥0 which is more
efficiently computed than, but shares the same law as, the original trajectory (S(Xt))t≥0

obtained from Xt, the solution to (1). Two adjustable times, τdephase and τcorr, will enter
the definition of the dynamics (St)t≥0. In practice, these times may be state-dependent,
but in many practical situations, they are fixed a priori and taken to be equal. One purpose
of the analysis below is to provide a theoretical guideline for the choice of these two times,
and in particular τcorr.

The parallel replica dynamics as implemented in [18] consists of the following flow chart.

Consider the initial condition Xref
0 = X0 for a reference walker (Xref

t )t≥0. Consider the
associated initial condition for the state dynamics S0 = S(X0), and set the simulation
clock Tsimu to zero. Then iterate on the following steps:

1. Decorrelation step: Let the reference walker (Xref
Tsimu+t)t≥0 evolve according to (1)

over a time interval t ∈ [0, τcorr]. Then

• If the process leaves the well during this time interval, namely if there exists a

time t ≤ τcorr such that S
(

Xref
Tsimu+t

)

6= S
(

Xref
Tsimu

)

, then

– (i) advance the simulation clock by τcorr: Tsimu = Tsimu + τcorr, and

– (ii) return to 1.

• If not, then

– (i) advance the simulation clock by τcorr: Tsimu = Tsimu + τcorr, and

– (ii) proceed to 2.

During this step, the state dynamics St is defined as:

St = S(Xref
t )

and is thus exact.

2. Dephasing step : Replicate the walker Xref
Tsimu

into N replicas (in practice N typically

ranges between 102 and 104), that is, for k ∈ {1, . . . , N}, set:

Xk
Tsimu

= Xref
Tsimu

.
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Let these replicas evolve independently (according to (1) using independent Brownian
motions) over a time interval t ∈ [0, τdephase] and using the following rule: if one of
the replica (say K) leaves the well during the time interval [0, τdephase], then this
particular replica is eliminated and the dephasing step for this particular replica is
restarted from the initial position (XK

Tsimu
= Xref

Tsimu
). Throughout this step, the

simulation clock is not advanced, nor are the state dynamics St updated. With a
slight abuse of notation, we therefore still denote by Xk

Tsimu
the positions of the

replicas at the end of this dephasing step.

3. Parallel step : Let all the replicas evolve independently and denote by

T k
W = inf{t ≥ 0, S(Xk

Tsimu+t) 6= S(Xk
Tsimu

)}

the first time the k-th replica leaves the current well (denoted by W = {x, S(x) =
S(X1

Tsimu
}). Introduce the first observed escape time over all the replicas

T = inf
k
T k
W

and the index
K0 = arg inf

k
T k
W

of the replica that first leaves the well. Note that T = TK0

W . Note also that the
probability that many replica may leave simultaneously is zero, so that the index K0

is well-defined. The parallel step is terminated at the first observed escape event, in
which case the simulation clock is advanced by NT (at least for synchronized CPUs,
see the discussion at the end of Section 3) and the position of the reference walker is
set to the position of the particular replica that just underwent the transition:

Tsimu = Tsimu +NT and Xref
Tsimu+NT = XK0

Tsimu+T .

Over the whole time interval [Tsimu, Tsimu +NT ] of length NT , the state dynamics
St is constant and defined as:

St = S(X1
Tsimu

).

Return to 1.

The question we are interested in is to understand the error intrinsically present in the
numerical approach, namely the difference between the law of (St)t≥0 as defined by the
above parallel replica dynamics and the law of (S(Xt))t≥0, Xt being the solution to (1).

Besides a formalized answer to the above question (see Proposition 6 below), the main
outcomes of our work are the following:

• the aim of the dephasing step of the parallel replica dynamics is to sample the so-
called quasi-stationary distribution of the well currently visited by the dynamics;
efficient approaches for completing this goal include the Fleming-Viot algorithm,
which is a small variation of the approach originally implemented in the dephasing
step of the algorithm;

• the parallel replica dynamics can be proven to be, in a mathematical sense, an ap-
proximation of the original dynamics and this holds irrespective whether this original
dynamics is metastable or not; of course the efficiency of the approach is improved,
and the calibration of the adjustable parameters is easier, when metastability occurs
in a sense made precise below in terms of the spectral properties of a certain operator.
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• for the parallel replica dynamics to be maximally efficient, the adjustable parameter
τcorr can be calibrated in terms of characteristic quantities of the original dynamics
(see Equation (22) below); the relevant quantities are expressed in terms of eigenval-
ues of a given operator associated to the dynamics, but can be difficult to practically
determine for an arbitrary definition of states.

1.2 A first discussion and an outline of the article

We first notice that if τcorr is chosen infinite, the parallel step is never activated. The
parallel replica dynamics then amounts to a simple, classical simulation of the dynamics (1).
We are thus interested in situations where τcorr is chosen finite.

For the parallel step not to introduce any error, two essential assumptions are required
on the replicas obtained after the dephasing step:

[H1] the initial positions Xk
Tsimu

for the parallel step are i.i.d. and

[H2] conditionally on the past FTsimu
(Ft being the filtration generated by the Brownian

motions used in the simulation up to time t), the stopping times T k
W are exponentially

distributed and are independent of the next visited state (for all k, and thus for k = 1
since we suppose all the Xk initially i.i.d.).

Under these two assumptions (see Section 3 below),

(i) NT has the same law as T 1
W (where we recall T = infk T

k
W ) and

(ii) the next state visited by the replica that is the first to undergo a transition has the
same law as the next visited state for one single arbitrary replica.

In other words, under assumptions [H1] and [H2], the parallel step is "exact" in the sense
that it updates the current state into a new state exactly equal (in law) to the state reached
when one considers only one replica distributed according to the distribution obtained after
the dephasing step, and waits for the time for this replica to undergo a transition to a new
well. In terms of wall-clock time, the speed-up is of order N . This is the evident practical
interest of the algorithm.

Note that a motivation for considering [H2] is that a state-to-state dynamics Ut is a
continuous-time Markov process if and only if it satisfies the following two conditions:

• the list of visited states denoted by

(U1, U 2, . . . , Un, . . .)

is a Markov chain (a discrete-time and discrete-space Markov process) and

• the times successively spent in each state, denoted by

(H1,H2, . . . ,Hn, . . .),

(namely Ut = U1 for t ∈ [0,H1), Ut = U i for t ∈ [H1 + . . . +Hi−1,H1 + . . . +Hi)),
are such that (i) the law of Hi given U i is exponential and (ii) conditionally on U i,
the time Hi spent in the well and the next well visited U i+1 are independent random
variables.
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Thus, if S(Xt) was a Markov process, the algorithm would be exact, and the decorrelation
step would not be needed. Each cycle of the decorrelation step can thus be seen as a test
of the Markov character of S(Xt), in that, upon successful decorrelation, the system is
deemed to be a proper starting point for a subsequent parallel stage. One may see our
analysis as a way to quantify the error introduced by this assumption.

After a few remarks on the underlying dynamics in the next section, our work is orga-
nized as follows. In Section 2, we analyze the dephasing step. Then, Section 3 is devoted
to the parallel step. Finally, our main result is presented in Section 4, where we analyze
the error introduced by the decorrelation step.

1.3 Remarks on the reference dynamics

1.3.1 Overdamped Langevin and recrossing events

The algorithm as described above may actually look weird for the continuous-in-time over-
damped dynamics (1). Indeed, the first time the process leaves a given state is immediately
posterior to the time it entered that state (this phenomenon is called recrossing). Thus,
after a parallel step, the process cannot remain in the new visited state during the first
correlation time interval: the first decorrelation step is always unsuccessful for such a dy-
namics. One simple way to overcome this difficulty is to let the reference walker evolve
for a fixed small amount of time after the parallel step, before proceeding to the next
decorrelation step. This allows the process to leave the vicinity of the boundary of the new
visited state. Another way to deal with this difficulty would be to change the decorrelation
step as: Let the reference walker evolve according to (1) over a time t that is the minimum
time such that there is no transition over [t− τcorr, t].

1.3.2 Generalization to other dynamics

We would like to mention that our analysis carries over to kinetic Monte Carlo models,
namely for a pure jump Markov process valued in a finite state space. In this case, the
map S reduces the original discrete state space to a coarser one.

On the other hand, it is unclear how to generalize our study to a Langevin dynamics:

{

dqt = M−1pt dt,

dpt = −∇V (qt) dt− γM−1pt dt+
√

2γβ−1dWt,
(2)

since the underlying elliptic degenerate infinitesimal generator causes additional difficulties
for the spectral analysis. Notice that the algorithm itself however readily applies to such
a dynamics.

2 The quasi-stationary distribution and the formalization of

the dephasing step

To start with, we discuss here the dephasing step. As mentioned above (see [H1] and
[H2]), the purpose of this step is to generate independently distributed initial conditions
for the parallel step, and to complete this according to a distribution such that the escape
time is exponentially distributed and independent of the next visited state. We now explain
here how to create, to some extent, an ideal dephasing step that satisfies both conditions
[H1] and [H2]. The main ingredient of our formalization is the notion of quasi-stationary
distribution, henceforth abbreviated as QSD.
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2.1 The quasi-stationary distribution

Consider a state W ⊂ R
d, and let

T x
W = inf{t > 0,Xx

t 6∈ W}

be the first escape time of W for the stochastic process Xx
t satisfying (1) and starting at

x ∈ W at time 0. The state W is in practice a level set of the map S, and we suppose in
the following that W is fixed, and is a bounded Lipschitz domain of Rd. A quasi-stationary
distribution ν, for the stochastic process Xt and associated to W , is a distribution with
support in W and such that, for any positive time t and for any measurable set A ⊂ W ,

ν(A) =

∫

W

P(Xx
t ∈ A, t < T x

W ) dν
∫

W

P(t < T x
W ) dν

. (3)

In words, if X0 is distributed according to ν, then, conditionally on not having left the
well W up to time t, Xt is still distributed according to ν.

For the convenience of the reader, we collect in this section a few elementary properties
of the QSD. For more details on the theory, we refer, for example, to [3, 13, 12, 4, 15, 14,
5, 6, 7].

Let Xt be the stochastic process satisfying (1). We introduce its infinitesimal generator:

L = −∇V · ∇+ β−1∆,

and we denote by L∗ = div (∇V ·) + β−1∆ its adjoint.
We start by stating a Feynman-Kac formula that will be useful below.

Proposition 1 Consider a smooth solution v(t, x) to the problem:











∂tv = Lv for t ≥ 0, x ∈ W ,

v = ϕ on ∂W ,

v(0, x) = v0(x),

where ϕ is a smooth function. Then,

v(t, x) = E

(

1Tx
W

<t ϕ(X
x
Tx
W
)
)

+ E
(

1Tx
W

≥t v0(X
x
t )
)

,

where Xx
t is the process starting at x at time 0 and T x

W the first exit time from W .

Proof : Fix a time t and consider u(s, x) = v(t− s, x), which satisfies











∂su+ Lu = 0 for s ∈ [0, t], x ∈ W ,

u = ϕ on ∂W ,

u(t, x) = v0(x).

Using Itô calculus, we see that: ∀s ∈ [0, T x
W ∧ t],

u(s,Xx
s ) = u(0, x) +

∫ s

0
(∂su+ Lu)(r,Xx

r ) dr +
√

2β−1

∫ s

0
∇u(r,Xx

r ) dWr

= u(0, x) +Ms,
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where Ms =
√

2β−1
∫ s

0 ∇u(r,Xx
r ) dWr is a local martingale. Since u is assumed to be

smooth, and Xx
r lives in the bounded domain W up to time T x

W ∧ t, we conclude:

v(t, x) = u(0, x) = E

(

u(t ∧ T x
W ,Xx

t∧Tx
W
)
)

= E

(

1Tx
W

<t u(T
x
W ,Xx

Tx
W
)
)

+ E
(

1Tx
W

≥t u(t,X
x
t )
)

= E

(

1Tx
W

<t ϕ(X
x
Tx
W
)
)

+ E
(

1Tx
W

≥t v0(X
x
t )
)

.

♦

The quasi-stationary distribution is related to spectral properties of the generator L
supplemented with zero Dirichlet boundary conditions on ∂W . Let us make this precise.
We introduce the invariant measure for the dynamics Xt:

dµ = Z−1 exp(−βV (x)) dx

where Z =
∫

Rd exp(−βV ). It is well known that the dynamics (1) is reversible with respect
to µ: for all smooth test functions f and g,

∫

Rd

f Lg dµ =

∫

Rd

g Lf dµ = −β−1

∫

Rd

∇f · ∇g dµ.

This in turn implies that the dynamics restricted to W is reversible with respect to µ
restricted to W , that is: for all smooth test functions f and g vanishing on ∂W ,

∫

W

f Lg dµ =

∫

W

g Lf dµ = −β−1

∫

W

∇f · ∇g dµ.

Thus, the operator L with Dirichlet boundary conditions on ∂W is negative-definite and
symmetric with respect to the scalar product

〈f, g〉µ =

∫

W

fg dµ. (4)

We denote by L2
µ the Hilbert space of functions from W to R which are square integrable

with respect to µ, equipped with the scalar product (4). Since V is assumed to be smooth,
the inverse of the operator L from L2

µ to L2
µ is compact, and we thus introduce its eigen-

values (−λ1,−λ2, . . . ,−λn, . . .) counted with multiplicity:

0 > −λ1 > −λ2 ≥ . . . ≥ −λn ≥ . . . (5)

and the associated eigenfunctions

(u1, u2, . . . , un, . . .)

which we assume normalized:
∫

W
|un|

2 dµ = 1. Note that the kernel of L is reduced to 0
(so that λ1 > 0 in (5)). Using the fact that

λ1 = inf
f∈H1

µ,0

β−1
∫

W
|∇f |2 dµ

∫

W
f2 dµ

(6)

(where H1
µ,0 denotes the space of functions such that

∫

|∇f |2 + f2 dµ < ∞ which vanish
on ∂W ) it follows by a standard argument (if u1 is a minimizer, then |u1| is also a minimizer)
that we may always assume that u1 is a signed, say nonnegative function. Using the
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Harnack inequality, it is again standard to show u1 does not cancel on W . We therefore
have

u1 > 0 on W,

while u1 vanishes on ∂W . This in turn shows that λ1 is non-degenerate (thus λ2 > λ1

in (5)) and that the function u1 is the only signed eigenfunction. For these standard
arguments, we e.g. refer to [8, Section 8.12]).

We now introduce the probability measure

dν =
u1 dµ

∫

W
u1 dµ

(7)

on W . It is standard that ν is indeed a QSD:

Proposition 2 The measure ν defined by (7) is a QSD, that is, satisfies (3). In addition,
ν is the eigenfunction associated with the eigenvalue −λ1 for the Fokker-Planck operator L∗

with homogeneous Dirichlet (also known as absorbing) boundary conditions. More precisely,
if we denote by w = dν

dx
= u1 exp(−βV )/(Z

∫

W
u1dµ) the density of ν with respect to the

Lebesgue measure, we have
{

L∗w = −λ1w on W ,

w = 0 on ∂W .
(8)

The eigenvalue −λ1 is the first eigenvalue of L∗, and is non-degenerate.

Proof : To get (3), it is sufficient to prove that for any smooth function f vanishing
on ∂W :

∫

W

E(f(Xx
t ) 1t≤Tx

W
) dν =

∫

W

fdν

∫

W

P(t ≤ T x
W ) dν. (9)

Denote by v(t, x) = E(f(Xx
t ) 1t≤Tx

W
) and v(t, x) = P(t ≤ T x

W ). It follows from Proposi-
tion 1 that











∂tv = Lv for t ≥ 0, x ∈ W ,

v = 0 on ∂W ,

v(0, x) = f(x),

and v̄ satisfies the same equation with initial condition v̄(0, x) = 1. Thus, we get:

d

dt

∫

E(f(Xx
t ) 1t≤Tx

W
) dν =

d

dt

∫

v(t, x)u1(x) dµ

(
∫

W

u1 dµ

)−1

=

∫

Lv(t, x)u1(x) dµ

(
∫

W

u1 dµ

)−1

=

∫

v(t, x)Lu1(x) dµ

(
∫

W

u1 dµ

)−1

= −λ1

∫

v(t, x)u1(x) dµ

(
∫

W

u1 dµ

)−1

= −λ1

∫

E(f(Xx
t ) 1t≤Tx

W
) dν.

This implies,
∫

E(f(Xx
t ) 1t≤Tx

W
) dν =

∫

fdν exp(−λ1t)

which in turn yields (9) similarly arguing on v.
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The relation between the spectrum of the operator L with Dirichlet boundary conditions
on ∂W seen as on operator on L2

µ, and the operator L∗ with absorbing boundary conditions,
follows the variational equality satisfied by the functions uk: for all test function f ∈ H1

µ,0,

−

∫

W

ukLf dµ = β−1

∫

W

∇uk · ∇f dµ = λk

∫

W

ukf dµ,

which shows that (−λk, uk exp(−βV )) is an eigenvalue / eigenfunction couple for L∗. The
converse is obtained similarly. ♦

Remark 1 It will follow from Proposition 6 below that there is actually a unique QSD
on W . We will indeed prove there the (actually exponentially fast) long-time convergence
to the QSD ν for the process Xt conditioned to stay in W , irrespective of the initial distri-
bution.

The main proposition of this section is the following:

Proposition 3 Consider the quasi-stationary distribution ν associated to the dynamics (1)
on Xt, and defined by (7). Then, if X0 is distributed following ν, the first exit time TW

from W is exponentially distributed and is a random variable independent of the first hitting
point on ∂W .

Proof : Consider, for a smooth test function ϕ : ∂W → R, v solution to:










∂tv = Lv for t ≥ 0, x ∈ W ,

v = ϕ on ∂W ,

v(0, x) = 0.

We know from Proposition 1 that, for all t ≥ 0 and x ∈ W ,

v(t, x) = E

(

1Tx
W

<t ϕ
(

Xx
Tx
W

))

.

Consider now

f(t) =

∫

W

v(t, x)dν = E
ν (1TW<t ϕ(XTW

)) ,

where the superscript ν indicates that the process Xt we consider is assumed to start at
t = 0 under the quasi-stationary distribution ν. Then, we have :

f ′(t) =

∫

W

∂tv(t, x)dν

=

∫

W

Lv(t, x)dν

=

∫

W

(

−∇V · ∇v + β−1∆v
)

dν

=

∫

W

(

v div (∇V ν)− β−1∇v · ∇ν
)

−

∫

∂W

∇V · n ν + β−1∇v · n ν

=

∫

W

v
(

div (∇V ν) + β−1∆ν
)

− β−1

∫

∂W

v∇ν · n

=

∫

W

vL∗ν − β−1

∫

∂W

ϕ∇ν · n

= −λ1f + λ1

∫

∂W

ϕdρ.
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where n denotes the outward normal to W , where

ρ(dx) = −
β−1

λ1
∇ν · n dσ∂W

σ∂W denotes the Lebesgue measure on ∂W , and where, with a slight abuse of notation,
we denote by ν both the probability measure and its density with respect to the Lebesgue
measure on W , which is proportional to u1(x) exp(−βV (x)). This yields

E
ν (1TW<t ϕ(XTW

)) = f(t) = (1− exp(−λ1t))

∫

ϕdρ,

which concludes the proof, ρ being then the first hitting point distribution on ∂W . ♦

A natural question for practical purposes is whether the fact that the exit time has
an exponential law implies that the initial condition is distributed according to the QSD.
Here is a necessary and sufficient condition.

Proposition 4 Let us assume that Xt is solution to (1), with an initial condition X0

distributed according to a probability measure µ0 with support in the well W and such that:

∫

W

(

dµ0

dµ

)2

dµ < ∞.

Let us assume that the first exit time from W (denoted by TW ) is exponentially distributed.
The initial distribution is necessarily the QSD (µ0 = ν) if and only if the eigenvalues of

the operator L on L2
µ with zero Dirichlet boundary conditions are non-degenerate (see (5)):

∀i 6= j, λi 6= λj and ∀k ≥ 2,
∫

W

ukdµ 6= 0,

where uk denotes the k-th eigenfunction (see (6)).

Proof : The proof is divided into three steps.

Step 1: A rewriting of P(TW ≥ t) in terms of the eigenvalues and eigenfunctions of L.
The assumption on TW is equivalent to the fact that there exists a positive λ such that,

for all time t ≥ 0,
P(TW ≥ t) = exp(−λt).

Using the same reasoning as in the proof of Proposition 3, the left hand-side can be
rewritten as: for all time t ≥ 0

P(TW ≥ t) =

∫

v(t, x)µ0(dx), (10)

where v satisfies the partial differential equation:










∂tv = Lv for t ≥ 0, x ∈ W ,

v = 0 on ∂W ,

v(0, x) = 1.

Using the spectral decomposition of the operator L with homogeneous Dirichlet boundary
conditions on ∂W , we have:

v(t, x) =
∑

k≥1

exp(−λkt)

(
∫

W

ukdµ

)

uk(x).
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This equality holds for example in the functional space C(R+, L
2
µ). Using this decomposi-

tion in (10), one gets

exp(−λt) = P(TW ≥ t) =
∑

k≥1

exp(−λkt)

(
∫

W

ukdµ

)(
∫

W

ukdµ0

)

, (11)

which holds for all time t ≥ 0. Notice that the convergence of the series is normal, for the
L∞-norm on t, since by Cauchy Schwarz,

∑

k≥1

∣

∣

∣

∣

∫

W

ukdµ

∣

∣

∣

∣

∣

∣

∣

∣

∫

W

ukdµ0

∣

∣

∣

∣

< ∞.

Step 2: One implication.
Let us assume that the eigenvalues of the operator L are non-degenerate and that

∀k ≥ 2,
∫

W
ukdµ 6= 0. Thus, in the limit t → ∞, the right hand-side of (11) is equivalent

to the first term of the series (since λ1 is non-degenerate):

∑

k≥1

exp(−λkt)

(∫

W

ukdµ

)(∫

W

ukdµ0

)

∼ exp(−λ1t)

(∫

W

u1dµ

)(∫

W

u1dµ0

)

.

Using now (11), this implies that

λ1 = λ and

(
∫

W

u1dµ

)(
∫

W

u1dµ0

)

= 1. (12)

Subtracting exp(−λt) from both sides of (11), and repeating the argument, one gets that
for all k ≥ 2,

(∫

W

ukdµ

)(∫

W

ukdµ0

)

= 0. (13)

which implies that: ∀k ≥ 2,
∫

W

ukdµ0 = 0.

Thus, dµ0

dµ
only has a component along the first eigenfunction u1, which implies (using (12)):

dµ0 =
dµ0

dµ
dµ =

u1dµ
∫

W
u1dµ

= dν.

The initial condition is necessarily the QSD.

Step 3: The other implication.
Conversely, let us assume that: ∃k0 ≥ 2,

∫

W

uk0dµ = 0.

Let us then consider the measure µ0 defined by

dµ0 =

(

u1
∫

W
u1dµ

+ εuk0

)

dµ.

Clearly,
∫

W
dµ0 = 1 and µ0 is a non-negative measure for ε > 0 sufficiently small (using

the regularity of the eigenfunctions on W ). Thus, µ0 is a probability measure which is

11



such that (11) is satisfied, and thus an initial condition for (1) which is different from the
QSD, but such that the exit time is exponentially distributed.

Likewise, let us assume that one eigenvalue is degenerate: ∃k0 ≥ 2,

λk0 = λk0+1.

Let us then consider the measure µ0 defined by

dµ0 =

(

u1
∫

W
u1dµ

+ ε

((∫

W

uk0+1 dµ

)

uk0 −

(∫

W

uk0 dµ

)

uk0+1

))

dµ.

Again,
∫

W
dµ0 = 1 and µ0 is a non-negative measure for ε > 0 sufficiently small. Thus, µ0

is a probability measure which is such that (11) is satisfied, and thus an initial condition
for (1) which is different from the QSD, but such that the exit time is exponentially
distributed. ♦

A simple example of a situation where there exists a k0 ≥ 2 such that
∫

W
uk0dµ = 0

is the following: W = (0, 1)d and V = 0 on W (so that µ is simply the Lebesgue measure
on W ). Some eigenfunctions of the Dirichlet laplacian operator on (0, 1)d indeed have
zero mean. In dimension d = 1, one can for example consider the probability measure
µ0 with density proportional to sin(πx)

∫
1

0
sin(πx) dx

+ ε sin(2πx) (which is different from the QSD

sin(πx)
∫
1

0
sin(πx) dx

dx) to obtain exponentially distributed exit times from (0, 1).

2.2 Formalization of the dephasing step

As stated in Proposition 3, the crucial property of the QSD ν is that if the process starts
under ν, then the exit time from W is exponentially distributed, and the hitting point on
∂W is independent from the exit time. The ideal dephasing step would therefore ensure
that the replicas are independent and all share the QSD as law. Then, [H1] and [H2] would
be fulfilled and the parallel step would be exact, as made precise below in Proposition 5.

The actual dephasing step, as implemented in the current version of the algorithm, can
thus be interpreted as an approximation procedure for the QSD of the well. It is conse-
quently interesting to point out that basically two techniques are known in the literature
to sample the QSD ν. One method (called the Fleming-Viot method [2, 9, 6, 11]) consists
in launching a set of replicas in W , and when one of them leaves the well, to duplicate one
of the other replicas. Then, one lets the number of replicas and the time go to infinity. In
this limit, a finite fixed subset of replicas is i.i.d. with law the QSD. This method is very
close to what is performed during the dephasing step in the original version of the algo-
rithm presented in the introduction. The only slight modification is that the Fleming-Viot
method consists in duplicating a replica when one leaves the well, rather than starting
again the whole procedure from a fixed initial position.

Another approach consists in considering only one walker in the well, and each time
this walker leaves the well, redistribute it according to the empirical measure within the
well up to the exit time. Again, one has to consider the distribution in the long-time limit
to get the QSD, see [1]. This somehow justifies the intuition used in the decorrelation step
that, if the process remains for a very long time in a well, it will be distributed according
to the QSD, see Section 4 below.

In summary, it is reasonable, with a view to globally analyze the parallel replica dy-
namics, to first replace the dephasing step by an ideal dephasing step, which consists in
instantaneously drawing N initial positions for the replicas, independently and according
to the QSD. The issue of generating that particular distribution, either using a dedicated

12



approach, or precisely using the dephasing step (as currently implemented), is a separate
issue from analyzing the error introduced by the parallel replica dynamics.

3 Analysis of the parallel step

Our analysis of the parallel step is formalized in the following proposition, which shows
that the parallel step does not introduce any additional error if the assumptions [H1] and
[H2] are satisfied.

Proposition 5 Consider N i.i.d. stochastic process Xk
t , their escape times

T k
W = inf{t > 0,Xk

t 6∈ W}

from a bounded domain W , and the first escape time over all processes

T = TK0

W where K0 = arg min
k∈{1,...,N}

T k
W .

• Assume that
T 1
W is exponentially distributed.

Then
NT has the same law as T 1

W .

• Assume that

T 1
W is independent of the first hitting point on ∂W.

Then the first hitting point for XK0

t on ∂W has the same distribution as the first
hitting point for X1

t and is independent of TK0

W .

Proof : The first statement is standard. If T 1
W is exponentially distributed, then

ϕ(t) = P(T 1
W > t) = exp(−λt),

where λ is the parameter of the exponential distribution of T 1
W . Thus,considering T =

mink∈{1,...,N} T
k
W , we have

P(T > t) = P

(

min
k∈{1,...,N}

T k
W > t

)

= P

(

∀k ∈ {1, . . . , N}, T k
W > t

)

=
N
∏

k=1

ϕ(t)

= exp(−Nλt).

This shows that T is exponentially distributed, with parameter Nλ. Consequently, NT is
exponentially distributed with parameter λ.

For the second assertion, the assumption can be written as: for all test functions f :
∂W → R,

E

(

f
(

X1
T 1

W

)

1T 1

W
>t

)

=

(∫

∂W

fdρ

)

ϕ(t),
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where ϕ(t) = P(T 1
W > t) and ρ is the first hitting point distribution, with support on ∂W .

Then, we have

E

(

f

(

XK0

T
K0

W

)

1
T

K0

W
>t

)

=

N
∑

k=1

E

(

f

(

XK0

T
K0

W

)

1
T

K0

W
>t
1K0=k

)

=

N
∑

k=1

E



f
(

Xk
T k
W

)

1T k
W

>t

∏

l 6=k

1T l
W

>T k
W





=

N
∑

k=1

E

(

f
(

Xk
T k
W

)

1T k
W

>t [ϕ(T
k
W )]N−1

)

= N

(
∫

∂W

fdρ

)
∫ ∞

t

[ϕ(s)]N−1(−ϕ′)(s)ds

=

(∫

∂W

fdρ

)

[ϕ(t)]N .

This shows that the first hitting point on ∂W for XK0

t is distributed according to ρ, and
is independent of TK

W0
. ♦

Three remarks are in order.

First, in the first assertion of Proposition 5, the fact that NT has the same law as T 1
W

is actually equivalent to T 1
W being exponentially distributed. The former assertion indeed

implies the functional equation: ∀t > 0 and ∀N ∈ N

[ϕ(t/N)]N = ϕ(t),

where ϕ(t) = P(T 1
W > t), the only solution to which is the exponential function.

Second, without the assumption made in the second assertion, the first hitting point on
∂W for XK0

t cannot generically have the same distribution as for X1
t . Indeed, if the first

hitting point on ∂W and the exit time from W are coupled, the distribution of XK0

T
K0

W

would

favor points on the boundary attained in shorter times, compared to the distribution of
X1

T 1

W

. This issue is a separate issue from that of having or not an exponential distribution

for the exit time. The fact that the first hitting point distribution on ∂W for XK0

t is the
same as for X1

t implies that the next visited state is the same for the two processes.
Finally and as shown by A.F. Voter in the original article [18], the algorithm does not

require synchronized processors to be used in practice, as would suggest the schematic
presentation of the parallel step we give above. The parallel step above indeed assumes
that the processors as synchronized, since T and K0 are defined in terms of the first
replica which leaves the well, considering the same physical time unit for all replicas. If
the processors are not synchronized, the parallel step is still exact by considering the first
observed replica which leaves the well, and by advancing the simulation time by the sum
of the physical times elapsed on each processor, instead of NTK0

W . We now justify this.
Assume that, for n ∈ {2, . . . , N}, the n-th processor is ρn times as fast as the first

one. Then, τ iW (which is the time needed for the i-th replica, run on the i-th processor,
to leave the well W ) is exponentially distributed with parameter ρiλ. Then, consider
τ = min1≤n≤N τ iW the random time associated to the first detected event. One can check
that (1+ρ2+ . . .+ρn)τ has the same law as τ1W . This means that advancing the simulation
time by the sum of the (physical times) counted on each processor at the end of the parallel
step is a correct approach.
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This reasoning generalizes to non-constant in time processor speeds. Assume for sim-
plicity that we have N = 2 processors, and that the speed of the second processor, com-
pared to the first, is ρ2(t) (where ρ2 is deterministic and with values in (0,+∞), and t is
in the time-unit of the first processor). τ1W is exponentially distributed with parameter λ:
P(τ1W ≥ t) = exp(−λt). The time t is measured in time-unit of the first processor. So, when

the time is t on the first processor, the time is R2(t) =
∫ t

0 ρ2(s) ds on the second processor.
Thus, in the time-unit of the first processor, τ2W (which is the first time, in the time-unit of
the first processor, an event occur on the second processor) is the image by R2 of an expo-
nential law with parameter λ : P(τ2W ≥ t) = exp(−λR2(t)). Thus τ2W is not exponentially
distributed anymore. Consider however τ = min(τ1W , τ2W ). We have P(τ ≤ t) = P(τ1W ≤
t)P(τ2W ≤ t) = exp(−λ(t+R2(t))), so that τ has density λ(1 + ρ2(t)) exp(−λ(t+R2(t))).
When an event occurs, one looks at the sum of the time actually spent on each processor,
which is τ +R2(τ). And the law of τ +R2(τ) is indeed exponential with parameter λ since
E(f(τ+R2(τ))) =

∫

f(u+R2(u))λ(1+ρ2(u)) exp(−λ(u+R2(u)) du =
∫

f(z)λ exp(−λz) dz.

4 Analysis of the decorrelation step

The dephasing step has now been formally replaced by independent draws according to
the QSD, and we have formalized the parallel step. It now remains to analyze the error
introduced, at the end of the decorrelation step, by the replacement of Xref

t by a random
position distributed according to the QSD. Intuitively, it is expected that this instantaneous
draw could at least be justified if there exists a timescale separation: when the process
enters a new well, and if this new well is indeed a metastable region for the dynamics, then
the process remains in the well sufficiently long to reach the quasi-stationary distribution
of that well, before hopping to another well. It is the purpose of the decorrelation step
to check that the process indeed remains in the well for a sufficiently long time. For the
decorrelation step to be successful, we thus need the actual typical time to reach the QSD
to be much smaller than the typical time to hop to another well. In this picture, τcorr is
seen as an approximation of the time to reach the QSD. The purpose of this section is to
justify this rigorously.

The decorrelation step is essentially a step that may be seen as a way to control the
error associated to the instantaneous redrawing according to the QSD in the new state.
This redrawing is only considered legitimate if the decorrelation step has been successful,
that is, the process has spent a sufficiently long time in the current well. Any method that
provides a control of this error would be an equally interesting "decorrelation step."

We again consider Xt solution to (1) with initial condition X0 ∈ W , where W (the
well) is a bounded domain, subset of the state space. We denote by µ0 the (arbitrary)
distribution of X0. We consider the process in the current well, and the joint distribution
of the first hitting point on the boundary of the well and the first exit time

TW = inf{t ≥ 0,Xt 6∈ W},

when this point is hit. We first derive from the Markov character of (Xt)t≥0 a useful
formula:

Lemma 1 We have, for all (deterministic) times t and for all test functions f : R+×W →
R,

E(f(TW − t,XTW
)|TW ≥ t) =

∫

W

E(f(T x
W ,Xx

Tx
W
))L(Xt|TW ≥ t)(dx),

where Xx
t and T x

W respectively denote the process solution to (1) with initial condition x,
and its associated first exit time from W . In the right-hand side, L(Xt|TW ≥ t)(dx) denotes
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the distribution of Xt conditionally on TW ≥ t. Otherwise stated,

E(f(TW − t,XTW
)|TW ≥ t) = E(F (Xt)|TW ≥ t)

where
F (x) = E(f(T x

W ,Xx
Tx
W
)). (14)

Proof : This is equivalent to prove that

E(f(TW − t,XTW
)1TW≥t) = E(F (Xt)1TW≥t).

The result is then obtained by conditioning by Ft (where Ft is again the filtration generated
by the Brownian motions used in the simulation up to time t) and using the Markov
property:

E(f(TW − t,XTW
)1TW≥t) = E[E(f(TW − t,XTW

)1TW≥t|Ft)]

= E[E(f(TW − t,XTW
)|Ft)1TW≥t]

and E(f(TW − t,XTW
)|Ft) = F (Xt). ♦

Our purpose is now to estimate is the difference in law between the following two
processes: the original process Xt considered above (starting from the arbitrary initial
condition X0), given that it has spent a sufficiently long time (say t) in the current well,
and a similar process starting from the QSD ν defined in (7) as initial distribution. We
wish to estimate this difference in the limit t → ∞ (which will then, in practice, be replaced
by t > τcorr).

We introduce the error

e(t) = |E(f(TW − t,XTW
)|TW ≥ t)− E

ν(f(TW ,XTW
))| (15)

where we recall that the superscript ν means that, in the second term (only!), the process
Xt starts at time 0 under the quasi-stationary distribution ν introduced in (7).

Before we state our main result on this error, we notice that, with F defined by (14),
we have

E(F (Xt)|TW ≥ t) =

∫

W

v(t, x) dµ0

∫

W

v̄(t, x) dµ0

since, we recall, µ0 denotes the law of X0,

v(t, x) = E
(

1Tx
W

≥t F (Xx
t )
)

and
v̄(t, x) = E(1Tx

W
≥t) = P(T x

W ≥ t).

By denoting again L the infinitesimal generator of (Xt)t≥0, we know from Proposition 1
that











∂tv = Lv for t ≥ 0, x ∈ W ,

v = 0 on ∂W ,

v(0, x) = F (x),

and v̄ satisfies the same equation with initial condition v̄(0, x) = 1.
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From the spectral decomposition of the operator L introduced in Section 2.1, we there-
fore get the following expressions for v and v̄:

v(t, x) =
∑

k≥1

exp(−λkt)

(
∫

W

Fuk dµ

)

uk(x)

and

v̄(t, x) =
∑

k≥1

exp(−λkt)

(
∫

W

uk dµ

)

uk(x).

Thus, using the definition (7) of the QSD ν, we have

E(F (Xt)|TW ≥ t) =

∫

W

v(t, x) dµ0

∫

W

v̄(t, x) dµ0

=

∑

k≥1

exp(−λkt)

∫

W

Fuk dµ

∫

W

uk dµ0

∑

k≥1

exp(−λkt)

∫

W

uk dµ

∫

W

uk dµ0

=

∫

W

u1 dµ

∫

W

Fdν

∫

W

u1 dµ0 +
∑

k≥2

exp(−(λk − λ1)t)

∫

W

Fuk dµ

∫

W

uk dµ0

∫

W

u1 dµ

∫

W

u1 dµ0 +
∑

k≥2

exp(−(λk − λ1)t)

∫

W

uk dµ

∫

W

uk dµ0

=

∫

W

Fdν +
∑

k≥2

exp(−(λk − λ1)t)

∫

W
Fuk dµ

∫

W
u1 dµ

∫

W
uk dµ0

∫

W
u1 dµ0

1 +
∑

k≥2

exp(−(λk − λ1)t)

∫

W
uk dµ

∫

W
u1 dµ

∫

W
uk dµ0

∫

W
u1 dµ0

. (16)

Since u1 > 0, we note
∫

W
u1dµ0 > 0 and

∫

W
u1 dµ > 0.

We are now in position to state the main result of this section:

Proposition 6 Assume that the initial arbitrary distribution µ0 of X0 admits a Radon-

Nikodym derivative
dµ0

dµ
with respect to the invariant measure µ of the dynamics Xt, such

that
∫

W

(

dµ0

dµ

)2

dµ < ∞. (17)

Then, there exists a constant C (which depends on µ0 but not on f) such that, for all
t ≥ C

λ2−λ1
, the error e(t) defined in (15) satisfies

e(t) ≤ C‖f‖L∞ exp(−(λ2 − λ1)t),

where −λ2 < −λ1 < 0 are the first two eigenvalues of the operator L on the weighted space
L2
µ.
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Proof : In order to evaluate (15), we first write, using Lemma 1,

e(t) =
∣

∣

∣
E(f(TW − t,XTW

)|TW ≥ t)− E
ν(f(TW ,XTW

))
∣

∣

∣

=

∣

∣

∣

∣

∫

W

E(f(T x
W ,Xx

Tx
W
))L(Xt|TW ≥ t)(dx)−

∫

W

E(f(T x
W ,Xx

Tx
W
)) dν

∣

∣

∣

∣

=

∣

∣

∣

∣

E(F (Xt)|TW ≥ t)−

∫

W

Fdν

∣

∣

∣

∣

,

where F is defined by (14) and the first term in the right-hand side has just been expressed
in (16).

We therefore have:

e(t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

W

Fdν +
∑

k≥2

exp(−(λk − λ1)t)

∫

W
Fuk dµ

∫

W
u1 dµ

∫

W
uk dµ0

∫

W
u1 dµ0

1 +
∑

k≥2

exp(−(λk − λ1)t)

∫

W
uk dµ

∫

W
u1 dµ

∫

W
uk dµ0

∫

W
u1 dµ0

−

∫

W

Fdν

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

k≥2

exp(−(λk − λ1)t)

∫

W
Fuk dµ −

∫

W
Fdν

∫

W
uk dµ

∫

W
u1 dµ

∫

W
uk dµ0

∫

W
u1 dµ0

1 +
∑

k≥2

exp(−(λk − λ1)t)

∫

W
uk dµ

∫

W
u1 dµ

∫

W
uk dµ0

∫

W
u1 dµ0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Thus

e(t) ≤ exp(−(λ2 − λ1)t)

∑

k≥2

∣

∣

∫

W
Fuk dµ

∫

W
uk dµ0

∣

∣+
∣

∣

∫

W
Fdν

∫

W
uk dµ

∫

W
uk dµ0

∣

∣

∫

W
u1 dµ

∫

W
u1 dµ0

∣

∣

∣

∣

∣

∣

1 +
∑

k≥2

exp(−(λk − λ1)t)

∫

W
uk dµ

∫

W
u1 dµ

∫

W
uk dµ0

∫

W
u1 dµ0

∣

∣

∣

∣

∣

∣

.

(18)

Now, we have by Cauchy-Schwarz and using the fact that ‖F‖L∞ ≤ ‖f‖L∞ ,

∑

k≥2

∣

∣

∣

∣

∫

W

Fuk dµ

∫

W

uk dµ0

∣

∣

∣

∣

≤

√

√

√

√

∑

k≥2

∣

∣

∣

∣

∫

W

Fuk dµ

∣

∣

∣

∣

2
√

√

√

√

∑

k≥2

∣

∣

∣

∣

∫

W

uk
dµ0

dµ
dµ

∣

∣

∣

∣

2

≤

√

∫

W

F 2 dµ

√

∫

W

(

dµ0

dµ

)2

dµ

≤
√

µ(W ) ‖f‖L∞

√

∫

W

(

dµ0

dµ

)2

dµ (19)

and, likewise,

∑

k≥2

∣

∣

∣

∣

∫

W

Fdν

∫

W

uk dµ

∫

W

uk dµ0

∣

∣

∣

∣

≤ ‖f‖L∞

√

µ(W )

√

∫

W

(

dµ0

dµ

)2

dµ. (20)
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Arguing similarly on the denominator of (18), we obtain
∣

∣

∣

∣

∣

∣

∑

k≥2

exp(−(λk − λ1)t)

∫

W
uk dµ

∫

W
u1 dµ

∫

uk dµ0
∫

u1 dµ0

∣

∣

∣

∣

∣

∣

≤
exp(−(λ2 − λ1)t)
∫

W
u1 dµ

∫

u1 dµ0

∑

k≥2

∣

∣

∣

∣

∫

W

uk dµ

∣

∣

∣

∣

∣

∣

∣

∣

∫

uk dµ0

∣

∣

∣

∣

≤
exp(−(λ2 − λ1)t)
∫

W
u1 dµ

∫

W
u1 dµ0

√

µ(W )

√

∫

W

(

dµ0

dµ

)2

dµ

(21)

so that this quantity is smaller than 1/2 when t ≥ C
λ2−λ1

, where C is a sufficiently large
constant independent of f . Respectively inserting the inequalities (19)–(20) and the in-
equality (21) at the numerator and the denominator of (18), we obtain that for t ≥ C

λ2−λ1
,

e(t) ≤ 4 exp(−(λ2 − λ1)t)
√

µ(W )

√

∫

W

(

dµ0

dµ

)2

dµ ‖f‖L∞

which concludes the proof of Proposition 6. ♦

Note that the assumption (17) on the initial condition µ0 is not restrictive. For the
conditioned diffusion process, the time evolution of the density is regularizing. Therefore,
if (17) is not satisfied at initial time, the density after a positive time t0 > 0 does satisfy
the condition, and we may argue with that density instead of the initial density in the
proof of Proposition 6.

Proposition 6 provides an error bound, in total variation norm, on the joint distribution
of the exit time from W and the first hitting point on ∂W : for t ≥ C

λ2−λ1
,

sup
f,‖f‖L∞≤1

∣

∣

∣
E(f(TW − t,XTW

)|TW ≥ t)− E
ν(f(TW ,XTW

))
∣

∣

∣
≤ C exp(−(λ2 − λ1)t).

This proposition shows that the correlation time τcorr should be chosen such that

τcorr ≥
C̄

λ2 − λ1
,

where C̄ is such that C exp(−(λ2 − λ1)t) is small, so that the dephasing step and parallel
step, which involve replicas initially distributed according to the QSD ν do not introduce a
large error in terms of the joint distribution of the exit time from the current state and the
next visited state. Notice that one gets a conservative lower bound by taking λ1 = 0, and
that λ2 may be approximated in practice using an harmonic assumption (namely if V is
close to a quadratic function in the well W ). Within such an approximation, the analysis
is also relevant for the Langevin dynamics (2).

Note that
1

λ1
is the mean time to leave the well W , if the process starts from the QSD.

More generally, the mean time to leave the well W is given by

E(TW ) =

∫ ∞

P(TW ≥ t) dt

=

∫ ∞

0

∫

v̄(t, x) dµ0 dt

=

∫ ∞

0

∑

k≥1

exp(−λkt)

∫

W

uk dµ

∫

W

uk dµ0 dt

=
∑

k≥1

1

λk

∫

W

uk dµ

∫

W

uk dµ0.
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In order for the algorithm to be efficient, we therefore typically need that

1

λ2 − λ1
≤ τcorr ≤ E(TW ), (22)

so that, during the decorrelation step, the process reaches the QSD with good approxi-
mation before leaving the well. The pending (and difficult) question is to make the above
estimate more explicit, and therefore practically useful. Explicitly evaluating λ2 − λ1 is a
question on its own. Considering more specific situations (metastable well in the limit of
a small parameter, simple 2d periodic examples, ...) could help for this purpose.
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