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Double-barrier first-passage times of
jump-diffusion processes

Lexuri Fernandez, Peter Hieber and Matthias Scherer

Abstract. Required in a wide range of applications in, e.g., finance, engineering, and
physics, first-passage time problems have attracted considerable interest over the past
decades. Since analytical solutions often do not exist, one strand of research focuses on
fast and accurate numerical techniques. In this paper, we present an efficient and unbi-
ased Monte-Carlo simulation to obtain double-barrier first-passage time probabilities of
a jump-diffusion process with arbitrary jump size distribution; extending single-barrier
results by [Journal of Derivatives 10 (2002), 43—-54]. In mathematical finance, the double-
barrier first-passage time is required to price exotic derivatives, for example corridor
bonus certificates, (step) double barrier options, or digital first-touch options, that depend
on whether or not the underlying asset price exceeds certain threshold levels. Furthermore,
it is relevant in structural credit risk models if one considers two exit events, e.g., default
and early repayment.
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1 Introduction

For continuous diffusions, the probability of first hitting a lower (or an upper)
threshold has been extensively treated in the literature. Analytical solutions exist
for Brownian motion on constant (see, e.g., [8, 18,39]), on linear (see, e.g., [12,
23,33]), or (at least in sufficient approximation) on any continuous (see, e.g., [37])
barriers. Furthermore, the case of continuously time-changed Brownian motion
can in many cases be solved analytically (see, e.g., [26,27]). However, those mod-
els cannot explain several empirical observations concerning market returns and its
underlying derivative’s prices (see the discussions in, e.g., [6,9,29]). For example,
when used as firm-value process in structural credit risk models, Brownian motion
implies vanishing credit spreads for bonds/CDS with short time to maturity and
does not allow for fat-tailed return distributions of equity returns.
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108 L. Fernandez, P. Hieber and M. Scherer

That motivates why jump processes have experienced considerable interest in
mathematical finance. The first-passage time of jump-diffusions, however, is math-
ematically challenging. In the single-barrier case, the Laplace transform of the
first-passage time is available, e.g., if the jump-size distribution is double-expo-
nential (see, e.g., [3,32]) or a spectrally one-sided Lévy process (see, e.g., [41]).
Extensions to the double-barrier case exist, e.g., in the double-exponential jump-
diffusion model, see [46]. For arbitrary jump-size distributions, time-dependent
barriers, or extensions like, e.g., state-dependent drift, volatility, and jump size,
one has to rely on numerical schemes. Some authors obtain the Laplace transform
of the first-passage time by numerically solving the so-called Wiener—Hopf factor-
ization (see, e.g., [3,4], and many others). Apart from that, many authors solve the
resulting partial integro-differential equations (PIDEs) numerically (see, e.g., [7]
and the references therein). Others rely on Monte-Carlo simulations. However, the
standard Monte-Carlo simulation on a discrete grid (see, e.g., [40,48]) exhibits two
disadvantages: First, even for 1000 discretization intervals per unit of time, we ob-
tain a significant discretization bias. Second, computation time increases rapidly
if one has to simulate on a fine grid. Several strategies to remove or reduce the
discretization bias in jump-diffusion models are available in the literature. In [16]
an adaptive discretization scheme for the simulation of functionals of killed Lévy
processes with controlled bias is developed. Several authors focused on unbiased
simulation schemes. The paper [19] presents an unbiased sampling algorithm ap-
plying a variance reduction technique called “acceptance/rejection”. The authors
of [36] provide an unbiased, fast, and accurate alternative based on the so-called
“Brownian bridge technique”. In their approach, one proceeds as follows: First,
the jump-instants of the process in consideration as well as the process immedi-
ately before and after the jump times are simulated. In between these generated
points, one has a pure diffusion with fixed endpoints. Here, the so-called Brown-
ian bridge probabilities provide an analytical expression for the first-passage time
on a given threshold. This simulation technique turns out to be (1) unbiased and
(2) significantly faster than the standard Monte-Carlo simulation. It has various
applications in finance and can, e.g., be used to derive efficient algorithms for pric-
ing single barrier options in jump-diffusion models (see, e.g., [36,43]) or regime-
switching models (see, e.g., [24,25]). An extension to the double-barrier case has
been considered in, e.g., [20,47].

We show how the Brownian bridge technique can be adapted to a large variety
of exotic double barrier products. Those products are very flexible and thus allow
investors to adapt to their specific hedging needs or speculative views. However,
those contracts can hardly be traded without a fast and reliable pricing technique.
Analytical solutions reach their limitations as they are often not flexible enough
to adapt to complicated payoff streams and/or jump size distributions. To provide

-10.1515/mcma-2013-0005
Downloaded from De Gruyter Online at 09/28/2016 09:38:17PM
via Technische Universitat Miinchen



Double-barrier first-passage times of jump-diffusion processes 109

this flexibility for the Brownian bridge technique, we extend the existing algo-
rithms and (1) allow to price double barrier derivatives that trigger different events
depending on which barrier was hit first (a feature that is required to price, e.g.,
corridor bonus certificates) and (2) allow to evaluate payoff streams that depend
on the first-passage time (a feature important in, e.g., structural credit risk models).
Furthermore, (3) we show that time dependent barriers can easily be treated (a fea-
ture that is relevant for, e.g., window or step double barrier options). Finally, we
discuss the implementation and show that — in contrast to most alternative tech-
niques — the Brownian bridge algorithms are easy to understand and implement.

The paper is organized as follows: In Section 2, we introduce the jump-diffusion
setting, an overview of the double-barrier first-passage time, and the Brownian
bridge probabilities. Then, Section 3 presents the algorithms: Algorithm 1 returns
the barrier hitting probabilities and the final asset value; Algorithm 2 additionally
allows to evaluate expectations that depend on the first-passage time. Finally, in
Section 4, the algorithms are applied to credit risk (Section 4.4), to the pricing of
corridor bonus certificates (Section 4.3), step double barrier options (Section 4.2),
and to digital first-touch options (Section 4.1). Section 5 discusses the implemen-
tation.

2 First-passage times and Brownian bridge technique

On the probability space (€2, ¥, P), supporting all required stochastic processes,
we consider the jump-diffusion process

N;
By =pt+oW,+ Yy Yi, >0,

i=1
with drift u € R, volatility o > 0, and initial value By = 0, where W = {W;};>0
is a standard Brownian motion. The counting process N = {N;};>¢ is a Poisson
process with intensity A > 0 and the jumps ¥ = {Y;};en are i.i.d. with distribu-
tion Py. All random objects are mutually independent.

The first-passage time on two constant barriers b < Bg < a is defined as

inf{t >0: B b,a)}, ifsuchat exists,
T,y = {m{ = ¢ ¢ (b,a)}, ifsuchat exists e

00, if B; never exits (b, a).

Here, T, is the first time the process B; hits or crosses one of the two barriers a
and b. Further define

T :=Tu, T, :=o0 ifBr, >a,
T =Taw. T, :=o0 ifBr,, <b.
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110 L. Fernandez, P. Hieber and M. Scherer

If the lower barrier b is hit or crossed first, the first-passage time is Tpp = T ,;
if the upper barrier a is hit or crossed first, the first-passage time is T,; = T:,;. If
not hit, T:I; (respectively Ta_b) are set to oo.

We now present results on the first-passage times of Brownian motion, i.e. we
remove the jumps and obtain

By = pt + oW,

where the notation is the same as above. For our algorithms, we are interested
in the first-passage times on some interval (t;—1,?;), where 0 < t;_1 < t; < 00,
i € N. The Brownian motion at start- and endpoint of this interval is denoted
by xj—1 := By,_, € (b,a), respectively x; := B;, € R. If x;_1 as well as x; are
known, we obtain conditional first-passage probabilities, called Brownian bridge
probabilities,

BB, (ti—1.ti.xi—1.xi) = P(ti-1 < T, <ti | By;_, = Xi—1. By, = x;),
BB, (ti—1.ti.xi—1.%;) == P(ti-1 < T, <ti | By,_, = xi—1. B;; = xj).
In the single barrier case, we find (see, e.g., [30, p. 240])

o2 (ti—ti—1)

lim BBa_b(li—L L, Xi—1,Xi) =
1, else.

a—oo

{exp(_w)’ min(xi,xi—l) > b,

Theorem 2.1 (Brownian bridge probabilities 1). Consider a Brownian motion By
with volatility o > 0. Assume that x;—1 := By, _, € (b,a) and 0 <t;_; <t; < o0.

(1) Forx; := By; € (b,a) we get

BBab(ti—l, tiaxi—17xi)

:= BB, (ti—1.1i, Xi—1,%;) + BB, (ti—1. i, Xi—1.X;)

= Z [exp(—M(xi_l —xi +n(a— b)))

nTeo 02(ti — ti—1)

+ J—
exp( o2(ti —ti—1)

2(xi —na + (n = Db)(xi—1 —na + (n — 1)b)):| -1

(2) If x; :== By; ¢ (b,a), we obtain
BB,y (ti—1.ti, xi—1,xi) = 1.
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Double-barrier first-passage times of jump-diffusion processes 111

(3) Ifxj := By; € (—00,a),
BB;},(ti—h li, Xi—1,X;)

_ i |:exp(_2(xl'—1 —na+ (n—1b)(xi —na + (n - l)b))

= o2(ti —ti-1)

2n(a — b)
- (_oZ(r,- “hi1)

(x,'_l —x;j +n(a— b))):|. (2.2)

4 If xi :== By, € (b,0),
BB, (ti—1, i, Xi—1,Xi) = BBY, _ (ti—1.ti,—Xi—1, —Xi).
If x; > a, the probability of hitting the level a first is
BB (ti—1. 1, xi—1,Xi) = 1 = BBy (ti—1.4i, Xi—1, X;).
If b > x;, the probability of hitting the level b first is
BB, (ti—1.1i. Xi—1,%;) = | — BB, (ti—1.1i, Xi—1. X;).
Ifxi—1:=By,_, ¢ (b,a), we set
BB:Z(Z,'_l, ti,Xi—1,x;) = 0.

Proof. For a proof, we refer to [2]. In a different, sometimes more convenient, no-
tation the formulas are displayed in [37, Remark 2]. For a proof of the expression
BB,y (ti—1.ti, xi—1, X;), see, e.g., [18]. o

Theorem 2.2 presents the first-passage time probabilities for two barriers of
a Brownian motion with drift. Those probabilities can either be obtained by rene-
wal-type arguments together with Fourier inversion (see, e.g., [8] or Remark A.2
in the Appendix) or by risk-neutral valuation (see, e.g., [33,34]). Both approaches
typically yield closed-form expressions that include (rapidly converging) infinite
series. In the literature, two different representations for those probabilities are
common, they are displayed as representations (a) and (b) in Theorem 2.2. The
(numerical) differences between those two representations are discussed in Sec-
tion 5.

The proof of Theorem 2.2 provides a link between the two representations using
the so-called Jacobi transformation formula (see, e.g., [45]). Furthermore, this
proof explains the connection to the Brownian bridge probabilities in Theorem 2.1.
The interested reader is referred to the Appendix.
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112 L. Fernandez, P. Hieber and M. Scherer

Theorem 2.2 (First-passage time probabilities). Consider a Brownian motion By
with drift i € R and volatility o > 0. Assume that x;—1 := By, _, € (b,a) and
0 <ti—1 <t;j <oo. Then, setting BMa_‘E)(Zi_l,[i,xi_l) =Pty < Ta_il_) <t):

(a) The first representation yields

> n uT —kp—1—a
BM""([Z 1,4, Xj— 1)_’;[6Xp(_a_2kn_l)q>(g—\/fl)
T —ky+
et -)o( M)
> 7 —uT —kp—1—a
+Z|:exp(0—2(kn+b))cb( - )

n=1
oo Lot o)
p 0_2 n O’ﬁ )

where ky, := 2n(a — b) and the standard normal cumulative distribution func-
tion is denoted by ®(-).

(b) The second representation yields for it # 0
BM ) (ti—1.ti, xi—1)

_ exp(_%) — 1
exp(—%) _ exp(— 2M(a(:zxi—1))
n o2 eXp(y,(a —Xi—1)) i n(—1)yr+1
—b)? 2 o2n2x2
(a —b) o = 202 + Sachy
2 2,22
i o‘n
. =+ — ) -1
exp( (202 + 2a —b)z)(l i 1))
. (nn(b—xi_l))
ssin| ————),
a—>b
and for p =0

M (11,6, xi—1)

Xxi—1—b > 2(—1)nt1 02n2x?
= it + Z =D exp(——(ti—ti_l))
nrw

_ AV
a—>b = 2(a —b)
. (nm(b—xi-1)
ssinf ——= ).
a—>b
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Double-barrier first-passage times of jump-diffusion processes 113

Furthermore
P(ti—1 < Ty, <t;) = BMZ, _ (ti—1.ti,—Xi—1),
Pticy < Ty <) =Pticy < Th < ;) + Plticy < Ty < 7).

Proof. A proof of the first representation is provided in [35]; [8] give a proof of
the second representation. Some details are given in the Appendix. o

In some applications, we are not only interested in the first-passage time prob-
abilities, but also in the time ¢, < ¢ < ¢; this first exit event takes place. There-
fore, we define first-passage time intensities' by

it xiz) :=P(T, €dt | By_, = xi—1),
Jap(t. xi—1) = P(Ta_b €dt|By_, = xi_l).

Similarly, we define Brownian bridge first-passage time intensities

g:b(z,xi_l,xi) = ]P’(T;b €dt| By;_, = xi—1, By, = xj),
gt Xi—1,xi) = ]P’(Ta_b edt|By,_, =xi—1, By, = xi).

Theorem 2.3 presents the resulting analytical expressions for faﬂg (t,x;—1) and
g;tb (t,xi—1,x;), adapting an idea by [15] and [36] to two barriers.

Theorem 2.3 (First-passage time intensities). Consider a Brownian motion By
with volatility o > 0. Assume that x;—1 := By,_, € (b,a). For x; :== By, and
ti—1 <t <t <oowe getthe first-passage time intensities

2 — Xj_ © . b — i—
oo = e M) S sin( O )

n=1

2 2,22
n Ten‘o .
2

_ b— i— - n oo —a + xi—
i) = e MO ) Y caysin(THEAE )

n=1

12 . 120202 ‘i
expl |z + 70— |t —1ti-1) |,
P\l 202 "2 —p)2 ’
I Note that we use the term “intensity” instead of “density” since there is a non-zero probability

that the upper, respectively lower, barrier is never hit and thus fooo fajlj (t,xj—1)dt < 1.
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114 L. Fernandez, P. Hieber and M. Scherer

and the Brownian bridge first-passage time intensities

o’r i —fiq exp( (xi —xi—1)? o (x —a)? )

(@a—b)2 Ji; —1 202(t; — ti—1) 202%(t; — 1)

2,22
-Z( e (5 s =t

sin an(b — xi—1)
a—b ’

g;b(t’xi—lvxi) = gi—b_a(tﬂ —Xi—1, _xl)

g:b(t7xi—17xi) =

Proof. The intensities f (t, xi—1) are derived from representation (b) from The-
orem 2.2. A proof of the expression g b(t Xi—1,x;) is referred to the Appendix.
An integration with respect to ¢ over the interval [¢;_1, ;] yields the probabilities in
Theorem 2.1. In the limit limg— oo, f;l; (z, x;—1) converges to an inverse Gaussian

density and we obtain [36, equation (11)]. O
1 0

%> 0.9F 0.1 =

><;L 0.8 0.2 ><LL

+;<% 0.7 10.3 I:f\’s
e =
% 06 104 3
C c
2 — first-passage time intensity upper barrier 2
£ 05F fi L . . H05 £
° ——— first-passage time intensity lower barrier ®
£ o4} {os £
[0) (0]
(o)) (o))
@ 0.3 107 8
(2] 7]
g g
L 02fF {08 [
2 2
701t 109

N
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time t

Figure 1. The first-passage time intensities g;b (¢, xi—1,x;) and g_, (t,x;—1, X;) in
the interval (t;—1, ;) = (0, 5) using the parameters x;_; = x; = 0,0 = 10%, upper
barrier ¢ = In(1.1), and lower barrier » = In(0.9).
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Double-barrier first-passage times of jump-diffusion processes 115

3 Algorithms

This section introduces the Brownian bridge algorithms that allow to efficiently es-
timate two-sided level crossing probabilities of jump-diffusion processes, extend-
ing the single barrier case of [36]. The idea behind those algorithms is to sample
first the number of jumps N7 within the time interval [0, T'] and the jump instants
11 < --- < tn,. Then — remaining with a diffusion between two successive jumps
— to sample the process B immediately before (denoted By, —,i = 1,..., N7) and
after those jump instants (denoted By;, i = 1,..., Nr). Between two successive
jumps, the barrier hitting probabilities, respectively the first-passage time intensi-
ties, can be obtained using the results in Theorem 2.1 and Theorem 2.3.

Crossing by jump at #; 1 P(T,, = ti-1) }P’(Ta'z =ti-1)
Bt,‘_l >a 0 =7)i—1
a > Bti—l >b 0 0
b > Bt,-,l Pi_q 0

Crossing by diffusion in (t;—1,t) P(ti—1 < T, < t;) Pt < T;I; <t)

D. D— D. D+
By— eR Si-1Fi g Li1 P

Table 1. Conditional probabilities of hitting the lower barrier b (left) and the upper
barrier a (right) in the interval [f;_1, #;). In the upper table the barrier is hit due to a
jump in #;_1, in the lower table it is hit between two successive jumps in (¢;_1, ;).

Algorithm 1 returns the barrier hitting probabilities until time 7" < oo and sam-
ples of the final value Br. In mathematical finance, this can be used to price
derivatives with maturity 7 that depend on whether a lower barrier » or an up-
per barrier a is hit. Examples include digital first-touch options (see Section 4.1),
step double barrier options (Section 4.2), or corridor bonus certificates (see Sec-
tion 4.3). Algorithm 2 additionally allows to estimate expectations on the time
Ta_b’ Ta"]; of the first exit. This can, for example, be used in credit risk where the
recovery payment usually depends on the time of the exit event (see Section 4.4).

We set 1o = 0 and abbreviate the exit probabilities P 1i and &_, ; and the

i— N
survival probability $;_1; on the interval (t;—1, ;) by

+ . +
j)l—l,l = BBab(ti—lvtirBtj_lvBti—)’
e‘{/ji_—l,l. = BBa_b(tlA—17tl.7Btl’717Bti—)’
c(Pl'—l,l' = 1_(:(/)+ +‘7)i_—1,i)'

i—1,
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116 L. Fernandez, P. Hieber and M. Scherer

We note from Theorem 2.1, part (2), that #; 1 ; = 0if B;,— ¢ (a,b). The exit and
survival probabilities sum up to one, i.e.

‘(Pitl,i + °(Pi_—1,i + e(Pi—l,i = 1.
Further, denote on the interval [0, ¢;) the cumulated probabilities
i

Pi =[] Pe-r

kel
—_

%
+
[0
M-

+
C(Pk—l BBab(tk—la Ik, Btk,1 s Btk—)7

=
Il
-

1

‘{Pl'_ . Zj)k_l BBa_b(tk—l’tk’Btk—l’Btk—)'
k=1

Since between By, _, and By, the process B behaves like a Brownian motion,
the algorithm can take advantage of the Brownian bridge probabilities from The-
orem 2.1. The probability of first hitting the upper (respectively lower) barrier in
the interval [t;—1,t;) is given in Table 1. The path may cross the barriers due to a
jump (upper table) or between two successive jumps (lower table).

Algorithm 1 (Brownian bridge technique 1). This algorithm samples the first-
passage time probabilities IP’(T:Z'7 < T)and P(T,, < T). To this end, the number
of simulation runs K, the barriers a and b, and the parameters that describe the
process B are required. As a second output, the algorithm generates a K x 3 ma-
trix whose columns contain for each simulation run (1) the conditional probabil-
ity of hitting the upper barrier, (2) the conditional probability that the path stays
within the corridor (b, a), and (3) the realized final path value. This allows to price
derivatives that depend on both the first-passage time probabilities and the final
asset value, for example, corridor bonus certificates.

(1) Repeat Steps (A)—(F) for each simulation run k € {1, ..., K}?, then continue
with Step (2).
(A) Simulate the number of jumps within [0, T'] as N7 ~ Poi(AT).

(B) Simulate the jump times 0 < f; <--- <y, < T. Conditional on N,
these jumps are distributed as order statistics of i.i.d. Uni[0,T] random
variables, see [44, p. 17].

2 In the kth simulation run the quantities 887 (k) (conditional probability of hitting the upper
barrier) and 88 (k) (conditional probability of surviving within the corridor (b, a)), and the
final asset value By (k) are sampled.
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Double-barrier first-passage times of jump-diffusion processes 117

(C) Generate two independent series of random variables by, ..., bN,+1
and y1,..., YN, independent of N:

bi ~ N (u(ti —ti—1),0%(t; —ti—1)) and y; ~ Py.
(D) Simulate the asset path on the grid of the jump times (set fy, 41 = T):

BtOZO, Bl[—:Bl[_1+bis Vie{l,...,NT+1},
By, = By,— +yi, Vie{l,...,Nr}.
(E) Compute the conditional barrier crossing probabilities between the grid

points. Set Py := 1 and repeat the following Steps (a)—(d) for each time
stepi € {1,..., N7 + 1}.

(a) Compute the probabilities

D+
Sl

Pic1i=1—=PF = BB (ti—1,1:, By, By;-),

’ 1

= BB;_b(li—l, ti, Bt,‘_l s Bti_)’

and obtain #; = P_1Pi—1,;, P = P, + P T,

(b) ¢ If B;,— & (b.a),set BBT (k) = P, BB(k) = 0and go to (F).
» If By, € (b, a), continue with Step (c).
(© Ifi = Ny + 1,set BB (k) = Py, BB(k) = Pn,+1and go
to (F), else continue with Step (d).
(d) Check whether a barrier crossing occurs due to a jump.
« If By, > a,set BBT (k) = P + P+, BB(k) = 0and go to (F).
« If B, <b,set BBT (k) = J)l.+, BB(k) = 0and go to (F).
» If By, € (b,a), return to Step (E).
(F) Set Br(k) = BtNT+1— and return to Step (1).
(2) Estimate the unconditional quantities in question via the sample mean of all
conditional quantities over all runs, i.e.

Il

K
1
P(T <T)= 2 > BS8"(k),
k=1

K K
_ 1 N 1
P(T, <T)x1- Eg_i B8B8T (k) - E;—i B88(k).

and return a K x 3 matrix with rows (887 (k), BB(k), Br(k)), where
ke{l,...,K}.
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118 L. Fernandez, P. Hieber and M. Scherer

Similar as in Algorithm 1, Algorithm 2 samples the number of jumps N7 in the
interval [0, T'], the jump instants 0 < #; < --- < ¢y, < T, and the process values
immediately before and after the jump (Steps (1A)-(1D)). However, in contrast
to this first algorithm, it additionally allows to evaluate expectations of the form
E[w(fab, Br,8)], where & € {6, ©, @}, that depend on the first-passage time.

Therefore, the inter-jump periods (¢;—1, ;) are considered sequentially. In the
ith period, the barrier crossing probabilities v := BB_, (fi—1, i, By, _,, By;—) and
w = BB;}) (ti—1.ti, Bt,_,, Bs,—) are determined (Step (1E)(b)). A standard uni-
form random variable U is drawn that decides whether a barrier crossing has oc-
curred in the interval (z;_1,t;). We use an importance sampling scheme for the
explicit times of the first-passage. If the lower barrier is crossed (U < v; the upper
barrier is treated similarly), the first-passage time Ta_b is taks:n uniformly in the
interval (¢;—1, t;). Then, the uniform random variable ¢; _; < T, <t;is weighted
according to its actual density, given by the fraction of the Brownian bridge first-
passage time intensity g_, (T, Bs;_,, By;—) in the interval (li—l,fi) (see Theo-
rem 2.3) and v. This importance sampling weight is denoted by p(7,,). We know

that
ti o= (t,B; ,, Bs_ li 1
/ 8ap\: Brioy Bii-) dt = 1 =/ — p(r)dt.
iy v tiog L —tli—1

i—1

The two densities in the latter expression coincide, thus we can conclude that
p(f“a_b) = g;b(f’a_b, Bi By )(t;i — {i—l)/v- We note that the importance sam-
pling weight is on average 1,i.e. E[p(T ;)] = 1.

If there is no barrier crossing in the interval (¢;—1, #; ), we continue with the jump
time #; (Step (1E)(d)). If a crossing occurs due to a jump, the weight of this path
is 1, its first-passage time is #;. If, again, no crossing occurs, we increment i by
one and repeat the whole procedure. This continues until either one of the barriers
is crossed or time 7T is reached (Step (1E)(c)).

Note that the expected number of jumps until time 7" is AT. Hence, the average
runtime increases about linearly in 7.

Algorithm 2 (Brownian bridge technique 2). This algorithm evaluates expecta-
tions of the form X(0) := E[w(T,p. Br, )], where & € {&, &, 0}, that depend
on the first-passage times Ty, Ta'z, and 7, and the final path value Br. There-
fore, the number of simulation runs K, the barriers a and b, and the parameters that
describe the process B are required. To stress that the first-passage time is sampled
by an importance sampling scheme, we use the notation fab instead of Tp.

(1) Repeat Steps (A)—(E) for each simulation run k € {1, ..., K}, then continue
with Step (2).
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Double-barrier first-passage times of jump-diffusion processes 119

(A)—~(D) See Algorithm 1.

(E) Check whether a barrier crossing occurs continuously. Repeat Steps
(a)—(d) for each time step i € {1,..., N7 + 1}. The type of exit event
is denoted by the random variable & € {®, ©, @}. Possible exits include
hitting the upper (& = @), respectively lower (6 = ©), barrier. In case
that all sampled process values stay within the corridor (b, a), we set
& =0.

(a) Sample a random variable U ~ Uni[0, 1].
(b) Calculate

v:= BB_(ti-1.1i, By,_,, By;—),
w = BB;},(ti—l,li, Bty By, -).
e If U < v, return

gy =0, Tupk)=ti-1 + G —t;-1)U/v,
~ _ A i —ti—
Pk, Tap(k)) = g3, (Tap (k). B, By, ) =
and return to Step (1).
e IfU > 1— w, return

ey =@, Tup(k) =ti—1 + (t —t;-1)(1 = U)/w,
Pl Tap (0) = &, (Tap (). By Byo) T
and return to Step (1). Else, continue with Step (c).
() Ifi = Np+1,set &(k) = 0, (T, (k). p(k, T,p(k))) = (T, 1), and
return to Step (1), else continue with Step (d).
(d) Check whether a barrier crossing occurs due to a jump:
« If By, > a, set E(k) = &, (Tup(k), p(k, Top (k) = (11, 1),
and return to Step (1).
o If B, <b. set &(k) =©, (Tap(k). p(k. Top(k))) = (1. 1),
and return to Step (1).
 If By, € (b,a), return to Step (E).

(2) Set By (k) = By Npt1— and compute the estimate

K
XO0) 2 o 3 pls Ty (k) w(Tap ). Br k). €6)
k=1

where w (7 (k), Br(k), E(k)) is the quantity that needs to be estimated
conditional on the sampled quantities.
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120 L. Fernandez, P. Hieber and M. Scherer

Remark 3.1 (Generalization to stochastic volatility). It is possible to generalize
the algorithms to jump-diffusion models in the sense of [14], where the model pa-
rameters change depending on a time-homogeneous Markov chain Z with finitely
many states. The process B is then given by

dB, = puz,dt +o7,dW, +YidNF', By =0,

where Z = {Z;};>0 € {1,2,..., #states} is a time-homogeneous Markov chain
and W = {W;};>0 a standard Brownian motion. The parameters now depend
on Z: Drift uz, € R, volatility oz, > 0, and time in-homogeneous counting pro-
cess N4t = {NtZt}lzo, a Poisson process with intensity Az, > 0 at time 7. The
initial value is By; the jump-size process ¥ = {Y;};>1 isi.i.d. with distribution Py .
All processes are mutually independent.

To modify Algorithms 1 and 2, in Step (1B) not only the jump times but also
the times of changes in the Markov chain Z have to be simulated. However, due to
the non-homogeneity of N 21, they have to be simulated iteratively. Conditional on
those times, the algorithms can proceed as before if the jump size at state changes
is set to zero.

4 Applications

In the following, we consider financial applications of the presented algorithms.
Up to now, we have worked with first-passage times of Brownian motion with
jumps. This process, however, allows for negative values and is thus not a rea-
sonable model for a stock price process. We assume that there exists a risk-neutral
measure Q and define for ¢ > 0 the stock price process under QQ as the exponential
of a jump-diffusion process (with jumps having finite first exponential moment),
ie.

N
1
S; := So exp(B;) = So exp((r — 502 —5)1 +oW: + ZYi)7

i=1

where r denotes the riskless interest rate and § := A(Eg[exp(Y1)] — 1) the drift
adjustment due to the jumps. The other parameters and processes are defined as in
Section 2.

Example 4.1 (Double-exponential jump-diffusion). One popular possibility to
model jump sizes is the double-exponential distribution, see, e.g., [32]:

Py (dx) = page *® 1 >qdx + (1 — p) age®® 1 cqydx, 4.1)
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Double-barrier first-passage times of jump-diffusion processes 121

where 0 < p <1 is the probability that a jump has positive sign. Upward jumps
are exponentially distributed with parameter agy > 1, downward jumps are expo-
nentially distributed with parameter g > 0. In this model

§ := A(Eg[exp(¥1)] — 1) =A( ree | (- ploe —1).

o — 1 ag + 1

The payoff of the products we are pricing depends on whether or not a continu-
ously monitored, constant lower barrier D < Sp, or an upper barrier P > Sy, is hit
until maturity 7" of the contract. Exploiting the strict monotonicity of the natural
logarithm, we find that

P(S; € (D, P), Vt € [0,T]) = P(B; € (In(D/So),In(P/Sy)), ¥t € [0,T])
= P(Tab > T),

where a := 1In(P/Sy), b := In(D/Sy), and B; := In(S;/Sp) for all # > 0. Thus,
we can express the first-passage times of the process S by the first-passage times
of a Brownian motion with jumps with modified barriers.

In the current section, different applications for the Brownian bridge algorithms
are analyzed. First, Section 4.1 prices digital first-touch options, then we consider
step double barrier options in Section 4.2, and corridor bonus certificates in Sec-
tion 4.3. Section 4.4 examines an application to credit risk.

4.1 Digital first-touch options

In this section, we deal with (knock-in) digital first-touch options, the correspond-
ing knock-out options can be priced similarly. Options of this form provide a build-
ing block for more complex derivatives; for more details see, e.g., [3]. According
to [5], digital first-touch options are the most liquid and actively traded exotic
options on FX markets.

Digital first-touch options pay $1 at maturity T if the stock price crosses (a)
specific threshold(s). The owner of an up-and-in (respectively down-and-in) con-
tract receives $1 if the upper barrier P (respectively lower barrier D) is hit first. If
the underlying remains within the corridor (D, P), the option expires worthless.

Under the risk-neutral measure Q, the up-and-in option can be priced as

Xt0) =T Eo[lir+ ] = T QTS <),

where a := In(P/Sy), b := In(D/Syp). Similarly, the price of a down-and-in op-
tion is given by

X7(0):=e T Eq[lyr <1y =T QI < T).
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Example 4.2 (Digital first-touch options). Table 2 compares the prices of (knock-
in) digital first-touch options in a double-exponential jump-diffusion model ob-
tained by the standard Monte-Carlo simulation on a discrete grid to the Brownian
bridge algorithm (Algorithm 1). The parameters considered in the simulations are:
r=5%, 0 =20%, p=0.5 ag =ag =5, and T =1 (expiration date of the
contract). Furthermore, we set D = 80, P = 120, and So = 100.

In the standard Monte-Carlo algorithm, we use 250, respectively 1000, dis-
cretization steps. According to the expected number of jumps per year A, we con-
sider the scenarios “Black—Scholes” (A = 0), “Low” (A = 0.5), “Middle” (A = 2),
and “High” (A = 8). We chose double-exponential jump diffusions as this allows
us to compare the results to the Laplace transforms of the first-passage time as
presented in, e.g., [32,46]. Note that it is very easy to change the jump-size distri-
bution in a Brownian bridge algorithm, whereas it often requires new theoretical
results if one is interested in analytical solutions for the Laplace transform of the
first-passage times under alternative jump size specifications.

From Table 2, we conclude that the Brownian bridge algorithm is significantly
faster than the brute—force Monte-Carlo simulation on a discrete grid. Further-
more, the Brownian bridge algorithm is unbiased and thus leads to prices that
are close to the exact prices by [46]. There are ways to further accelerate this
algorithm: First, a parallelization of Monte-Carlo simulations can very easily be
implemented. Secondly, there are many variance reduction techniques to further
(significantly) accelerate the algorithm (see, e.g., [10,31,42] on the single barrier
algorithm).

Figure 2 further examines the discretization bias of the two algorithms. Note
that the discretization bias in the standard Monte-Carlo simulation is still con-
siderably high even for 1000 discretization steps (Af = 1le—03). The Brownian
bridge technique returns unbiased price estimates.

4.2 (Step) Double barrier options

Double barrier options are very popular OTC derivatives and are frequently em-
bedded in a variety of structured products. The holder receives the payoff of a
standard call or put option if the stock price stays within a corridor (D, P) over
the lifetime of the option (and receives O otherwise). For an investor, this standard
contract is often not suitable: Following his risk aversion, his hedging require-
ments, or his market views, the investor might want to change the barrier level
over time. For instance, he/she might want to widen the corridor (D, P) over time
(a contract often referred to as “expanding tunnel”). A large range of exotic prod-
ucts aim at providing this additional flexibility, i.e. step double barrier options (the
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Figure 2. Bias of (upper barrier) digital first-touch option prices. We compare
the standard Monte-Carlo simulation on a discrete grid with mesh Az € {le—01,
le—02, 1e—03, 1le—04, 1e—05} to the Brownian bridge algorithm (Algorithm 1) us-
ing K = 10° simulation runs. The jump intensity is A = 2; the same parameters as
in Table 2 are used. The relative bias is the relative difference between the expected
simulated value E[X *(0)] divided by the true value X T (0) of the option.

barriers are piecewise constant) or window double barrier options (the barriers can
only be observed during certain time intervals). Many different names were cre-
ated for those type of contracts, i.e. “hot-dog-option”, “wedding cakes”, or “onion
options”, for a more detailed review of traded contracts, we refer to [21] and [22].
Analytical pricing formulas for such products tend to become extremely compli-
cated (this is already true for simple examples in the Black—Scholes model, see,
e.g., the Appendix of [22]) and are not flexible enough to adapt to many different
payoff streams or underlying specifications.

In the following, we introduce step double barrier options. For certain obser-
vation points g = 0 < f; < --- < t, = T, the barrier of an n-step double barrier
option is constant over the intervals [t;_1,¢;], fori = 1,2,...,n. Denoting those
ranges by [D;, P;], a step double barrier option has the same payoff as a standard
call or put if the underlying asset has stayed within the thresholds (D;, P;) until
the maturity of the contract.

Example 4.3 (Step double barrier options). We will consider a two-step double
barrier option, i.e. an “expanding tunnel” with t; = 1, [D1, P1] = [60, 140] and
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[D2, P2] =[50, 150]. The strike price at T =1, = 2 is K = 70. The other pa-
rameters are chosen as in Example 4.2, i.e. r = 5%, 0 = 20%, and So = 100.

Again, we use a double-exponential jump-diffusion model with p = 0.5 and
ag = g = 5. According to the expected number of jumps per year A, we con-
sider the scenarios “Black—Scholes” (A = 0), “Low” (A = 0.5), “Middle” (A = 2),
and “High” (A = 8).

Table 3 compares the prices of two-step double barrier options obtained by the
standard Monte-Carlo simulation on a discrete grid and the Brownian bridge algo-
rithm (Algorithm 1). Pricing this type of exotic options analytically tends — even
for the case of a double-exponential jump size distribution — to be very tedious and
also computationally challenging. In the Black—Scholes model, closed-form prices
for two-step double barrier options are available (see the Appendix of [22]). The
advantage of both Monte-Carlo algorithms presented in Table 3 is the fact that they
are very flexible, easy to implement, and can easily be adapted to different payoff
streams or jump-size distributions. The Brownian bridge algorithm is moreover
both unbiased and faster than the standard Monte-Carlo simulation.

4.3 Corridor bonus certificates

Corridor bonus certificates provide the largest payoff if the stock price stays within
a given corridor (D, P) during the lifetime of the contract and thus offer the possi-
bility to bet on sideways markets. On different underlying assets, they are emitted
by all major banks.?

The payoff of a corridor bonus certificate depends on the market value of the
underlying at the expiration date 7, the first-passage time events on the two bar-
riers D < Sy < P, and on an initially specified “fixed amount” F. One distin-
guishes the following two cases:

« If the stock prices stays within the corridor (D, P), then the owner of the
certificate receives the fixed amount F' at maturity 7.

* If the stock price reaches one of the barriers, the payoff depends on the stock
price ST at the expiration date of the certificate.

More precisely, we get the following payoff:
F if Ty > T,
payoff(T’) = { min(St, F) if7T,, <T,
max (min(2So — S7. F),0) if T} <T,

3 Note that there exist different kinds of corridor bonus certificates with slightly different
payoff structures. As an example, Société Générale emitted several certificates (e.g. ISIN:
DE000SG12BS9, maturity 01/04/2013).
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where a := In(P/Sp) and b = In(D/Sp). Note that if the upper barrier is hit, the
certificate converts into a short position in the underlying S'. In most standard con-
tract specifications the resulting loss is bounded by the initial investment. Under
the risk-neutral measure Q, the price of corridor bonus certificates conditional on
P(T, =T), P(Ta"l; < T),and ST is given by

B*(0) := ¢™"T Eq[payoff(T)]
= TEg []EQ [payoff(T) | T, TaJZ’ ST]]
=eTEg [F(l ~Lip ary — L <1)
+ ]I{T(beT} max(min(2Sg — S7, F),0)
+ Iy <7y min(St, F)]-

This can be estimated using the triplets (BB (k), BB(k), Br(k)) from Algo-
rithm 1.

Example 4.4 (Corridor bonus certificates). Table 4 estimates the prices of corridor
bonus certificates using Algorithm 1. The parameters used in the simulations are:
r=1%,0 = 10%, p = 0.5, and T = 1 for different values of ag and ag.

Black—Scholes Jump-diffusion

A=0 Low (A = 0.5) | Middle (A =2) | High (A =8)
ap = ag = 10 118.754£0.00 | 116.88+0.02 | 109.84 +0.04 | 82.46+0.07
ap =200 =20 | 118.75+0.00 | 118.05+001 | 114.01 £0.03 | 89.68 4 0.07

ag =ag/2=10 | 118.75+0.00 117.28 £ 0.02 112.47 £ 0.04 91.06 &+ 0.07

Table 4. Prices B (0) of corridor bonus certificates using Algorithm 1 for different
jump size distributions (parameters «g and og) and jump size intensities A. We
choose So =100, P =140, D =60, r =1%, T =1, 0 = 10%, and F = 120.
The results have been obtained in a simulation with K = 10° trajectories.

4.4 Credit risk

Another frequent application of first-passage times are structural credit risk mod-
els. The idea behind those models is to define default as a consequence of insuf-
ficient asset values, with the result that bonds can be priced as an option on the
company’s assets S. One considers two possibilities that the bond spread pay-
ments cease: First, the company defaults as soon as S falls below some prespeci-
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fied level D < Sp. Second, due to, for example, the company’s desire to upgrade
its credit rating or due to an initial public offering (IPO), the bond might be repaid
earlier. This event is triggered as soon as S crosses an upper barrier P > Sy, see,
e.g., [11,13,17].

The price of a defaultable bond with nominal value 1 and maturity 7" that pays
(continuous) interest at a rate d and can (at any time) be recalled by the bond
holder is then priced as

Bond Price = Nominal + Interest “4.2)
with
Nominal = exp(—rT) Q(Typ > T)

+Eg [R exp(—rT,,) Lir— <1y + exp(—rTa'Z) ]l{Tj;,sT}]’

min(T,p,T)
Interest = Eq [/ d exp(—rt) dt}
0
d
= ?(1 — exp(—rT)) Q(Typ >T)

T
+Eqg [/0 dexp(—rt) dt 1{T;)5T}:|

ot
early repayment in 7}

Tap
+Eg [/ d exp(—rt)dt ]l{Tabfr}}
0

default in Ta_b

where r is the riskless interest rate, @ := In(P/Sp), b := In(D/Sp),and R € [0, 1]
the recovery rate in case of default.

This price depends on the first-passage times T;l;, T, and can thus be com-
puted using Algorithm 2. We obtain bond prices conditional on the time ¢ and type
& € {®, 6,0} of the exit

d d
w(t,x,8) = - + (R — ?) exp(—rt),

w(t,x,0) =w(t,x,®) = % + (1 d) exp(—rt).

r
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5 Implementation

This section discusses the implementation of the infinite series in Theorems 2.1
and 2.2. Depending on k := o+/(t; —ti—1)/2exp(b — a), a quantity that can be
interpreted as a measure of the distance to default (see [45]), Figure 3 displays the
(logarithmic) absolute error of the infinite series in BB;;)( -) (Theorem 2.1, equa-
tion (2.2)) if truncated after N € N terms. Our numerical results for a large num-
ber of different parameters suggest that the required values for N are extremely
small, even for extraordinarily high values of «.

x=0.05
x=0.21
k=042

_15, 4

(logarithmic) absolute error

-25¢, o o o o

-30 . . . .
1 2 3 4

number of terms N

(]
(e}

Figure 3. The (logarithmic) absolute error of the Brownian bridge probability
BB;;J(-) on two barriers is computed using N terms in the infinite sum given
in Theorem 2.1, equation (2.2). Different values for the distance to default k :=

o+/(ti —ti—1)/2exp(b — a) are used.

In Theorem 2.2, two different representations of the first-passage time distribu-
tion are given. The answer to the question “which representation is numerically
more efficient?” depends on the parameters. The paper [45] claims that represen-
tation (a) is more suitable for small values of the distance to default x whereas
representation (b) might be preferred if « is large. We confirm those results in
Figure 4: For « = 1.00 (left), representation (b) is obviously a better choice, for
k = 0.25 (right), representation (a) is more accurate. The convergence rate of the
infinite series is extremely fast: For most parameters, N < 5 terms lead to a pre-
cision of at least ¢ = 1e—08. Error bounds for (a) are to be found in [45]; for
representation (b) in [26].
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® representation (a) ° ® representation (a)
® representation (b)|] 5L ® representation (b)
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Figure 4. The (logarithmic) absolute error of the first-passage time probability
on two barriers is computed using N terms in the infinite sum given in Theo-
rem 2.2. The two representations (a) and (b) are compared using two different

values of k := a+/(t; —ti—1)/2exp(b — a): k = 1.00 (left; © = 10%, 0 = 40%,
ti—ti-1 =1, a=1In(1.2), b =1n(0.8), By =0), « =0.25 (right; u = 10%,
0 =10%,t; —ti—y = 1,a =1n(1.2), b = In(0.8), By = 0).

6 Conclusion

We showed how the original single barrier Brownian bridge algorithm by [36]
can be extended to price many exotic double barrier derivatives. Standard Monte-
Carlo simulations on a discrete grid lead to a discretization bias even for fine grids.
In contrast, the Brownian bridge algorithms are unbiased and significantly faster.
One big advantage of Monte-Carlo simulations is the fact that they are easy to un-
derstand and implement and they are very flexible. It is straightforward to change,
e.g., the jump size distribution or to include a stochastic volatility (in contrast,
most analytical approaches often need a completely new theory to account for
such changes). Furthermore, payoff streams can easily be adapted to, e.g., piece-
wise constant or partially monitored barriers (e.g., to price step and window dou-
ble barrier options). The flexibility of non-constant barriers allows to adjust the
derivative’s payoff to the investor’s hedging needs and speculative views. A fur-
ther expansion of those type of contracts on the markets is contingent on the fact
that fast and reliable pricing techniques are available.

A Appendix

Proof of Theorem 2.2. In this proof, we will provide a link between the Brownian
bridge probabilities (Theorem 2.1), the first-passage time densities, and the first-
passage time probabilities in the two representations (a) and (b).
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The integration over x; yields the (unconditional) default probabilities pre-
sented in, e.g., [35]. We obtain®

P(tioy < T)5 < 1)
= IP’(a > XLt < T:i; < t,') + IP’(xi >a,ti—1 < Ta—il; < Zl')
= P(a > Xt < Ta—z < l‘,')

2u(a — xj— ~
+ exp(%)ﬂ”(a > Xt < TLIJ’Z_) <t)

a
= / BB;},(li—l,li,xi—hxi)[(/)(xi —xi—1: p(ti — tic1), 0/t — 1i—1)

—00
2u(a — xj—
—I—exp( M( 5 i 1))
o

co(xi — xi—1i—p(ti —ti—1),0/1; — ti—l):|dxi’

where ¢(x; i, o) denotes the density function of a normal distribution with mean
w and variance o2 and BB;E7 (ti—1,ti,xi—1,x;) is given in Theorem 2.1. To get

4 The second equality holds by applying the reflection principle. We find that
]P(xi >a,ti— < TaJ'l_J < tl‘)

=Ep []l{xi >a,ti—| <Ta+b<t,-}]

2
M L
IER[exp (;(Xi —Xj—1)— 5;(11‘ - ff—l)) Il{xl_>u’,i7] <T;§,<ti}]

2p(a — xi—1) oo 1p?
= eXP(TI ER|exp —Uﬁ(xi —Xi—1) — 507(&' —li-1)

-1 -
{a>X;,t;i <T;;<ti}}

_ (2u(a—x,-—1)
=exp| ———

P s + .
-2 )P(a>x,,t,_1 <T) <t),

where we used the change of measure

ar _ x (i —xi—)p P26 = tiz)
dR P o2 202 ’

respectively

dP — exp G —xm)p P — o)
dR 02 202 ’
and a reflection at the barrier a.
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closed-form expressions for the integrals, one can show by a lengthy, but straight-
forward, calculation that

h
/ BBtjE)(ti_l’ti’xi—lvxi)(p(xi - xi—l;ﬂ(ti - Zi—l),O’«/li — Zi—l) dxi
g

= Z [exp(g%(—in_l +kn + 25))

n=1
. q)(xi + xi—1 — p(ti —ti—1) —kn — 2/9)
O/l —li—1

exp wky of X Xim1— p(ti —ti—1) — kn h
02 oti —ti—1 -

where k,, := 2(a — b).
In the following, we restrict ourselves to the case & > 0.5 We obtain [35, equa-
tion (29)], i.e.

P(ti1 < T, < 1)

= w Xi—1— p(ti —ti—1) —kn—1—a
= exp| —(—2xij—1 + kn, +2b )(D( - - o )
’;[XP(UZ( i—1 + kn +2b) P

Y Y —u(ti —ti=1) —kn +a
P o2 " o4/t —ti—1
o0
pkn—1 Xi—1 4+ plti —ti—1) —kp—1 — a)
+ exp| — )

Slen( o (A

w
- exp(——2(2xi_1 + kn — 2a))

o

—Xi—1 + pulti —ti-1) —kn +a
S e

5 This assumption is needed to apply the geometric series in equation (A.2). The case 1 < 0 can
be treated similarly if one substitutes n by —n + 1 in equation (A.1) and sets

0 o)

Z exp(—%(in_l —kn + Za)) — Z exp(lfjkzn)

n=—0oo n=1

exp(_zﬂ(b;;i—l)) 1

(_ ZM(b—;i—l))

= (_ 2u(a—x,'—1)) ’

exp pe

— exp

After resubstituting n by —n + 1 the same final result is obtained.
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Xi—1 — p(ti —ti—1) —kn—1 —a)

o0
_ o
—’;exp(az( 2xz—1+k,,+2b))d>( e

0
Z ( Mkn—l) (—xi—l —u(ti —ti—1) +kp—1 + a)
— exp| ——— O
Z o ot —ti—q

n=—oo
00
kn— —Xj—1 — u(ti —ti—1) + kn—1 +a
+ZCXP(—M n2 I)CI)(— i—1— i—1) n—1 )
1 o ot —ti—q

0
_ Z exp(%(—bci_l +kn + 2b))

n=—o00
_cb(_xi—l — plti —ti—1) —kn—1 —a)
O/t —li—1

= 1k : 0
= Z exp(— n_l) - Z eXp(p(—inq +kn + 2b))

n=—oQ

o0
+ > [exp((%(—bci_l + kn + 2b))

n=—o00
_cp(xi—l —uti —ti—1) —kn—1 —a)

oA/t —ti—1
pkn—1 —xj—1 — u(ti = ti—1) + kn—1 +a
— — ] A2
eXp( 02 ) ( o/ti —ti—1 (A-2)

exp(— 2u(b;2xi71)) 1

_ 2M(b;2Xi—1)) _ exp(— ZM(a;ZXi—l))

o0
+ > [eXp(o%(—zx,-_l ket 2b))

n=—o0
' cp(xi—l —uti —ti—1) —kp—1 — a)
oAt —1li—1

( Mkn—l) (—Xi—l —p(ti —tiz1) + kn—1 +a)]

—exp| — > o} ,
o o/ti —ti—q

where the last step is — for u > 0 — an application of the geometric power series.
Defining

- exp(

ap = xi—1+ (2n—2)b—(2n — Da,
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we finally obtain
[F’(l,'_l < T:i: < t,')
exp(_ Zu(b(:zxi—l)) _1

- exp(— ZM(b;ZxH)) _ exp(— 2u(a;2xi71))

el o) £ o 2 o)

ex 2oty o —otp — p(ti —ti—1)
P o2 O\/ti —ti— '

The latter sum is related to the cumulative distribution function of an inverse
Gaussian distribution

o — pulti —ti—1) 21 —o — [l — ti—1)
FOy=1—-|®| ——— ) —exp| 5« |D .
© ( ( Ot — i1 ) XP(02 o/ti —ti—q
Using that the inverse Gaussian probability distribution function is

(_ (o — (i — ti—l))z)’

202(t; —ti—1)

f) =

o
—exp
\/Znot%
we derive the first-passage time density as
P(t— At <TH <t + At
fE(t.xi—y) :=lim ( ab )
a At—0 2Nt

o te-s0) 55 ool )

n=—0oo

_ _t. 2
Oy €Xp (_ (%1205((;_1?:]1))) )

V2mo(t — ti_l)%

oo )
exp ;(a Xi—1) | exp 2

2

S ),
n=-—00 Vzng([_ti—l)%

_ w2t —ti—1) ula — xi—1)
= exp 53 exp —

. Xj—1—kn—1—>b ox (_ (xi—1 —kn—1 — b)z)
W 22 (t — 1) 202(t —ti—1)
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:exp(ﬂ(a ;2361' 1)) b)2 Z( 1Y sin (nn(xz 1b—b))

12 72n202
-exp(—(ﬁ + W) (r— li—l))» (A.3)

where the last step is an application of the Jacobi transformation formula (Lem-
ma A.1, see [28]) using

_xi-1—b nd 1% — o2(t — ;1)
"~ 2(a—b)  2(a-b)? "

Finally representation (a) for
ti
P(tioy < T)5 < 1) :[ [t xicy)dt
li—1

can be obtained by integration. Similarly the probabilities P(t;—1 < T, < ;) and
P(ti—1 < T,p < t;) can be derived.

The expression for the probability P(¢;—1 < T, < ;) is given in [8, p. 6331°
and in [12, p. 173]. The paper [8] uses an alternative approach by renewal-type
arguments, see Remark A.2 below.

Lemma A.1 (Jacobi transformation formula). For x € R, t* > 0, we find that

Z (x + 1/2—n) p(_(x + 1/2—n)2)

t*

}’l_ o0
= 4x Z(—l)"“n exp(—m2n?t*) sin(2nx). (A4)
n=1
Proof. Define the Jacobi theta function as originally in [28] (or [1, p.576] if one
substitutes ¢ = exp(mwit)):

o0

U3(z]7) = Z exp(imtn® + 2inz).

n=—00

Exploiting the identity by [28]

00 _ 2
P3(z|t) = exp(—%)ﬂg(i ) —l‘L’ Z exp( @)

6 Note that the expression in [8, p.633] contains two typos: 72 has to be replaced by 7 and
(=" by (=1
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using z = (x + 1/2)7 and t = it* 7, we obtain

o0

¥3(z|t) = Z exp(—m2t*n?) exp(2min(x + 1/2))

n=—oo

o
=142 Z(—l)” exp(—m2n?t*) cos(2mnx)

n=1
1 & X+ 1/2—n)?
_ > exp Gt 1/2-m7Y
Var* n=1 £
Equation (A.4) is a derivation of this equation with respect to x. o

Remark A.2. The Laplace transforms
~ I
fa}t@) = / f;g(t, xj—1)exp(At) dt
ti—1

of the first-passage time densities (denoted by f (¢, xi—1), [ (2, xi-1), and
Jfap(t, xi—1)) are much less complex than the 1nﬁn1te series presented in Theo-
rem 2.2. Using some renewal-type arguments, they were first derived in [8] as

. N u2+2020
X h(~¥~———=(b — xi-1)
£ ()t)—exp( pla xz—l))sm( o * 1)

o2 Sinh(@(b B a))
and
i W
R o ) o
fa_b(l) = —exp(ru“(b szz—l))sln ( “— i )

sinh(—"}“:zza (b — a))

From Laplace inversion tables, for example [38, p. 295], we obtain equation (A.3).
This concludes the proof of Theorem 2.2. |

Proof of Theorem 2.3. Adapting the idea in [15] and [36], we find that

gab(t Xi—1,Xj) = IP’( edt| By_, = xi1, B,lx,)
IP’(T;Z €dt,x;i €dx | By_, =xj_1)
P(x; €dx | By, = xi—1)
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_P(T edt | By =xi—1)-P(xj edx |t =T}, B, | =xi—1)
B P(x; € dx | By_, = xi—1)

_ P(Ty, €dt| By, =xi—1)-P(xj €dx |t =T, B =a)
B P(xi €dx | By_, = xi—l)

= [ xic) - o(xiza + p(t — 1), 0/i = 1)
@(xisxio1 4+ p(ti —tic1), 0/t —1i—1)

o’ (=1)"n w? 7%n?%c?
Z a3+ 3 e )eo)

. Sm(ﬂ"(b — xi—l)) ox (M(a - xi—l))
a—b P 02

1 exp (_ (xi—a—M(li—t))z)

S2n(ti—t)o 202(t;—t)
1 _ =X (=t 1))?
V2n(ti—ti—1)o exp( 202(t;i—ti—1) )

2 2.2 — oy
b)2 Z( 1)"nexp( 2(a . 2)2( ti—l)) Sin(—nn(z_zl_l))

, mexp(_ i e 0=

1 —1 02

Cex ((xi —xio1 = p(ti —ti-1))* (i —a—plti — I))Z)
P 202(t; — ti—1) 202(t; — 1)

o’ i —li—1 o ( (xi — xi—1)? CY —a)? )

T a—b2 i1 202(ti —tic1)  202(ti —1)
Z( 1)"neXP( 2a nZZ)Zz( —ti—l)) Sin(%),

where ¢(x; i, o) denotes the density function of a normal distribution with mean
w and variance o2, By symmetry, the expression for

P(Ta_b e€dt|By,_, =xi—1, By, = x,-) =: g p(t. Xi—1,X;)
is obtained. m
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