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Abstract

We adapt and study a variance reduction approach for the homog-
enization of elliptic equations in divergence form. The approach, bor-
rowed from atomistic simulations and solid-state science [23, 24, 25],
consists in selecting random realizations that best satisfy some statisti-
cal properties (such as the volume fraction of each phase in a composite
material) usually only obtained asymptotically.

We study the approach theoretically in some simplified settings
(one-dimensional setting, perturbative setting in higher dimensions),
and numerically demonstrate its efficiency in more general cases.

1 Introduction

1.1 Overview

In this article, we adapt, theoretically study and numerically test a
specific variance reduction approach for the numerical homogenization
of an elliptic equation with heterogeneous random coefficients.

The equation we consider is the following scalar elliptic equation
in divergence form

− div
(
A
( ·
ε
, ω
)
∇uε(·, ω)

)
= f in D, uε(·, ω) = 0 on ∂D, (1)
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set on a bounded regular domain D in R
d (for some d ≥ 1), with a

deterministic function f ∈ H−1(D) in the right-hand side. The field
A is a fixed matrix-valued random field. It is assumed to be uniformly
elliptic, uniformly bounded and stationary in a discrete sense. All this
is made precise in Section 1.2. Since the parameter ε in (1) is assumed

small, the coefficient A
( ·
ε
, ω
)

is oscillatory and (1) is challenging to

solve numerically. On the other hand, the problem is theoretically well
understood, as is recalled below.

In the numerical practice, the traditional approach to approximate
the solution uε(·, ω) to (1) is to consider (for any p ∈ R

d), and solve,
the so-called corrector problem




− div [A(p +∇wp)] = 0 in R
d almost surely,

ˆ

Q
E(∇wp) = 0, ∇wp is stationary in the sense of (5) below,

(2)
associated to (1). The solution to (2) gives the deterministic and
constant coefficient A⋆ of the homogenized equation that in turn serves
for the approximation of (1). We refer to Section 1.2 below for details.

Since (2) is a problem set on the entire space R
d, it is necessary to

truncate it on a bounded domain, and to complement it with appro-
priate boundary conditions. In practice, it is standard to consider the
problem

−div
(
A(·, ω)

(
p+∇wN

p (·, ω)
) )

= 0, wN
p (·, ω) is QN -periodic, (3)

where, say, QN = (0, N)d. The deterministic homogenized matrix A⋆

is then approximated by the random variable A⋆
N (ω) defined by

∀p ∈ R
d, A⋆

N (ω) p =
1

|QN |

ˆ

QN

A(·, ω)(p +∇wN
p (·, ω)). (4)

This approximate homogenized coefficient A⋆
N (ω) is then evaluated

using the Monte-Carlo method. Random realizations of the environ-
ment, namely the matrix coefficient A(y, ω), are considered within the
truncated domain QN . For each of these environments, (3) is solved
and the matrix A⋆

N (ω) is computed using (4). The homogenized coeffi-
cient A⋆ is eventually approximated as an empirical mean over several
realizations of A⋆

N (ω). More details are given below in Section 1.3.

The purpose of this article is to reduce the variance of the approx-
imation of A⋆.
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For this purpose, we borrow a variance reduction approach orig-
inally introduced in a completely different context, namely that of
atomistic simulations for microscopic solid state science. In the se-
ries of articles [23, 24, 25], an approach is indeed described that se-
lects some particular random realizations of the environment, based on
some selection criteria derived from asymptotic properties. Intuitively,
the approach aims at considering only realizations that, for N fixed,
already satisfy properties that are usually only obtained in the asymp-
totic limit N → ∞. The approach carries the name SQS, abbreviation
of Special Quasirandom Structures. Its principles share some similarity
with those underlying another classical variance reduction technique,
namely stratified sampling.

We aim at adapting this approach to our context, at studying it
theoretically in some simple situations, and testing it numerically in
more general situations.

For the sake of completeness, we mention that we have already
studied the theoretical properties and the practical performance of sev-
eral variance reduction methods for numerical random homogenization
in some previous works of ours. The classical approach of antithetic
variables, an approach that is quite generic and does not require nor
exploit knowledge of the specific structure of the random problem at
hand, has been considered in [4, 5, 9, 18]. The significantly more elab-
orate (and thus more efficient) approach of control variates is the sub-
ject of [17]. That approach requires a better knowledge of the problem
considered, and is not always amenable to fully generic situations.

Our article is articulated as follows.

In the remainder of this introductory section, we present the basics
of the theoretical setting (in Section 1.2) and of the numerical approx-
imation method (in Section 1.3) for the homogenization of the random
equation (1).

In Section 2, we introduce the variance reduction approach we con-
sider. For pedagogic purposes, we first briefly expose the approach in
the context of solid state physics it has originally been introduced in.
This is the purpose of Section 2.1. In Section 2.2, we formally derive
the specifics of our variance reduction approach using a perturbative
setting. This formal derivation provides the motivation for the gen-
eral so-called SQS conditions that we use in the sequel of the work.
Section 2.3 presents how we compute these conditions in practice. Sec-
tion 2.4 contains the pseudo-code of our approach, along with some

3



comments.
The theoretical analysis of the approach is the purpose of Section 3.

We begin by proving, in a fairly general situation (in any ambient
dimension), that the approximation provided by our approach (at least
the simplest variant of our approach) converges to the homogenized
coefficient A⋆ when the truncated domain converges to the whole space
(see Theorem 8 in Section 3.1). Next, in Section 3.2, we investigate
more thoroughly the one-dimensional setting, where we can indeed
completely analyze our approach and actually prove its efficiency.

Our final Section 4 contains numerical tests. First, since it is of-
ten necessary to enforce the desired conditions up to some tolerance
(see Remark 3 below), we investigate in Section 4.1 how this toler-
ance affects the quality of the approximation and the efficiency of the
approach. We observe there that the approach is robust in this respect.

In Section 4.2, we illustrate on a prototypical situation the effi-
ciency of our approach and scrutinize its sensitivity and the various
sources of error involved. The conclusions are the following. The sys-
tematic error is kept approximately constant by the approach (it might
even be reduced), while the variance is reduced by several orders of
magnitude. The more conditions we impose on the microstructures,
the smaller the variance. The total error is always reduced. Such an
efficiency is achieved at almost no additional cost with respect to the
classical Monte Carlo algorithm.

In order to demonstrate the versatility of the approach, we ap-
ply it in Section 4.3 to a case with a way more general geometry of
microstructures. There again, the approach provides a significant re-
duction of the variance.

We conclude this overview by emphasizing that, although the ap-
proach introduced in this article is applied to the simple linear elliptic
equation (1), there is no reason to believe that it cannot be applied for
a large class of partial differential equations with random coefficients.
Indeed, the principles of the approach do not depend upon the specific
form of the equation.

1.2 Theoretical setting

To begin with, we introduce the basic setting of stochastic homoge-
nization. We refer to the seminal works [15, 21], to [11] for a general,
numerically oriented presentation and to [2, 7, 14] for classical text-
books. We also refer to [16] and the review article [1] (and the extensive
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bibliography therein) for a presentation of our particular setting.
Throughout this article, (Ω,F ,P) is a probability space and we de-

note by E(X) =

ˆ

Ω
X(ω)dP(ω) the expectation of any random variable

X ∈ L1(Ω, dP). We next fix d ∈ N
⋆ (the ambient physical dimension),

and assume that the group (Zd,+) acts on Ω. We denote by (τk)k∈Zd

this action, and assume that it preserves the measure P, that is, for
all k ∈ Z

d and all E ∈ F , P(τkE) = P(E). We assume that the action
τ is ergodic, that is, if E ∈ F is such that τkE = E for any k ∈ Z

d,
then P(E) = 0 or 1. In addition, we define the following notion of
stationarity (see [16]): a function F ∈ L1

loc

(
R
d, L1(Ω)

)
is stationary if

∀k ∈ Z
d, F (x+ k, ω) = F (x, τkω) a.e. in x and a.s. (5)

In this setting, the ergodic theorem [22] can be stated as follows:
Let F ∈ L∞ (

R
d, L1(Ω)

)
be a stationary random variable in the

above sense. For k = (k1, k2, . . . , kd) ∈ Z
d, we set |k|∞ = max

1≤i≤d
|ki|.

Then

1

(2N + 1)d

∑

|k|∞≤N

F (x, τkω) −→
N→∞

E (F (x, ·)) in L∞(Rd), almost surely.

This implies (denoting by Q = (0, 1)d the unit cube in R
d) that

F
(x
ε
, ω
)

⋆−⇀
ε→0

E

(
ˆ

Q
F (x, ·)dx

)
in L∞(Rd), almost surely.

Besides technicalities, the purpose of the above setting is simply
to formalize that, even though realizations may vary, the function F
at point x ∈ R

d and the function F at point x + k, k ∈ Z
d, share

the same law. In the homogenization context, this means that the
local, microscopic environment (encoded in the matrix field A in (1)) is
everywhere the same on average. From this, homogenized, macroscopic
properties follow.

We consider problem (1), which we recall here for convenience:

− div
(
A
( ·
ε
, ω
)
∇uε(·, ω)

)
= f in D, uε(·, ω) = 0 on ∂D.

The random matrix A is assumed stationary in the sense of (5). We
also assume that A is bounded and coercive, that is, there exist two
scalars 0 < c ≤ C < ∞ such that, almost surely,

‖A(·, ω)‖L∞(Rd) ≤ C and ∀ξ ∈ R
d, ξTA(x, ω)ξ ≥ c ξT ξ a.e.
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In this specific setting, the solution uε(·, ω) to (1) almost surely con-
verges (when ε goes to 0) to the solution u⋆ to the homogenized prob-
lem

− div (A⋆∇u⋆) = f in D, u⋆ = 0 on ∂D. (6)

The convergence of uε(·, ω) to u⋆ holds weakly in H1(D) and strongly
in L2(D).

The homogenized matrix A⋆ in (6) is deterministic, and given by
an expectation of an integral involving the so-called corrector function,
that solves a random auxiliary problem set on the entire space. It is
given by

∀p ∈ R
d, A⋆ p = E

[
ˆ

Q
A(x, ·) (p+∇wp(x, ·)) dx

]
, (7)

where we recall that Q = (0, 1)d and where, for any vector p ∈ R
d, the

corrector wp is the unique solution (up to the addition of a random
constant) in L2(Ω;L2

loc(R
d)) with gradient in L2(Ω;L2

unif(R
d))d of the

corrector problem (2). We have used the notation L2
unif(R

d) for the
uniform L2 space, that is the space of functions for which, say, the L2

norm on a ball of unit size is bounded from above independently of
the center of the ball.

1.3 Numerical approximation of the homoge-

nized matrix

As briefly mentioned above, the corrector problem (2) is set on the
entire space R

d, and is therefore challenging to solve. Approximations
are in order. In practice, the deterministic matrix A⋆ is approximated
by the random matrix A⋆

N (ω) defined by (4), which is obtained by
solving the corrector problem (3) on a truncated domain, say the cube
QN = (0, N)d. Although A⋆ itself is a deterministic object, its prac-
tical approximation A⋆

N is random. It is only in the limit of infinitely
large domains QN that the deterministic value is attained. As shown
in [6], we indeed have

lim
N→∞

A⋆
N (ω) = A⋆ almost surely. (8)

As usual, the error A⋆ −A⋆
N (ω) may be expanded as

A⋆ −A⋆
N (ω) =

(
A⋆ − E [A⋆

N ]
)
+
(
E [A⋆

N ]−A⋆
N (ω)

)
, (9)
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that is the sum of a systematic error and of a statistical error (the first
and second terms in the above right-hand side, respectively).

A standard technique to compute an approximation of E [A⋆
N ] is

to consider M independent and identically distributed realizations of
the field A, solve for each of them the corrector problem (3) (thereby
obtaining i.i.d. realizations A⋆,m

N (ω), for 1 ≤ m ≤ M) and compute
the Monte Carlo approximation

E

[
(A⋆

N )ij

]
≈ IMC

M (ω) :=
1

M

M∑

m=1

(
A⋆,m

N (ω)
)
ij

(10)

for any 1 ≤ i, j ≤ d. In view of the Central Limit Theorem, we know

that E

[
(A⋆

N )ij

]
asymptotically lies within the confidence interval


I

MC
M − 1.96

√
Var

[(
A⋆

N

)
ij

]

√
M

, IMC
M + 1.96

√
Var

[(
A⋆

N

)
ij

]

√
M




with a probability equal to 95 %.
For simplicity, and because this is overwhelmingly the case in the

numerical practice, we have considered in (3) periodic boundary con-
ditions. These are the conditions we adopt throughout our study. It
is to be remarked, however, that other boundary conditions may be
employed. Likewise, other slightly modified forms of equation (3) may
be considered. The specific choice of approximation technique is mo-
tivated by considerations about the decrease of the systematic error
in (9). Several recent mathematical studies have clarified this issue.
In addition, in the particular case of periodic boundary conditions (3),
it has been recently established in [12, Theorem 2] that the statistical
error in (9) decays like N−d/2 while the systematic error in (9) scales
as N−d(logN)d. Both estimates have been established for the discrete
variant of the problem. A similar decay of the statistical error has also
been established for the continuous case we consider in the present
article (see [13, Theorem 1] and [20, Theorem 1.3 and Proposition
1.4]).
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2 Variance reduction approach

2.1 Original formulation of the SQS approach

The variance reduction approach we elaborate upon in this article has
been originally introduced for a slightly different purpose in atomistic
solid-state science [23, 24, 25].

In order to convey to the reader the intuition of the original ap-
proach, we consider here a simple one-dimensional setting, which nev-
ertheless illustrates the difficulties of a generic problem. We consider a
linear chain of atomistic sites of two species A and B which interact by
the interaction potentials VAA, VAB and VBB with obvious notation.
For simplicity we consider only nearest neighbour interaction. The
atomic sites are occupied by a single species randomly chosen between
A and B. A typical random configuration of the “material” therefore
reads as an infinite sequence of the type · · ·ABBAAABBAAAA · · ·

In order to compute the energy per unit particle of that atomistic
system, one has to consider all possible such infinite sequences, and
for each of them its normalized energy

lim
N→∞

1

2N + 1

N∑

i=−N

VXi+1Xi
, (11)

where Xi denotes the species present at the i-th site for that particular
configuration (Xi ≡ A or B). The “energy” of the system is then de-
fined as the expectation of (11) over all possible configurations. Other
quantities than (11) may be considered, or may be simultaneously
considered.

In practice, one considers a presumably extremely large, finite N ,
truncates the infinite sequence over the finite length 2N +1, and com-
pute

1

2N + 1

N∑

i=−N

VXi+1Xi

for many (say M , where M is also presumably large) configurations.
The approach introduced in [23, 24, 25] consists in selecting spe-

cific configurations (Xi)−N≤i≤N of atomic sites that satisfy statistical
properties usually obtained only in the limit of infinitely large N .

The first such statistical property is the volume fraction, namely
the proportion of species (A,B) present on average. If the sites are
all occupied randomly with probability 1/2 of A and 1/2 of B (and
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assuming that all these random variables are independent), then obvi-
ously the volume fraction of A is 1/2 and so is that of B. Then, one
only consider truncated sequences (Xi)−N≤i≤N that exactly reproduce
that volume fraction.

Similarly, again for such an evenly distributed proportion of A and
B, the energy of the entire infinite system evidently reads as

E =
1

4
[VAA + 2VAB + VBB ]

(recall that we only consider nearest-neighbour interactions). Thus,
one only considers truncated sequences (Xi)−N≤i≤N which, in addi-
tion to exhibiting the exact volume fraction, have an average energy

1

2N + 1

N∑

i=−N

VXi+1Xi
which is equal to E . And so on and so forth for

other quantities of interest.

Mathematically, this selection of suitable configurations among all
the possible configurations classically considered in a Monte-Carlo
sample amounts to replacing the computation of an expectation by
that of a conditional expectation.

The simplistic model we have just considered for pedagogic pur-
poses can of course be replaced by more elaborate models, with more
sophisticated quantities to compute, and more demanding statistical
quantities to condition the computations with. The bottom line of
the approach remains the same, and we adapt it to design a variance
reduction approach for numerical random homogenization.

In the next section, we derive the appropriate conditions, which we
call the SQS conditions, for our specific context.

2.2 Formal derivation of the SQS conditions us-

ing a perturbative setting

The purpose of this Section is to formally derive the SQS conditions
that we use in the sequel. Such conditions can be easily intuitively
understood. We however believe it is interesting to (formally) derive
them in a particular case. The case we proceed with is a perturbative
setting (although, we emphasize it, the conditions will be employed in
the full general, not necessarily perturbative, setting).

We assume throughout this section that the matrix valued coeffi-
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cient A in (1) reads as

Aη(x, ω) = C0(x, ω) + η χ(x, ω)C1(x, ω) (12)

for some presumably small scalar coefficient η, where

• C0 and C1 are two stationary, uniformly bounded matrix fields,

• C0(·, ω)−C1(·, ω) and C0(·, ω) +C1(·, ω) are almost surely coer-
cive,

• χ is a stationary scalar field with values in [−1, 1].

Under these assumptions, for any η ∈ (−1, 1), the matrix Aη is sta-
tionary, bounded and coercive. Intuitively, when η is small, Aη is a
perturbation of the matrix-valued field C0(x, ω).

Remark 1. The expression (12) models e.g. a two-phase composite
material, where the phases are modelled by the coefficients C0 and C1,
while χ is the indicator function of the first phase.

Let p ∈ R
d. The corrector problem (2) reads, in this particular

setting, as





− div
[
(C0 + ηχC1)(p+∇wη)

]
= 0 in R

d,

E

ˆ

Q
∇wη = 0, ∇wη is stationary in the sense of (5),

(13)

and the homogenized matrix (7) is given by

∀p ∈ R
d, A⋆

η p = E

ˆ

Q
Aη(p+∇wη). (14)

Note that, for the sake of clarity, we omit to write the dependency of
wη with respect to p.

The truncated version of (13) on the domain QN is

{
− div

[
(C0 + ηχC1)(p +∇wN

η )
]
= 0 in QN ,

wN
η (·, ω) is QN -periodic,

(15)

and we approach the homogenized matrix (14) by

∀p ∈ R
d, A⋆,N

η (ω) p =
1

|QN |

ˆ

QN

Aη(·, ω)
(
p+∇wN

η (·, ω)
)
. (16)
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2.2.1 Expansion in powers of η

As η goes to 0, we may now expand A⋆,N
η (ω) and A⋆

η in powers of η.
This expansion is classical (see for instance [5, 8]). We only provide it
here for the sake of consistency. The corrector expands as

∇wη = ∇w0 + η∇u1 + η2∇u2 + o(η2). (17)

This expansion holds in L2(Ω;L2
unif(R

d)). The functions w0, u1 and
u2 appearing in the expansion are respectively defined by the following
systems of equations:





− div [C0(p+∇w0)] = 0 in R
d,

E

ˆ

Q
∇w0 = 0, ∇w0 is stationary,

(18)





− div [C0∇u1] = div [χC1(p+∇w0)] in R
d,

E

ˆ

Q
∇u1 = 0, ∇u1 is stationary,

(19)

and 



− div [C0∇u2] = div [χC1∇u1] in R
d,

E

ˆ

Q
∇u2 = 0, ∇u2 is stationary.

Inserting the expansion (12) of Aη and (17) of wη in (14), we obtain

A⋆
η = A⋆

0 + ηA⋆
1 + η2A⋆

2 + o(η2), (20)

with, for any p ∈ R
d,

A⋆
0 p = E

[
ˆ

Q
C0(p+∇w0)

]
,

A⋆
1 p = E

[
ˆ

Q
χC1(p+∇w0)

]
+ E

[
ˆ

Q
C0∇u1

]
, (21)

A⋆
2 p = E

[
ˆ

Q
χC1∇u1

]
+ E

[
ˆ

Q
C0∇u2

]
.

Likewise, we expand wN
η as

∇wN
η = ∇wN

0 + η∇uN1 + η2∇uN2 + o(η2),

with {
− div

[
C0(p+∇wN

0 )
]
= 0 in QN ,

wN
0 (·, ω) is QN -periodic,

(22)

11



{
− div

[
C0∇uN1

]
= div

[
χC1(p+∇wN

0 )
]

in QN ,

uN1 (·, ω) is QN -periodic,
(23)

and {
− div

[
C0∇uN2

]
= div

[
χC1∇uN1

]
in QN ,

uN2 (·, ω) is QN -periodic.

The homogenized matrix A⋆,N
η (ω) therefore satisfies

∣∣∣A⋆,N
η (ω)−

[
A⋆,N

0 (ω) + ηA⋆,N
1 (ω) + η2A⋆,N

2 (ω)
]∣∣∣ ≤ Cη3, (24)

where C is independent of η, N and ω, and where the matrices A⋆,N
0 (ω),

A⋆,N
1 (ω) and A⋆,N

2 (ω) are defined by

A⋆,N
0 (ω) p =

1

|QN |

ˆ

QN

C0(p +∇wN
0 ),

A⋆,N
1 (ω) p =

1

|QN |

ˆ

QN

χC1(p+∇wN
0 ) +

1

|QN |

ˆ

QN

C0∇uN1 ,(25)

A⋆,N
2 (ω) p =

1

|QN |

ˆ

QN

χC1∇uN1 +
1

|QN |

ˆ

QN

C0∇uN2 .

2.2.2 SQS conditions

In line with the motivation we have mentioned above in Section 1.3,
we are now in position to introduce the conditions that we use to select
particular configurations of the environment within QN for which we
compute the solution to (15), and, in turn, compute the approxima-
tion (16) of A⋆

η. Our conditions are based upon the comparison of (21)
and (25).

Definition 2. For finite fixed N , we say that an environment ω ∈ Ω
satisfies the SQS condition of

• order 0 if A⋆,N
0 (ω) = A⋆

0, that is to say, for any p ∈ R
d,

1

|QN |

ˆ

QN

C0(·, ω)(p+∇wN
0 (·, ω)) = E

[
ˆ

Q
C0(p +∇w0)

]
, (26)

• order 1 if A⋆,N
1 (ω) = A⋆

1, that is to say, for any p ∈ R
d,

1

|QN |

ˆ

QN

[
χ(·, ω)C1(·, ω)(p+∇wN

0 (·, ω))+C0(·, ω)∇uN1 (·, ω)
]

= E

[
ˆ

Q
χC1(p+∇w0) + C0∇u1

]
, (27)
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• order 2 if A⋆,N
2 (ω) = A⋆

2, that is to say, for any p ∈ R
d,

1

|QN |

ˆ

QN

[
χ(·, ω)C1(·, ω)∇uN1 (·, ω) + C0(·, ω)∇uN2 (·, ω)

]

= E

[
ˆ

Q
χC1∇u1 + C0∇u2

]
. (28)

Remark 3. In full generality, we do not claim that there exist envi-
ronments that satisfy these conditions. This might be the case that no
such environment exists. One may for instance simply remark that a
random variable that takes value −1 and +1 both with probability 1/2
never has value zero, which is its expectation! In some situations, we
therefore have to relax the above conditions (see Section 2.4 below), but
we temporarily leave these technicalities aside and assume that suitable
environments exist.

Consider now the two expansions (20) and (24). It is immediate to
see, by subtraction, that

A⋆,N
η (ω)−A⋆

η = (A⋆,N
0 (ω)−A⋆

0)+η(A⋆,N
1 (ω)−A⋆

1)+η2(A⋆,N
2 (ω)−A⋆

2)+o(η2).

Therefore it is readily seen that, if the configuration ω satisfies the SQS
conditions of Definition 2 up to the order k included (k = 0, 1, 2 in
our definition, but clearly one could consider higher order conditions
derived likewise), then

A⋆,N
η (ω)−A⋆

η = o(ηk), (29)

where the constant in the right-hand side is independent of η, N and
ω. Taking the expectation over such configurations therefore formally
provides a more accurate approximation of A⋆

η.

Now that we have derived the conditions (26)–(27)–(28) (which we
henceforth call the SQS conditions) in the perturbative setting, we will
actually use them in the non perturbative setting, namely for a simi-
lar two-phase composite material, but with η not small. Of course, a
property such as (29) cannot be expected any longer since the homoge-
nized matrix A⋆ is no longer a series in a small coefficient that encodes
a perturbation. Nevertheless, it can be expected that selecting the
configurations using these conditions may improve the approximation,
in particular by reducing the variance. We show in Sections 3 and 4
that it is indeed the case, theoretically and experimentally.
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For the time being, we need to make a practical observation. The
right-hand side of conditions (26)–(27)–(28) need to be evaluated in
order to practically encode the SQS conditions. In principle, those
right-hand sides are exact expectations, that can only be determined
using an asymptotic limit, and are therefore as challenging to compute
in practice as A⋆ itself.

We therefore need to restrict the generality of our setting (12) and
consider cases where those right-hand sides are indeed amenable to
a simple, inexpensive computation. This is the purpose of the next
section.

2.3 Practical evaluation of the SQS conditions

In order to make our approach practical, we need, as mentioned above,
to consider settings where the expectations present in the right-hand
sides of (26)–(27)–(28) may be computed effectively.

2.3.1 Condition of order 0

We first consider (26) and its right-hand side

E

[
ˆ

Q
C0(x, ·)(p +∇w0(x, ·))dx

]
. (30)

A natural assumption, which already covers a large portion of practi-
cally relevant situations, is

C0(x, ω) = C0(x) is a deterministic, Zd-periodic matrix. (31)

The computation of (30) is then inexpensive since the solution w0

to (18) is in fact the deterministic solution to

− div [C0(p+∇w0)] = 0 in R
d, w0 is Z

d-periodic,

which is unique up to the addition of a constant.
In addition, when N is an integer (and when the approximation

chosen for (2) is the periodic approximation (3), as is indeed the case
throughout this work), the solution to (22) is wN

0 ≡ w0 (up to an addi-
tive constant), and hence the condition (26) is systematically satisfied.

We henceforth assume that (31) holds, that N is an integer, and
that we proceed with the periodic approximation (3).

14



2.3.2 Condition of order 1

We next consider the SQS condition (27). One possible assumption to
make that condition practical is

C0(x, ω) = C0 is a deterministic, constant matrix. (32)

Since ∇w0 = 0, the right-hand side of (27) reads

E

[
ˆ

Q
χC1(p+∇w0) + C0∇u1

]
=

ˆ

Q
E [χC1] p+ C0E

ˆ

Q
∇u1,

where the rightmost term vanishes in view of (19) and where the first
term of the right-hand side may be computed using only characteristic
properties of the environment considered. The condition (27) thus
reads

1

|QN |

ˆ

QN

χ(·, ω)C1(·, ω) = E

[
ˆ

Q
χC1

]
. (33)

For instance, in a two-phase composite material mixing two con-
stant and deterministic matrices C0 and C1, we have

E

[
ˆ

Q
χC1

]
= E

[
ˆ

Q
χ

]
C1.

This quantity obviously only depends on the volume fraction of the
two phases (recall (12)). Proceeding likewise with the left-hand side
of the condition (27), we see that this condition reads

1

|QN |

ˆ

QN

χ(x, ω)dx = E

[
ˆ

Q
χ

]
.

Interestingly (and not unexpectedly), we notice here that this con-
dition on the volume fraction agrees with the condition we used to
consider in the simple atomistic system of Section 2.1.

2.3.3 Condition of order 2

We next proceed with condition (28). In addition to (32), we assume
that

C1(x, ω) = C1(x) is a deterministic, Zd-periodic matrix, (34)

and that
χ(y, ω) =

∑

k∈Zd

Xk(ω)1Q+k(y), (35)
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where Xk are identically distributed scalar random variables taking
their values in [−1, 1]. We also assume that

C =
∑

k∈Zd

|Cov(X0,Xk)| < ∞, (36)

which is obviously satisfied if Xk are independent one from each other.

We then have the following result, which will be useful to make
condition (28) practical. Its proof is postponed until Appendix A.

Lemma 4. Under the assumptions (32), (34), (35) and (36), the so-
lution u1 to (19) satisfies

∇u1(y, ω) = E[X0]∇u1(y) +
∑

k∈Zd

(
Xk(ω)− E[Xk]

)
∇φ1(y − k), (37)

where φ1 is the (unique up to the addition of a constant) solution in
{v ∈ L2

loc(R
d), ∇v ∈ (L2(Rd))d} to

− div [C0∇φ1] = div [1QC1p] in R
d (38)

and u1 is the (unique up to the addition of a constant) solution to

− div [C0∇u1] = div
[
C1p

]
in R

d, u1 is Z
d-periodic. (39)

The sum in (37) is a convergent series in L2(Q× Ω).

Using simpler arguments, we see that the solution uN1 to (23) sat-
isfies

∇uN1 (y, ω) = E[X0]∇u1(y) +
∑

k∈Zd∩QN

(
Xk(ω)− E[Xk]

)
∇φN

1 (y − k),

(40)
where u1 is defined by (39) and φN

1 is the (unique up to the addition
of a constant) solution to

− div
[
C0∇φN

1

]
= div [1QC1p] in QN , φN

1 is QN -periodic. (41)

In practice, we can easily obtain an accurate approximation of
φ1 since the right-hand side of (38) has compact support. Truncat-
ing (38) over a sufficiently large bounded domain (with homogeneous
Dirichlet boundary conditions) provides such an accurate approxi-
mation. Given (32), the right-hand side of Condition (28) rewrites
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E

[
ˆ

Q
χC1∇u1

]
since E

[
ˆ

Q
∇u2

]
= 0. In view of (37), this quantity

is in turn expanded as

E

[
ˆ

Q
χC1∇u1

]

= (E[X0])
2

ˆ

Q
C1∇u1 +

∑

k∈Zd

E

[
ˆ

Q
X0

(
Xk − E[Xk]

)
C1∇φ1(· − k)

]

= (E[X0])
2

ˆ

Q
C1∇u1

+
∑

k∈Zd

E

[
ˆ

Q

(
X0 − E[X0]

)(
Xk − E[Xk]

)
C1∇φ1(· − k)

]
, (42)

where, as mentioned above, ∇φ1 can be easily and accurately com-
puted, while the series in k ∈ Z

d may be truncated in an efficient
manner because of the rapid decay at infinity of ∇φ1 (see [5, Lemma
3.1]).

We correspondingly expand the left-hand side of (28). The second
term vanishes, while the first term reads, in view of (40),

1

|QN |

ˆ

QN

χ(y, ω)C1(y)∇uN1 (y, ω) dy

=
∑

j∈Zd∩QN

1

|QN |

ˆ

QN

Xj(ω)1Q+jC1E[X0]∇u1

+
∑

k,j∈Zd∩QN

1

|QN |

ˆ

QN

Xj(ω)1Q+jC1

(
Xk(ω)− E[Xk]

)
∇φN

1 (· − k)

= (E[X0])
2

ˆ

Q
C1∇u1

+ E[X0]


 1

|QN |
∑

j∈Zd∩QN

(
Xj(ω)− E[Xj]

)


ˆ

Q
C1∇u1

+ E[X0]
∑

k∈Zd∩QN

1

|QN |

ˆ

QN

C1

(
Xk(ω)− E[Xk]

)
∇φN

1 (· − k)

+
∑

k,j∈Zd∩QN

1

|QN |

ˆ

Q+j

(
Xj(ω)− E[Xj ]

)
C1

(
Xk(ω)− E[Xk]

)
∇φN

1 (· − k).

(43)
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In this particular (however still very generic) setting, we infer from (42)
and (43) that Condition (28) reads as

1

|QN |
∑

k,j∈QN∩Zd

(
Xk(ω)− E[Xk]

)(
Xj(ω)− E[Xj ]

)
INk,j

+
1

|QN |E[X0]
∑

k∈QN∩Zd

(
Xk(ω)− E[Xk]

)
INk =

∑

k∈Zd

Cov(X0,Xk)I
∞
k ,

(44)

where

I∞k =

ˆ

Q+k
C1(y)∇φ1(y), (45)

INk,j =

ˆ

Q+j
C1(y)∇φN

1 (y − k)dy, (46)

INk =

ˆ

QN

C1(y)∇φN
1 (y − k)dy +

ˆ

Q
C1(y)∇u1(y)dy. (47)

2.3.4 Summary

In the prototypical case where

A(x, ω) = C0 + χ(x, ω)C1(x),

where C0 is constant, C1 is Zd periodic and χ takes the form (35) (and
where we consider the periodic approximation (3) of (2)), we have
that:

• The condition (26) (SQS condition of order 0) is systematically
fulfilled.

• In view of (33) and (35), the condition (27) (SQS condition of
order 1) rewrites as

1

|QN |
∑

k∈Zd∩QN

Xk(ω) = E [X0] . (48)

• In view of (44), the condition (28) (SQS condition of order 2)
writes as

1

|QN |
∑

k,j∈QN∩Zd

Xk(ω)Xj(ω)I
N
k,j

+
1

|QN |E[X0]
∑

k∈QN∩Zd

Xk(ω)I
N
k =

∑

k∈Zd

Cov(X0,Xk)I
∞
k , (49)
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where Xk(ω) = Xk(ω)− E[Xk].

The conditions (48) and (49) are henceforth called the SQS 1 and
SQS 2 conditions, respectively.

Remark 5. If (48) is satisfied, then the coefficient INk in (49) can be
replaced by

I
N
k =

ˆ

QN

C1(y)∇φN
1 (y − k)dy

and there is no need to compute u1.

2.4 Selection Monte Carlo sampling

We are now in position to describe the selection Monte Carlo sampling
we employ. We recall that the classical Monte Carlo sampling reads
as follows:

Algorithm 1 (Classical Monte Carlo).
For m = 1, . . . ,M ,

1. Generate a random environment ωm.

2. Solve the truncated corrector problem (3).

3. Compute A⋆
N (ωm).

Compute the approximation IM
MC =

1

M

M∑

m=1

A⋆
N (ωm) of A⋆.

In contrast, our selection Monte Carlo sampling algorithm, in the
particular case described in Section 2.3.4, reads as follows:

Algorithm 2.
The algorithm requires a tolerance tol > 0, fixed by the user.

1. Offline stage

(a) Solve the equation (38).

(b) Compute (I∞k )k∈Zd defined by (45).

(c) Compute the right-hand side of the SQS conditions (48) and (49).

(d) Solve the equations (39) and (41).

(e) Compute (INk,j)k,j∈Zd∩QN
and (INk )k∈Zd∩QN

defined by (46)
and (47).

2. Online stage
For m = 1, . . . ,M ,
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(a) Generate a random environment ωm.

(b) Using INk,j and INk , compute the left-hand sides of (48) and (49).

(c) If the left-hand sides differ from the right-hand sides by more
than tol, return to Step 2a.

(d) Solve the truncated corrector problem (3).

(e) Compute A⋆
N (ωm).

Compute the approximation IM
SQS =

1

M

M∑

m=1

A⋆
N (ωm) of A⋆.

Remark 6. As pointed out above, the series in k ∈ Z
d in the right-

hand side of (49) may be truncated in an efficient manner because of
the rapid decay at infinity of ∇φ1. Therefore only a few factors I∞k
have to be computed at Step 1b.

Remark 7. When several SQS conditions (in practice SQS 1 and
SQS 2) have to be simultaneously satisfied, we simply add them up
using some weighting parameter. We have not observed any particular
sensitivity of our numerical results (collected in Section 4 below) with
respect to the adjustment of this parameter, provided it remains not too
close to 0 and 1.

We have already mentioned that, in many situations, there might
not be any random environments that satisfy some, or all, of the SQS
conditions (26)–(27)–(28) we wish to enforce. Therefore, some adapta-
tion is in order, and we have used in Algorithm 2 a tolerance parameter
tol > 0 for the SQS conditions to be satisfied.

However, if these conditions are enforced within some given toler-
ance as in Algorithm 2, the following issue arises. Since the motivation
for precisely considering the SQS conditions is that they are fulfilled
asymptotically, the larger the truncated computational domain we con-
sider (that is, the larger N), the less restrictive the conditions are, and
therefore the less effective the variance reduction is likely to be. To
circumvent this difficulty, a first possibility is to consider a tolerance
that decreases when the size of QN increases. We consider this vari-
ant in our theoretical study of Section 3.2.1 below (see formula (69)).
More precisely, we require in Proposition 14 that

the SQS condition is satisfied with the tolerance
λ√
|QN |
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for some λ. In practice, implementing such a threshold is not an easy
matter, as the rate and the constants need to be adequately adjusted.
In order to avoid such technicalities, we prefer to take a slightly differ-
ent perspective, the purpose of which is to always select a fixed propor-
tion of the original sample of the M environments drawn. Practically,
we pick the M configurations that best satisfy the SQS conditions
among the M configurations that have been drawn.

The practical algorithm we employ is therefore as follows:

Algorithm 3 (Selection Monte Carlo sampling).
The algorithm requires a number of trials M, fixed by the user.

1. Offline stage 1: same as the offline stage of Algorithm 2.

2. Offline stage 2: selection step
For m = 1, . . . ,M,

(a) Generate a random environment ωm.

(b) Using INk,j and INk , compute the left-hand sides of (48) and (49).

(c) Compute the error errorm between the left-hand sides and
the right-hand sides of (48) and (49).

Sort the random environments (ωm)1≤m≤M according to errorm.
Keep the M best realizations, and reject the others.

3. Online stage: resolution
For m = 1, . . . ,M ,

(a) Solve the truncated corrector problem (3).

(b) Compute A⋆
N (ωm).

Compute the approximation IM
SQS =

1

M

M∑

m=1

A⋆
N (ωm) of A⋆.

We wish to make a couple of comments about this selection Monte
Carlo approach.

In full generality, the cost of Monte Carlo approaches is usually
dominated by the cost of draws, and therefore selection algorithms are
targeted to reject as few draws as possible.

In the present context, where boundary value problems such as (3)
are to be solved repeatedly, the cost of draws for the environment
is negligible in front of the cost of the solution procedure for such
boundary value problems. Likewise, evaluating the quantities present
in e.g. (49) is not expensive. Therefore, the purpose of the selection
mechanism is to limit the number of boundary value problems to be
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solved, even though this comes at the (tiny) price of rejecting many
environments. This also explains why we employ a simplistic rejection
procedure for the selection, while in other situations of Monte Carlo
samplings, one would invest in a more clever selection procedure.

A second observation is that, as potentially for any selection pro-
cedure, our selection introduces a bias (i.e. a modification of the sys-
tematic error in (9)). The point is to ensure that the gain in variance
superseeds the bias introduced by the variance reduction approach.

Our next section addresses some theoretical aspects of our ap-
proach.

3 Elements of theoretical analysis

This section contains some elements of analysis that we are able to pro-
vide. We begin with a (somewhat) general result of convergence, and
next, in some simplified cases, study our approach more thoroughly.

3.1 Proof of convergence of the approach

Formally, our approach consists in replacing an empirical average pro-
vided by the classical Monte Carlo approach to compute E[A⋆

N ] by an
empirical average restricted to some environments within QN satisfy-
ing some additional condition(s) (see Section 2.4). We work at a fixed
size N of the truncation domain QN and recall that A⋆

N (ω) is defined
by (4). Mathematically, our approach amounts to considering condi-
tional expectations of the type E[A⋆

N | SQS], where SQS encodes that
one, or several, of the conditions summarized in (48)–(49) are satisfied.

The least we can expect from our approach is that it converges to
the correct limit when N → ∞, namely A⋆, as in (8).

The theorem we now state establishes this fact. In order to prove
it, we need to make some assumptions on our setting (see the details
below), and also to make specific the SQS conditions we use. In Theo-
rem 8 below, we specifically use the SQS 1 condition, in the form (48).

In order to state a result as general as possible, we therefore con-

sider a condition that reads
1

|QN |
∑

k∈Zd∩QN

f(Xk) = E[f(X0)] for some

function f . In practice, our specific SQS 1 condition (48) corresponds
to the choice f(x) = x.
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Theorem 8. Let (Xk)k∈Zd be a sequence of independent and identi-
cally distributed scalar random variables following a common law µ.
We assume that µ is absolutely continuous with respect to the Lebesgue
measure on R, and that, for any k ∈ Z

d, Xk(ω) ∈ [−1, 1] almost surely.
We consider the stationary random field

A(y, ω) = C0 +
∑

k∈Zd

Xk(ω)1Q+k(y)C1(y),

where C0 is constant and C1 is Z
d-periodic and bounded. We also

assume that C0 + C1(y) and C0 − C1(y) are uniformly coercive, and
that C0 and C1 are symmetric.

Let f : R 7→ R be a measurable function with compact level sets.
We assume that f is not constant. Then we have

E


A⋆

N

∣∣∣
1

|QN |
∑

k∈QN∩Zd

f(Xk) = E[f(X0)]


 −−−−→

N→∞
A⋆, (50)

where A⋆
N (ω) is defined by (4) and A⋆ is defined by (7).

Some remarks are in order.

Remark 9. As is the case throughout this article, we have considered
the periodic approximation (3) of (2). The proof of Theorem 8 actually
carries over to the case of Neumann or Dirichlet boundary conditions,
or any alternate truncation problem that provides some A⋆,N (ω) such
that A⋆,N

Neu(ω) ≤ A⋆,N (ω) ≤ A⋆,N
Dir (ω) (see additional details in [19,

Appendix]).

Remark 10. The assumptions regarding independence of the Xk, ab-
solute continuity of their common law with respect to the Lebesgue
measure and compactness of the level sets of f are necessary for tech-
nical reasons, since we need to apply a general result from [3]. See
below for details.

The proof of Theorem 8 is based on the following result, which is
a particular case of a more general result due to C. Bernardin and
S. Olla (see [3, Theorem B.2.2]):

Theorem 11 (C. Bernardin and S. Olla, [3]). Consider n scalar ran-
dom variables X1, . . . , Xn, that are independent and that all share
the same probability distribution µ(x) dx on R. Consider a measurable
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function f : R 7→ R, which is assumed to be not constant and to have

compact level sets. Let f0 = E[f(X1)] =

ˆ

R

f(x)µ(x) dx. Consider

also a bounded and continuous function F : Rk 7→ R. Then

lim
n→∞

E

[
F (X1, . . . ,Xk)

∣∣∣
1

n

n∑

i=1

f(Xi) = f0

]
= E [F (X1, . . . ,Xk)] .

(51)

Note that, when n → ∞, the quantity
1

n

n∑

i=1

f(Xi(ω)) almost surely

converges to f0. Theorem 11 shows that conditioning on the manifold

1

n

n∑

i=1

f(Xi(ω)) = f0 does not change the value (when n → ∞) of the

expectation of a function F of a finite number k of random variables.
Note that the condition that k is independent of n can be somewhat
relaxed. It is indeed shown in [10] that one can take k = o(n) in some
cases. It is also shown there that one cannot take k = n.

In our context, the variable Xi is the value of the field A on the
cell Q + i. The conditioning in the left-hand side of (51) is identical
to the conditioning in the left-hand side of (50).

The difference between Theorem 11 and our result lies in the quan-
tity of which we compute the expectation. In our case, this quantity
is A⋆

N (ω), which is (asymptotically when N → ∞) a function of all
the variables Xi and not only of a finite number of them. We hence
cannot directly use Theorem 11. The proof of our result essentially
amounts to introducing an upper bound and a lower bound on A⋆

N (ω)
that both read as a sum of functions that depend on a finite number
of random variables (see e.g. (54) below). We will then be in position
to apply Theorem 11 on these functions.

Proof of Theorem 8. We fix some p ∈ R
d. For the sake of clarity, the

approximate homogenized matrix A⋆
N (ω) defined by (4) is here denoted

A⋆,N
per (ω), to emphasize that we have considered periodic boundary con-

ditions. Since the matrix A is symmetric, we have

pTA⋆,N
per (ω)p = inf

{
JQN

(v, ω), v ∈ H1
per(QN )

}
,

where

JQN
(v, ω) =

1

|QN |

ˆ

QN

(p +∇v)TA(·, ω)(p +∇v).
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We have considered in (3) periodic boundary conditions. As is well-
known, other boundary conditions can be used, and these alternate
approximations will be useful for the proof.

Step 1: Upper bound. We first introduce an approximation of
A⋆ using a truncated corrector problem complemented with homoge-
neous Dirichlet boundary conditions. We consider the problem

{
− div

(
A(·, ω)

(
p+∇wN

p,Dir(·, ω)
) )

= 0 in QN ,

wN
p,Dir(·, ω) = 0 on ∂QN ,

which yields an approximation of A⋆ that we denote A⋆,N
Dir (ω) and which

is defined by

∀p ∈ R
d, A⋆,N

Dir (ω)p =
1

|QN |

ˆ

QN

A(·, ω)(p +∇wN
p,Dir(·, ω)).

As shown in [6], we know that

lim
N→∞

A⋆,N
Dir (ω) = A⋆ a.s. (52)

Since A is symmetric, we have

pTA⋆,N
Dir (ω)p = inf

{
JQN

(v, ω), v ∈ H1
0 (QN )

}
.

The matrix A⋆,N
Dir (ω) is always larger (in the sense of symmetric ma-

trices) than A⋆,N
per (ω). Indeed, let v ∈ H1

0 (QN ), and consider its QN -
periodic extension ṽ. Then this function belongs to H1

per(QN ). We
hence have that

pTA⋆,N
per (ω)p ≤ JQN

(ṽ, ω) = JQN
(v, ω).

Minimizing over v ∈ H1
0 (QN ), we get that

pTA⋆,N
per (ω)p ≤ pTA⋆,N

Dir (ω)p a.s. (53)

Just as A⋆,N
per (ω), the matrix A⋆,N

Dir (ω) depends on all the random vari-
ables Xi(ω), i ∈ QN ∩ Z

d. But, thanks to the use of homogeneous
Dirichlet boundary conditions, it can be bounded from above by a sum
of matrices that depend only on a finite number of random variables.
To show this, we proceed as follows.
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BN,R

j1R j1R +R

j2R

j2R +R

Rj +QR

Figure 1: The domain QN (here represented for N = 11) is split into domains
of size Rd (here R = 2; one of them is shown in red on the figure), up to
some boundary layer BN,R (shown in light gray).
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For any positive integers N and R, we introduce the integer part
M of N/R. Then QN can decomposed into a set of cubes of size Rd,
up to some boundary layer BN,R:

QN =
(
∪j∈Zd, |j|≤M R j +QR

)
∪BN,R.

For any j ∈ Z
d, |j| ≤ M , consider a function vj ∈ H1

0 (R j + QR).
We now define the function v on QN as:

• for any x ∈ R j +QR, we set v(x) = vj(x);

• if x ∈ BN,R, we set v(x) = 0.

The function v belongs to H1
0 (QN ). We hence write that

pTA⋆,N
Dir (ω)p ≤ JQN

(v, ω) =
|QR|
|QN |

∑

j∈Zd, |j|≤M

JRj+QR
(vj , ω).

Minimizing over the functions vj ∈ H1
0 (R j +QR), we hence get that

pTA⋆,N
Dir (ω)p ≤ |QR|

|QN |
∑

j∈Zd, |j|≤M

Yj(ω) a.s. (54)

where

Yj(ω) = inf
{
JRj+QR

(v, ω), v ∈ H1
0 (R j +QR)

}
.

Since A is stationary, we note that all the random variables Yj(ω)

share the same law. Moreover, we observe that Y0(ω) = pTA⋆,R
Dir(ω)p,

which is the approximation of the homogenized matrix using Dirichlet
boundary conditions on QR.

We now take the conditional expectation of (54), and use the fact
that the variables Yj all share the same law:

E


pTA⋆,N

Dir (ω)p
∣∣∣

1

|QN |
∑

k∈QN∩Zd

f(Xk) = E[f(X0)]




≤ RdMd

Nd
E


pTA⋆,R

Dir (ω)p
∣∣∣

1

|QN |
∑

k∈QN∩Zd

f(Xk) = E[f(X0)]


 .

We next observe that pTA⋆,R
Dir (ω)p only depends on a finite number of

random variables, namely only on Xk(ω) with k ∈ QR ∩ Z
d. We are
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thus in position to use Theorem 11, which yields the limit of the above
right-hand side when N → ∞. Hence, for any fixed R, we have

lim sup
N→∞

E


pTA⋆,N

Dir (ω)p
∣∣∣

1

|QN |
∑

k∈QN∩Zd

f(Xk) = E[f(X0)]




≤ E

[
pTA⋆,R

Dir (ω)p
]
.

Letting R go to ∞ in the above bound and using (52), we obtain that

lim sup
N→∞

E


pTA⋆,N

Dir (ω)p
∣∣∣

1

|QN |
∑

k∈QN∩Zd

f(Xk) = E[f(X0)]


 ≤ pTA⋆p.

Using (53), we deduce that

∀p ∈ R
d, lim sup

N→∞
pTUNp ≤ pTA⋆p, (55)

where

UN = E


A⋆,N

per (ω)
∣∣∣

1

|QN |
∑

k∈QN∩Zd

f(Xk) = E[f(X0)]


 . (56)

Step 2: Lower bound. We now introduce an approximation of
A⋆ using a truncated problem complemented with Neumann boundary
conditions. We consider the problem

{
− div

(
A(·, ω)

(
p+∇wN

p,Neu(·, ω)
) )

= 0 in QN ,

nTA(·, ω)(p +∇wN
p,Neu(·, ω)) = nTp on ∂QN ,

(57)

which yields an approximation of A⋆ that we denote A⋆,N
Neu(ω) and

which is defined by

A⋆,N
Neu(ω) =

(
S⋆,N
Neu(ω)

)−1
, (58)

where S⋆,N
Neu(ω) is defined by

∀p ∈ R
d, S⋆,N

Neu(ω)p =
1

|QN |

ˆ

QN

p+∇wN
p,Neu(·, ω). (59)
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We refer to Remark 12 below for some heuristic justification of (58)–
(59).

As recalled in [19, Appendix], we have that

lim
N→∞

A⋆,N
Neu(ω) = A⋆ a.s. (60)

and
pTA⋆,N

Neu(ω)p ≤ pTA⋆,N
per (ω)p a.s. (61)

In addition, we have the following variational characterization:

pTS⋆,N
Neu(ω)p = inf {EQN

(σ, ω), σ ∈ V (QN )} , (62)

where

EQN
(σ, ω) =

1

|QN |

ˆ

QN

(p+ σ)TA−1(·, ω)(p + σ)

and

V (QN ) =
{
σ ∈ (L2(QN ))d, div σ = 0 in QN , nTσ = 0 on ∂QN

}
.

The matrix S⋆,N
Neu(ω) (and hence the matrix A⋆,N

Neu(ω)) depends on all
the variables Xi(ω), i ∈ QN ∩ Z

d. However, thanks to the characteri-
zation (62), it can be bounded from above by a sum of matrices that
depend only on a finite number of random variables.

To show this, we proceed as in Step 1 of the proof. For any posi-
tive integers N and R, we introduce the integer part M of N/R, and
decompose QN into a set of cubes of size Rd, up to some boundary
layer BN,R (see Figure 1):

QN =
(
∪j∈Zd, |j|≤M R j +QR

)
∪BN,R.

For any j ∈ Z
d, |j| ≤ M , consider a function σj ∈ V (R j +QR). We

now define the function σ on QN as:

• for any x ∈ R j +QR, we set σ(x) = σj(x);

• if x ∈ BN,R, we set σ(x) = 0.

We claim that σ ∈ V (QN ). We indeed first have that σ ∈ (L2(QN ))d.
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We next consider ϕ ∈ C∞
0 (QN ) and compute that

〈div σ, ϕ〉 = −〈σ,∇ϕ〉

= −
∑

j∈Zd, |j|≤M

ˆ

Rj+QR

σj · ∇ϕ

= −
∑

j∈Zd, |j|≤M

ˆ

∂(R j+QR)
nT
j σj ϕ

= 0,

where nj is the outward normal to the domain R j + QR. We hence
have checked that σ ∈ V (QN ).

We next write that

pTS⋆,N
Neu(ω)p ≤ EQN

(σ, ω) =
|QR|
|QN |

∑

j∈Zd, |j|≤M

ERj+QR
(σj , ω).

Minimizing over the functions σj ∈ V (R j +QR), we hence get that

pTS⋆,N
Neu(ω)p ≤ |QR|

|QN |
∑

j∈Zd, |j|≤M

Zj(ω) a.s. (63)

where
Zj(ω) = inf {ERj+QR

(σ, ω), σ ∈ V (R j +QR)} .
Since A is stationary, we note that all the random variables Zj(ω)

share the same law. Moreover, we observe that Z0(ω) = pTS⋆,R
Neu(ω)p.

We now take the conditional expectation of (63), and use the fact
that the variables Zj all share the same law:

E


pTS⋆,N

Neu(ω)p
∣∣∣

1

|QN |
∑

k∈QN∩Zd

f(Xk) = E[f(X0)]




≤ Rd Md

Nd
E


pTS⋆,R

Neu(ω)p
∣∣∣

1

|QN |
∑

k∈QN∩Zd

f(Xk) = E[f(X0)]


 .

We observe that pTS⋆,R
Neu(ω)p only depends on a finite number of ran-

dom variables, namely only on Xk with k ∈ QR ∩ Z
d. We are thus

in position to use Theorem 11, which yields the limit of the above
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right-hand side when N → ∞. Hence, for any fixed R, we have

lim sup
N→∞

E


pTS⋆,N

Neu(ω)p
∣∣∣

1

|QN |
∑

k∈QN∩Zd

f(Xk) = E[f(X0)]




≤ E

[
pTS⋆,R

Neu(ω)p
]
.

Letting R go to ∞ in the above bound and using (58) and (60), we
obtain that

lim sup
N→∞

E


pTS⋆,N

Neu(ω)p
∣∣∣

1

|QN |
∑

k∈QN∩Zd

f(Xk) = E[f(X0)]




≤ pT (A⋆)−1p.

Using (58) and (61), we deduce that

lim sup
N→∞

E


pT

(
A⋆,N

per (ω)
)−1

p
∣∣∣

1

|QN |
∑

k∈QN∩Zd

f(Xk) = E[f(X0)]




≤ pT (A⋆)−1p.

Using Jensen inequality, we infer from the above bound that

∀p ∈ R
d, lim sup

N→∞
pT (UN )−1 p ≤ pT (A⋆)−1p, (64)

where the matrix UN is defined by (56).

Step 3: Conclusion. We eventually show that (55) and (64)
imply that UN converges to A⋆ when N → ∞.

From the assumptions on A, we know that there exists 0 < a− ≤
a+ < ∞ such that, for any N and almost surely, a− ≤ A⋆,N

per (ω) ≤ a+.
Hence, for any N , the symmetric matrix UN satisfies a− ≤ UN ≤
a+. We can thus extract a subsequence Uϕ(N) that converges to some
symmetrix matrix B. Let us show that B = A⋆.

Let p ∈ R
d. We first observe that, by definition,

lim sup
k→∞

pTUkp ≥ lim
k→∞

pTUϕ(k)p = pTBp.

We thus infer from (55) that

∀p ∈ R
d, pTBp ≤ pTA⋆p. (65)
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We now proceed likewise with U−1
k . We observe that,

lim sup
k→∞

pTU−1
k p ≥ lim

k→∞
pTU−1

ϕ(k)p = pTB−1p.

We thus infer from (64) that

∀p ∈ R
d, pTB−1p ≤ pT (A⋆)−1p. (66)

Collecting (65) and (66), we deduce that B = A⋆.
The sequence UN is bounded, and we have shown that any con-

verging subsequence converges to A⋆. This implies that UN converges
to A⋆ when N → ∞, which is exactly the result (50). This concludes
the proof of Theorem 8.

Remark 12. In view of (57), we can check that

1

|QN |

ˆ

QN

A(·, ω)
(
p+∇wN

p,Neu(·, ω)
)
= p.

The definition (58)–(59) can hence be understood as

〈
A(·, ω)

(
p+∇wN

p,Neu(·, ω)
) 〉

= A⋆,N
Neu(ω)

〈
p+∇wN

p,Neu(·, ω)
〉
,

where 〈·〉 = |QN |−1

ˆ

QN

· is the average on QN .

3.2 Complete analysis in some simple cases

In this section, we aim at improving the convergence result (50) of
the previous section by quantifying both the statistical and systematic
errors, in order to assess the efficiency of our approach. We are only
able to proceed in simple situations where all the quantities are indeed
accessible using analytic calculations. These two situations are exam-
ined in Sections 3.2.1 and 3.2.2 respectively. For the sake of brevity,
and because the proofs are not very enlightening and are not likely to
carry over to more general cases, we do not provide the proofs of our
claims here. We refer to [19] where they are presented in details.

We establish below that our approach preserves the rate of decay
of the standard Monte Carlo sampling both for the systematic and the
statistical error (and thus, in particular, the systematic error remains,
in rate, smaller than the statistical error). Furthermore, the prefactor
in the statistical error is significantly reduced by our approach.
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3.2.1 “Zero-dimensional” homogenization

As simplest possible situation, we consider a function g : R 7→ R and
the random variables (Xi)1≤i≤n. We assume that these random vari-
ables are independent and that they are all centered Gaussian random
variables with unit variance. We also assume that g ∈ C1(R) and that
E [|g(X1)|+ |g′(X1)|] < ∞. Note that it is not surprising to make some
smoothness assumptions on g as we are here after rates of convergence,
and not only a convergence result as in Section 3.1.

We set

ξ : x 7→ 1

n

n∑

i=1

xi.

Assume we want to compute E[g(X1)]. A classical Monte Carlo ap-
proach would approximate this by the limit of the empirical mean

lim
n→∞

1

n

n∑

i=1

g(Xi(ω)). In this particular instance, the simplest version

of our variance reduction approach instead considers lim
n→∞

1

n

n∑

i=1

g(Xi(ω))

for realizations X(ω) that satisfy ξ(X(ω)) = 0.
In this simple case, the bias of the classical approach is actually

identically zero: of course, E

[
1

n

n∑

i=1

g(Xi)

]
does not depend on n.

The statistical error is controlled by the Central Limit Theorem and

is asymptotically of order

√
Var[g(X1)]

n
.

Proposition 13. Under the assumptions of this section, the bias of
the selection method is of order 1/n. More specifically,

E

[
1

n

n∑

i=1

g(Xi)
∣∣∣ ξ(X) = 0

]
− E[g(X1)] = − 1

2n
E[g′(X1)] +O

(
1

n2

)
.

(67)
The variance of the selection method is reduced by a factor asymptoti-
cally independent of n. More specifically,

Var
[
1
n

∑n
i=1 g(Xi)

∣∣∣ ξ(X) = 0
]

Var
[
1
n

∑n
i=1 g(Xi)

] = 1− (E[g′(X1)])
2

Var[g(X1)]
+O

(
1

n

)
. (68)

In view of (67)–(68), we observe that, at the price of introducing a
bias of order O (1/n), our approach reduces the statistical error from
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λMC√
n

to
λSQS√

n
(with λSQS < λMC), and therefore, for sufficiently large

n, reduces the total error.

The following result covers the case where we insert a non-zero
tolerance in Algorithm 2.

Proposition 14. Under the assumptions of this section, consider the

selection method where we condition on the realizations such that
z0√
n
≤

ξ(X(ω)) ≤ z1√
n

, for some z0 and z1 > z0 in R. Then, for any choice

of z0 and z1 > z0, the variance of the selection method is reduced by a
factor asymptotically independent of n:

Var
[
1
n

∑n
i=1 g(Xi)

∣∣∣ z0√
n
≤ ξ(X) ≤ z1√

n

]

Var
[
1
n

∑n
i=1 g(Xi)

]

= 1− (1− C)
(E[g′(X1)])

2

Var[g(X1)]
+O

(
1

n

)
, (69)

where C = Var
[
X1

∣∣∣ z0 ≤ X1 ≤ z1

]
.

The conditioning z0/
√
n ≤ ξ(X(ω)) ≤ z1/

√
n is deliberately cho-

sen in order to match the rate of the Central Limit Theorem. It cor-
responds to the selection of a fixed proportion of samples (as in Algo-
rithm 3 when M is proportional to M). Note that C > 0, hence the
variance is less reduced than when conditioning at ξ(X) = 0 (which is
the case considered in Proposition 13). Note also that the variance is
reduced (with respect to the standard Monte Carlo sampling) if, and
only if, 1−C ≥ 0. We are yet unable to conclude that this is the case
in general. We simply note that, when z1 = −z0 > 0, then C = 1,
yielding no gain.

3.2.2 One-dimensional homogenization

In the one-dimensional case, the homogenization of a random field

a : (y, ω) 7→
∑

i∈Z
g(Xi(ω))1(i,i+1)(y) (where g is valued, say, in [a−, a+]

with a− > 0) is a simple harmonic average. It is readily seen that

a⋆N (ω) =

(
1

N

N∑

i=1

1

g(Xk)

)−1

= ϕ

(
1

N

N∑

i=1

1

g(Xk)

)
with ϕ(x) = 1/x.
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Formally, the problem is thus analogous to that of the previous section,
for a certain ϕ : R 7→ R instead of ϕ = Id. Therefore, it is sufficient
to prove consistency and variance reduction for quantities of the form

ϕ

(
1

N

N∑

i=1

g(Xi)

)
.

Proposition 15. Consider a smooth function ϕ : R 7→ R. Under the
assumptions of this section, the bias of the standard method and that
of the selection method respectively are

E

[
ϕ

(
1

N

N∑

i=1

g(Xi)

)]
−ϕ (g0) =

ϕ′′ (g0)
2N

Var[g(X1)]+O

(
1

N2

)
(70)

and

E

[
ϕ

(
1

N

N∑

i=1

g(Xi)

) ∣∣∣ ξ(X) = 0

]
− ϕ (g0)

=
ϕ′′ (g0)
2N

(
Var[g(X1)]− (E[g′(X1)])

2
)
−ϕ′ (g0)

2N
E[X1g

′(X1)]+o

(
1

N

)
,

(71)

with g0 = E [g(X1)].
The variance of the selection method is reduced by a factor asymp-

totically independent of N :

Var
[
ϕ
(

1
N

∑N
i=1 g(Xi)

) ∣∣∣ ξ(X) = 0
]

Var
[
ϕ
(

1
N

∑N
i=1 g(Xi)

)] = 1− (E[g′(X1)])
2

Var[g(X1)]
+o (1) . (72)

To keep things simple, we do not investigate whether a more general
result, accounting for some tolerance in the manner our condition is
fulfilled (in the spirit of Proposition 14), holds here.

Proposition 15 shows that the bias is unchanged in rate, while the
prefactor for the variance is reduced. Since the variance only decays
at the rate 1/

√
N while the bias decays at the rate 1/N , we see that

our approach indeed reduces the total error for sufficiently large N .
In the numerical practice (mimicking in this one-dimensional set-

ting what is actually performed for higher dimensional settings – al-
though it is in some sense unnecessary here), we generate several, in-
dependent realizations of the N -tuples (Xi)1≤i≤N corresponding to as
many draws of environments within the “cube” QN . In the classical
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Monte Carlo approach, we keep all such N -tuples. In our approach,
we only consider those that satisfy an additional criterion.

An empirical mean (aimed at approximating A⋆) is then computed.
The systematic error and the statistical error of the latter approxima-
tion are precisely related to the errors estimated in (70)–(71)–(72)
respectively. Thus a theoretical assessment of our practical approach.

4 Numerical experiments

We first present in this section some numerical experiments that show
the robustness of our variance reduction approach with respect to the
tolerance with which we enforce the SQS conditions (see Section 4.1).
We next turn to studying the performance of our approach in Sec-
tion 4.2.

We consider the test-case when A reads as in (12), that is

Aη(x, ω) = C0(x, ω) + η χ(x, ω)C1(x, ω),

with η = 1/2, C0 = C1 = Id, and χ is of the form (35), that is

χ(x, ω) =
∑

k∈Zd

Xk(ω)1Q+k(x).

The random variables Xk are i.i.d. and follow a Bernoulli law of pa-
rameter 1/2 valued in {−1,+1}. The contrast (i.e. the ratio of the
largest value of A divided by its minimum value) is equal to 3. The
influence of the contrast on the efficiency of our approach is investi-
gated at the end of Section 4.2 (see Table 1). We consider there much
larger values of the contrast (however all smaller than 20).

In what follows, we only consider Algorithm 3, where we take M =
100 and M = 2000 (thus an acceptance ratio of 5%).

In this setting, the SQS 1 condition as stated in (48) is satisfied if
and only if the numbers of cells within which Xk(ω) = 1 is equal to
the number of cells within which Xk(ω) = −1. It is thus possible to
enforce (48) by randomly selecting |QN |/2 cells within the |QN | cells
that are in QN , and setting Xk = 1 on these cells and Xk = −1 on
the others.

In all our tests, we have kept the computational time fixed, or
almost fixed, since the additional time needed by the selection step
(namely Steps 1 and 2 of Algorithm 3) is roughly 5% of the total
original computational time.
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We conclude this section with some numerical tests on a problem
involving a more general geometry of microstructures (see Section 4.3).
On such a problem, we again obtain a significant reduction of the
variance, at no additional computational cost.

4.1 Robustness of the approach

As pointed out above, the SQS 2 condition as stated in (49) is only
enforced in Algorithm 3 up to some tolerance. In this section, we ex-
perimentally investigate how this tolerance affects the quality of the
approximation and the efficiency of the approach. To mimick the dif-
ficulty associated with the SQS 2 condition, we have also performed
some tests where we only enforce the SQS 1 condition up to some toler-
ance, and not exactly. The results of our numerical tests are displayed
in Figures 2 through 5.

Figures 2 and 3 show the sensitivity of the variance reduction ra-
tio upon the first order condition (48). Using Algorithm 3, we gen-
erate M = 2000 realizations. To investigate the robustness of our
approach, we sort these realizations with respect to the error in (48),
and successively consider 20 groups of 100 realizations that less and
less accurately satisfy (48). On Figure 2, the left-most circle displays
the ratio VSQS 1/VMC between the empirical variance VSQS 1 among
the best M = 100 realizations and the reference Monte Carlo variance
VMC = Var

[(
A⋆

N

)
11

]
. The second circle shows the ratio between the

empirical variance among the next best M = 100 realizations and the
reference Monte Carlo variance VMC. We proceed similarly with all
the subsequent groups of M = 100 realizations.

On Figure 3, we display the same ratio of variances in function,
for each group of M = 100 realizations, of the maximum error with
which the first order condition (48) is satisfied. Hence, the first group
(left-most circle) corresponds to exactly satisfying the condition, the
second group corresponds to an error between 0 and tol, the third
group corresponds to an error between tol and 2 tol, and so on and so
forth.

Figures 4 and 5 show the sensitivity upon the second order condi-
tion (49). Here, we only consider realizations that satisfy (48). Us-
ing Algorithm 3, we again generate M = 2000 realizations and sort
them according to the error in (49). We again successively consider
20 groups of 100 realizations that all satisfy (48) but that less and
less accurately satisfy (49). We present the results on Figures 4 and 5
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following the same procedure as for Figures 2 and 3. For instance, for

the left-most circle, we plot the ratio
VSQS 2

Vexact SQS 1
between the variance

VSQS 2 among the M = 100 realizations that exactly satisfy the SQS 1
condition and best satisfy the SQS 2 condition on the one hand, and,
on the other hand, the variance Vexact SQS 1 of the realizations that
exactly satisfy the SQS 1 condition.

We observe that, even if the SQS conditions (48)–(49) are not ex-
actly satisfied, but only with some small tolerance, we obtain a signif-
icant variance reduction. We conclude that our approach is robust in
this respect.
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Figure 2: Variance ratio VSQS 1/VMC for the 20 groups of realizations (sorted
according to their SQS 1 error).

We next investigate whether enforcing the SQS 1 condition (48)
affects the probability distribution function of the left-hand side of the
SQS 2 condition (49). Results are shown on Figure 6, where we plot
two histograms:
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Figure 3: Variance ratio VSQS 1/VMC as a function of the error in (48). Results
for only the best 7 groups (out of the 20 groups) are shown.
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Figure 4: Variance ratio
VSQS 2

Vexact SQS 1
for the distinct groups of realizations

(sorted according to their SQS 2 error; the SQS 1 condition is exactly satis-
fied). Only the 10 best groups are shown.
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Figure 5: Variance ratio
VSQS 2

Vexact SQS 1
as a function of the error in (49) (the

condition (48) is exactly satisfied). Only the 10 best groups are shown.
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• the distribution of the criterion SQS 2 (namely, the left-hand side
of (49)) among all realizations.

• the conditional distribution of the criterion SQS 2 among real-
izations that exactly satisfy the SQS 1 condition (48).

The two histograms are sufficiently close to each other to state that
enforcing the SQS 1 condition does not change the distribution of the
SQS 2 criterion.
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Figure 6: Empirical probability distribution function of the SQS 2 criterion
(black histogram: no conditioning; red histogram: the samples exactly sat-
isfy the SQS 1 criterion). Both histograms have been computed using 100
realizations.

4.2 Efficiency of the approach

In this section, we investigate how the efficiency of our approach de-
pends (i) on the size of the truncated domain QN and (ii) on the
contrast in A.

4.2.1 Experimental error analysis

Figure 7 shows the set of approximations of the first entry [A⋆]11 of
the homogenized matrix and their respective confidence intervals. We
show three curves (along with their respective confidence intervals):
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• The standard Monte Carlo approximation, which is defined by (10).
The variance is large.

• The approximation obtained by selecting realizations that ex-
actly satisfy the SQS 1 condition. The variance is much smaller,
leading in turn to a narrower confidence interval.

• The approximation obtained with realizations satisfying exactly
the SQS 1 condition and selected according to the SQS 2 condi-
tion (see Algorithm 3). The variance is much smaller than when
using the SQS 1 approach, even when the size of the domain QN

is small.
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Figure 7: Approximations of [A⋆]11 (along with confidence intervals) as a
function of N . Black curve: Monte Carlo method. Red curve: SQS 1 method.
Blue curve: SQS 2 method (see text).

Figure 8 shows a representation of the total error as a function
of the size of QN . As often in a Monte Carlo approach, computing
the total error is challenging, precisely because the reference value is,
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by definition, in general unknown. In the specific case considered,
namely the random checkerboard, the value of A⋆ is actually known
and equal to A⋆ =

√
(1 + η)(1 − η) Id. But for the large number of

realizations and the large size of the truncated domains that we aim
at considering, the total error is so small that we cannot neglect the
contribution of the specific error due the finiteness of the meshsize used
to solve (3). Therefore, we are bound to obtain and use as reference
an approximate value A⋆

h of A⋆ corresponding to an hypothetical finite
element approximation on the whole space. As a surrogate for this A⋆

h,
which is unknown in practice, we choose the empirical expectation of
A⋆

Nref
(ω) over Mref = 2000 random realizations exactly satisfying the

SQS 1 condition (with a view to use a value with the lowest possible
statistical error), and for the largest domain QNref

we can consider
given the computing facilities we have access to, that is Nref = 50.

On Figure 8, we display three curves:

• The total error of the standard Monte Carlo method, defined as

total error =

∣∣∣∣∣
1

M

M∑

m=1

A⋆
N (ωm)−A⋆

ref

∣∣∣∣∣ .

• The other two curves show the same quantity, where the M en-
vironments considered now satisfy either the SQS 1 condition or
that condition together with the SQS 2 condition.

The results obtained using the SQS 2 approach are in general compara-
ble to, and often better than, those obtained with the SQS 1 approach.
More accurate estimates of the reference value A⋆

h would probably help
in clarifying the superiority of SQS 2 over SQS 1 in terms of total accu-
racy. As will now be seen, the superiority of SQS 2 in terms of variance
(which, in some sense, is the key point for practice) is definite.

Figure 9 shows the empirical variance of the different approxima-
tions of [A⋆]11 as a function of the size of QN . We again display three
curves:

• The standard Monte Carlo approximation defined by (10).

• The approximation obtained by selecting realizations that ex-
actly satisfy the SQS 1 condition.

• The approximation obtained with realizations exactly satisfying
the SQS 1 condition and selected according to the SQS 2 condi-
tion (see Algorithm 3).
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Figure 8: log-log plot of the total error as a function of N (natural logarithm).
Black curve: Monte Carlo method. Red curve: SQS 1 method. Blue curve:
SQS 2 method (see text).

45



We observe that, each time we consider an additional SQS condition,
the empirical variance of the approximation is significantly reduced
(even if this SQS condition is not exactly enforced; recall that we con-
sider here only the 5 % best samples in terms of the SQS 2 condition,
but that we are unable to enforce it exactly). On our test-case, en-
forcing the SQS 1 condition leads to a variance 20 times smaller than
that of the standard Monte Carlo approach, while additionally enforc-
ing the SQS 2 condition leads to an additional variance reduction of a
factor of 10.

We also observe on Figure 9 that all variances decay as λ/|QN |,
where

λSQS 2 < λexact SQS 1 < λMC.

This corroborates in higher dimension the behaviour predicted in Sec-
tion 3.2. In particular, the gain in variance does not decrease when
the size of QN becomes larger.

4.2.2 Sensitivity to the contrast

We eventually investigate how the contrast in the field A affects the
gain in variance. Results are shown in Table 1. We observe that the
gain decreases when the contrast increases. Note that this is also the
case with the antithetic variable and the control variate techniques
that we have previously studied (see [4, 18, 17]).

However, our SQS 2 approach still yields a significant gain of a
factor of 10 when the contrast is equal to 20.

4.3 A more general geometry

In order to show that the approach carries over to other settings in-
volving more general geometries than the setting considered above, we
briefly consider in the present final section a linear elasticity problem,
for a two-phase composite material with random inclusions. The radii
rj(ω) of the inclusions are i.i.d. random variables satisfying

rj(ω) =

√
(M −m)

√
Uj(ω) +m,

where Uj(ω) are i.i.d. variables uniformly distributed in [0, 1]. The
parameters M and m are such that the minimum (resp. maximum)
inclusion radius is 0.125 (resp. 0.45). The inclusions centers are dis-
tributed according to a Poisson point process, and we additionally
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Figure 9: log-log plot of the variance as a function of N (natural logarithm).
Black curve: Monte Carlo method. Red curve: SQS 1 method. Blue curve:
SQS 2 method.
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Contrast VMC Vexact SQS 1 VSQS 2
VMC

Vexact SQS 1

VMC

VSQS 2

1.22 0.0000273 5.801e-08 6.858e-10 470 39821
1.50 0.0001097 0.0000009 1.585e-08 118 6921
1.86 0.0002488 0.0000047 0.0000001 52.6 1996
2.33 0.0004478 0.0000151 0.0000006 29.5 720
3.00 0.0007118 0.0000379 0.0000024 18.8 296
4.00 0.0010496 0.0000814 0.0000080 12.8 131
5.67 0.0014769 0.0001600 0.0000244 9.23 60.5
9.00 0.0020289 0.0003021 0.0000739 6.71 27.4
19.0 0.0028330 0.0006061 0.0002554 4.67 11.1

Table 1: For various values of the contrast, we show the Monte Carlo vari-
ance (column #2), the variance of the SQS 1 method (column #3) and the
variance of the SQS 2 method (column #4). We next show the variance ratio
VMC/Vexact SQS 1 for the SQS 1 approach (column #5) and the variance ratio
VMC/VSQS 2 for the SQS 2 approach (column #6). The size of QN is fixed at
N = 20.

impose that inclusions do not overlap (see Figure 10). We consider
the truncated domain QN = [0, 5]2. Each microstructure contains 25
inclusions. If some part of an inclusion falls outside of QN , it is repro-
duced on the other side of QN by periodicity.

The inclusions (resp. the background) are modeled by a isotropic
linear elasticity tensor, with a uniform Poisson ratio ν = 0.3 and a
Young modulus E = 7 (resp. E = 1).

For that problem, in the spirit of the SQS 1 approach described
above, we select the microstructures such that the volumic fraction
θN (ω) of inclusions within the domain QN , for each random realization
considered, agrees as accurately as possible with its asymtotic value
θ⋆ = lim

N→∞
θN (ω).

The results are shown in Table 2. We examine two entries of the
homogenized elasticity tensor, and two methods:

• The classical Monte Carlo approach, for which we generate M =
100 i.i.d. microstructures.

• The SQS approach, in which we generate M = 2000 i.i.d. mi-
crostructures, and next consider the M = 100 microstructures
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Figure 10: Two realizations of the microstructure geometry.

for which |θN (ω)− θ⋆| is the smallest.

In both cases, we solve M correctors problems and we compute the
empirical expectation and variance of the homogenized elasticity ten-
sor. We observe that our approach provides a variance reduction of a
factor close to 20, while the bias is essentially constant.

[A⋆
N (ω)]1111 [A⋆

N(ω)]1111 [A⋆
N(ω)]1122 [A⋆

N(ω)]1122
Exp. Var. Exp. Var.

MC approach 2.522 0.0136 1.016 0.00184
SQS approach 2.519 0.000532 1.014 0.000101

Table 2: Empirical expectation (Exp.) and variance (Var.) for two entries of
the homogenized elasticity tensor, computed with the Monte Carlo approach
(MC) or our approach (SQS).
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A Proof of Lemma 4

We follow the arguments of the proof of [5, Lemma 3.2].
The existence and uniqueness (up to the addition of a constant) of

φ1 solution to (38) is established in [5, Lemma 3.1]. We next point out
that (39) admits a unique (up to the addition of a constant) solution
in H1

per(Q). It is a simple consequence of the Lax-Milgram lemma.
We now prove that the sum in (37) is a convergent series in L2(Q×

Ω). For this purpose, we compute the norm of the remainder of the
series, using the notation Xk(ω) = Xk(ω)− E[Xk]:

∥∥∥∥∥∥

∑

|k|≥N+1

Xk∇φ1(· − k)

∥∥∥∥∥∥

2

L2(Q×Ω)

=
∑

|k|≥N+1

∑

|ℓ|≥N+1

E
[
XkXℓ

] ˆ

Q
∇φ1(y − k) · ∇φ(y − ℓ) dy

≤
∑

|k|≥N+1

∑

|ℓ|≥N+1

|Cov(Xk,Xℓ)| ‖∇φ1‖L2(Q−k) ‖∇φ1‖L2(Q−ℓ)

≤
∑

|k|≥N+1

∑

|ℓ|≥N+1

|Cov(Xk,Xℓ)| ‖∇φ1‖2L2(Q−k),

where we have used at the last line the discrete Cauchy-Schwarz in-
equality between the sequences |Cov(Xk,Xℓ)|1/2 ‖∇φ1‖L2(Q−k) and

|Cov(Xk,Xℓ)|1/2 ‖∇φ1‖L2(Q−ℓ). We next write, using the stationarity
of Xk and (36), that

∥∥∥∥∥∥

∑

|k|≥N+1

Xk∇φ1(· − k)

∥∥∥∥∥∥

2

L2(Q×Ω)

≤
∑

|k|≥N+1

‖∇φ1‖2L2(Q−k)

∑

|ℓ|≥N+1

|Cov(Xk,Xℓ)|

≤ C
∑

|k|≥N+1

‖∇φ1‖2L2(Q−k).
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The above right-hand side converges to 0 as N → ∞ since ∇φ1 ∈(
L2(Rd)

)d
.

Hence, the right-hand side of (37) defines a function T ∈
(
L2(Q× Ω)

)d
.

As ∂iTj = ∂jTi, there exists a function ũ1 such that

∇ũ1 = T = E[X0]∇u1 +
∑

k∈Zd

(
Xk(ω)− E[Xk]

)
∇φ1(· − k).

As u1 is Z
d-periodic, we infer from the above equality that

∇ũ1 is stationary and

ˆ

Q
E(∇ũ1) = 0. (73)

Next, we compute

C0∇ũ1 = E[X0]C0∇u1 +
∑

k∈Zd

(
Xk(ω)− E[Xk]

)
C0∇φ1(· − k).

Taking the divergence of this equation and using (32) and (34), we
thus find that, in the distribution sense,

− div [C0∇ũ1]

=
∑

k∈Zd

−
(
Xk(ω)− E[Xk]

)
div [C0∇φ1(· − k)]− E[X0] div [C0∇u1]

=
∑

k∈Zd

(
Xk(ω)− E[Xk]

)
div [1Q+kC1p] + E[X0] div [C1p]

= div [χ(·, ω)C1p] . (74)

Collecting (73) and (74), we see that ũ1 solves (19). As the solution
to this equation is unique up to the addition of a (possibly random)
constant C(ω), we obtain that ũ1 = u1 + C(ω), hence proving (37).
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