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Abstract

We propose a new numerical scheme for Backward Stochastic Differential Equations
based on branching processes. We approximate an arbitrary (Lipschitz) driver by local
polynomials and then use a Picard iteration scheme. Each step of the Picard iteration
can be solved by using a representation in terms of branching diffusion systems, thus
avoiding the need for a fine time discretization. In contrast to the previous literature
on the numerical resolution of BSDEs based on branching processes, we prove the
convergence of our numerical scheme without limitation on the time horizon. Numerical
simulations are provided to illustrate the performance of the algorithm.
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1 Introduction

Since the seminal paper of Pardoux and Peng [22], the theory of Backward Stochastic
Differential Equations (BSDEs hereafter) has been largely developed, and has lead to many
applications in optimal control, finance, etc. (see e.g. El Karoui, Peng and Quenez [11]).
Different approaches have been proposed during the last decade to solve them numerically,
without relying on pure PDE based resolution methods. A first family of numerical schemes,
based on a time discretization technique, has been introduced by Bally and Pagès [2],
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Bouchard and Touzi [5] and Zhang [30], and generated a large stream of the literature.
The implementation of these numerical schemes requires the estimation of a sequence of
conditional expectations, which can be done by using simulations combined with either
non-linear regression techniques or Malliavin integration by parts based representations of
conditional expectations, or by using a quantization approach, see e.g. [6, 15] for references
and error analysis.
Another type of numerical algorithms is based on a pure forward simulation of branching
processes, and was introduced by Henry-Labordère [17], and Henry-Labordère, Tan and
Touzi [19] (see also the recent extension by Henry-Labordère et al. [18]). The main advantage
of this new algorithm is that it avoids the estimation of conditional expectations. It relies
on the probabilistic representation in terms of branching processes of the so-called KPP
(Kolmogorov-Petrovskii-Piskunov) equation:

∂tu(t, x) +
1

2
D2u(t, x) +

∑
k≥0

pku
k(t, x) = 0, u(T, x) = g(x). (1)

Here, D2 is the Laplacian on Rd, and (pk)k≥0 is a probability mass sequence, i.e. pk ≥ 0
and

∑
k≥0 pk = 1. This is a natural extension of the classical Feynmann-Kac formula,

which is well known since the works of Skorokhod [24], Watanabe [29] and McKean [21],
among others. The PDE (1) corresponds to a BSDE with a polynomial driver and terminal
condition g(WT ):

Y· = g(WT ) +

∫ T

·

∑
k≥0

pk(Yt)
kdt−

∫ T

·
ZtdWt,

in which W is a Brownian motion. Since Y· = u(·,W·), the Y -component of this BSDE can
be estimated by making profit of the branching process based Feynman-Kac representation
of (1) by means of a pure forward Monte-Carlo scheme, see Section 2.3 below. The idea
is not new. It was already proposed in Rasulov, Raimov and Mascagni [23], although no
rigorous convergence analysis was provided. Extensions to more general drivers can be found
in [17, 18, 19]. Similar algorithms have been studied by Bossy et al. [4] to solve non-linear
Poisson-Boltzmann equations.
It would be tempting to use this representation to solve BSDEs with Lipschitz drivers, by
approximating their drivers by polynomials. This is however not feasible in general. The
reason is that PDEs (or BSDEs) with polynomial drivers, of degree bigger or equal to two,
typically explode in finite time. They are only well posed on a small time interval. It is
worse when the degree of the polynomial increases. Hence, no convergence can be expected
for the case of general drivers.
In this paper, we propose to instead use a local polynomial approximation. Then, conver-
gence of the sequence of approximating drivers to the original one can be ensured without
explosion of the corresponding BSDEs, that can be defined on a arbitrary time interval. It
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requires to be combined with a Picard iteration scheme, as the choice of the polynomial
form will depend on the position in space of the solution Y itself. However, unlike classical
Picard iteration schemes for BSDEs, see e.g. Bender and Denk [3], we do not need to have
a very precise estimation of the whole path of the solution at each Picard iteration. Indeed,
if local polynomials are fixed on a partition (Ai)i of R, then one only needs to know in
which Ai the solution stays at certain branching times of the underlying branching process.
If the Ai’s are large enough, this does not require a very good precision in the intermediate
estimations. We refer to Remark 2.10 for more details.
We finally insist on the fact that our results will be presented in a Markovian context for
simplification. However, all of our arguments work trivially in a non-Markovian setting too.

2 Numerical method for a class of BSDE based on branching
processes

Let T > 0, W be a standard d-dimensional Brownian motion on a filtered probability space
(Ω,F ,F = (Ft)t≥0,P), and X be the solution of the stochastic differential equation:

X = X0 +

∫ ·
0
µ(Xs) dt+

∫ ·
0
σ(Xs) dWs, (2)

whereX0 is a constant, lying in a compact subsetX of Rd, and (µ, σ) : [0, T ]×Rd 7→ Rd×Md

is assumed to be Lipschitz continuous with support contained in X. Our aim is to provide
a numerical scheme for the resolution of the backward stochastic differential equation

Y· = g(XT ) +

∫ T

·
f(Xs, Ys) ds−

∫ T

·
Zs dWs. (3)

In the above, g : Rd 7→ R is assumed to be measurable and bounded, f ∈ Rd × R 7→ R is
measurable with linear growth and Lipschitz in its second argument, uniformly in the first
one. As a consequence, there exists M ≥ 1 such that

|g(XT )| ≤M and |X|+ |Y | ≤M on [0, T ]. (4)

Remark 2.1. The above conditions are imposed to easily localize the solution Y of the
BSDE, which will be used in our estimates later on. One could also assume that g and f
have polynomial growth in their first component and that X is not compact. After possibly
truncating the coefficients and reducing their support, one would go back to our conditions.
Then, standard estimates and stability results for SDEs and BSDEs could be used to estimate
the additional error in a very standard way. See e.g. [11].
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2.1 Local polynomial approximation of the generator

A first main ingredient of our algorithm consists in approximating the driver f by a driver
f`◦ that has a local polynomial structure. Namely, let

f`◦ : (x, y, y′) ∈ Rd × R× R 7→
j◦∑
j=1

`◦∑
`=0

aj,`(x)y`ϕj(y
′), (5)

in which (aj,`, ϕj)`≤`◦,j≤j◦ is a family of continuous and bounded maps satisfying

|aj,`| ≤ C`◦ , |ϕj(y′1)− ϕj(y′2)| ≤ Lϕ|y′1 − y′2| and |ϕj | ≤ 1, (6)

for all y′1, y′2 ∈ R, j ≤ j◦ and ` ≤ `◦, for some constants C`◦ , Lϕ ≥ 0. In the following, we
shall assume that `◦ ≥ 2 (without loss of generality). One can think of the (aj,`)`≤`◦ as the
coefficients of a polynomial approximation of f on a subset Aj , the Aj ’s forming a partition
of [−M,M ]. Then, the ϕj ’s have to be considered as smoothing kernels that allow one to
pass in a Lipschitz way from one part of the partition to another one. We therefore assume
that

#{j ∈ {1, · · · , j◦} : ϕj(y) > 0} ≤ 2 for all y ∈ R, (7)

and that y 7→ f`◦(x, y, y) is globally Lipschitz. In particular,

Ȳ· = g(XT ) +

∫ T

·
f`◦(Xs, Ȳs, Ȳs) ds−

∫ T

·
Z̄s dWs, (8)

has a unique solution (Ȳ , Z̄) such that E[sup[0,T ] |Ȳ |2] < ∞. Moreover, by standard esti-
mates, (Ȳ , Z̄) provides a good approximation of (Y,Z) whenever f`◦ is a good approximation
of f :

E
[

sup
[0,T ]
|Y − Ȳ |2

]
+ E

[∫ T

0
|Zt − Z̄t|2dt

]
≤ CE

[∫ T

0
|f − f`◦ |2(Xt, Yt, Yt)dt

]
, (9)

for some C > 0 that does not depend on f`◦ , see e.g. [11].
The choice of f`◦ will obviously depend on the application at hand and does not need to
be more commented. Let us just mention that our algorithm will be more efficient if the
sets {y ∈ R : ϕj(y) = 1} are large and the intersection between the supports of the ϕj ’s are
small, see Remark 2.10 below.
We also assume that

|Ȳ | ≤M. (10)

Since we intend to keep f`◦ with linear growth in its first component, and bounded in the
two other ones, uniformly in `◦, this is without loss of generality.
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2.2 Picard iteration with doubly reflected BSDEs

Our next step is to introduce a Picard iteration scheme to approximate the solution Ȳ
of (8). Note however that, although the map y 7→ f(x, y, y) is globally Lipschitz, the map
y 7→ f(x, y, y′) is a polynomial, given y′, and hence only locally Lipschitz in general. In order
to reduce to a Lipschitz driver, we shall apply our Picard scheme to a doubly (discretely)
reflected BSDE, with lower and upper barrier given by the bounds −M and M for Ȳ , recall
(10).

Let h◦ be defined by (27) in the Appendix. It is a lower bound for the explosion time of
the BSDE with driver y 7→ f(x, y, y′). Let us then fix h ∈ (0, h◦) such that Nh := T/h ∈ N,
and define

ti = ih and T := {ti, i = 0, · · · , Nh}. (11)

We initialize our Picard scheme by setting

Ȳ 0
t = y(t,Xt) for t ∈ [0, T ], (12)

in which y is a deterministic function, bounded by M and such that y(T, ·) = g. Then,
given Ȳ m−1, for m ≥ 1, we define (Ȳ m, Z̄m, K̄m,+, K̄m,−) as the solution on [0, T ] of

Ȳ m
t = g(XT ) +

∫ T

t
f`◦(Xs, Ȳ

m
s , Ȳ m−1

s ) ds−
∫ T

t
Z̄ms dWs +

∫
[t,T ]∩T

d(K̄m,+ − K̄m,−)s,

−M ≤ Ȳ m
t ≤M, ∀t ∈ T, a.s. (13)∫

T
(Ȳ m
s +M)dK̄m,+

s =

∫
T
(Ȳ m
s −M)dK̄m,−

s = 0,

where K̄m,+ and K̄m,− are non-decreasing processes.

Remark 2.2. Since the solution Ȳ of (8) is bounded by M , the quadruple of processes
(Ȳ , Z̄, K̄+, K̄−) (with K̄+ ≡ K̄− ≡ 0) is in fact the unique solution of the same reflected
BSDE as in (13) but with f`◦(X, Ȳ , Ȳ ) in place of f`◦(Xs, Ȳ

m, Ȳ m−1).

Remark 2.3. One can equivalently define the process Ȳ m in a recursive way. Let Ȳ m
T :=

g(XT ) be the terminal condition, and define, on each interval [ti, ti+1], (Y m
· , Z

m
· ) as the

solution on [ti, ti+1] of

Y m
· = Ȳ m

ti+1
+

∫ ti+1

·
f`◦(Xs, Y

m
s , Ȳ m−1

s )ds−
∫ ti+1

·
Zms dWs. (14)

Then, Ȳ m := Y m on (ti, ti+1], and Ȳ m
ti := (−M) ∨ Y m

ti ∧M .
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The error due to our Picard iteration scheme is handled in a standard way. It depends on
the constants

L1 := 2C`◦

`◦∑
`=1

`(Mh◦)
`−1, Mh◦L2 := Lϕ

`◦∑
`=0

2C`◦(Mh◦)
`,

where Mh◦ is defined by (28).

Theorem 2.4. The system (13) admits a unique solution (Ȳ m, Z̄m, K̄m,+, K̄m,−)m≥0 such
that Ȳ m is uniformly bounded for each m ≥ 0. Moreover, for all m ≥ 0, |Ȳ m| is uniformly
bounded by the constant Mh◦, and

|Ȳ m
t − Ȳt|2 ≤

L2

λ2

(L2(T − t)
λ2

)m
(2M)2 e

βT

β
,

for all t ≤ T , and all constants λ > 0, β > 2L1 + L2λ
2.

Proof. i) First, when Ȳ m is uniformly bounded, f`◦(Xs, Ȳ
m
s , Ȳ m−1

s ) can be considered to
be uniformly Lipschitz in Ȳ m, then (13) has at most one bounded solution. Next, in view of
Lemma A.1 and Remark 2.3, it is easy to see that (14) has a unique solution Y m, bounded
by Mh◦ (defined by (28)) on each interval [ti, ti+1]. It follows the existence of the solution
to (13). Moreover, Ȳ m is also bounded by Mh◦ on [0, T ], and more precisely bounded by
M on the discrete grid T, by construction.
ii) Consequently, the generator f`◦(x, y, y′) can be considered to be uniformly Lipschitz in y
and y′. Moreover, using (6) and (7), one can identify the corresponding Lipschitz constants
as L1 and L2.
Let us denote ∆Ȳ m := Ȳ m − Ȳ for all m ≥ 1. We notice that, in Remark 2.3, the
truncation operation Ȳ m

ti := (−M) ∨ Y m
ti ∧M can only make the value (∆Ȳ m

ti )2 smaller
than (Y m

ti − Ȳti)
2, since |Ȳ | ≤ M . Thus we can apply Itô’s formula to (eβt(∆Ȳ m+1

t )2)t≥0

on each interval [ti, ti+1], and then take expectation to obtain

E
[
eβt(∆Ȳ m+1

t )2
]

+ βE
[ ∫ T

t
eβs|∆Ȳ m+1

s |2ds+

∫ T

t
eβs|∆Z̄m+1

s |2ds
]

≤ 2E
[ ∫ T

t
eβs∆Ȳ m+1

s

(
f`◦(Xs, Ȳ

m+1
s , Ȳ m

s )− f`◦(Xs, Ȳs, Ȳs)
)
ds
]
.

Using the Lipschitz property of f`◦ and the inequality λ2+ 1
λ2
≥ 2, it follows that the r.h.s. of

the above inequality is bounded by

(2L1 + L2λ
2)E
[ ∫ T

t
eβs(∆Ȳ m+1

s )2ds
]

+
L2

λ2
E
[ ∫ T

t
eβs(∆Ȳ m

s )2ds
]
.
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Since β ≥ 2L1 + L2λ
2, the above implies

E
[
eβt(∆Ȳ m+1

t )2
]
≤ L2

λ2
E
[ ∫ T

t
eβs(∆Ȳ m

s )2ds
]
, (15)

and hence

E
[ ∫ T

0
eβt(∆Ȳ m+1

t )2dt
]
≤ L2

λ2
TE
[ ∫ T

0
eβs(∆Ȳ m

s )2ds
]
.

Since |∆Ȳ 0| = |y(·, X)− Ȳ | ≤ 2M by (10) and our assumption |y| ≤M , this shows that

E
[ ∫ T

0
eβt(∆Ȳ m

t )2dt
]
≤

(L2

λ2
T
)m

(2M)2eβT /β.

Plugging this in (15) leads to the required result at t = 0. It is then clear that the above
estimation does not depend on the initial condition (0, X0), so that the same result holds
true for every t ∈ [0, T ].

2.3 A branching diffusion representation for Ȳ m

We now explain how the solution of (14) on [ti, ti+1) can be represented by means of a
branching diffusion system. More precisely, let us consider an element (p`)0≤`≤`◦ ∈ R`◦+1

+

such that
∑`◦

`=0 p` = 1, set Kn := {(1, k2, . . . , kn) : (k2, . . . , kn) ∈ {0, . . . , `◦}n} for n ≥ 1,
and K := ∪n≥1Kn. Let (W k)k∈K be a sequence of independent d-dimensional Brownian
motions, (ξk)k∈K and (δk)k∈K be two sequences of independent random variables, such that

P[ξk = `] = p`, ` ≤ `◦, k ∈ K,

and

F̄ (t) := P[δk > t] =

∫ ∞
t

ρ(s)ds, t ≥ 0, k ∈ K, (16)

for some continuous strictly positive map ρ : R+ → R+. We assume that

(W k)k∈K , (ξk)k∈K , (δk)k∈K and W are independent. (17)

Given the above, we construct particles X(k) that have the dynamics (2) up to a killing time
Tk at which they split in ξk different (conditionally) independent particles with dynamics (2)
up to their own killing time. The construction is done as follows. First, we set T(1) := δ1,
and, given k = (1, k2, . . . , kn) ∈ Kn with n ≥ 2, we let Tk := δk + Tk− in which k− :=
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(1, k2, . . . , kn−1) ∈ Kn−1. By convention, T(1)− = 0. We can then define the Brownian
particles (W (k))k∈K by using the following induction. We first set

W ((1)) := W 11[0,T(1)] , K
1
t := {(1)}1[0,T(1))(t) + ∅1[0,T(1))

c(t), and K̄1
t = {(1)} t ≥ 0.

Then, given n ≥ 2, we define

W (k⊕j) :=
(
W

(k)
·∧Tk + (W k⊕j

·∨Tk −W
k⊕j
Tk

)1j 6=0

)
1[0,Tk⊕j ], 0 ≤ j ≤ ξk, k ∈ Kn−1,

and
K̄nt := {k ⊕ j : k ∈ K̄n−1

T , 1 ≤ j ≤ ξk s.t. t ≥ Tk]}, K̄t := ∪n≥1K̄nt ,

Knt := {k ⊕ j : k ∈ K̄n−1
T , 1 ≤ j ≤ ξk s.t. t ∈ [Tk, Tk⊕j)}, Kt := ∪n≥1Knt ,

in which we use the notation (1, k1, . . . , kn−1)⊕ j = (1, k1, . . . , kn−1, j). In other words, K̄nt
is the collection of particles of the n-th generation that are born before time t on, while Knt
is the collection of particles in K̄nt that are still alive at t.
Now observe that the solution Xx of (2) on [0, T ] with initial condition Xx

0 = x ∈ Rd
can be identified in law on the canonical space as a process of the form Φ[x](·,W ) in
which the deterministic map (x, s, ω) 7→ Φ[x](s, ω) is B(Rd)⊗P-measurable, where P is the
predictable σ-filed on [0, T ]×Ω. We then define the corresponding particles (Xx,(k))k∈K by
Xx,(k) := Φ[x](·,W (k)).

Given the above construction, we can now introduce a sequence of deterministic map asso-
ciated to (Ȳ m)m≥0. First, we set

v0 := y , (18)

recall (12). Then, given vm−1 and vm(ti+1, ·), we define

V m
t,x :=

( ∏
k∈Kti+1−t

Gmt,x(k)
)( ∏

k∈K̄ti+1−t\Kti+1−t

Amt,x(k)
)
,

Gmt,x(k) :=
vm
(
ti+1, X

x,(k)
ti+1−t

)
F̄ (ti+1 − t− Tk−)

,

Amt,x(k) :=

∑j◦
j=1 aj,ξk(X

x,(k)
Tk

)ϕj(v
m−1(t+ Tk, X

x,(k)
Tk

))

pξk ρ(δk)
,

∀(t, x) ∈ [ti, ti+1)×X. We finally set, whenever V m
t,x is integrable,

vm(t, x) := E
[
V m
t,x

]
, (t, x) ∈ (ti, ti+1)×X, m ≥ 1,

and
vm(ti, x) := (−M) ∨ E

[
V m
ti,x

]
∧M, x ∈ X, m ≥ 1. (19)
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Proposition 2.5. For all m ≥ 1 and (t, x) ∈ [0, T ] × X, the random variable V m
t,x is

integrable. Moreover, one has Ȳ m
· = vm(·, X) on [0, T ].

This follows from Proposition A.2 proved in the Appendix, which is in spirit of [18]. The
main use of this representation result here is that it provides a numerical scheme for the
approximation of the component Ȳ of (8), as explained in the next section.

2.4 The numerical algorithm

The representation result in Proposition 2.5 suggests to use a simple Monte-Carlo estimation
of the expectation in the definition of vm based on the simulation of the corresponding
particle system. However, it requires the knowledge of vm−1 in the Picard scheme which
is used to localize our approximating polynomials. We therefore need to approximate the
corresponding (conditional) expectations at each step of the Picard iteration scheme. In
practice, we shall replace the expectation operator E in the definition of vm by an operator
Ê that can be computed explicitly, see Remark 2.9 below.

In order to perform a general (abstract) analysis, let us first recall that we have de-
fined vm(t, x) = E[Vt,x(vm(ti+1, ·), vm−1(·)] for all t ∈ (ti, ti+1) and vm(ti, x) = (−M) ∨
E[Vti,x(vm(ti+1, ·), vm−1(·)] ∧M , where, given two functions φ, φ′ : (ti, ti+1]× Rd → R,

Vt,x(φ, φ′) :=
( ∏
k∈Kti+1−t

Gt,x(φ, k)
)( ∏

k∈K̄ti+1−t\Kti+1−t

At,x(φ′, k)
)
,

Gt,x(φ, k) :=
φ(ti+1, X

x,(k)
ti+1−t)

F̄ (ti+1 − t− Tk−)
,

At,x(φ′, k) :=

∑j◦
j=1 aj,ξk(X

x,(k)
Tk

)ϕj(φ
′(t+ Tk, X

x,(k)
Tk

)

pξk ρ(δk)
. (20)

Let us then denote by L∞Mh◦
the class of all Borel measurable functions φ : [0, T ]×Rd → R

that are bounded by Mh◦ , and let L∞Mh◦ ,0
⊂ L∞Mh◦

be a subspace, generated by a finite
number of basis functions. Besides, let us consider a sequence (Ui)i≥1 of i.i.d. random
variables of uniform distribution on [0, 1], independent of (W k)k∈K , (ξk)k∈K , (δk)k∈K and
W introduced in (17). Denote F̂ := σ(Ui, i ≥ 1).
From now on, we use the notations

‖φ‖ti := sup
(t,x)∈[ti,ti+1)×Rd

|φ(t, x)| and ‖φ‖∞ := sup
(t,x)∈[0,T ]×Rd

|φ(t, x)|

for all functions φ : [0, T ]× Rd → R.
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Assumption 2.6. There exists an operator Ê[V̂t,x(φ, φ′)](ω), defined for all φ, φ′ ∈ L∞Mh◦ ,0
,

such that (t, x, ω) 7→ Ê[V̂t,x(φ, φ′)](ω) is B([0, T ] × Rd) ⊗ F̂-measurable, and such that the
function (t, x) ∈ [0, T ] × Rd 7→ Ê[V̂t,x(φ, φ′)](ω) belongs to L∞Mh◦ ,0

for every fixed ω ∈ Ω.
Moreover, one has

E(Ê) := ‖ sup
φ,φ′∈L∞Mh◦ ,0

E
[
|E
[
V·(φ, φ

′)
]
− Ê[V̂·(φ, φ

′)]|
]
‖∞ <∞.

In practice, the operator Ê[V̂ ] will be decomposed in two terms: V̂ is an approximation of
the operator V defined with respect to a finite time grid that projects the arguments φ and
φ′ on a finite functional space, while Ê[V̂·(·)] is a Monte Carlo estimation of E[V̂·(·)]. See
Remark 2.9.

Then, one can construct a numerical algorithm by first setting v̂0 ≡ y, v̂m(T, ·) = g, m ≥ 1,
and then by defining by induction over m ≥ 1

v̂m(t, x) := (−Mh◦) ∨ Ê
[
V̂t,x(v̂m(ti+1, ·), v̂m−1)

]
∧Mh◦ , t ∈ (ti, ti+1),

and
v̂m(ti, x) := (−M) ∨ Ê

[
V̂ti,x(v̂m(ti+1, ·), v̂m−1)

]
∧M. (21)

In order to analyze the error due to the approximation of the expectation error, let us set

q̄t := #K̄t , qt := #Kt,

and denote
VM
t :=

( ∏
k∈Kt

M

F̄ (t− Tk−)

)( ∏
k∈K̄t\Kt

2C`◦
pξkρ(δk)

)
.

Recall that h < h◦ that is defined by (27) in the Appendix.

Lemma 2.7. The two constants

M1
h := sup

0≤t≤h
E
[
qtV

M
t

]
and M2

h := sup
0≤t≤h

E
[
q̄tV

M
t

]
are finite.

Proof. Notice that for any constant ε > 0, there is some constant Cε > 0 such that
n ≤ Cε(1 + ε)n for all n ≥ 1. Then

M1
h ≤ CεE

[
sup

0≤t≤h
(1 + ε)qtVM

t

]
≤ CεE

[ ∏
k∈Kh

(1 + ε)M

F̄ (h− Tk−)

∏
k∈K̄h\Kh

2(1 + ε)C`◦
pξkρ(δk)

]
,
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where the latter expectation is finite for ε small enough. This follows from the fact that
h < h◦ for h◦ defined by (27) and from the same arguments as in Lemma A.1 in the
Appendix. One can similarly obtain that M2

h is also finite.

Proposition 2.8. Let Assumption 2.6 hold true. Then

‖E [|vm − v̂m|] ‖∞ ≤ E(Ê)
(
1 +Nh

)(m+Nh)Nh

Nh!

(
(2LϕM

2
h) ∨

M1
h

M
∨ 1
)m+Nh

.

Before turning to the proof of the above, let us comment on the use of this numerical scheme.

Remark 2.9. In practice, the approximation of the expectation operator can be simply
constructed by using pure forward simulations of the branching process. Let us explain this
first in the case h◦ = T . Given that v̂m has already been computed, one takes it as a
given function, one draws some independent copies of the branching process (independently
of v̂m) and computes v̂m+1(t, x) as the Monte-Carlo counterpart of E[Vt,x(v̂m+1(T, ·), v̂m)],
and truncates it with the a-priori bound Mh◦ for (Ȳ m)m≥1. This corresponds to the operator
Ê[V̂t,x(v̂m+1(T, ·), v̂m)]. If h◦ < T , one needs to iterate backward over the periods [ti, ti+1].
Obviously one cannot in practice compute the whole map (t, x) 7→ v̂m+1(t, x) and this requires
an additional discretization on a suitable time-space grid. Then, the additional error analysis
can be handled for instance by using the continuity property of vm in Proposition A.5 in the
Appendix. This is in particular the case if one just computes v̂m+1(t, x) by replacing (t, x)
by its projection on a discrete time-space grid.

Remark 2.10. i). In the classical time discretization schemes of BSDEs, such as those in
[5, 15, 30], one needs to let the time step go to 0 to reduce the discretization error. Here, the
representation formula in Proposition 2.5 has no discretization error related to the BSDE
itself (assuming the solution of the previous Picard iteration is known perfectly), we only
need to use a fixed discrete time grid (ti)0≤i≤Nh for ti = ih with h small enough.
ii). Let A′j := {y ∈ R : ϕj(y) = 1} ⊂ Aj for j ≤ j◦, and assume that the A′j’s are
disjoint. If the A′j are large enough, we do not need to be very precise on v̂m to obtain a
good approximation of E[Vt,x(g, vm)] by E[Vt,x(g, v̂m)] for t ∈ [tNh−1, tNh). One just needs
to ensure that v̂m and vm belong to the same set A′j at the different branching times and
at the corresponding X-positions. We can therefore use a rather rough time-space grid on
this interval (i.e. [tNh−1, tNh ]). Further, only a precise value of v̂m(tNh−1, ·) will be required
for the estimation of v̂m+1 on [tNh−2, tNh−1) and this is where a fine space grid should be
used. Iterating this argument, one can use rather rough time-space grid on each (ti, ti+1)
and concentrate on each ti at which a finer space grid is required. This is the main difference
with the usual backward Euler schemes of [5, 15, 30] and the forward Picard schemes of [3].

Proof of Proposition 2.8. Define

ṽm(·) := (−Mh◦) ∨ E
[
V·(v̂

m(ti+1, ·), v̂m−1)
∣∣F̂] ∧Mh◦ .

11



Then, Lemma A.3 below combined with the inequality |ϕ| ≤ 1 implies that for all (t, x) ∈
[ti, ti+1)×X,

|ṽm(t, x)− vm(t, x)|

≤ E
[ ∑
k∈Kti+1−t

1

M
VM
ti+1−t

∣∣v̂m(ti+1, X
x,(k)
ti+1

)− vm(ti+1, X
x,(k)
ti+1

)
∣∣∣∣∣F̂]

+ E
[ ∑
k∈K̄ti+1−t\Kti+1−t

2LϕV
M
ti+1−t

∣∣v̂m−1(Tk, X
x,(k)
Tk

)− vm−1(Tk, X
x,(k)
Tk

)
∣∣∣∣∣F̂].

Let us compute the expectation of the first term. Denoting by F̄ the σ-field generated by
the branching processes, we obtain

E
[ ∑
k∈Kti+1−t

1

M
VM
ti+1−t

∣∣v̂m(ti+1, X
x,(k)
ti+1

)− vm(ti+1, X
x,(k)
ti+1

)
∣∣]

= E
[ ∑
k∈Kti+1−t

1

M
VM
ti+1−tE

[∣∣v̂m(ti+1, X
x,(k)
ti+1

)− vm(ti+1, X
x,(k)
ti+1

)
∣∣∣∣∣F̄]]

≤ 1

M
‖E[|v̂m − vm|]‖ti+1E

[
qti+1−tV

M
ti+1−t

]
≤

M1
h

M
‖E[|v̂m − vm|]‖ti+1 .

Similarly, for the second term, one has

E
[ ∑
k∈K̄ti+1−t\Kti+1−t

2LϕV
M
ti+1−t

∣∣v̂m−1(Tk, X
x,(k)
Tk

)− vm−1(Tk, X
x,(k)
Tk

)
∣∣]

≤ 2LϕM
2
h‖E[|v̂m−1 − vm−1|]‖ti .

Notice that ‖E [|ṽm − v̂m|] ‖ti ≤ E(Ê) by Assumption 2.6. Hence,

‖E[|v̂m − vm|]‖ti ≤ E(Ê) + 2LϕM
2
h‖E[|v̂m−1 − vm−1|]‖ti

+
M1
h

M
‖E[|v̂m − vm|]‖ti+1 .

We now appeal to Proposition A.4 to obtain

‖E[|v̂m − vm|]‖ti ≤ E(Ê)

 m∑
i=1

Ci +

Nh−i∑
i′=2

 m∑
j1=1

· · ·
ji′−1∑
ji′=1

Cm−ji′Ci
′−1


≤ E(Ê)(1 +Nh)

(m+Nh)Nh

Nh!
Cm+Nh ,

with C := (2LϕM
2
h) ∨ M1

h
M ∨ 1. �
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3 Numerical experiments

This section is deditacted to some examples ranging from dimension one to five, and showing
the efficiency of the methodology exposed above.
In practice, we modify the algorithm to avoid costly Picard iterations and we propose two
versions that permit to get an accurate estimate in only one Picard iteration:1

1. Method A: In the first method, we simply work backward and apply the localization
function ϕj to the estimation made on the previous time step. Namely, we replace
(21) by

v̂(ti, x) := (−M) ∨ Ê
[
V̂ti,x(v̂(ti+1, ·), v̂(ti+1, ·))

]
∧M. (22)

Compared to the initial Picard scheme (21), we expect to need a smaller time step to
reach an equivalent variance. On the other hand, we do not do any Picard iteration.
Note that for i = Nh − 1, this corresponds to one Picard iteration with prior given
by g. For i = Nh − 2, we use the value at tNh−1 of the first Picard iteration for the
period [tNh−2, tNh−1) and the initial prior for the last period, etc.

Remark 3.1. This could obviously be complemented by Picard iterations of the form

v̂m(ti, x) := (−M) ∨ Ê
[
V̂ti,x(v̂m(ti+1, ·),Lin[v̂m−1])

]
∧M,

with
Lin[v̂m−1](t, ·) :=

t− ti
ti+1 − ti

(v̂m−1(ti+1, ·)− v̂m−1(ti, ·)) + v̂m−1(ti, ·).

In this case, it is not difficult to see that v̂m coincides with the classical Picard iteration
of the previsous sections on [TNh−m, TNh ] (up to the specific choice of a linear time
interpolation). In practice, these additional Picard iterations are not needed, as we
will see in the test cases below.

2. Method B: An alternative consists in introducing on each time discretization mesh
[ti, ti+1) a sub-grid t̂i,j = ti + ĥj, j = 0, . . . , N̂h, with t̂i,N̂h = ti+1 and replace the
representation (20) by

Ṽt,x(φ, φ̂) :=
( ∏
k∈Kti+1−t

Gt,x(φ, k)
)( ∏

k∈K̄ti+1−t\Kti+1−t

At,x(φ̂, k)
)
,

Gt,x(φ, k) :=
φ(ti+1, X

x,(k)
ti+1−t)

F̄ (ti+1 − t− Tk−)
,

At,x(φ̂, k) :=

∑j◦
j=1 aj,ξk(X

x,(k)
Tk

)ϕj(φ̂(t̂i,κ(t+Tk), X
x,(k)
Tk

)

pξk ρ(δk)
.

1We omit here the space discretization procedure, for simplicity. It will be explained later on.
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where κ(t) = min{j > 0 : t̂i,j ≥ t}.
Then, we evaluate the v function on [ti, ti+1) by applying the scheme recursively
backward in time for j = N̂h − 1, .., 0:

v̂(t̂i,j , x) := (−M) ∨ Ê
[
Ṽt̂i,j ,x(v̂(ti+1, ·), v̂)

]
∧M, (23)

The estimation at date t̂i,0 = ti is then used as the terminal function for the previous
time step [ti−1, ti).
With this algorithm, we hope that we will be able to take larger time steps ti+1 − ti
and to reduce the global computational cost of the global scheme. Notice that the
gain is not obvious: at the level of the inner time steps, the precision does not need to
be high as the estimate only serves at selecting the correct local polynomial, however
it may be paid in terms of variance. The comment of Remark 3.1 above also applies
to this method.

We first compare the methods A and B on a simple test case in dimension 1 and then move
to more difficult test cases using the most efficient method, which turns out to be method
A.
Many parameters affect the global convergence of the algorithm :

• The structure of the representation (5) used to approximate the driver: we use
quadratic splines or cubic splines [10] to see the impact of the polynomial approx-
imation. The splines are automatically generated.

• The number j◦ of functions ϕj used in (5) for the spline representation.

• The number of time steps Nh and N̂h used in the algorithm.

• The grid and the interpolation used on X for all dates ti, i = 0, . . . , Nh. All interpo-
lations are achieved with the StOpt library [13].

• The time step for the Euler scheme used to approximate the solution X of (2).

• The accuracy chosen to estimate the expectations appearing in our algorithm. We
compute the empirical standard deviation θ associated to the Monte Carlo estimation
of the expectation in (22) or (23). We try to fix the number M̂ of samples such that
θ/
√
M̂ does not exceed a certain level, fixed below, at each point of our grid.

• The random variables (δk)k, which define the life time of each particle, is chosen to
follow an exponential distribution with parameter 0.4 for all of the studies below.
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3.1 A first simple test case in dimension one

In this section, we compare the methods A and B on the following toy example. Let us set
X := [x, x̄] with x = π/8 and x̄ = 7π/8, and consider the solution X of (2) with

µ(x) = 0.1× (
π

2
− x) and σ(x) := 0.2× (x̄− x)(x− x).

We then consider the driver

f(t, x, y) =µ(x)f̂(y) + (−α+
1

2
σ(x)2)y

where

f̂(y) =

(√
e2α(T−t) − y21|y|≤ȳeα(T−t) + f̃(y)1|y|>eα(T−t)ȳ

)
f̃(y) =

√
e2α(T−t) − ȳ2e2α(T−t) − ȳeα(T−t)√

e2α(T−t) − ȳ2e2α(T−t)
(|y| − ȳeα(T−t))

with ȳ := cos(x). The solution is v(t, x) = e−α(T−t) cos(x) for g(x) = cos(x).
Notice the following points :

• this case favors the branching method because g and v are bounded by one, meaning
that the variance due to a product of pay-off is bounded by one too.

• in fact the domain of interest is such that |y| ≤ ȳeα(T−t) but we need to have a smooth
approximation of the driver at all the dates on the domain [−ȳ, ȳ].

We take the following parameters: T = 1, α = 0.5, the time step used for the interpolation
scheme is 0.4, and we use the modified monotonic quadratic interpolator defined in [27].
The Euler scheme’s discretization step used to simulate the Euler scheme of X is equal
to 0.002, the number of simulations M̂ used for the branching method is taken such that
θ/
√
M̂ < 0.002 and limited to 10.000 (recall that θ is the empirical standard deviation).

At last the truncation parameter M is set to one.

A typical path of the branching diffusion is provided in Figure 1. It starts from x = π/2 at
t = 0.
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Figure 1: A typical simulated path of the branching diffusion starting from π/2 on [0, 3].
Bullets denote branching or killing times.

To estimate the driver f̂ , we use a quadratic spline: on Figure 2 we plot f̂ on [0, 1]× [−ȳ, ȳ]
and the error obtained with a 20 splines representation.

The driver
Error on the driver due to the spline represen-
tation.

Figure 2: The driver f̂ and its quadratic spline representation error for 20 splines.

Notice that this driver has a high Lipschitz constant around −ȳ and ȳ.
As already mentionned, we do not try to optimize the local polynomial representation, but
instead generate the splines automatically. Our motivation is that the method should work
in an industrial context, in which case a hand-made approximation might be complex to
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construct. Note however that one could indeed, in this test case, already achieve a very
good precision with only three local polynomials as shown in Figure 3. Recalling Remark
2.10, this particular approximation would certainly be more efficient, in particular if the
probability of reaching the boundary points, at which the precision is not fully satisfactory,
is small.

Figure 3: Approximation of the driver at t = T with only three local polynomials - Crosses:
f(·, cos). Circles: f`◦(·, cos, cos).

In Figure 4, we give the results obtained by method A for different values of Nh, the number
of time steps, and of the number of splines used to construct f̂ . As shown on the graph, the
error with Nh = 20 and 20 splines is below 0.004, and even with 5 time steps the results are
very accurate. Besides the results obtained are very stable with the number of splines used.

Error in absolute value for different
time discretization.

Error in absolute value for different
number of splines.

Figure 4: Results for the toy case using method A

On Figure 5, we give the results obtained with the method B for different values of Nh and
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N̂h keeping the number NhN̂h constant, equal to 20.

Figure 5: Error in absolute value for method B for different Nh and N̂h, keeping NhN̂h = 20.

Comparing Figure 4 and Figure 5, we see that the results obtained with the two methods are
similar, for a same total number of time steps. This shows that method B is less efficient, as
it gives similar results but at the cost of additional computations. This is easily explained
by the fact that the variance increases a lot with the size of the time step, so as to become
the first source of error. In the sequel of the article, we will therefore concentrate on method
A.
The time spent for the best results, obtained with method A, 20 time steps and 20 splines,
is less than 1.05 seconds on a regular (old indeed) laptop.

3.2 Some more difficult examples

We show in this section that the method works well even in more difficult situations, in
particular when the boundary condition g is not bounded by one. This will be at the price
of a higher variance, that is compensated by an increase of the computational cost.
We now take X := [0, 2]d, with

µ(x) = U × (1− x) and σ(x) := V
d∏
i=1

(2− xi)xiId,

where V = 0.2, U = 0.1 and Id is the identity matrix.

We will describe the drivers later on. Let us just immediatly mention that we use the
modified monotonic quadratic interpolator defined in [27] for tensorized interpolations in
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dimension d. When using sparse grids, we apply the quadratic interpolator of [8]. The
spatial discretization used for all tests is defined with

• a step 0.2 for the full grid interpolator,

• a level 4 for the sparse grid interpolator [7].

We take a very thin time step of 0.000125 for the Euler scheme of X. The number of
simulations M̂ is chosen such θ/

√
M̂ < 0.00025 and limited to 200.000, so that the error

reached can be far higher than 0.00025 for high time steps. This is due to fact that the
empirical standard deviation θ is large for some points near the boundary of X. We finally
use a truncation parameter M = 50, it does not appear to be very relevant numerically.

3.2.1 A first one dimensional example

In this part, we use the following time dependent driver for a first one dimensional example:

f(t, y) =y(
1

2
− V 2

2C2
[φ(t, T, y)(2C − φ(t, T, y))]2 − U(C − φ(t, T, y))),

with φ(t, T, y) = log(y)− T−t
2 .

We use a time discretization of 1.000 time steps to represent the time dependency of the
driver. On Figure 6, we provide the driver and the cubic spline error associated to 10 splines.

The driver
Error on the driver due to the spline represen-
tation.

Figure 6: The driver and its cubic spline representation error with 10 splines for the first
difficult case.

Figure 7 corresponds to cubic splines (with an approximation on each mesh with a polyno-
mial of degree 3), while Figure 8 corresponds to quadratic splines (with an approximation

19



on each mesh with a polynomial of degree 2).

Figure 7: Cubic spline method. Figure 8: Quadratic spline method.

Percentage error on the approximation of the solution v(0, .) for different time discretization
and spline discretization.

On this example, the cubic spline approximation appears to be far more efficient than the
quadratic spline. In order to get a very accurate solution when using sparse grids, with a
maximum error below 0.2%, it is necessary to have a high number of splines (at least 20)
and a high number of time steps, meaning that the high variance of the method for the
highest time step has prevented the algorithm to converge with the maximum number of
samples imposed.

3.2.2 A second one dimensional example

We now consider the driver

f(x, y) = f1(y) + f2(x), (24)

with

f1(y) =
2

10
(y + sin(

π

2
y)), (25)

f2(x) =
1

2
− (

2

10
+ Cµ(x))− σ(x)2c2

2
eCx+T−t

2 − 2

10
sin(

π

2
ecx+T−t

2 ).

Figure 9 shows f1 and the cubic spline error associated to different numbers of splines.
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The driver
Error on the driver due to the spline represen-
tation.

Figure 9: The driver and its cubic spline representation.

On Figure 10 and 11, we give, in percentage, the error obtained when using cubic and
quadratic splines for different discretizations.

Figure 10: Cubic spline method. Figure 11: Quadratic spline method.

Percentage error on the aproximation of the solution v(0, .) for different time discretizations
and numbers of splines.

Globally, the quadratic interpolator appears to provide better results for both coarse and
thin discretizations. With 40 time steps, the cubic approximation generate errors up to 3%
at the boundary point x = 2: reviewing the results at each time step, we checked that the
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convergence of the Monte Carlo is not achieved near the boundary x = 2, with Monte Carlo
errors up to 0.03 at each step.
Finally, note that the convergence of the method is related to the value of the quadratic
and cubic coefficients of the spline representation, that we want to be as small as possible.

3.2.3 Multidimensional results

In this section, we keep the driver in the form (24) with f1 as in (25), but we now generalize
the definition of f2:

f2(x) =
1

2
− (

2

10
+
C

d

d∑
i=1

xi)−
σ11(x)2c2

2d
e
C
d

∑d
i=1 xi+

T−t
2

− 2

10
sin(

π

2
e
C
d

∑d
i=1 xi+

T−t
2 )

In this section, we only consider cubic splines.

3.2.3.1 Results with full grids

Figure 12 describes the results in dimension 2 for 80 time steps and different numbers of
splines. Once again the number of splines used is relevant for the convergence.
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10 splines 20 splines

40 splines

Figure 12: Error in dimension 2 for 80 time steps with cubic splines.

Figure 13 corresponds to dimension 3 for different numbers of splines and different time
discretizations: the error is plotted as a function of the point number using a classical
Cartesian numeration. Once again, the results are clearly improved when we increase the
number of splines and increase the number of time steps.
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40 splines, 80 time steps. 80 splines, 80 time steps

80 splines, 120 time steps 80 splines, 160 time steps

Figure 13: Error in dimension 3 for different time steps and spline numbers, with cubic
splines.

3.2.3.2 Towards higher dimension

As the dimension increases, the algorithm is subject to the curse of dimensionality. This is
due to the d-dimensional interpolation: the number of points used is nd if n is the number of
points in one dimension. One way to surround this is to use sparse grids [7]. The sparse grid
methodology permits to get an interpolation error nearly as good as with full grids for a cost
increasing slowly with the dimension, whenever the solution is smooth enough. It is based on
some special interpolation points. According to [7, 8], if the function w to be interpolated is
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null at the boundary and admits derivatives such that supαi∈{2,3}

{
||∂α1+..+αd w
∂x
α1
1 ...∂x

αd
d

||∞
}
<∞,

then the interpolation error due to the quadratic sparse interpolator I2 is given

||w − I2(w)||∞ = O(n−3log(n)d−1). (26)

An effective sparse grids implementation is given in [13] and more details on sparse grids
can be found in [14].
On Figure 14, we plot the error obtained with a 2-dimensional sparse grid, for 80 time steps.

Figure 14: Error of the quadratic sparse grid of level 4 with 80 time steps

In dimension 3, 4, and 5, the error obtained with the spline of level 4 is given in Figure 15.
Once again, we are able to be very accurate.
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3D, 80 splines, 160 time steps. 4D, 80 splines, 120 time steps.

4D, 80 splines, 160 time steps. 5D , 80 splines, 160 time steps.

Figure 15: Error in dimensions 3, 4 and 5 with a cubic spline approximation and a quadratic
sparse interpolator.

Remark 3.2. On Figure 15, the error is plotted as a function of the point number. Due to
the special structure of the sparse grid points numeration, no special pattern appears (as on
Figure 13) but the maximum error is still located at the boundary of X.

From a practical point of view, the algorithm can be easy parallelized: at each time step
each, points can be affected to one processor. It can therefore be speeded-up (linearly) with
respect to the number of cores used.
All results have been obtained using a cluster with a MPI implementation for the paral-
lelization. The time spend using the sparse grid interpolator in 3D, a Monte Carlo accuracy
fixed to 0.0005 and for an Euler scheme with time step 0.001, is 2.800 seconds on a cluster
with 8 processors using 112 cores. The error curve can be found in Figure 16.
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Figure 16: Error in dimension 3, 80 splines, 160 time steps and less tight parameters.

Remark 3.3. When the solution has not the required regularity to reach the interpolation
error (26), one can implement a local adaptation of the grid using a classical estimation
of the local error (based on the hierarchical surplus) [16, 7]. It is also possible to use the
dimension adaptive method [12], which aims at refining a whole dimension when a higher
interpolation error in this dimension is detected.

Remark 3.4. The methodology developed here is very similar in spirit to the Semi-Lagrangian
method used in [27, 28] using full or sparse grids: the deterministic scheme starting from
one point of the grid is replaced by a Monte Carlo one. Classically, the error of such a
scheme is decomposed into a time discretization error and an interpolation error. This is
the same in our scheme but, to the time discretization error due to the use of the scheme
(22), is added a Monte Carlo error associated to the branching scheme.
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A Appendix

A.1 Technical lemmas

Lemma A.1. The ordinary differential equation η′(t) =
∑`◦

`=0 2C`◦η(t)` with initial condi-
tion η(0) = M > 0 has a unique solution on [0, h◦] for

h◦ :=
(`◦ − 1)(1−M)+ + (1 ∨M)−(`◦−1)

(`◦ + 1)(`◦ − 1)2C`◦
. (27)

Moreover, it is bounded on [0, h◦] by

Mh◦ := max
(

1,
(
(1 ∨M)1−`◦+(`◦−1)(1−M)+−h◦`◦(`◦−1)2C`◦

)(1−`◦)−1
)
. (28)

Consequently, one has, for all t ∈ [0, h◦],

E
[( ∏

k∈Kt

M

F̄ (t− Tk−)

)( ∏
k∈K̄t\Kt

2C`◦
pξkρ(δk)

)]
≤ η(t) ≤ Mh◦ . (29)

Proof. i) We first claim that∫ Mh◦

M

dy

2C`◦(1 + y + · · ·+ y`◦)
≥ h◦. (30)

Then, for every t ∈ [0, h◦], there is some constant M(t) ≤Mh◦ <∞ such that∫ M(t)

M

dy

2C`◦(1 + y + · · ·+ y`◦)
= t =

∫ t

0
ds.

This means that (M(t))t∈[0,h◦] is a bounded solution (and hence the unique solution) of
η′(t) =

∑`◦
`=0 2C`◦η(t)` with initial condition η(0) = M > 0. In particular, it is bounded by

Mh◦ .
ii) Let us now prove (30). Notice that yk ≤ 1 ∨ y`◦ for any y ≥ 0 and k = 0, · · · , `◦. Then,
it is enough to prove that∫ Mh◦

M

(
1 ∧ 1

y`◦

)
dy ≥ h◦(`◦ + 1)2C`◦ . (31)

By direct computation, the l.h.s. of (31) equals

(Mh◦ −M)1{Mh◦≤1} +
(

(1−M)+ +
1

`◦ − 1

(
(1 ∨M)1−`◦ −M1−`◦

h◦

))
1{Mh◦>1}.
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When h◦ satisfies (27), it is easy to check that (31) holds true.
iii) We now prove (29). Recall that K̄nt denotes the collection of all particles in K̄t of
generation n. Set

χnt :=
( ∏
k∈∪nj=1K

j
t

M

F̄ (t− Tk−)

)( ∏
k∈∪nj=1(K̄jt\K

j
t )

2C`◦
pξkρ(δk)

)( ∏
k∈K̄n+1

t

η(t− Tk−)
)
.

Since K̄nt has only finite number of particles, the random variable χnt is uniformly bounded.
Then by exactly the same arguments as in (32) and (33) below, and by repeating this
argument over n, one has

η(t) = M +

∫ t

0

`◦∑
`=0

2C`◦η(s)`ds = E
[
χ1
t

]
= E

[
χnt
]
, ∀n ≥ 1.

It follows by Fatou Lemma that

E
[( ∏

k∈Kt

M

F̄ (t− Tk−)

)( ∏
k∈K̄t\Kt

2C`◦
pξkρ(δk)

)]
= E

[
lim
n→∞

χnt
]
≤ lim

n→∞
E[χnt ] = η(t).

For completeness, we provide here the proof the representation formula of Proposition 2.5
and of the technical lemma that was used in the proof of Proposition 2.8.

Proposition A.2. The representation formula of Proposition 2.5 holds.

Proof. We only provide the proof on [tNh−1, T ], the general result is obtained by induction.
It is true by construction when m is equal to 0. Let us now fix m ≥ 1.
First, Lemma A.1 shows that the random variable V m

t,x is integrable.
Next, Set (1)+ := {(1, j), j ≤ `◦}∩K̄T and define Kt(1) := Kt∩(1)+ and K̄t(1) := K̄t∩(1)+.
For ease of notations, we write Xx := Xx,((1)). Then, for all (t, x) ∈ [tNh−1, T ]× Rd,

E[V m
t,x] = E

[
g(Xx

T−t)

F̄ (T − t)
1{T(1)≥T−t}

]

+ E

1{T(1)<T−t}
∑j◦

j=1 aj,ξ(1)(X
x
T(1)

)ϕj(v
m−1(t+ T(1), X

x
T(1)

))

pξ(1) ρ(δ(1))
Rmt,x


where

Rmt,x :=
( ∏
k∈KT−t(1)

Gt,x(k)
)( ∏

k∈K̄T−t(1)\KT−t(1)

Amt,x(k)
)
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satisfies
E[Rmt,x|FT(1) ] =

∏
k∈(1)+

vm
(
t+T(1), X

t,x
T(1)

)
=
[
vm(t+T(1), X

x
T(1)

)
]ξ(1) ,

by (17). On the other hand, (16) and (17) imply

E
[
g(Xx

T−t)

F̄ (T − t)
1{T(1)≥T−t}

]
= E[g(Xx

T−t)] (32)

and

E

1{T(1)<T−t}
∑j◦

j=1 aj,ξ(1)(X
x
T(1)

)ϕj(v
m−1(t+ T(1), X

x
T(1)

))

pξ(1) ρ(δ(1))
[vm(t+T(1), X

x
T(1)

)]ξ(1)


= E

[∫ T−t

0

∑j◦
j=1 aj,ξ(1)(X

x
s )ϕj(v

m−1(t+ s,Xx
s ))

pξ(1)
[vm(t+s,Xx

s )]ξ(1)ds

]

= E

∫ T−t

0

j◦∑
j=1

∑
`≤`◦

aj,`(X
x
s )ϕj(v

m−1(t+ s,Xx
s ))[vm(t+s,Xx

s )]`ds


= E

[∫ T−t

0
f`◦(X

x
s , v

m(t+ s,Xx
s ), vm−1(t+ s,Xx

s ))ds

]
. (33)

Combining the above implies that

vm(t,Xt) = E
[
g(XT ) +

∫ T

t
f`◦(Xs, v

m(s,Xs), v
m−1(s,Xs))ds

∣∣∣Ft] ,
and the required result follows by induction. �

Lemma A.3. Let (xi, yi)i≤I be a sequence of real numbers. Then,∣∣∣∣∣
I∏
i=1

xi −
I∏
i=1

yi

∣∣∣∣∣ ≤∑
i∈I

(
|xi − yi|

∏
j 6=i

max(|xj |, |yj |)
)
.

Proof. It suffices to observe that

I∏
i=1

xi −
I∏
i=1

yi = (x1 − y1)

I∏
i=2

xi + y1
( I∏
i=2

xi −
I∏
i=2

yi
)
,

and to proceed by induction. �
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Proposition A.4. Let c1, c2, c3 ≥ 0, and let (uim)m≥0,i≥0 be a sequence such that

uim ≤ c1u
i
m−1 + c2u

i+1
m + c3 for m ≥ 1, i < Nh.

Then

uim ≤cm1 ui0 +

Nh−i∑
i′=1

 m∑
j1=1

j1∑
j2=1

· · ·
ji′−1∑
ji′=1

cm1 c
i′
2u

i+i′

0


+ c3

 m∑
i=1

ci1 +

Nh−i∑
i′=2

( m∑
j1=1

j1∑
j2=1

· · ·
ji′−1∑
ji′=1

c
m−ji′
1 ci

′−1
2

) .

Proof. We have

uim ≤(c1)mui0 +

m∑
j=1

(c1)m−j(c2u
i+1
m + c3).

The required result then follows from a simple induction. �

A.2 More on the error analysis for the abstract numerical approximation

The regression error E(Ê) in Assumption 2.6 depends essentially on the regularity of vm.
Here we prove that vm(t, x) is Hölder in t and Lipschitz in x under additional conditions,
and provide some estimates on the corresponding coefficients. Given φ : [0, T ] × Rd → R,
denote

[φ]ti := sup
(t,x)6=(t′,x′)∈[ti,ti+1]×X

|φ(t, x)− φ(t′, x′)|
|t− t′|

1
2 + |x− x′|

.

Since (µ, σ) is assumed to be Lipschitz, it is clear that there exists LX > 0 such that for all
(t, x), (t′, x′) ∈ [0, T ]×X,

‖Xx
t −Xx′

t′ ‖L2 ≤ LX
(√
|t′ − t|+ |x′ − x|

)
. (34)

Proposition A.5. Suppose that x 7→ g(x) and x 7→ f`◦(x, y, y
′) are uniformly Lipschitz

with Lipschitz constants Lg and Lf . Let β and λ1, λ2 > 0 such that L2

λ22
T < 1 and β ≥

2L1 + Lfλ
2
1 + L2λ

2
2, then for all m ≥ 1 and i ≤ Nh,

[vm]ti ≤ Lv := (1 + LX)LX

√(
L2
g +

Lf
βλ2

1

)
eβT /

(
1− L2

λ2
2

T
)

+ 2(1 + `◦)C`(1 ∨ (Mh◦)
`◦)
√
h◦.
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Proof. For ease of notations, we provide the proof for t = 0 only.
i) Let x1, x2 ∈ Rd and Y m,1 := vm(·, Xx1), Y m,2 := vm(·, Xx2), and denote ∆Y m :=
Y m,1 − Y m,2, ∆X := Xx1 −Xx2 , where Xx1 (resp. Xx2) denotes the solution of SDE (2)
with initial condition X0 = x1 (resp. X0 = x2). Using the same arguments as in the proof
of Theorem 2.4, it follows that, for any β ≥ 2L1 + Lfλ

2
1 + L2λ

2
2, one has

E[eβt(∆Y m+1
t )2] ≤ E[eβT (∆Y m+1

T )2] +
Lf
λ2

1

E
[ ∫ T

t
eβs|∆Xs|2ds

]
+
L2

λ2
2

E
[ ∫ T

t
eβs(∆Y m

s )2ds
]

(35)

and then

E
[ ∫ T

0
eβt(∆Y m+1

t )2dt
]
≤ TE[eβT (∆Y m+1

T )2] + T
Lf
λ2

1

E
[ ∫ T

0
eβs|∆Xs|2ds

]
+ T

L2

λ2
2

E
[ ∫ T

0
eβt(∆Y m

t )2dt
]

≤ TeβT
(
L2
g +

Lf
βλ2

1

)
L2
X |x1 − x2|2

+ T
L2

λ2
2

E
[ ∫ T

0
eβt(∆Y m

t )2dt
]
.

Since L2

λ22
T < 1, this induces that

E
[ ∫ T

0
eβt(∆Y m+1

t )2dt
]
≤

TeβT
(
L2
g +

Lf
βλ21

)
L2
X |x1 − x2|2

1− L2

λ22
T

.

Plugging the above estimates into (35), it follows that

(∆Y m
0 )2 ≤ L̂2

v|x1 − x2|2, with L̂2
v :=

(
L2
g +

Lf
βλ21

)
L2
Xe

βT

1− L2

λ22
T

.

ii) For the Hölder property of vm, it is enough to notice that for t ≤ h◦,

|vm(0, x)− vm(t, x)| ≤ E
[
|vm(t,Xx

t )− vm(t, x)|+
∫ t

0
|f(Xx

s , Y
m
s , Y m−1

s )|ds
]

≤ L̂vLX
√
t+ 2(1 + `◦)C`(1 ∨ (Mh◦)

`◦)t,

where the last inequality follows from the Lipschitz property of vm in x and the fact that
Y m is uniformly bounded by Mh◦ . We hence conclude the proof. �
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