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Abstract

A new variance reduction technique for the Monte Carlo solution of integral
equations is introduced. It is based on separation of the main part. A neighboring
equation with exactly known solution is constructed by the help of a deterministic
Galerkin scheme. The variance of the method is analyzed, and an application to
the radiosity equation of computer graphics, together with numerical test results
is given.

1 Introduction

In [HM93], [Hei94] the complexity of Monte Carlo solution of integral equations was
studied. To prove upper bounds, a new variance reduction technique was developed
which combined deterministic and stochastic computations in an optimal way. The
analysis of [HM93], [Hei94] aimed at sharp estimates of complexity rates, so it was car-
ried out for a model problem - smooth kernels and right-hand sides over the unit cube.
In the present paper we develop this method for general domains and non-smooth ker-
nels in such a way that it can be used for Monte Carlo simulations of real processes.
We shall present an application to global illumination in computer graphics.

Let us briefly describe the underlying idea. Suppose we have a second integral equation
(i. e. second kernel and right-hand side) which is close to our original one. Knowing the
solution of the latter. it is possible to improve the accuracy of Monte Carlo estimates of
the former considerably. This is the well-known method of control variates or separa-
tion of main part. It is described in section 2. Usually the second equation stems from
a neighboring problem (maybe simpler one. maybe one already computed). But what
to do in the general case, when no such parallel problem suggests itself. That was the
idea in [HM93]: Let us first caiculate some deterministic approximation to the solution.
In high-dimensional problems. this will be only a rough one, as a rule, less precise than
Monte Carlo. Now we construct a neighboring problem. We arrange it in such a way



that the approximate solution of our original equation becomes the exact solution of
the approximate equation. If that approximate problem is close to the original one, if
it can be solved by the help of the same Markov process, and if its involved functions
are not too complex, we can use both equations to obtain a considerably improved
Monte Carlo solution.

Of course, for concrete simulation problems. this approach has many “if"s. We try
to resolve some of them by providing a general analysis of how the proximity of kernels
and right-hand sides affects the reduction of variance. This is the contents of section
3. In section 4 we show how the data of a piecewise constant Galerkin approximation
can be used to set up a neighboring equation. On the basis of accuracy estimates from
section 3 we analyze which parameters of the deterministic approximation influence
the reduction of variance. In section 5 we outline how the procedure can be applied to
the radiosity equation in computer graphics. Finally, we provide results of numerical
experiments based on a simple test equation from two-dimensional (“flatland™) radios-
ity, whose solutions are known exactly.

For general information on Monte (‘arlo methods, variance reduction, and control
variates we refer to [SG69]. [ErmT71]. [Sob73]. [EM32], [KW86], [ENS89], [Mik9la].
[Mik91b], [Sab91]. Several previously developed variance reduction techniques for in-
tegral equations are related to ours in the sense that they are based on control vari-
ates, but they lead to entirely different algorithms: [FErm71],ch. 6.2.5, [SpaT9], [ES85],
[Mik91b],§5.10, [Sab91]. ch. 2.2.3. [LW94]. For complexity theory of Monte Carlo meth-
ods we refer to [TWWS83]. [Novssl. [Hei94], [Mat]. The computer graphics background
is covered by [CW93]. while notions from functional analysis can be found in [DS53].

2 Separation of the main part

Let X be a non-empty set. ¥ a o-algebra of subsets, u a positive, o-additive finite mea-
sure on (X,X). Let | < s < o and let L,(X) = L,(X.Z, u) denote the usual Banach
space of Y-measurable s-integrable functions (resp. essentially bounded functions, for
s = 00). Consider the integral equation

T / KN(r.y)uiy) duly) + F(x) (1)
J X

where F and K are given such that /' € L _(X), A belongs to the Banach space -
denoted here by L. (1, of ¥ = ¥ measurable functions on X? satisfying

NN, - esssup / N {r y)] duly) < .

re X JX

and v € L. (X)) is the unknown solution.



Under these conditions the integral operator Tk defined for f € L(X) by

(Tl = / K(r.y)fly) duly)

X

is a bounded linear operator in L (X)) and its operator norm satisfies
W o LX) = LX) = 1K1y

We assume that we are given a function @ € L (X. Y. u). Instead of the full solution
u(x) we seek only the value of the functional ® at u. that is, the scalar product

o

(u. ) :/ w(x)®(x) du(r). (:
X

A standard Monte Carlo procedure to compute (2) is the von Neumann Ulam scheme,
which consists in the following. Let po(x) and p(z,y) be the densities of initial dis-
tribution and transition probability. respectively, of an absorbing Markov chain on
X. We assume that py(r) and p(r.y) are measurable on X and X x X, respectively,
po(z) >0, plz,y) =2 0 (r.y € N).

/ pola) dplr) =1 (3)
Jx .
and
/ play) duty) =1 —qgtr) (4)
Jy

with g(z) > 0 being the probability of absorption at the point x. We suppose that
the spectral radius of T, in L. (.X) is less than 1. This guarantees that almost all
realizations of the Markov chain are of finite length. To proceed with the von Neumann
Ulam scheme we suppose

i ®(r)# 0 and po(r) =0} =0
g p{hte.y) #0 and pla.y) =0} =0
plF(r)y#0 and ¢(x)=0} =0.

For our purposes it i1s convenient to represent
®(r) = olr)polr)

Kieoy) = klzoy)plz.y)
Flel = flr)glr).

So our original equation (1) becomes
Sy - 4
= Tu+ fq. (5)
(Given a realization

E S I AR I -I'm) (6)



of the random walk. we define a random variable 1 by

nlkofo8r = steg)k(eocey) k(@) flam). (7)

If the spectral radius of 1 = [y, in L(N) is less than 1. then g has finite first
moment and

. dy = lEn(k, f.6) (8)

and the Monte Carlo approximation to (u.®) is given by

AY

|
vk L), (9)

=1

where the (&), are independent realizations of the Markov chain. This accomplishes
the von Neumann Ulam scheme. Now let us assume that we have approximations v to
u, h to k and ¢ to f such that the corresponding integral equation

0= Tt +gq
holds exactly. Let us put
Clh S ohig &= (e @)+ nlk. f.&) = nlh,g.€). (10)

Then (w, ®) 1s approximated by

N 0
1 L P ! . v
NZI:@(/‘VW/'#I-SH =(r.$)+ F;(n(l\.j,fl) —n(h.g.&)). (11)

This 1s known as the method of control variates or separation of main part for integral
equations (see, e. g.. [SG69], ch. 3.9. [Erm71]. ch. 6, §2.5). The mean square error of
approximation of (u.®) by (111 1s given by

N . -y
|E| . (I) ) L. Z C(l\‘- j'. h.'(]. EZ))Z — \’a‘F\v(Q ) .

1=1

It 1s the main goal of section 3 to give a detailed analysis of the variance of (, its
dependence on the kernels and right hand sides involved. and in particular, the rate of
decrease of Var (() as h approximates k and g approximates f. We shall carry out this
analysis for a fixed Markov chain. satisfying the assumptions stated above. We shall
also fix ® = ppo € L1 X'V and assume. in addition.

;J[)n e LN

Variable parameters will be the functions &, 4. f, g, and it is convenient to imtroduce
the following classes: Fix o =0 . 0 < ~ < 1. ng € N and let X' = K(a.v.ny) be the
set of all k € L..(\N?1 satisiving

il v <o (12)



and

T2 LX) = LX) < 7 (13)

Given 8 > 0 we let F = F(#) be the class of all measurable on X functions f with
f2q € L.o(X) and

Il eixy <0 (14)

Observe that this and (4) imply
gl vy < NFq i oix) < 02

It is well-known that for & € A and f € F. the random variable 7 is well-defined
and possesses finite second moment (see also Lemma 1 below). Hence, if k,h € X
and f,g € F, then the variable ( is also well-defined and of finite variance. For the
further estimates we need the following results about K. These facts are elementary
and mostly known. We list them. together with an outline of proof, for the sake of
completeness.

Lemmal Leta>0. 0« < L. nye N IfkeK(a.v.n0), then

(i) 1 — Tz, is invertible o LX) and ||(1 — Tl 7 Lol X)) — Lo (X)) < 0,

, - a1
where Fo = (1 — ) LN a

L p=t)
(i) kPl Lairey S IK2PIG S0, < o
(i) T2 Lool X) — L (N1 < 5.
(iv) 1 — Ty, is invertible i L (XN) and [[(1 = Tip)™" 1 Loo(X) = Leo(X)]| < 51,
where 3y = (1 — ~)7! Z'/L;f,l al.
If k,h € K(a,v.ng). then

(v) HT,:I;ZP cLoo(X) — LNl <~ and (= Tinp) ™'t Loo(X) = Lao(X)]} < Bo.

Proof: (i) is just the Neumann series

1y — 1

Y P R T;Z"p)"l Z T,
=0

observing also that
), 2
Aplln o = o

5



because of (4). (i1) 1s Holder's mnequalitiy:

, 1/2 1/2
/ |k(a y)|pley) duty) - (/ kiroy)plae.y) (Ut(.l/)) (/ p(lf-.l/)d/t(y)> :
X JN X

To see (ii1), note that

||T,:;? LN s LX)

.=
< ess sup / H (Ih(r o} plaagn)) dp(ey) o dp(Tng ).
Jxmo

Toe N 1 =0

which can be estimated by Holder's inequality in a similar way as above. (iv) follows
from (ii) and (iii) as in (i). Finally, (v) is a consequence of

ng—1 ng—1 N\ 2 ng—1 2
2 H |k(zi xoqr jhla, ol = (H /;(‘r,..z'zﬂ)) + (H h,(.rl-,.rlﬂ)) .
(=0 ¥ 1=0

1=0

This proves the Lemina

Remarks:

1. For the Lemma to hold true. 1t sutfices to assume
i s 2
Ik pllecin < a (15)

instead of the stronger condition (12).

2. Although we restricted ourselves to ® € Li(.X'), our analysis also includes e. g.
delta functions. Suppose X is endowed with a metric and we consider continuous (or
piecewise continuous) functions on X instead of general L., functions. Then point-
values are correctly defined and constitute continuous linear functionals. In that case
we have

(u, 6,1 = ulra) = Fro) +/ K (xy. y)uly) duly).
X

and the problem reduces to the computation of (u.®), where ¢ = K(xg,y). and it is
assumed that A (xrg. 1€ L0 X0

Setting

Poly) = plag.y )/t = glaro)).

(provided q(xo) # 11, we essentrally arrive at the standard process of computing u(xo)
which simply starts in .y, with probability 1. then moves to the next state with density
plro.-) etc.



3 Variance analysis

Following the arguments of variance computing for the standard von Neumann Ulam
scheme, ([Erm71] ch. 6. §2) we first give an exact expression for the variance of (.

Proposition 2 Let ./ > 0. )< ~ < 1. ng € IN and assume that k,h € K{a.y,ng),
f.g€ F(8). Then the variance 0/ Clhk.fohog £) is given by

Var () = (1= Ty U gy = 200 = Tany) ' faq) + (1 = Trap) "' (g% q) 97 Po)

—((I ~ Ti) " fq) — (1= Tup) " Hgq)spPo)’ (16)
Proof: We have
Var(¢) = Var(n(k. f.€) —n(h.g,8))s (17)
and
Bk, 7€) = athogo €0 = 3 [ o) 48U )
m=0 !
where
mi—1 m—1
A(zo,....Tn) = 2lro) i flan,) H Rl o) — g(em) H h(x;, riy1) (13)
=0 3
and
m—1
dO(xrg. . L) = polLo)q(Tim) H P ripr) dp(zo) . . dp(xry)
1=0

(in case m = 0 we replace the product H:';Jl by the factor 1). Consequently.

l\m(l'().-- Sy )= IU I'm H A £ r1+1
1=0
mo-- | m—1
—2f(wmigten) [Tk rbten ) + glen)? [T Ao zan®)
1=z} 1=0

from which we get that

E(n(k. [ &)~ yih.g.E))°

e

= Z( o = 20 faq) + T (%) 2 po)

m=0

= (- 'l,.,,r&l_f-'}r/w 200 — '['khp)‘l(fgq ([ —Thep)™ ( (1) po). (19)

[



The absolute convergence of the series involved here follows from the assumptions and
Lemma 1. Combining this with (3) and (17) vields the result.

Remark: Proposition 2 holds true if we replace (12) by (15). Only in the subsequent
results we make use of the stronger requirement (12).

Although formula (16) is exact. it is not convenient for us since it does not show
explicitly the dependence of the variance on the proximity of h to & and g to f. We
shall therefore provide further estimates. which will fulfill this requirement.

Let us first introduce some notation We put

ey — Dhp o Lt XD = Lo (X)) = 0(k,h) (20)
Ty L 0X) = Lo( X)) = c(k.h)* (21)
- g1 LX) = pUfog)e. (22)
Observe that
S(k,h) = ess sup / hleoy) = hte y)ipla.y) duly)
reN JN

IN

o 1/2
ess sup ( / Chia oy ) — it y)) ple.y) ([/L(g)) =c(k.h).
Jy

reX

The fallowing theoren shows that the variance reduction is at least proportional to the
square of the approximation errors of & by A and f by ¢. in the respective norms.

Theorem 3 Leta. >0 .0« ~ < | andng € IN. Then there erists a constant ¢ > ()
such that for all k. h & K{a.~. 1y and f.q € F(0).

NartCih o hog &) < e(=(k . + pf. ).

Proof: From (17) we get

Var(¢) < E(nihk.f &) = nlhog.£))°
< 2Bk LG =tk [N+ 2 EBy(h f.E) — nlh.g.€))
= 2wy 4 w2y {23)

where, according to (191w vy, = L (X ) are given by

wy = (0 Lo "= 200 = T) ™+ (1 = They) D)) (24)

o . / l‘,’,;y,

!

g (25)



To abbreviate formulas. we put
* = (1 - 71}02;))
o= (1= Tirp)
(] - T)ﬂp)'

»\
I

Then we have

ATV 2B !

A YB-)B Py B -C)BT!

= AYB-A)B '+ ATYB-C)B (T —ATYWB-C)B!
AYB-A)B '+ AT YB-C)B '+ AT A-C)CTY(B-C)B!
ATN2B—- A - C+(A-C)CTY(B-C)B™.

Hence
wy = ([ — Tk2p)—l|"['(k4h)1;‘ + L he—p2ypld — Tth,)“l’lv(h—k)hp)([ - Tkhp)_l(fzq)' (26)
In view of (12) we have

U Thypy LN — L UX I = [[(h = k)Aplle ey < ad(k.h) (27)

and similarly
T h2—kyp o Lot X) = LN = (0 + k) (A = K)pllLary < 200(k, h). (28)
It follows from Lemma 1. (21). (27) and (28) that
Wl vy = Jole(h h)? + 2a0(k, h)Focd(k, k)30
320(1 4 202 3)s (k. h)?. (29)

and, recalling (22) and (25).

Nwalln vy < Bop(f.9)°. (30)
By (23),
Var(C) < 20wl Loy + healln e o)) 19 pollzy x)

which together with (29} and (30) proves the theorem.

Remarks: 1. The constant ¢ depends only on a, 5,1, 8 and on ||¢*pol|L,(x)-

2. We do not have to demand h € K. A standard perturbation argument yields

!

the following: Given o > 0. 0 < ~ < 3" <1 and ng, there exists a 69 > 0 such that
whenever k € K(a.~. ngiand h e L1 X?)issuch that |h]|L.(v2) < aand 6(k h) < bo.

then h € K(a.~ .10l



Corollary 4 Given .6 > 0. ) < 5 < 1. ny € IN, there erist constants & > 0 and
¢ > 0 such that for all k € K{a. 5. ng) and h € L (X?) with |{k — k|l (x2) < do. and
forall f.g € Lo (X with || fll; vy gllox) < 0. the Monte Carlo scheme (7) is
well-defined and

Vartcr < cffh = h\i})‘\(‘w) +[[f = !/Hix(_\'))-

This follows readily from 'heorenm 3 and the remark above. Corollary 1 extends the
upper estimate in [HIM93]. Prop. 1. where the case X = [0,1]%, p(a.y) = | — ¢o was
considered.

Sometimes it might be hard to get an estimate of é(k, k), z(k, k) or
|k — h|lL..(x2) because of the supremum involved in their definitions. This occurs,
for example, when the radiosity equation (see below) is considered in domains with
corners. By strengthening the assumptions on p. k and h. we can pass to the L,-norm.
We shall assume that 2%p, < [ .1 X). and

f.TeSs sup /[)(J‘.]/)(//l(.l‘) < 2. (31)
Jy

ye \

Hence if & € L..(X* . then T, is bounded also as an operator in Li(X). Let us
introduce the following class. Given oo > 0. 3> 1. 0 <~ < | and nyg € IN. define

KAa,3.v,ng) = 1k = Aia.~ngi [ — Tz, 1s invertible in L;(X') and
(] = Thep) "o Ly(X) — Ly(X)]| < 3.

By Lemma 1, each & ¢ Ao~ ny) satisfies
“’I - [‘A“?"’ b [4\(\) — Lx(\)H < ,Bo,

hence the Riesz-Thorim iterpolation theorem (see [Tri78]) implies that for &k €
K"’(aaﬁﬂw-,n())
1F = Lo LX) — Lo(X) < (380)'° (32)

I

Let us finally denote
alk.hy = / /(A‘(J'.]/) — hie ) plesy) du(x) duly)
VANVAN
f.qg1" = /\_/W,lw — gl i) du(r).
Jx

Theorem 5 Given o ) ~ 0. 3 = 1. 0 <~ < 1. ny & IN., there exists a constant ¢ > 0
such that for k.h € K'ia 3.~ ngi and f.q € F(8),

Nart b g S < clalh i « o (fog)?).

10



Proof: From (23) we fer

Var( (1< 200l + ezl o)l *poll e xo-

L < 370fg)”

Now we estimate [[wyli; (v, \ccording to (26).

lwillyxy < 00— Teept Do L(X) — Ly(XD

X H’]‘(k—h)‘\p + 'ly(hz_kz)p([ — Tth)_lT(h_k)hp : L,DO(XV) — L1(4\7)1|
<= Ty ™ Lol X) = Lo (X 120l 2o

IA

j‘))U()(H’]y(k—h)J]r . L,X(AX') g L}(‘\')H
+v‘!’]'[h‘"fk‘-’)]w(l - ’I‘h‘p)_lT(h—k)hp : L)o(‘Y) - Ll()()“) (34)
Obviously

Wiy, Lt N — LX)
/ /(A'l.r.j/l bl ) Pple.y) dule) duly) = ok R)*. (35)
Jx Iy

To estimate the second summand in (34). note first that given any s € L..(X?), we
have, using Holder's inequality.

1Ty LtN ) — Lyl X))

, 2

/ (/ stoecgipte.y) (1/1(,1/)) dp(r)
X NJX

/ </ .~(,-r.x/th-r-y)du(;u)) (/ plz.y) du(y)> du(z)
PRAS X

/ stroyvpreeyd dple) duly) (36)
Jx

IN

IA

A
—

and similarly, if s is defined by s*(e.y) = s(y.r). then

o TN T X = [T = LX) = La( X))

< o, / /\ NN play) dule) duty).
NN

[t follows that

T h2—nzypt I Loy ’l'/‘ufuhp Lo (X)) — Ll(X)H2

A A R NI = Tz

VLX) — LX)
S| VAT T B A W /um\)H

Il



< Cpﬂﬂo//(hu'-!//“ Kooy h(eey) + klewy)ple.y) due) duty)
X AY
x/ /(/11.1‘.;/ . A';’[r.;/))"/1(«1‘.,z/)zp(.r.y) dp(x) duly)
XJY

< 4a4c,,,;3;i,)m k.ohy?! (37)

4 Galerkin approximation

In this section we discuss one possible way of constructing h and g. We shall exploit
the data supplied by a simple deterministic Galerkin method. Then we analyze this
construction from the point of view of approximation quantities of section 3. So let
us first consider the Galerkin scheme. We shall only deal with piecewise constant
approximations. For this purpose fix n € IN and let X = U, X, be a partition of
X with X; € &, p(X,1 # 0 for all v and (X, N X,) =0 for all ¢ # j. The Galerkin
method for solving

uo— Thu=1F

seeks to find an approximation to u of the form

0= E NS
(=1

(x denoting the charactenstic function) satistving
(= T ooy b= Fo\y,) (¢ =1....,n).

This leads to the system

", ZI\'MH,: F (r=1..... n) (38)
y=1
with
N, = (N / / K(r.y) du(y) du(x) (39)
Jx, Jx,
Fo= i Nt / Flr) du(e). (40)
Jx,

Often ‘A, and F; cannot be determined exactly, and one replaces them by some ap-
proximations, A, and £/ Furthermore. in some situations the resulting system

i’ N© AT (0= 1. ... ") (41)



itself is solved only approximately. by iterative methods. So let (v;)i, be an approxi-
mate solution of (41). We put

", - { NI

{0 otherwise,

where S C {I,....n}* is supposed to be a large subset, whose choice allows us to
pursue some strategy of excluding certain pairs of regions for which our construction
might behave badly. We will comment on the choice of 5 later on. Finally, we compute

(Gi)?zl by
ro= Y Hor =G =10n). (42)
1=1

This is our starting point - a svstem satisfied by (v;)jz; exactly. Now we pose the
following task. Find h(x.y) on X? such that the following statement holds for all
(z)%, . (b)), € R": (=), is a solution of the system

1= 1
Te
S E HLJ:]:,)Z
J=1

iff z =37, zixx, 1s a solution of the integral equation in L. (X).

v Thpz = b
with b= Y7 by x,. It ix readily verified that this holds iff
Doy, o) = H, (13)
for almost all z € X, and all +.) = 1..... n. (43) means that

/ hlx.yptr.yy dpiyr = H, (0 e X, )= 1,....n).
X

)

A possible choice results from assuming h(r.y) = h(x) for ¢ € X, y € X,, which
gives

K () (e j) €S
= & , y 44
/[I/(l) {0 (Ij)gb. ( )
where
poN) = / plocy) duly). (45)
Jx,
We assume that S is chosen in such a way that for (2. ) € 5,
ess it op () > 0. (46)

re \',



Then definition (44) 15 correct. We shall also assume
gl 2 go >0 (re X (47)

Finally, we set

(":Z(;l\'\" (48)

=1

and
gla) = G(e)/qlr). {49)

Summarizing, we have found /i and ¢ in such a way that v = > v\ x, is the exact
solution of

v Tyt = gg. (50)

It is intuitively clear that the tiner the Galerkin approximation and the larger S, the
closer will Ty, be to Ty, and (v be to F. The precise behaviour depends, of course, on
the concrete situation considered. Nevertheless even in the general case it is possible to
point out some quantities which on one hand determine the proximity of the neighbor-
ing equation to the original one. and on the other hand. are themselves determined by
the precision of the Galerkin method. Thus our discussion aims at understanding how
the variance reduction depends on the Galerkin quality. Let us introduce the following
notation. Set

piy = (X)) / / plary) dply) dp(r) = /t(Xz)_lf py(@) du(r) (51)
JN \ X

[ A

and for (z,)) € S.

Alu = ]\‘u/[’l./ (9
/.':] = [\':J/p”‘ (5

So |Ki; — Ki;| and [k, — &}, reflect the precision of approximating the true Galerkin
coeflicients (39).

Note that
A I, I, keyipte.y) dpty) du(r)
v f\ f‘\,} pleoy) duly) du(x)
so k;; is an average of & over N, - X, with respect to a certain measure determined by

p. Hence the quantitv

ens S l/\(l.(/) - A‘,/i = Ny
re N, e X



is related to continuity of &. Put furthermore

essf p,(e)/p, = r,
reX,

for (¢,j) € S. According to (161, r,, > 0 for (i.j) € 5. It is a goal of our strategy 5 to
keep r;; reasonably away from zero. This quantity together with the following,

o83 St Ip,(r) — 1sz1 =)\,

re X, pz‘/

also defined for (7, ) € S. describes the oscillation of p;(x) on elements X;. The finer
the partition, the closer r,, to | and the smaller \;, - as a rule. Put finally for all

1, =1,...,n,
o= X //pru ) duly) du(x).

Z T, = / (1 —qg(r)) du(xr) < pl X).
N Jx

It follows that

The following two propositions show how the quantities which control the variance
reduction are related to those of the Galerkin approximation discussed above.

Proposition 6 [f ke L (X)) with [[k|lL (x2) € a. then

U'(k’ h)2 < 3 Z(w)eﬁ'(".lz,/ t ()27‘1—]1 /\;’2./ + ":jlu"u - kgj)'z)yr” + o Z(i,;)es Tiye

Proof:
ok ) = /]m.r.y)—huqy‘wpu.,y)du(y)du(:v)
= > / / (x.y)— K] /p;(x))pla.y) dply) dp(x)
ll/)€\
+ Z // k(r.y)ple,y) duly) du(z). (54)
ongs TN
For (i,)) € S, we have. taking into account (53).

/ / (x.y) — N fporiplaecy) duly) dpir)
3/ / (k(r.gr b ptacy) dp(y) dule)
X, JX,

)



H/ / kopoipaPplecy) duly) difa)
+3/ / (b, = &7 ppea))iplacy) duty) dule)
X, JX,

3n? T+ 31\’12]/ ()= po Vipie) ™ dpa) + 3k — k:})z/ ﬁfjp,vj(.r)’l dp(x)
v X,

< 3kl ST+ 3/\1, L N g N+ 30k, — A-/,)%;‘p,,ﬂ(xy)

l./

IA

(h,, - & )‘))Tr“,

ty

Ay 2 —1y. 1
< 3(/{,:2]- +a'r; A+

< G
which proves the proposition
Proposition 7 If k= L. (X< wth ||k, (x2) < a. then

(f.¢)* < < 2, T+ o)l e — Hl\ +U(k,/z,)ZHUHEX(X)).

7’(f~g)2 = /l/"(.l' et glr)” 1//1(
Jx

< gy [F Gy

= g i L= Tl

< 2q0 D = Tt ||1 Ty — Tkp)””ig(.\'))
< 2g, M0 = Lyt Lot X ) = LX) e —ollf

+H/H Lip /\l\) - '2(" H

|l', Lo(X

)
< 200 N = ap (XY R - le v) + ok h) HUHZ xy)s

where we used relation (36 twice. T'his proves the desired inequality.

The last proposition shows the direct dependence of 7(f.g¢) on |ju — vljL _(x), which
is the error of the Galerkin solution. and on o (k. h). which was already estimated above.

Now suppose that & = Ao~ o and his constructed as above. C'an we assert that A
also belongs to such class. at least asvimptotically? In fact. under certain assumptions,
we can. Let o’ > o anvl =~ < ~" -~ 1. In a wayv similar to the proof of Proposition 6 we
can derive that for (/. ;1 — >

ess sup  Aiiog doroygn <oy b R LT A'f‘]ir;l

re X, yey,



Let us assume that the quantities on the right hand side are small, giving that

max ess sup |h(r.y) = hix.y)| =4
(ES reN,yeX,

Since A(z.y) =0 for r € \N,. y = X, and (1.)) ¢ 5. we get
i )] < k(e g)] + 0
for almost all z.y € N. By the definition of K(a.v.n,),
T LX) = LX) <
A perturbation argument gives now

T LX) = Lo (X)) <

provided & is small enough. I'his argument carries over to the case of X', provided k
satisfies. in addition.

110 LX) = LX) < < L

for some ny. This i~ the case ¢, g. for the radiosity equation described in the ne:t
section.

5 Application to the radiosity equation

In this section we shall illustrate the method developed above by applying it to the
radiosity equation of computer graphics [CW93]. This equation describes the illumina-
tion of closed scenes (interior of buildings, rooms with furniture etc.). The same type
of equation also occurs in radiative heat transfer [SH92]. The radiosity equation has
the form

upr e / Kir.yjuly) dp + F(x) (55)
Jx

where X is the surface of the scene, F(x) is the radiometric intensity of light sources
at z, and u(z) is the total intensity of light due to the contribution of sources and
(multiple) reflection. Only monochromatic light is considered, the full colour image
has to be obtained by superposition [(W93]. It is assumed that only diffuse reflections
take place (i. e. no mirrors. gloss. etc.). Then the kernel is given by

cos{ng, y — &)cos(ny. r —y)

KN(r.y) = ptaenetr.y) 3
e =yl

Here n, is the surface normal m point r (directed into the scene). cos(rn,, y—r) denotes
the cosine of the angle hetween the vectors 1, and y — r, and w(x,y) is the visibility
factor - it is equal to | if the line segment from & to y does not intersect the scene in



any other point (r and y “see cach other ™). and equal to 0 otherwise. The factor p(z)
describes the portion of the incoming energy which is reflected (the rest is absorbed).
In diffuse environments one assumes p(x) < 1 for all r. For details on the radiosity
equation we refer to [("WY3]. Often scence are composed of triangles (or other elemen-
tary geometric objects). We shall assume that X = U X, 1s some decomposition into
triangles (possibly not the original. but already refined ones), satisfying p(X,N.X,) = 0,
where p is the Lebesgue surface measure.

A standard deterministic approach of solving (55) is the radiosity method. This is
just the Galerkin scheme with piecewise constant approximation on X; as described
in section 4. It is assumed that p(r) = p. 1s constant on X;, and F(r) is either also
assumed to be constant or replaced by the average emittance

I o= (X, )'1/ F(r) du.
X

Then we get, following the notation of section 1.

/\'” = /)Z\DLJ

A Y / / Qlacy) dy dr
Jx, Uy,

COS(N Y — &) cos(n,. .~ y)

with

and

QUr.yy=wir.y) 5
mle =yl

The quantity ¥,; is the so-called (patch-to-patch) form factor ([CW93], ch. 4). The
resulting system (38). (or (41). when only approximations to the form factors are
available) is called the radiosity system. Usually it is solved iteratively (radiosity

methods).

Let us now turn to Monte Carlo methods of solving (55). They are applied when,
due to the complexity of the scene, the Galerkin method is too time-consuming or not
precise enough. One simulates cither directly the light transfer (*from the source to
the eye”) or the “importance™ transfer based on the dual equation (“from the eye to
the source”). The latter corresponds to the scheme described in section 2, and we
will restrict our considerations to this case. Now suppose we seek the value of u in a
point rg. Then the initial distribution of the Markov process 1s the delta function in
To (compare remark 2 after Lemma 1). We fix the transition density as

Plecgs = (L —qo) Qlao.y).

Q(r,y) is the cosine distribution over the hemisphere i r of directions into the scene.
and 0 < g9 < 1 atermimation parameter at our disposal. (There are many modifications

I~



to produce random walks through the scene, but for our purposes of illustrating the
developed method we consider only this one.)

In the notation of section 2 we have o = 1, k(r.y) = pi(l —qo) ' forr € X;, y € X,
and f{r) = Fi/qo for » € X,. So the walk {6) and its contribution (7) are defined.
(Note that if the light sources occupy only a small portion of the scene, the last step
of the walk should be modified in such a way that r,, always hits a light source. This
also requires a corresponding modification of the last step of our method.)

Now let us discuss the scheme of section 1 for the present situation. Having fixed S.

we define h;;(x) by (44). with
pyle)=1(1— qo)/ Q(r,y) dy.
X,

The integral is called the differential {point-to-patch), form factor ([CW93], ch. 4). If
X 1s fully visible from . 1. e. w(x.y) =1 for all y € X, then this form factor can be
computed explicitly ([("W93]. ch. 1.6). Hence our strategy should ensure w(z,y) = 1
for v € X;, y € X,. (v.7) € 5. As a rule. the finer the partition, the more pairs of
elements X,;, X; will satisfv wir.y)=1or w(r.y) =0 on X; x X;. Next observe that

py = i qo) p(X9)7 / / Q(z.y) dy dx
Jx, Jx,
= |l - ‘[(J)q}zn

with W,; the form factor. as above. The discussion in section + made it clear that the
strategy should furthermore exclude those (. ) for which the differential form factor
deviates to much from its mean - the form factor. This is essentially the case when the
view of X from r “collapses™ as r moves through X, (i. e. p;{x) = 0 for some r € X;).
The way of setting up S should be investigated in more detail.

In the rest of this section we want to treat a numerical example. We move from three-
dimensional graphics to dimension two (“flatland™. see e. g. [Hec92]). Our “scene” is

now the unit circle. \" = {¢* : 0 < s < 27}, and the radiosity equation takes the
form
. COS{N Yy — &) Ccos(1y,, & —
w(x) = Fir)+ play / ALY Jcostuy y)u(!/) dy.
JX 20r -y

Using the parametrization above. and taking into account that for the circle. | — y| =
2cos(ny.r —y). we get

s+
u{s) = Fisy+ {)—\-"—) cos{m/2 — |t — s|/2)ult) dt.
thus
2] 2r
st o= fsy - /)ll / sin((1 — <)/2)|u(t) dt. (56)
Jo

19



This is the radiosity equation for the circle. Elementary calculations verify that for

C,De R, £€ INand
F(s) = €00 = pisth+ D04 (26 = 1) 26+ 1) p(s)) sin s, (57)
the exact solution of (56) 1«
w(s) = '+ Dsinfs. (53)

In our experiments we compare three algorithms - the radiosity method (i. e. the
Galerkin scheme), the standard Monte (‘arlo method, and the scheme of section 4.
which we shall call preconditioned Monte Carlo. We shall solve equation (56) with
piecewise constant p(s) over an initial equidistant partition of [0, 27} into ng intervals.
We fix p* with 0 < p* < | and set

pls) = p, (-%E :[—L-M;O‘l zn—’;l) zzl,....no>,
where the p; are chosen randomly on [0, p"]. Furthermore, we choose at random mg
points on [0, 27], in which the values of the solution are supposed to be computed. The
p.’s and the points remain fixed throughout all experiments.

The Galerkin scheme is built on an equidistant partition of [0,27] into n intervals,
with n = ngni, n; = IN. The coefficients and the right-hand sides of the resulting
system can be computed explicitly. It is solved by Gauss-Seidel iteration. with an error,
negligible over the discretization error.

The standard Monte (‘arlo schieme starts in the point in which the value has to be
computed. Then it moves according to the transition density

cos(n,. y —r)cos(ng,r —y)

oy = gqo)
P v 20 =yl

or, in the parametrization.

R R
pls by = y }sm~_) l.

which can easily be generated by inversion. This leads to
k(s t) = (1 —qo1 ' p, (.s’ € {” l"l).%ﬁ> ., te [0,2%]) )

ng no

The ingredients p, (1 of the improved Monte Carlo method become

yast o= b go)sin YR PL—. s‘inl
Pt o 2n 2] 2

. 2r(y=1) 27y
for s ¢ [——”(1——) ZT\ and we set




For our experiments we put n, = my = 10, p° = 0.75, q = 0.2, C =5, D =
1, ¢ = 5 (this guarantees F(r) > 0 and u(x) > 0 for all r). For each of the three
methods (radiosity. standard Monte (‘arlo. preconditioned Monte (Carlo) we compute
the absolute error. for the two stochastic methods also the square root of the empirical
variance. To give a more conclusive impression of the three processes, we average
each of the quantities over the ten points in which the solution is computed. (We also
computed the worst case and observed the same tendencies as in the average case.) This
is carried out for various 1 (size of the Galerkin system) and N (number of realizations
of the Markov chain).

The Gauss-Seidel method was performed with 10 iteration (we observed that already
at five iterations the precision matching that of the table below was reached). Note
that the cost of the Galerkin method is O(n?), while that of standard Monte Carlo
is O(N). so a balanced choice would be N = O(n?). Nevertheless we included also
other pairs to show the relative behaviour. The computations were done on an HP
9000/735/99 workstation. in double precision. The results are given in the following
table

n N ¢ rad (e epme \/\JarmC ﬂ’arpmc
10 10 | 286E+0 | .126E+1 | .139E40 | .7T76E+1 | .621E+0

7
100 | .286E+0 | .644E40 | .398E—1 | .714E+1 | .659E+0
1000 | .286E+0 | 251E40 | 298E—~1 | .777E+1 | .7T17E40
10000 | 2861+0 | .635E—1 | .208E—1 | .770E+1 | .693E+0
100000 | .286E+0 | .233L—1 | .I83E~1 | .767E+1 | .693E+0
100 10 | .364E—1 | .126E+1 | .150E~1 | .T7T6E+1 | .764E—1
100 | 364E—1 | 6H4E+0 | 442E—-2 | 7T14E4+1 | .891E—1

1000 | 364E—1 | 251E+40 | .284E—2 | T77E+1 | .955E~1
10000 | .364E—1 | .635E—1 | .502E~3 | .770E+1 | .983E—1
100000 | .3645—1 | .233E—1 | .37T1E~3 | .767E+1 | .980E—1

1000 10 | 344E—2 | .126E+1 | .97T3E=3 | .T76E+1 | .704E-2
100 | 344E—2 | .644E40 | .349E-3 | .714E+41 | .803E-2

1000 | 344E—=2 | 25140 | 286E-3 | .T77TE+1 | .844E-2

10000 | .344E—2 | 655E—1 | 181E—1 | .T70E+1 | .906E—2
100000 | 344FE—2 | 233K—1 | .190E—4 | .7T6TE+1 | .874E-2
1000000 | .344E—2 | .720E—=2 | .660E—5 | .T68E+1 | .880E—2

Here e eme and ¢P™ are respectively the averaged absolute errors of the radiosity
(i. e. Galerkin), standard Monte Carlo and preconditioned Monte Carlo method, while

Var™ and VVar™ denote the square roots of the the empirical variances of the
respective processes.
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