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Abstract

Combined control variates and importance sampling variance reduction and its two-fold op-
timality are investigated. Two-time-scale stochastic approximation algorithm is applied in
parameter search for the combination and almost sure convergence of the algorithm to the
unique optimum is proved. The parameter search procedure is further incorporated into adap-
tive Monte Carlo simulation, and its law of large numbers and central limit theorem are proved
to hold. An numerical example is provided to illustrate the effectiveness of the method.
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1 Introduction

In this paper, we develop an adaptive Monte Carlo variance reduction procedure with three steps:
(i) we combine two variance reduction techniques, the control variates (CV) and the importance
sampling (IS), and investigate the two-fold optimality, (ii) we apply the two-time-scale stochas-
tic approximation algorithm in parameter search for the combination and prove almost sure con-
vergence of the algorithm to the unique optimum, and (iii) we incorporate the parameter search
procedure into adaptive Monte Carlo simulation.

There is a vast literature on optimal use of a single variance reduction technique, and some
combinations have been investigated, for example, IS and the stratification in Glasserman et al.[6],
while IS and the temporal difference control variates in Randhawa and Juneja [8]. To our knowl-
edge, it seems that the combination of CV and IS has not been studied elsewhere. It however turns
out to be unclear whether or not there exists global optimum, and thus by “simultaneous optimal-
ity” in this paper, we mean either (I) “optimality in IS parameter with CV always held optimal with
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respect to the IS parameter” or (II) “optimality in CV parameter with IS always held optimal with
respect to the CV parameter.”

The optimal parameter search is a challenging problem even in the IS only. In financial engi-
neering settings, for example, a systematic way to derive nearly optimal parameter is proposed in
[6], while the application of the Robbins-Monro algorithm, which is a single-time-scale stochastic
approximation algorithm, in a fairly general formulation is studied in Su and Fu [9] and Arouna
[1], and a pure-jump Lévy process framework in Kawai [7]. In order to search two-fold param-
eters of CV and of IS at the same time, we apply the two-time-scale stochastic approximation
algorithm, which is a stochastic recursive algorithm in which some of the components are updated
using step-sizes that are very small compared to those of the remaining components and whose
almost sure convergence is first rigorously proved in Borkar [3]. In our case, depending on which
step-sizes dominate the others, the two-time-scale algorithm are “equilibrated CV and quasi-static
IS” or “equilibrated IS and quasi-static CV”, corresponding respectively to (I) and (II), appeared
in the last paragraph, and one of main contributions of this paper lies in proving the almost sure
convergence to each optimum.

It is often not quite practical to perform the algorithm first to search optimal parameters and
then re-run the Monte Carlo simulation in cooperation with the optimized variance reduction tech-
niques, simply because this double implementation is evidently more time-consuming than the
plain Monte Carlo simulation first performed. The idea of incorporating the parameter search with
a stochastic approximation into adaptive Monte Carlo simulation has been suggested in Arouna [2]
with full theoretical support and is also applicable to our method, which becomes more attractive
when used as an adaptive Monte Carlo simulation.

The rest of this paper is organized as follows. Section 2 recalls in brief the principle of the
control variates and the importance sampling. Section 3 formulates the combined control variates
and importance sampling and discusses optimality when either one component is fixed. Section 4
proves the almost sure convergence of two-time-scale algorithms to the unique limiting point for
the combination and shows resulting variance reduction effect. Then, in Section 5, the parameter
search using the two-time-scale algorithm is applied in adaptive Monte Carlo simulation, and the
strong law of large numbers for empirical mean and the central limit theorem for empirical variance
are proved to hold. Section 6 presents and discusses results of a numerical experiment in a financial
engineering example, and Section 7 concludes this study.

2 Preliminaries

Let us begin with some general notations which will be used throughout the text. Rd is the d-
dimensional Euclidean space with the norm ‖ · ‖ and the inner product 〈·, ·〉, Rd

0 := Rd \ {0}.
(Ω,F ,P) is our underlying probability space. C([0,∞);Rd) is the space of continuous functions

from [0,∞) into Rd . P|Ft is the restriction of a probability measure P to σ -field Ft , while L→
denotes convergence in distribution. As usual, Id denotes the d-dimensional identity matrix, ∇x the
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gradient, and Hessx[·] the Hessian matrix, with respect to the variable x. By ΠH(x), we indicate the
projection of x onto the set H, that is, the closest point in H to x. We denote by ‖ · ‖o the operator
norm of a linear transformation, so if A ∈ Rd×d , then ‖A‖o = sup‖x‖≤1 ‖Ax‖. The characteristic
function of the marginal distributions of the Brownian motion in Rd is uniquely given by

EP

[
ei〈y,Wt〉

]
= exp

[
t
(

i〈y,γ〉− 1
2
〈y,Ay〉

)]
,

where γ ∈ Rd and where A is a symmetric nonnegative-definite d × d matrix. We will say that a
Brownian motion satisfying the above characteristic function is generated by (γ,A), and as usual
we denote by N (γ,A) the marginal distribution of the Brownian motion at unit time, or equiva-
lently, the normal distribution with mean γ and with variance-covariance matrix A. In this paper,
we restrict ourselves to the standard Brownian motion, or to the standard normal random vec-
tor, that is, we set A ≡ Id throughout. Clearly, this simplification loses no generality since any
d-dimensional normal random vector can easily be generated from the standard normal random
vector. Also, we define by (Ft)t≥0 the natural filtration of {Wt : t ≥ 0}.

Let F : C([0,T ];Rd) 7→ R be such that for some c > 1,

F(W ) := F({Wt : t ∈ [0,T ]}) ∈ L4c(Ω,FT ,P), (2.1)

and P(F(W ) 6= 0) > 0. For ease in notation, we will write F(W −λ ) := F({Wt − tλ : t ∈ [0,T ]}).
Throughout this paper, we are interested in the variance reduction in evaluating

C := EP[F(W )]

by Monte Carlo simulation.

2.1 Control variates variance reduction

The control variates method we will consider in this paper is of a linear type based upon the
following equality,

C = EP[F(W )] = EP[F(W )−〈θ ,WT 〉]. (2.2)

We assume that F(W ) and WT are correlated, that is,

EP [(F(W )−C)WT ] 6= 0. (2.3)

The variance of the component inside the right hand side expectation in (2.2) is well defined due
to (2.1) and is given by

V1(θ) := EP

[
(F(W )−〈θ ,WT 〉)2

]
−C2.

Thanks to the quadratic form of V1(θ) in θ , it can be shown that V1 is minimized uniquely at

θ ∗ := EP
[
WTW ′

T
]−1 EP [F(W )WT ] = T−1EP [F(W )WT ] , (2.4)
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and the resulting minimal variance is given by

V1(θ ∗) = V1(0)−‖EP [F(W )WT ]‖2

= V1(0)−T‖θ ∗‖2. (2.5)

The condition (2.3) ensures that V1(θ ∗)<V1(0) and implies that the method is particularly effective
when F(W ) and WT are highly correlated.

2.2 Importance sampling variance reduction via Esscher transform

The importance sampling method is aimed at reducing the variance of iid Monte Carlo summands
by appropriately transforming the underlying probability measure, from which interested random
variables or stochastic processes are generated, so as to put more weight on important events and
less on undesirable ones.

Let {Wt : t ≥ 0} be a Brownian motion in Rd generated by (0, Id). Under the probability
measure Qλ , where λ ∈ Rd and which is defined via the Radon-Nikodym derivative, P-a.s.,

dQλ
dP

|Ft =
e〈λ ,Wt〉

EP
[
e〈λ ,Wt〉

] = e〈λ ,Wt〉− 1
2 t‖λ‖2

,

the stochastic process {Wt : t ≥ 0} is again a Brownian motion generated by (λ , Id). Then, the prob-
ability measures P and Qλ are mutually absolutely continuous, and we also get EQλ [e−〈λ ,W1〉] <

+∞, and Qλ -a.s.,
dP

dQλ
|Ft =

(
dQλ
dP

|Ft

)−1

= e−〈λ ,Wt〉+ 1
2 t‖λ‖2

.

The importance sampling method we will consider in this paper is based upon the equality

EP[F(W )] = EQλ

[(
dQλ
dP

|FT

)−1

F(W )

]
= EQλ

[
e−〈λ ,WT 〉+ 1

2 T‖λ‖2
F(W )

]
.

The variance under the probability measure Qλ is well defined due to (2.1) and is given by

V2(λ ) := EQλ

[(
dP

dQλ
|FT

)2

F(W )2

]
−C2

= EP

[
e−〈λ ,WT 〉+ 1

2 T‖λ‖2
F(W )2

]
−C2.

The gradient and the Hessian matrix of V2 are well defined due to (2.1) and are given respectively
by

∇λV2(λ ) = EP

[
(T λ −WT )e−〈λ ,WT 〉+ 1

2 T‖λ‖2
F(W )2

]
,

and
Hessλ [V2(λ )] = EP

[
(T Id +(T λ −WT )(T λ −WT )′)e−〈λ ,WT 〉+ 1

2 T‖λ‖2
F(W )2

]
.
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In the above setting, [1] formulates a stochastic approximation algorithm as follows. (See also [9].)
Let {Wn,t : t ∈ [0,T ]}n∈N be a sequence of iid replications of the stochastic process {Wt : t ∈ [0,T ]}.
For ease of notation, we will write Wn := Wn,T for n ∈ N, and F(W )n := F({Wn,t : t ∈ [0,T ]}). Let
{Hn}n∈{0}∪N be an increasing sequence of compact sets in Rd such that {0} ∈ H0 and ∪∞

n=0Hn =
Rd, and define a sequence {Yn}n∈N of random vectors in Rd by

Yn+1 = (T λn −Wn+1)e−〈λn,Wn+1〉+ 1
2 T‖λn‖2

F(W )2
n+1,

where λ0 ∈ H0, {λn}n∈N is a sequence of random vectors in Rd iteratively generated by

λn+1 = ΠHσ(n) [λn − εnYn+1] , (2.6)

where σ(n) is the number counter of projections up to the n-th step, and where {εn}n∈{0}∪N is a
sequence of non-increasing positive constants satisfying

+∞

∑
n=0

εn = +∞,
+∞

∑
n=0

ε2
n < +∞.

The following is a summary of the main results of [1].

Theorem 2.1. The function V2 is strictly convex on Rd . Moreover, the sequence {λn}n∈N in (2.6)
converges P-a.s. to λ ∗ such that ∇λV2(λ ∗) = 0, with limn↑+∞ σ(n) < +∞, P-a.s.

3 Combination of control variates and importance sampling

The aim of this paper is at the simultaneous effectiveness of the control variates and the importance
sampling in view of the following equation, for θ ∈ Rd and λ ∈ Rd ,

EP[F(W )] = EP[F(W )−〈θ ,WT 〉]

= EQλ

[
dP

dQλ
|FT (F(W )−〈θ ,WT 〉)

]
= EQλ

[
e−〈λ ,WT 〉+ 1

2 T‖λ‖2
(F(W )−〈θ ,WT 〉)

]
. (3.1)

For θ ∈ Rd and λ ∈ Rd , the variance of the component inside the expectation (3.1) is well defined
and is given by

V3(θ ,λ ) := EP

[
e−〈λ ,WT 〉+ 1

2 T‖λ‖2
(F(W )−〈θ ,WT 〉)2

]
−C2.

Observe that V3(0,0) = V1(0) = V2(0), V3(θ ,0) = V1(θ), and V3(0,λ ) = V2(λ ).
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3.1 Importance sampling with fixed control variates

We first consider a stochastic approximation algorithm to find the minimum of the function V3(θ ,λ )
with θ held fixed, that is, the control variates component is fixed. Also, define G1 : Rd ×Rd ×
C([0,T ];Rd) 7→ Rd by

G1(θ ,λ ,X) := e−〈λ ,WT 〉+ 1
2 T‖λ‖2

(F(W )−〈θ ,WT 〉)2 (T λ −WT ) ,

so that
∇λV3(θ ,λ ) = EP[G1(θ ,λ ,W )].

Then, for each θ ∈ Rd, consider a stochastic iteration

λn+1 = ΠHσ(n) [λn − εnG1(θ ,λn,Wn+1)] , (3.2)

where {Hn}n∈{0}∪N and σ(n) are as the ones in the unconstrained algorithm (2.6), and where
λ0 ∈ H0.

Proposition 3.1. Fix θ ∈ Rd . The function V3(θ ,λ ) is strictly convex in λ on Rd . Moreover, the
sequence {λn}n∈N in (3.2) converges P-a.s. to g(θ) ∈ Rd , such that [∇λV3(θ ,λ )]λ=g(θ) = 0, with
limn↑+∞ σ(n) < +∞, P-a.s.

Proof. The claims can be proved essentially in a similar manner to those of Theorem 2.1 with the
help of the assumption (2.1). (See [1] for details.)

Clearly, the primal interest out of Proposition 3.1 is the inequality V3(θ ∗,g(θ ∗)) < V3(θ ∗,0),
or more illustratively, the density transform

EP [F(W )−〈θ ∗,WT 〉] ⇒ EQg(θ∗)

[
dP

dQg(θ∗)
|FT (F(W )−〈θ ∗,WT 〉)

]
.

3.2 Control variates with fixed importance sampling

Next, we consider the variance V3(θ ,λ ) with λ held fixed in Rd , that is, the importance sampling
component is fixed. For convenience, define G2 : Rd ×Rd ×C([0,T ];Rd) 7→ Rd by

G2(θ ,λ ,W ) := −2e−〈λ ,WT 〉+ 1
2 T‖λ‖2

(F(W )−〈θ ,WT 〉)WT ,

so that
∇θV3(θ ,λ ) = EP[G2(θ ,λ ,W )].

Then, for each λ ∈ Rd , consider a stochastic iteration

θn+1 = ΠHσ(n) [θn − εnG2(θn,λ ,Xn+1)] , (3.3)

where θ0 ∈ H0. Then, a similar result to Proposition 3.1 also holds true for the algorithm (3.3).
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Proposition 3.2. Fix λ ∈ Rd . The function V3(θ ,λ ) is strictly convex in θ on Rd . Moreover, the
sequence {θn}n∈N in (3.3) converges P-a.s. to h(λ ) ∈ Rd , such that [∇θV3(θ ,λ )] |θ=h(λ ) = 0, with
limn↑+∞ σ(n) < +∞, P-a.s.

Proof. Since λ is fixed in Rd , the gradient and the Hessian matrix of V3 with respect to θ are well
defined and are given by

∇θV3(θ ,λ ) = −2EP

[
e−〈λ ,WT 〉+ 1

2 T‖λ‖2
(F(W )−〈θ ,WT 〉)WT

]
,

and
Hessθ [V3(θ ,λ )] = 2EP

[
e−〈λ ,WT 〉+ 1

2 T‖λ‖2
WTW ′

T

]
.

The Hessian matrix is positive-definite since for any y ∈ Rd
0 ,

y′Hessθ [V3(θ ,λ )]y = 2EP

[
e−〈λ ,WT 〉+ 1

2 T‖λ‖2
〈y,WT 〉2

]
> 0,

and this proves the first assertion.
Next, it follows from the quadratic form of V3(θ ,λ ) in θ that h(λ ) uniquely exists and

h(λ ) = EP

[
e−〈λ ,WT 〉+ 1

2 T‖λ‖2
WTW ′

T

]−1
EP

[
e−〈λ ,WT 〉+ 1

2 T‖λ‖2
F(W )WT

]
, (3.4)

where the matrix inverse above is well defined since the matrix is positive-definite as well. The
resulting minimal variance is given by

V3(h(λ ),λ ) = V3(0,λ )−
〈

h(λ ),EP

[
e−〈λ ,WT 〉+ 1

2 T‖λ‖2
F(W )WT

]〉
,

which is strictly smaller than V3(0,λ ). For the almost sure convergence to h(λ ), following the
results of Chen and Zhu [4] and Delyon [5], we will show that for each m ∈ N,

EP
[
‖G1(θ ,λ ,W )‖2

1(‖θ‖ ≤ m)
]
< +∞.

To prove the above, it is sufficient to show that

EP

[
e−2〈λ ,WT 〉F(W )2‖WT‖2

]
< +∞,

and
EP

[
e−2〈λ ,WT 〉〈θ ,WT 〉2 ‖WT‖2

1(‖θ‖ ≤ m)
]

< +∞.

The first one is straightforward by the Cauchy-Schwartz inequality and the Girsanov theorem,

EP

[
e−2〈λ ,WT 〉F(W )2‖WT‖2

]2
≤ e8T‖λ‖2

EP
[
F(W )4]EP

[
‖WT −4T λ‖4] < +∞,

while for the second,

EP

[
e−2〈λ ,WT 〉〈θ ,WT 〉2 ‖WT‖2

1(‖θ‖ ≤ m)
]

≤ m2EP

[
e−2〈λ ,WT 〉 ‖WT‖4

]
≤ m2e2T‖λ‖2

EP

[
‖WT −2T λ‖4

]
< +∞.

The proof is complete.
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The following lemma is used in Proposition 4.1 and is very useful for the computation of h(λ ).

Lemma 3.3. For λ ∈ Rd ,

h(λ ) = T−1
(

Id −
T λλ ′

1+T‖λ‖2

)
EP

[
e−〈λ ,WT 〉− 1

2 T‖λ‖2
F(W )WT

]
= T−1

(
Id −

T λλ ′

1+T‖λ‖2

)
EP [F(W −λ )(WT −T λ )] .

Proof. With the help of the Girsanov theorem, we get

EP

[
e−〈λ ,WT 〉+ 1

2 T‖λ‖2
WTW ′

T

]
= eT‖λ‖2

EP

[
e−〈λ ,WT 〉− 1

2 T‖λ‖2
WTW ′

T

]
= eT‖λ‖2

EQ−λ

[
WTW ′

T
]

= eT‖λ‖2
EP

[
(WT −T λ )(WT −T λ )′

]
= eT‖λ‖2

T
(
Id +T λλ ′) .

The Sherman-Morrison-Woodbury formula yields

(
Id +T λλ ′)−1 = Id −

T λλ ′

1+T‖λ‖2 ,

and the rest is straightforward.

With the results of this subsection, what we aim at is the inequality V3(h(λ ∗),λ ∗) < V3(0,λ ∗),
or more illustratively, the transform

EQλ∗

[
dP

dQλ ∗
|FT F(W )

]
=⇒ EQλ∗

[
dP

dQλ ∗
|FT (F(W )−〈h(λ ∗),WT 〉)

]
.

Let us close this section with a summarizing corollary.

Corollary 3.4. Let θ ∗ and λ ∗ be constants in Rd defined, respectively, by (2.4) and in Theorem
2.1, and let g and h be defined respectively in Proposition 3.1 and (3.4), or Lemma 3.3. Then,

V3(θ ∗,g(θ ∗)) ≤V3(θ ∗,0) < V3(0,0),

V3(h(λ ∗),λ ∗) < V3(0,λ ∗) ≤V3(0,0).

4 Parameter search with two-time-scale stochastic approxima-
tion

The above corollary justifies the effectiveness of the combination of the two variance reduction
techniques. It should be noted that there might exist θ such that V3(θ ,g(θ)) < V3(θ ∗,g(θ ∗)), or
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λ such that V3(h(λ ),λ ) < V3(h(λ ∗),λ ∗). The natural interest now directs to the parameter search
for (θ ,λ ) such that

V3(θ ,λ ) < V3(θ ∗,g(θ ∗))∧V3(h(λ ∗),λ ∗).

To this end, we will employ the so-called two-time-scale stochastic approximation algorithm,

λn+1 = ΠHλ
σ1(n)

[λn − εnG1(θn,λn,Wn+1)] ,

θn+1 = ΠHθ
σ2(n)

[θn −δnG2(θn,λn,Wn+1)] ,

where {Hλ
n }n∈{0}∪N and {Hθ

n }n∈{0}∪N are suitable sequences of constraint sets and (θ0,λ0) ∈
Hθ

0 ×Hλ
0 , and where {δn}n∈{0}∪N is a sequences of non-increasing positive constants satisfying

+∞

∑
n=0

δn = +∞,
+∞

∑
n=0

δ 2
n < +∞,

while its decay rate is not identical to that of the sequence {εn}n∈{0}∪N.
In what follows, {εn}n∈{0}∪N and {δn}n∈{0}∪N are as the sequences given just above, while the

constants θ ∗, λ ∗, and the functions g, and h are as the ones appeared in Corollary 3.4.

4.1 Equilibrated control variates and quasi-static importance sampling

Define the function V4(λ ) := V3(h(λ ),λ ). Before proceeding to the two-time-scale algorithm, we
still need consider a stochastic iteration

λn+1 = ΠHσ(n) [λn − εnG1(h(λn),λn,Wn+1)] . (4.1)

Then, we have the following.

Proposition 4.1. The function V4 is strictly convex on Rd . Moreover, the sequence {λn}n∈N in
(4.1) converges P-a.s. to λ † such that ∇λV4(λ †) = 0, with limn↑+∞ σ(n) < +∞, P-a.s.

Proof. Using the chain rule of the gradient, we get

∇λV4(λ ) = ∇λV3(h(λ ),λ ) = ∇λ
[
h(λ )′

]
[∇θV3(θ ,λ )] |θ=h(λ ) +[∇λV3(θ ,λ )] |θ=h(λ )

= [∇λV3(θ ,λ )] |θ=h(λ ),

where the last equality follows from the definition of h(λ ). Moreover,

Hessλ [V4(λ )] = ∇′
λ
(
[∇λV3(θ ,λ )] |θ=h(λ )

)
=

[
HessλV3(θ ,λ )+∇′

θ ∇λV3(θ ,λ )
]
|θ=h(λ )

= [HessλV3(θ ,λ )] |θ=h(λ ),

where the last equality follows from ∇′
θ ∇λ (V3(θ ,λ )) = (∇′

λ ∇θ (V3(θ ,λ )))′ and again from the
definition of h(λ ). The positive-definiteness of [HessλV3(θ ,λ )]|θ=h(λ ) proves the first assertion.
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Next, with the help of the definition of h(λ ), we get for y ∈ Rd
0 ,

y′Hessλ [V4(λ )]y = EP

[(
T + 〈y,T λ −WT 〉2)e−〈λ ,WT 〉+ 1

2 T‖λ‖2
(F(W )−〈h(λ ),WT 〉)2

]
≥ TEP

[
e−〈λ ,WT 〉+ 1

2 T‖λ‖2
(F(W )−〈h(λ ),WT 〉)2

]
= TEP

[
e−〈λ ,WT 〉+ 1

2 T‖λ‖2
F(W )2

]
,

which tends to +∞ as ‖λ‖ ↑ +∞. (The proof for this explosion can be found in the proof of
Proposition 1 [1].) Together with V4(λ ) > 0 for λ ∈ Rd , we get lim‖λ‖↑+∞V4(λ ) = +∞. From the
strict convexity of V4, it then follows that there exists λ † satisfying ∇λV4(λ †) = 0.

Note that the first assertion also ensures that the iteration (4.1) is a gradient-based stochastic
approximation algorithm for a strictly convex function. To prove the almost sure convergence of
the algorithm to λ †, it suffices to show that for each m ∈ N,

EP

[
‖G1(h(λ ),λ ,W )‖2

1(‖λ‖ ≤ m)
]

< +∞.

To this end, observe first that for λ such that ‖λ‖ ≤ m, the Cauchy-Schwartz inequality and the
Girsanov theorem yields

‖h(λ )‖2 ≤ T−2
∥∥∥∥Id −

T λλ ′

1+T‖λ‖2

∥∥∥∥2

o
EP

[
F(W )2]EP

[
e−2〈λ ,WT 〉−T‖λ‖2

‖WT‖2
]

≤ EP
[
F(W )2]eT m2 (

d +4m2) < +∞.

Here, we use the fact that the squared matrix norm ‖A‖2
o equals the maximum of eigenvalues of the

positive-semidefinite matrix A′A and in the above case there exists only two distinct eigenvalues of
1 and (1+T‖λ‖2)−2 ≤ 1. Hence,

EP

[
‖G1(h(λ ),λ ,W )‖2

1(‖λ‖ ≤ m)
]

≤ e
3c−1
c−1 T m2

EP

[
|F(W )−〈h(λ ),WT 〉|4c

1(‖λ‖ ≤ m)
] 1

c

×EP

[∥∥∥∥WT − 3c−1
c−1

T λ
∥∥∥∥ 2c

c−1

1(‖λ‖ ≤ m)

]1− 1
c

,

which is finite due to (2.1) and where the constant c is given also in (2.1).

At first glance, it looks ideal to directly perform the algorithm (4.1), while not quite so from a
practical point of view since the computation of h(λn) at each step is not a smart choice (although
h(λ ) is simplified to some extent in Lemma 3.3).

Consider then the following two-time-scale stochastic approximation algorithm,

λn+1 = ΠHλ
σ1(n)

[λn − εnG1(θn,λn,Wn+1)] , (4.2)

θn+1 = ΠHθ
σ2(n)

[θn −δnG2(θn,λn,Wn+1)] , (4.3)

10



with
lim

n↑+∞

εn

δn
= 0, (4.4)

that is, the iteration (4.2) moves much slower than the other (4.3). The following is the main result
of this subsection.

Theorem 4.2. The sequence {(θn,λn)}n∈N defined in (4.2)-(4.3) with (4.4) converges P-a.s. to
(h(λ †),λ †), with limn↑+∞ σ1(n) < +∞ and limn↑+∞ σ2(n) < +∞, P-a.s.

Proof. By Proposition 3.2, for each λ ∈ Rd , the sequence {θn}n∈N in (3.3) converges P-a.s. to
h(λ ). Moreover, by Proposition 4.1, the sequence {λn}n∈N in (4.1) converges P-a.s. to λ †. The
claim thus holds by Theorem 1.1 of [3] with the condition (4.4).

An interpretation of the two-time-scale stochastic approximation algorithm (4.3)-(4.2) with the
condition (4.4) is as follows. The fast θ sees λ as “quasi-static”, and thus the algorithm (4.3)
has an effect similar to fixing λ and running the (single-time-scale) algorithm (3.3) for a long
time. Meanwhile, in the algorithm (4.3), θn can be seen as a close approximation of h(λn), that is,
“equilibrated”, and thus almost same as running the (single-time-scale) algorithm (4.1).

4.2 Equilibrated importance sampling and quasi-static control variates

The opposite scheme, that is, with equilibrated importance sampling and quasi-static control vari-
ates, also works. Define a function V5(θ) := V3(θ ,g(θ)), let {εn}n∈{0}∪N be defined for (2.6), and
set a stochastic iteration

θn+1 = ΠHθ
σ2(n)

[θn −δnG2(θn,g(θn),Wn+1)] . (4.5)

Also, set a two-time-scale stochastic approximation algorithm

λn+1 = ΠHλ
σ1(n)

[λn − εnG1(θn,λn,Wn+1)] ,

θn+1 = ΠHθ
σ2(n)

[θn −δnG2(θn,λn,Wn+1)] ,

with

lim
n↑+∞

δn

εn
= 0, (4.6)

that is, the iteration for λ moves much faster than the one for θ . Then, the following holds true.

Theorem 4.3. The function V5 is strictly convex on Rd , and the sequence {θn}n∈N in (4.5) con-
verges P-a.s. to θ † such that ∇θV5(θ †) = 0. Moreover, the sequence {(θn,λn)}n∈N in (4.2)-(4.3)
with (4.6) converges P-a.s. to (θ †,g(θ †)), with limn↑+∞ σ1(n) < +∞ and limn↑+∞ σ2(n) < +∞,
P-a.s.
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Proof. For each θ ∈ Rd , the chain rule of the gradient yields

∇θV5(θ) = [∇θV3(θ ,λ )] |λ=g(θ) +
[
∇′

θ g(θ)
]
[∇λV3(θ ,λ )] |λ=g(θ)

= [∇θV3(θ ,λ )] |λ=g(θ),

and moreover,

Hessθ [V5(θ)] = ∇′
θ
(
[∇θV3(θ ,λ )] |λ=g(θ)

)
=

[
HessθV3(θ ,λ )+∇′

λ ∇θV3(θ ,λ )
]
|λ=g(θ)

= [HessθV3(θ ,λ )] |λ=g(θ),

whose positive-definiteness proves the first assertion.
Next, observe that

Hessθ [V5(θ)] = 2EP

[
e−〈g(θ),WT 〉+ 1

2 T‖g(θ)‖2
WTW ′

T

]
= 2eT‖g(θ)‖2

T
(
Id +T g(θ)g(θ)′

)
.

Hence, for y ∈ Rd such that ‖y‖ = 1, we get

y′Hessθ [V5(θ)]y = 2eT‖g(θ)‖2
T

(
1+T 〈y,g(θ)〉2) ≥ 2T,

uniformly in θ ∈ Rd . Together with V5(θ) > 0 for θ ∈ Rd , we get lim‖θ‖↑+∞V5(θ) = +∞. From
the strict convexity of V5, it follows that there exists θ † satisfying ∇θV5(θ †) = 0.

Finally, recall that we have shown in Proposition 3.1 that for each θ ∈ Rd , {λn}n∈N in the
stochastic iteration (3.2) converges P-a.s. to g(θ). The last assertion thus holds by Theorem 1.1 of
[3] with the second assertion and with the condition (4.6).

5 Adaptive Monte Carlo variance reduction

We have proved so far that the two-time-scale stochastic approximation algorithms converge al-
most surely to the root of the gradient of the interested variance. The aim of this section is to prove
the asymptotic normality of the empirical mean and empirical variance of adaptive Monte Carlo
simulations, in our “two-time-scale” framework. To this end, define Y : Rd ×Rd ×C([0,T ];Rd) 7→
R by

Y (θ ,λ ,W ) := e−〈λ ,WT 〉− 1
2 T‖λ‖2

(F (W +λ )−〈θ ,WT +λT 〉) ,

with its empirical mean and empirical variance defined respectively by

EMn :=
1
n

n

∑
k=1

Y (θk−1,λk−1,Wk),

and

EV 2
n :=

1
n

n

∑
k=1

Y 2(θk−1,λk−1,Wk)−EM2
n .

The following is the main result of this section.
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Theorem 5.1. Let the sequences {θn}n∈N and {λn}n∈N are generated by the iterations (4.2)-(4.3),
either with (4.4) or with (4.6). Then, it holds that

P
[

lim
n↑+∞

EMn = C
]

= 1,

and as n ↑ +∞,
√

n
EMn −C

EVn

L→ N (0,1),

under the probability measure P. Moreover,

(i) If the iterations (4.2)-(4.3) are performed with (4.4), then it holds under the probability
measure P that

P
[

lim
n↑+∞

EV 2
n = V4(λ †)

]
= 1, and

√
n(EMn −C) L→ N (0,V4(λ †)), as n ↑ +∞.

(ii) If the iterations (4.2)-(4.3) are performed with (4.6), then it holds under the probability
measure P that

P
[

lim
n↑+∞

EV 2
n = V5(θ †)

]
= 1, and

√
n(EMn −C) L→ N (0,V5(θ †)), as n ↑ +∞.

Proof. Following [2] (Theorem 1-2 and Corollary 1), it suffices to show that

sup
n∈N

EP
[
Y 4(θn−1,λn−1,Wn)

]
< +∞,

and that the expectations EP[Y 2(θ ,λ ,W )] and EP[Y 4(θ ,λ ,W )] are continuous at (θ ,λ )= (h(λ †),λ †)
for (i), while at (θ ,λ ) = (θ †,g(θ †)) for (ii). First, with the help of the Girsanov theorem and the
Hölder’s inequality, we get

EP
[
Y 4(θ ,λ ,W )

]
= EP

[
e−3〈λ ,WT 〉+ 3

2 T‖λ‖2
(F(W )−〈θ ,WT 〉)4

]
(5.1)

≤ e
3(4c−1)
2(c−1) T‖λ‖2

EP

[
|F(W )−〈θ ,WT 〉|4c

] 1
c
,

where the constant c is the one given in (2.1). Due to the definition of the constraint sequences
{Hθ

n }n∈N and {Hλ
n }n∈N in the iteration (4.2)-(4.3), and limn↑+∞ σ1(n) < +∞ and limn↑+∞ σ2(n) <

+∞, P-a.s., shown in Theorem 4.2-4.3, it is then clear that supn∈N EP[Y 4(θn−1,λn−1,Wn)] < +∞.
Next, we have EP[Y 2(θ ,λ ,W )] =V3(θ ,λ )+C2, and thus its continuity in (θ ,λ ) is clear, while

the continuity of the fourth moment follows from its finiteness uniformly on a neighborhood of
either (h(λ †),λ †) or of (θ †,g(θ †)), and from that the (ω-pointwise) continuity of the expression
inside the right hand side expectation of (5.1).
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6 Numerical illustration

Let W := (W1, . . . ,Wd) be a standard normal random vector in Rd (with independent components)
under the probability measure P. We consider a discrete approximation of the so-called Asian
payoff, one of the most standard financial structures, in the well known Black-Scholes framework,

F(W ) = e−rT max

[
1
d

d

∑
n=1

S0 exp

[
n

∑
k=1

((
r− 1

2
σ2

)
T
d

+

√
σ2 T

d
Wk

)]
−K,0

]
,

for a strike level K > 0. In this experiments, we fix S0 = 50, r = 0.05, σ = 0.10 or 0.30, T = 1,
and d = 16 and generate N = 5e+4 of iid Monte Carlo summands. Based upon the iid Monte Carlo
summands, we run the two-time-scale stochastic approximation algorithm (4.3)-(4.2) with

δn =
αδ

(n+1)βδ
, εn =

αε

(n+1)βε
,

where αδ and αε are non-negative and βδ and βε are constants in (1/2,1). Recall that the case
βδ < βε accelerates the iteration for the control variates component compared to the importance
sampling one, that is, “equilibrated control variates and quasi-static importance sampling” (AD2),
while the case βδ > βε corresponds to “equilibrated importance sampling and quasi-static control
variates” (AD3). Evidently, we can perform the adaptive method with the importance sampling
component only (AD1) by setting αδ = 0, which reduces the two-time-scale algorithm to the
single-time-scale algorithm (2.6), and this reduces to the framework of [2]. We set the increasing
compact constraints as Hλ

n = Hθ
n = {x ∈ Rd : ‖x‖ ≤ 100ln(100(n + 1))}, and start each iteration

with the origin, that is, θ0 = λ0 = (0, . . . ,0)′. We will evaluate the variance reduction efficiency
via the ratio of variances (vratio), defined by

(vratio) :=
V3(0,0)

EVN
.

Results for our experiment is reported in Table 1. Moreover, for illustration purpose, we provide
in Figure 1 various results along progress of the adaptive Monte Carlo variance reduction proce-
dure in the case (σ ,K) = (0.30,55). The upper two and the lower left are of (AD2), that is, the
case (αδ ,βδ ,αε ,βε) = (1e-2,7/11,1.1e-2,10/11). The lower right figure compares convergences of
Monte Carlo average in plain Monte Carlo simulation (MC), and (AD1) and (AD2), while three
dotted lines indicate 2.21±0.5%.

In this specific example, the implementation of (AD1) takes approximately twice as long per
replication as (MC), mainly due to the addition of the stochastic approximation algorithm. This
implies that the effective improvements of (AD1) are about half of their variance ratios. We have
observed that the adaptive component of Monte Carlo simulations itself requires very little addi-
tional computation burden. The implementation of either (AD2) or (AD3) takes about three times
as (MC). Thus, the actual effective improvements are about a third of the variance ratios, and in
this sense, there are some cases where it is clever to stop at (AD1) and not to go further into either
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Figure 1: Numerical results of the case (σ ,K) = (0.3,55) with (αδ ,βδ ,αε ,βε) = (1e-2,7/11,1.1e-
2,10/11) for (AD2).

(AD2) or (AD3). In practice, it is however rare to consider variance reduction for Monte Carlo
simulation when the structure of the function F is simple, just as for this experiment, and clearly
the additional computational cost of the stochastic approximation algorithm becomes negligible as
F are more complicated. Finally, to reduce computational cost (but with some variance ratio given
up), it certainly a great scheme to stop the stochastic approximation iteration at some point Ns, and
to only perform Monte Carlo simulation from that point on in cooperation with variance reduction
with the obtained parameter (θNs ,λNs). For example, in the case given in Figure 1, the absolute
gradients drop very fast until, say Ns =1.5e+3, at which may be a good point to stop the stochastic
approximation algorithms. In Table 2, we report variance ratios based on 5e+4 replications for
various Ns in the case σ = 0.30. As expected, stopping during very early stage can achieve most
part of variance reduction effect. The choice of the stopping point Ns is a difficult trade-off prob-
lem between variance reduction effect and computation cost, which can be different for different
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problems, that is, the structure of the function F , and also depends highly on the choice of (θ0,λ0).

7 Concluding remarks

In this paper, we have developed and analyzed an application of the two-time-scale stochastic
approximation algorithm in the optimal parameter search for the combined control variates and
importance sampling framework. The algorithm converges almost surely to the unique root of
the gradients of the variance either in the sense of “equilibrated control variates and quasi-static
importance sampling,” or of “equilibrated importance sampling and quasi-static control variates.”
In each case, the almost sure convergence guarantees the incorporation of the algorithms into the
adaptive Monte Carlo variance reduction procedure. It is a great advantage that our method is
built on a quite general formulation of the control variates and the importance sampling and is thus
directly applicable to various Monte Carlo simulations, unlike many problem-specific variance re-
duction methods in the literature. We have illustrated the effectiveness of our method in a financial
engineering example through numerical results. Finally, it would also be interesting to analyze our
method in a pure-jump Lévy process framework, which is left as a future research.
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σ = 0.10
K αδ βδ αε βε price vratio

45 (MC) - - - - 6.058 (8.76)
(AD1) - - 8e-3 10/11 6.051 10.84
(AD2) 5e-3 7/11 6e-3 10/11 6.053 33.15
(AD3) 0.1 10/11 1e-3 7/11 6.049 40.78

50 (MC) - - - - 1.931 (4.96)
(AD1) - - 3e-2 10/11 1.916 6.90
(AD2) 2e-2 7/11 2e-2 10/11 1.929 10.23
(AD3) 2e-2 10/11 2e-2 7/11 1.918 9.95

55 (MC) - - - - 0.207 (0.56)
(AD1) - - 1.0 10/11 0.199 19.82
(AD2) 1e-4 7/11 1.6 10/11 0.203 21.82
(AD3) 1e-4 10/11 0.5 7/11 0.201 22.09

σ = 0.30
K αδ βδ αε βε price vratio

45 (MC) - - - - 7.187 (59.72)
(AD1) - - 4e-3 10/11 7.149 8.55
(AD2) 1e-2 7/11 3e-3 10/11 7.152 14.11
(AD3) 6e-3 10/11 1e-3 7/11 7.145 12.94

50 (MC) - - - - 4.202 (40.35)
(AD1) - - 8e-3 10/11 4.165 8.99
(AD2) 5e-3 7/11 6e-3 10/11 4.174 11.42
(AD3) 6e-3 10/11 6e-3 7/11 4.162 11.62

55 (MC) - - - - 2.231 (23.19)
(AD1) - - 1e-2 10/11 2.212 7.41
(AD2) 1e-2 7/11 1.1e-2 10/11 2.209 12.58
(AD3) 1e-2 10/11 1e-2 7/11 2.213 14.24

Table 1: Numerical results (values in the parenthesis for (MC) are raw variance, not variance ratio)
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σ = 0.30
K Ns 5e+3 1e+4 1.5e+4 2e+4 2.5e+4 3e+4 5e+4
45 (AD1) 8.15 8.39 8.47 8.50 8.52 8.54 8.55

(AD2) 13.25 13.71 13.80 13.94 14.03 14.06 14.11
(AD3) 12.40 12.79 12.85 12.81 12.89 12.90 12.94

50 (AD1) 8.27 8.66 8.82 8.88 8.93 8.95 8.99
(AD2) 10.47 10.86 10.96 11.29 11.36 11.38 11.42
(AD3) 10.94 11.44 11.34 11.46 11.62 11.58 11.62

55 (AD1) 6.33 6.83 7.06 7.20 7.28 7.34 7.41
(AD2) 9.68 10.47 10.79 11.20 11.41 11.48 12.58
(AD3) 13.27 13.93 13.88 14.05 14.16 14.25 14.24

Table 2: Variance ratios based on 5e+4 replications when stochastic approximation algorithm is
stopped at Ns.
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