
INTRODUCTION

Background

The term risk refers to the potential for dan-
ger, loss, or injury. A factor is any condition
that leads to a specific result. Taken collective-
ly, a risk factor is any condition commonly con-
sidered to have the potential for negatively
affecting or causing danger to an individual or
within the individual’s realm of responsibility.
A multitude of risk factors exist that can be
detrimental to human performance, and their
effects on human performance have been stud-
ied extensively using descriptive and empirical
research in both laboratory and applied envi-
ronments. Risk factors such as alcohol (Gawron
& Ranney, 1988; Maylor & Rabbitt, 1987),
over-the-counter and illicit drugs (Hurst, 1976;
Starmer, 1985), fatigue and sleep loss (Mertens
& Collins, 1986; Steyvers, 1987), and various
hostile environments have at some level been

linked to either cognitive or physical perfor-
mance decrements.

Exposure to these risk factors may occur off
the job or result from hazards imposed by the
nature of the job itself. It is common to think
of alcohol and drug use when referring to such
risk factors. However, fatigue, mental stress,
illness, and even microgravity may present
serious hazards to the employee and others
affected by the employee’s job performance. To
minimize problems associated with on-the-job
impairment, many employers have implement-
ed screening programs designed to assess an
employee’s readiness to perform (RTP) at the
workplace. Gilliland and Schlegel (1993) de-
fined readiness to perform as “that state in
which a person is prepared for a job, is capable
of performing it, and is free of any transient
risk factors that might influence performance”
(p. 3). RTP testing is undertaken with the goals
of identifying changes in an individual’s perfor-
mance that may have been driven by exposure
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to risk factors and determining the specific
aspects of performance that are immediately
affected.

Traditional methods of assessing readiness
to perform focus on biochemical drug screen-
ing (Miller, 1994). Controversy surrounds drug
screening, however, including issues concern-
ing privacy, expense, data processing time, and
specificity of results. An alternative method of
assessing readiness to perform involves neuro-
logical evaluation. Although many of these
tests are easy to administer and the results are
immediately available (e.g., balance control
and control of visual gaze), some of the more
objective tests (e.g., electroencephalographic
and pupillary responses) require extensive test-
ing apparatus and training of the test adminis-
trator. Although biochemical and neurological
techniques are often successful in detecting the
use of chemical substances, they ignore other
factors, such as fatigue and stress, that could
potentially impair performance.

In an effort to avoid difficulties associated
with biochemical and neurological testing,
efforts have turned toward the development of
performance-based assessment of RTP (Gill-
iland & Schlegel, 1995). These techniques use
computer-based cognitive tasks administered
before the employee begins work. Typical data
collected from these tests usually include mea-
sures of reaction time and accuracy. A major
challenge posed by the use of computer-based
RTP testing is identifying an effective method
of analyzing and interpreting performance data
in order to make individualized judgments.
Performance may vary considerably within and
between individuals, and common parametric
analyses based on pooling observations across
participants often mask any relevant differ-
ences attributable to risk factors.

In the RTP scenario, each participant pro-
vides a single data set from each test by which
performance is to be judged. The single-subject
analysis approach often used with RTP imple-
mentations evaluates individual performance
using seemingly arbitrary performance bounds
based on the individual’s variability across
repeated sessions. The potential weakness of
such an approach is that daily performance
means are evaluated using session-to-session
variability, and the influence of within-session

variability is lost. More discriminating tech-
niques for the analysis of individual participant
data are critical to the successful implementa-
tion of performance-based RTP screening pro-
grams.

This paper addresses the development of
effective analysis techniques for determining
the presence of risk factors using performance-
based measures. The proposed techniques cap-
italize on the within-session variability obtained
by considering the multiple responses to stim-
uli within each session. The techniques were
derived from statistical quality control (SQC)
and modified to fit the RTP paradigm. Data
collected from 10 participants, 174 trials, and
23 performance measures were analyzed using
18 variations of three different quality control
charts. Additionally, the data represent perfor-
mance under space microgravity or antihista-
mine conditions. The control chart techniques
were evaluated in terms of their ability to cor-
rectly diagnose the presence of risk factors
while minimizing the occurrence of false alarms.

RTP Scoring Techniques

Three existing techniques for evaluating
RTP task performance were identified. The most
common procedure is the use of individual
performance variability to determine out-of-
bounds performance (Miller, Kim, & Parseghian,
1995; O’Donnell, 1991). A predetermined num-
ber of trials is used to estimate parameters of
the sampling distribution of the performance
measure, which is typically the mean of the
responses to multiple stimuli. The overall mean
is used as the target performance level, and an
arbitrary multiple of the standard deviation
forms the performance boundaries. Perfor-
mance outside the boundaries identifies indi-
viduals who are not ready to perform.

Kennedy, Turnage, and Dunlap (1993) and
Kennedy, Turnage, and Jones (1995) utilized
performance loss, a relative change from base-
line, to evaluate performance on RTP tasks.
This technique uses arbitrary loss bounds.
Kennedy et al. (1993) selected 10% as the loss
bound for performance evaluated with their
automated performance test system, and a
series of multiple cutoffs was used to reduce
unacceptably high false alarm rates (Kennedy
et al., 1995).
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A third technique for evaluating RTP task
performance uses neural networks (O’Donnell,
Fix, & Morton, 1995). The neural network is
trained to recognize unimpaired performance
on a given task and computes an associated
activity measure. When future network activity
substantially deviates (based on an arbitrary
cutoff) from the unimpaired activity level, the
participant is considered impaired.

Statistical Quality Control Analogy

Statistical quality control (SQC) techniques
were developed to determine process capabili-
ties and evaluate process performance. Process
variability in SQC is distinguished as common-
cause versus special-cause variability. Common-
cause variability represents inherent process
variation beyond the control of the worker.
Special-cause (or assignable-cause) variability
results from sources external to the process
and is manifested as an abnormal deviation on
a single trial or a sustained shift (instantaneous
or developing trend) in the process. In SQC,
the organization is responsible for identifying
and eliminating special-cause variability.

RTP evaluations are directly analogous to
SQC evaluations. In RTP, the process is the per-
formance of human tasks. Such performance is
subject to inherent human (i.e., common-cause)
variability. Special-cause variability is analo-
gous to risk factors that directly affect worker
performance. If only common-cause variability
exists, performance is assumed to be stable or
asymptotic for that individual, and no further
learning is evident. This is in contrast to differ-
ential stability, which allows continued im-
provement at the same rate for all members of
a participant group. The goal of an RTP evalu-
ation is to individually differentiate between
stable performance and performance changes
caused by the presence of risk factors. Affected
workers are then removed or reassigned, or
job requirements are modified.

The traditional SQC tool to evaluate process
performance is the Shewhart control chart.
Shewhart charts evaluate a process using con-
trol limits defined in terms of the process stan-
dard deviation. As compared with current RTP
techniques, which use the standard deviation
across trials, Shewhart control limits are deter-
mined using the standard deviation within

each sample (i.e., trial) of data. Shewhart charts
also provide a two-level assessment of the
process. First, the variation of the process is
evaluated with either a range (R) or standard
deviation (SD) chart. These charts plot the rel-
evant estimate of variability. The process vari-
ability is considered stable from trial to trial if
all plotted points fall within the control limits.
Then the process mean is examined using an x-
bar chart, which plots the sample (or subgroup)
mean for each trial and identifies points that
exceed the control limits. Shewhart charts have
been shown to be effective for identifying pro-
cess shifts as small as 1.5 standard deviations
(Montgomery, 1997) and have been developed
for continuous data (e.g., reaction times) and
for data based on discrete events (e.g., percent-
age correct).

Two alternatives to the Shewhart control
chart are often more effective when the detec-
tion of small (sustained) shifts is of interest.
The cumulative-sum (CUSUM) control chart
evaluates accumulated deviations across sam-
ples between the mean performance and the
desired performance level to identify process
shifts (Breyfogle, 1992; Montgomery, 1997).
Performance changes are manifested as a
change in the slope of the cumulative sum. This
slope is initially zero for a stable process cen-
tered at the target mean (Vardeman & Jobe,
1999). Because consecutive cumulative sums
are correlated, conventional (horizontal) con-
trol limits are replaced with a V-mask defined
by error probabilities and the magnitude of the
desired shift to be detected. The V-mask serves
to identify points outside the desired range of
performance and can be described as a hori-
zontally rotated V shape with the vertex posi-
tioned a fixed distance ahead of the current
data point and the arms extending back toward
the origin. When the plotted data are overlaid
with the V-mask, any previous sum falling out-
side the mask indicates that the process shifted
at some point prior to the current sample.

Alternatively, a tabular monitoring approach
can be used. CUSUM charts are often used for
individual observations (n = 1). The practice
of standardizing the performance variable
prior to plotting simplifies the selection of
parameters and enables a better understanding
of the CUSUM method.
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Exponentially weighted moving average
(EWMA) charts are a third genre of SQC charts
that utilize smoothed data. EWMA charts plot
a weighted average of subgroup (i.e., trial)
means using an exponential weighting that
decreases geometrically with age. Control lim-
its are used with EWMA charts and are com-
puted as a function of the standard deviation
and the exponential weighting factor. The
weighted value is judged against these control
limits. For a weighting factor of 1, the EWMA
data series corresponds to the raw data series
used in the Shewhart chart (Vardeman & Jobe,
1999). Because a measure of variability within
each trial is not required for the calculations,
EWMA charts can easily be used for individual
observations (n = 1).

Of the three SQC techniques, Shewhart
charts are considered best for identifying abnor-
mal deviation on a single trial and for detecting
large shifts in the process. CUSUM and EWMA
charts perform better for identifying smaller
process shifts and trends because they utilize
the performance data collected across multiple
trials. EWMA charts perform considerably bet-
ter than CUSUM charts for detecting large
process shifts (Montgomery, 1997).

METHODOLOGY

To evaluate the relative merits of various
SQC techniques in assessing the presence of
risk factors, performance data were needed.
The data used in the analysis were obtained
from two previously collected databases. Each
database satisfied several criteria necessary for
successful implementation of the SQC tech-
niques. First, the data exhibited a relatively sta-
ble baseline such that participant performance
without risk factor exposure demonstrated lit-
tle trial-to-trial variation and indicated minimal
continued learning. Second, the databases pro-
vided a sufficient number of trials at the base-
line level of performance to adequately initialize
each SQC technique. The final critical charac-
teristic of each database was the inclusion of
trials collected under risk factor conditions.
These trials were subjected to analysis such
that the techniques could be compared for
their ability to identify the stressor trials.

The two databases analyzed in this study

were developed using cognitive performance
assessment batteries. The first database was
collected under contract to the National Aero-
nautics and Space Administration (NASA;
Schiflett, Eddy, Schlegel, French, & Shehab,
1995) and provides performance data collected
during the space flight of three male astro-
nauts. The second database provides extended
performance data on 16 male college students
subjected to antihistamine doses and sleep loss
and was collected under contract to the Federal
Aviation Administration (Gilliland & Schlegel,
1994). Subsets of each database were selected
such that a diverse set of cognitive and psycho-
motor performance tasks was assembled. The
tasks included critical tracking, spatial matrix,
Sternberg memory search, continuous recogni-
tion memory, attention switching (which com-
bines mathematical processing and manikin
tasks), and a dual task that combines memory
search with tracking at both individualized and
group levels of task difficulty. Table 1 summa-
rizes the tasks and their respective criterion
measures. A complete description of each of the
tasks and measures can be found in Schlegel,
Shehab, Gilliland, Eddy, and Schiflett (1995).
Performance data for all tasks except dual task
group (DULG) were included from Database 1,
whereas data for only critical tracking (TRK),
dual task individual (DULI), DULG, and
attention switching were included from Data-
base 2.

The stressor conditions differed for the two
databases. Database 1 was developed to study
the effects of the space environment, particu-
larly microgravity, on human cognitive perfor-
mance (Schiflett et al., 1995). Three astronauts
performed 24 preflight trials, 13 in-flight trials,
and 3 postflight trials over a period of approxi-
mately 8 weeks. For Database 2, which was
developed to study the effects of antihista-
mines and sleep loss on human cognitive per-
formance (Gilliland & Schlegel, 1994), 16
participants performed 30 practice trials before
beginning the risk factor investigation period
following a delay of several weeks. This risk
factor testing was spread across five weekends
with an idle weekend between the second and
third weekends. Participants performed two
refresher trials during the weekdays before the
first and third weekends of testing and one
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refresher trial during the weekdays before the
second and fourth weekends of testing. Across
the four sessions of risk factor testing, partici-
pants were assigned at random combinations
of antihistamine dose (4 mg Chlor-Trimeton™
or placebo) and work shift (day or night). Seven
participants were chosen at random from Data-
base 2 for inclusion in the current analysis.

Once the databases had been identified, the
data were subjected to an independent assess-
ment of performance changes by a subject
matter expert (SME) in the field of human cog-
nitive performance. This assessment was help-
ful because a participant’s performance may
not always correlate with the presence or ab-
sence of a risk factor. For example, exposure to
a risk factor may not always be reflected by a
change in performance; alternatively, perfor-
mance may indicate the presence of an exter-
nal risk factor not specified in the experimental
protocol. The assessment identified actual per-
formance impairment based on a visual pattern
analysis of the data. The analysis was blind in
that the evaluator was unaware of the experi-
mental conditions associated with each data
point. In addition, intrarater reliability was
evaluated by comparing the judgments with a
second set of judgments performed by the
same SME 6 weeks later. The intrarater relia-
bility was high, with 91% of the 912 judg-
ments in agreement between rating sessions.

The methodology by which the SQC tech-
niques were evaluated is illustrated in Figure 1.
The statistical techniques proposed to identify
risk-factor-induced performance changes were
evaluated by subjecting the various measures
in each database to each of the analysis tech-
niques. Three techniques were evaluated: (a)
Shewhart charts (either x-bar and s charts or a
p chart), (b) CUSUM charts, and (c) EWMA
charts.

Each technique was implemented using a
variety of parameter configurations, which
served to provide an opportunity for a broad
range of chart performance. The parameters
for the Shewhart charts define the width of
the control limits and were specified as multi-
ples of the standard deviation (σ) of the chart-
ed parameter or as the desired level of the
Type I error probability (α). The EWMA charts
use similar parameters to define the control
limits but also include a parameter (λ) to de-
fine the weight allocation between the current
data point and previous data points. CUSUM
parameters are used to define the V-mask
shape and position and can be specified with
one of two alternative parameter sets. The
first set specifies the Type I error probability
(α), the Type II error probability (β), and the
shift in the process mean (δ) to be detected.
The alternative parameter set specifies the
decision limits (h) about the current plotted

TABLE 1: Performance Tasks and Measures

Correct Root Mean
Task Lambda Reaction Percentage Square Control

Task Code (LM) Time (RT) Incorrect (PI) Error (RMS) Losses (CL)

Critical tracking TRK X

Spatial matrix MTX X X

Sternberg memory
search STN X X

Continuous
recognition CRC X X

Attention switching
Manikin MAN X X
Math processing MTH X X
Transition trials MANX/MTHX X X

Dual task DUL
Memory search X X
Unstable tracking X X
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value and the slope of the arms of the V-mask
(k) in terms of multiples of the standard devi-
ation.

Baseline data were used to initialize the
chart parameters. It is generally recommended
that 20 samples be used to initialize Shewhart
charts (Wheeler & Chambers, 1992). Similar
recommendations might be made for the other
charts when their control limits are defined
based on the standard deviation. However,
these samples would typically each contain 4

to 6 data points (for a total of approximately
100 measurements), compared with the 30 to
150 data points per sample from the cognitive
databases. Although each performance data set
contained at least 24 trials prior to risk factor
exposure, it was observed that the early trials
exhibited a substantial degree of instability
caused by continued participant learning of the
tasks. The best estimates of stable means and
standard deviations were provided by the last
three practice sessions for Database 1 and the

Figure 1. Methodology for evaluation of SQC charts for each performance measure.
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last five practice sessions for Database 2. For
the discrete stimulus tasks, these parameter es-
timates are thus based on 100 to 750 individual
responses per participant.

The remaining trials in each data set, in-
cluding data obtained under risk factor con-
ditions, were analyzed using each technique.
Control charts were generated for each of the
techniques using the various combinations of
participant, task, performance measure, and
parameter configuration. Each of the generated
control charts was analyzed according to the
appropriate rules for identifying an out-of-
control process point. The CUSUM charts were
evaluated using V-masks, and for the other
charts we used their specific application of
control limits.

After all data sets had been charted, the perfor-
mance of each technique was evaluated. The
results of the charting analyses were represent-
ed as correct (correct rejections and hits) and
incorrect (false alarms and misses) classifica-
tions of impairment. The basis of comparison
was either the judgment of the SME or the
presence/absence of a risk factor. These values
were then summarized across participants for
both databases and incorporated into measures
of specificity and sensitivity (Kennedy, Turnage,
& Dunlap, 1992). Specificity describes the
classification of judgments for the unimpaired
population and is the ratio of the number of
trials correctly classified as unimpaired divided
by the total number of unimpaired trials. Sen-
sitivity describes the accuracy of the classifica-
tion of judgments for the impaired population
and is the ratio of trials correctly classified as
impaired divided by the total number of im-
paired trials.

In the context of RTP, equivalent values of
specificity and sensitivity differentially affect
the number of classification errors made. For a
sufficiently low population impairment rate, a
given change in specificity would result in a
substantially greater change in the overall error
rate than would the same change in sensitivity
(i.e., false alarms vs. misses, respectively). As a
result, Kennedy et al. (1992) suggested that in
RTP applications, specificity is more critical
than sensitivity because even a low false alarm
rate can result in removing or reassigning a
large number of unimpaired employees.

Before comparing techniques, it was neces-
sary to determine the most effective parameter
configuration for each technique. This selection
was based on the dual criteria of maximizing
specificity while retaining high sensitivity. In
many instances the optimal parameter configu-
ration was obvious because one configuration
exhibited substantially higher values of speci-
ficity and sensitivity. Some selections involved
a trade-off such that a lower specificity was
accepted in exchange for a substantial improve-
ment in sensitivity. However, minimizing the
false alarm rate was always emphasized, and
only small deviations from that minimum were
tolerated.

Techniques were then compared using the
optimal parameter configuration identified for
each technique. Sensitivity and specificity in-
dexes from these techniques were compared
using tests of hypotheses on two proportions.
Three charting techniques were applied to the
reaction time (RT), root mean square error
(RMS), and lambda (LM) measures, so three
paired tests were conducted. The Bonferroni
inequality was applied to the analyses to con-
trol the family-wise Type I error rate (Hays,
1988). The percentage incorrect (PI) and con-
trol losses (CL) measures were examined with
only the Shewhart chart, and no paired test
was necessary. If the results of the tests on pro-
portions were significant, an optimal control
chart technique was selected for each perfor-
mance measure.

RESULTS

Database 1

The evaluation of chart effectiveness for the
NASA astronaut performance data was based
on the SME judgments. These judgments were
considered to reflect the true impact of micro-
gravity on participant performance. In other
words, the SME judgments were used as the
basis for evaluating whether performance was
impaired relative to baseline standards. Fre-
quency counts of errors and correct judgments
were determined by comparing control chart
judgments with SME judgments.

A control chart was developed for each per-
formance measure and participant using each
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of the techniques with the various parameter
sets. This process yielded 648 control charts
for Database 1. Three SQC charts are shown in
Figure 2 for the critical tracking task mean
lambda performance measure for a single par-
ticipant. For this measure, low values represent
impaired performance.

The Shewhart chart in Figure 2a shows that
Trials 25, 26, 27, and 35 are “out of control.”
The same data (standardized and accumulated)
are presented in a CUSUM chart (Figure 2b).
The chart illustrates the evaluation with the V-
mask anchored at Trial 31 and clearly shows
the performance change that occurred between

Trials 25 and 26. The EWMA chart (Figure 2c)
indicates Trials 26, 27, and 35 as out of control.

The SME judged trials 25, 26, 27, and 35 to
be out of control, directly corresponding to the
trials identified by the Shewhart technique.
Thus for the Shewhart chart with the specified
parameter set, the values for sensitivity and
specificity are both 1.0. In general, the CUSUM
chart identified a large number of trials as out
of control, thus yielding strong sensitivity (1.0)
but poor specificity (often 0.0). The corre-
sponding values of sensitivity and specificity
were .75 and 1.0, respectively, for the EWMA
chart.
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Figure 2. SQC charts for tracking task mean lambda (Database 1, Participant 002): (a) Shewhart chart (±2
σ), (b) standardized CUSUM chart (δ = 3, h = 1.5, k = .75), and (c) EWMA chart (±3 σ, λ = .85).
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After evaluating the performance measure
for each participant with all control chart tech-
niques, the frequency counts were collapsed
across participants in order to compute overall
indexes of sensitivity and specificity. Using
these overall indexes, the most effective para-
meter set for each technique was selected. In
the case of conflicting results, a subjective de-
termination was made using the criteria of
maximizing specificity while retaining accept-
able sensitivity. These selected techniques were
then subjected to paired tests of proportions
on the indexes of sensitivity and specificity in
order to identify which of these techniques (if
any) was most effective for the performance
measure in question. Finally, each technique
determined to be most effective was submitted
to a test of a single proportion equal to a target
value of .5 to determine whether the test per-
formed better than chance. A directional alter-
native hypothesis (greater than chance) was
employed.

Database 2

Evaluation of Database 2 was performed
using two different foundations. First, control
chart performance was compared against SME
judgments. This analysis was identical in pro-
cedure to that used for Database 1. The second
foundation used the actual risk factor condition
as the basis for defining stressor exposure. How-
ever, the analysis procedure was the same as
that previously employed. To avoid confounding
the experimental variables, each combination
of antihistamine level and work shift was con-
sidered as a separate risk factor condition. In
other words, the risk factors were considered to
be antihistamine-day shift (HD), antihistamine-
night shift (HN), and placebo-night shift (PN).
These trials were used to compute hit and miss
frequencies and sensitivity rates for each risk
factor condition. The “refresher” trials and the
placebo-day shift (PD) trials were used in the
computation of a single set of correct and false
alarm frequencies and the overall specificity
rate. Overall, 1358 charts were generated from
Database 2.

Figure 3 presents the Shewhart p chart
using data for a single participant taken from
the manikin task percentage incorrect mea-
sure. Examination of the chart indicates that

Trials 52, 53, 54, 59, 60, and 67 are out of
control. Substantial correspondence was ob-
tained between the p chart and SME judgments,
with values for specificity and sensitivity as
high as 1.0. The ability of the chart to identify
actual risk factor exposure was poor. The sensi-
tivity for the Shewhart p charts ranged from 0.0
(for placebo-night) to .67 (for antihistamine-
day), and specificity never exceeded .71.

After participant performance was evaluated
individually, the frequency counts were col-
lapsed across participants, and two sets of in-
dexes were computed: one for SME and one
for risk factor. These overall indexes were used
to determine the optimal parameter set for each
technique. Using the indexes from the optimal
parameter sets, tests of proportions were con-
ducted to select the best technique or tech-
niques and to determine whether the selected
technique performed better than chance. The
SME-based evaluation was tested separately
from the risk factor evaluations. Each risk fac-
tor condition test on specificity rates was based
on the same refresher and PD trials. However,
the sensitivity tests differed because they were
based on specific experimental conditions (i.e.,
HD, HN, PN).

Summary across Databases

Tests of proportions were used to identify
the optimal technique or techniques for differ-
ent performance metrics to investigate individ-
ual participant performance. From Database 1,
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Figure 3. SQC p chart (±2 σ) for manikin percent-
age incorrect (Database 2, Participant 002).
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each of the 10 continuous performance mea-
sures was effectively assessed by at least one
Shewhart chart or one EWMA chart. As expec-
ted, tighter chart boundaries were typically
more successful at detecting out-of-control data
points. For discrete measures (e.g., PI) from
Database 1, p charts with tighter boundaries
were the most effective.

Similar results were found for the evaluation
of Database 2 against the SME judgments. How-
ever, the evaluation of these data against the
various risk factor conditions yielded slightly
different results. Shewhart and EWMA charts
performed significantly better than other charts
for seven of the continuous measures. How-
ever, CUSUM charts also performed well on
five of the seven measures.

Beyond identifying a more effective tech-
nique, it is important that the technique pro-
vide strong values of sensitivity and specificity.
In general, values of specificity across the more
effective techniques were fairly high (from
.6735 to 1.000, with a mean value of .9263), im-
plying effective control of false alarms. The
task consistently yielding the lowest specificity
was DUL for both the RT and CL measures.
Overall, the measures of sensitivity were some-
what lower (from 0.0000 to 1.000 with a
mean value of .4907), indicating that even the
more effective techniques missed out-of-control
data points on occasion. Although Kennedy et
al. (1995) diminished the relative importance
of sensitivity, some of the values are so low
that the techniques may miss most of the
impaired participants. However, if the data are
examined using only the SME as the frame of
reference, the mean values of specificity (.9525)
and sensitivity (.7789) increase substantially.

Table 2 presents a summary of the SQC
methods identified from the tests of propor-
tions for tasks and measures common to both
databases. The results for each data set and
across data sets indicate which chart provided
better identification of cognitive performance
changes. When the test of proportions revealed
no significant differences among multiple
charts, those charts were indicated. Along with
identifying the most successful SQC method(s),
Table 2 presents the maximum values of sensi-
tivity and specificity (corresponding to the
identified method).

CONCLUSIONS

The goal of this research was to investigate
the effectiveness of using three statistical qual-
ity control methods for identifying risk-factor-
impaired cognitive performance. Of the three
quality control chart techniques examined, clear
discriminations were made among the tech-
niques appropriate for different types of data.
Continuous performance measures (e.g., reac-
tion time, mean lambda, RMS error) were best
evaluated with exponentially weighted moving
average (EWMA) charts having a large weight-
ing factor (about .90). Shewhart charts were
moderately effective for these data, but cumu-
lative-sum (CUSUM) charts were grossly inef-
fective. However, percentage-incorrect data
were well described using Shewhart p charts.

We believe that the differences in effective-
ness among the charts were attributable primar-
ily to the type of performance change detected
rather than specific characteristics of the task
measures. Exposure to a risk factor for a single
trial (e.g., gravity transitions or antihistamine
dosing) produces a single out-of-control point,
which is most effectively detected with a She-
whart chart. If the magnitude of the abnormal
deviation is sufficient, the point will also be
identified by an EWMA chart with a large
weighting factor (λ) and, less often, by the
CUSUM chart. However, risk factors that de-
velop effects that are sustained across several
trials (e.g., fatigue from sustained operations
or sleep loss) produce an accumulated perfor-
mance shift that is more effectively detected by
the EWMA and CUSUM charts.

A closer review of the CUSUM (and EWMA)
chart performance in this study revealed greater
effectiveness across trials that reflected fatigue
development (e.g., later sessions of the astro-
naut missions). The relatively low specificity
for the CUSUM charts was primarily a result
of the parameter sets selected and the imple-
mentation approach used. Performance of these
charts in detecting sustained performance shifts
or trends may be improved through the use of
a different implementation method that re-
duces the number of false alarms, but it is
highly unlikely that CUSUM charts can effec-
tively detect one-time performance deviations.

An interesting result of this research was
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TABLE 2: Summary of Tests on Proportions for SQC Charts

Database 2

Database 1 Effective
Measure SME SME HD HN PN Charts

TRK LM S, E S, E S, E S, E S, E Shewhart/
Sensitivity .9474 .8667 .2381 .3333 .0476 EWMA
Specificity 1.0000 1.0000 .9592 .9592 .9592

MAN RT S, E, C S, E S, E E S, E Shewhart/
Sensitivity .8571 .7500 .0476 .0952 .0952 EWMA
Specificity .9756 1.0000 .8776 .9388 .8776

MANX RT S, E, C E S, E, C S, E, C S, E, C EWMA
Sensitivity 1.0000 .6875 .1429 .1905 .1905
Specificity 1.0000 .9620 .9184 .9184 .9184

MAN PI S S S S S Shewart
Sensitivity 1.0000 .9333 .0476 .0476 .0476
Specificity .6744 1.0000 .9388 .9388 .9388

MANX PI S S S S S Shewart
Sensitivity 1.0000 .6667 .0952 .0000 .0000
Specificity .8182 1.0000 .9184 .9796 .9796

MTH RT S, E E E, C E E, C EWMA
Sensitivity .5455 .9286 .0476 .1429 .0476
Specificity .9730 .9881 .9388 .9388 .9388

MTHX RT S, E, C E S, E, C S, E, C S, E, C EWMA
Sensitivity .3000 .9048 .0952 .1429 .0952
Specificity 1.0000 .9778 .9388 .9388 .9388

MTH PI S S S S S Shewart
Sensitivity .4286 .8125 .0000 .0952 .1905
Specificity .9756 .9818 .8980 .8980 .8980

MTHX PI S S S S S Shewart
Sensitivity .2857 .8571 .0000 .1429 .0952
Specificity .8780 1.0000 .9184 .8980 .8980

DULI RT S, E, C S, E S, E, C S, E, C S, E, C Shewart/
Sensitivity .8333 .7647 .3810 .6190 .4762 EWMA
Specificity .8889 .8642 .6735 .6939 .6939

DULI PI S S S S S Shewart
Sensitivity .8750 .6875 .1429 .2381 .0476
Specificity .9750 .9813 .9184 .9184 .9184

DULI RMS S, E E S, E, C S, E, C S, E, C EWMA
Sensitivity .9231 .9429 .4286 .6190 .3333
Specificity .9429 .9265 .7347 .7143 .7143

DULI CL S S S S S Shewart
Sensitivity .9167 .9200 .1429 .3333 .2381
Specificity .8888 .9744 .8980 .8776 .8980

Note. Chart techniques are denoted by S = Shewhart, C = CUSUM, and E = EWMA. The basis of comparison is SME = subject mat-
ter expert; HD = antihistamine, day shift; HN = antihistamine, night shift; PN = placebo, night shift. Values for sensitivity and speci-
ficity are shown for the chart with optimal performance on that task measure. See Table 1 for explanation of other codes.
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the marked difference in sensitivity and speci-
ficity between the SME and risk factor evalua-
tions. The SME-based evaluation yielded higher
values of sensitivity and specificity than did the
analysis of data in reference to risk factor con-
dition. This phenomenon is attributed to the
fact that people have individual susceptibilities
to the experimental risk factor doses, and they
may or may not exhibit a concomitant change
in performance. The SME analysis incorpo-
rates this individual difference by considering
the data participant by participant rather than
based on assumed impairment caused by risk
factor dosing.

To strengthen the conclusions drawn from
this study, expanded databases should be
examined with these techniques. For the tasks
common to both databases, a total of 10 par-
ticipants were included in the analysis. For
tasks unique to each database, this number
was substantially fewer. Additional participants
would strengthen the statistical conclusions
and would provide greater confidence in the
results. More risk factors need to be examined
to determine whether the patterns indicated
for continuous and discrete data are replicated.
Specifically, risk factors anticipated in a typical
work environment should be investigated.
Short-term space travel as a risk factor applies
to a very limited population, and antihistamine
represents,  typically, a mild risk factor within
the work environment. The inclusion of addi-
tional relevant risk factors and higher doses
would also enhance the generalizability of the
results.

The analyses described in this paper demon-
strated the effectiveness of statistical quality
control techniques for determining the quality
of individual human performance. Although
this paper examined cognitive performance, we
believe this approach would be equally useful
for analyzing other metrics of human perfor-
mance. The primary requirement for using
control charts to identify significant deviations
in single-subject performance is the attainment
of stable baseline performance indicating a
minimal level of continued learning. Several
trials of stable performance are needed to ini-
tialize the chart parameters. Performance trials
collected beyond these initialization trials can
then be monitored via SQC control charts.

After each performance trial, the data can be
plotted on the chart and evaluated against the
performance boundaries specified. If perfor-
mance exceeds the boundaries (in the direction
of degraded performance), then performance is
considered to be out of control and the appro-
priate action can be taken.

The design of SQC charts to meet specific
detection goals and to achieve specified error
probabilities can be readily accomplished using
any of the texts cited in the references. Im-
plementation of SQC charts for evaluating
individual human performance deviations can
be completed using a number of statistical pack-
ages such as SAS (SAS Institute, Cary, NC) or
Statgraphics (Manugistics, Inc., Rockville,
MD). For each test session involving multiple
stimuli, the data requirements consist of the
number of stimuli along with the mean and
standard deviation of the response measure or
measures for the session. Although this paper
has presented support for the use of SQC tech-
niques in RTP scoring, other issues exist con-
cerning the implementation of an RTP program.
These issues are described in detail in Gilliland
and Schlegel (1993, 1995) and include hard-
ware and software requirements, data process-
ing, nonproductive test time, and a variety of
theoretical validity issues.

SQC charts are a common tool used by in-
dustry practitioners to monitor process perfor-
mance. By adapting these familiar methods to
the monitoring of human performance in in-
dustry, the process of screening workers for
the presence of risk factors is easily understood
and more readily implemented. The use of SQC
techniques in conjunction with RTP testing
can improve the health and safety of the work-
force.
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