
INTRODUCTION

Human visual search is an important aspect of
many civilian and military applications such as
reconnaissance, tracking, information retrieval,
aircraft inspection, medical image screening, in-
dustrial inspection, and the monitoring of sonar,
radar, and other displays. Even in instances where
automation has replaced the human eye as the
primary search instrument, the information is fre-
quently still transferred to a human thorough a
visual link. Thus, interest in the performance of
humans in visual search tasks persists.

In the context of this research, visual search is
considered to be an extended examination of a
field with many elements (as opposed to those
with a small number of visual elements requiring
few if any eye movements; e.g., Eriksen, 1990).

An extended search proceeds as a succession of
focused gazes or fixations in the person’s effort
to perceive a target. The performance of such a
search is measured by the accuracy achieved – that
is, the probability of discovering a target in a spe-
cific length of time. Thus relating accuracy to time
(or equivalently speed) is of central concern, espe-
cially in instances where the respective goals are
in conflict (e.g., safety and productivity). More-
over, search performance has been observed to
vary markedly, in part because of distinct search
behaviors and other individual differences (e.g.,
Wang, Lin, & Drury, 1997). Hence there is also a
need to establish performance benchmarks that
represent the limits of search performance.

Search behavior, in particular, is commonly
assumed to be influenced by both memory re-
trieval (e.g., Arani, Karwan, & Drury, 1984) and
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search strategy (e.g., Williams, 1966). One aspect
of search strategy is the degree of visual lobe over-
lap. The visual lobe, or visual field, is commonly
defined as the area visible in a single fixation.
Models have been developed that account for this
overlap explicitly (Baveja, Drury, Karwan, &
Malon,1996; Courtney & Guan,1996,1998; Sarac,
Batta, & Drury, 1997) and implicitly (e.g., Arani
et al., 1984; Drury & Chi, 1995; Karwan, Moraw-
ski, & Drury, 1995; Krendel & Wodinsky, 1960;
Lin, 1991; Morawski, Drury, & Karwan, 1980,
1992; Williams, 1966), both of which have been
validated in practice (e.g., Baveja et al., 1996, and
Courtney & Guan, 1998, in the former case and
Drury & Chi, 1995, Krendel & Wodinsky, 1960,
Morawski et al., 1980, and Williams, 1966, in the
latter). The latter approach will be considered here.

The boundaries of search performance have
previously been established using models based
on diametric assumptions regarding search behav-
ior. These two extreme cases are commonly re-
ferred to as systematic and random search. The
former is characterized by systematic fixations
and the latter by random fixations, as their names
imply; these are analogous to sampling without
and with replacement, respectively. Naturally,
actual search behavior appears between these ex-
tremes.

Accordingly, Arani et al. (1984) developed a
variable-memory simulation model to represent
a search that is intended to be systematic but suf-
fers from imperfect memory. (A mathematical
model was derived as well, but it is tractable only
under a very restrictive set of assumptions, thus
motivating the development of the simulation.)
The model incorporates a standard two-parameter
decay/interference function memory model, which
the authors stated could be estimated from eye
movement data in practice. (In certain models
[Courtney & Guan,1996,1998] wherein lobe over-
lap is modeled explicitly, the degree of overlap
characterizes the extent of memory loss. Hence
from a modeling standpoint, it is arguable that the
converse would be true in cases in which memo-
ry is modeled explicitly.)

A mathematical model for semisystematic
search is proposed here that can account (primar-
ily in an implicit manner) for memory retrieval
and errors therein, and for other factors that could
potentially affect performance. The latter may in-
clude participant factors such as motivation (e.g.,

Wiener, 1975); attitude toward risk (e.g., Megaw
& Richardson, 1979); individual differences in
search strategy (e.g.,Wang et al.,1997); specialized
search strategies such as left-to-right, line-by-line
patterns (e.g., Baveja et al., 1996); environmen-
tal factors such as noise (which could have either
a favorable or an unfavorable effect on perfor-
mance; e.g., Warner & Heimstra, 1972); and tem-
poral factors such as arousal (e.g., Poulton, 1973).
Organizational factors such as training could also
play a role, insofar as training would affect search
strategy, for example (e.g., Gramopadhye, Drury,
& Prabhu, 1997).

At the core of the model is a function that char-
acterizes search behavior over time. This function
is not restricted to any particular form; as a result,
it may better serve to parallel actual performance.
The function can be estimated from accuracy (or
other performance) data, which would be easier to
obtain in practice than eye movement data. More-
over, the value of this function at a particular point
in time corresponds to the systematic efficiency
of the searcher at that juncture, thus providing a
useful measure of individual performance. Final-
ly, because a mathematical model is employed in
lieu of a simulation, relationships between vari-
ables are more transparent and certain statistical
problems inherent to simulations can be avoided.

MODEL DEFINITION

The process of searching a field for targets is
modeled as a series of fixations. The search field
itself is assumed to be homogeneous; that is, there
are no regions that are distinctive, visually or oth-
erwise. (Textiles, glass, sheet metal, castings,
roller bearings, and lap-splice joints of fuselage
structures are examples of homogeneous search
fields, provided that the targets are inconspicuous.)
It is represented as a set of equal-sized cells, with
the size of these cells corresponding to the area that
can be encompassed in a single fixation (com-
monly referred to as a hard-shell visual lobe). Each
successive fixation either deliberately glimpses a
cell not yet fixated in a systematic manner or arbi-
trarily glimpses a cell (which may or may not have
been previously fixated) in a random fashion.

In order for a particular target to be located, two
events must occur in succession: Acell containing
a target must be fixated and the target subsequent-
ly perceived. It is assumed that the targets are
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inconspicuous, which precludes the possibility of
a guided search (e.g., Wolfe, 1994). Thus, the like-
lihood of fixating on a particular cell containing
a target is directly related to the number of fixa-
tions (which is directly proportional to the time en-
gaged in search), relative to the size of the search
field, for any established search behavior. It is
further assumed that the targets are uniformly dis-
tributed over the search field and that a cell may
contain at most one target. (In cases where the
ratio of the number of cells to the number of tar-
gets is large, the probability that a single cell con-
tains more than one target is negligible; Morawski
et al., 1980.) Once a target is perceived, the search
terminates.

However, it is not certain that a target will be
perceived, even though the cell containing the tar-
get has been fixated. This uncertainty is attribut-
able to factors such as the conspicuity of the target
and its distance from the center of fixation. The
conditional probability that a particular target is
perceived, provided that the cell containing the tar-
get has been fixated on, will be referred to as the
perceptual sensitivity. (The value of the perceptu-
al sensitivity is inversely related to the size of the
hard-shell visual lobe.) There may be several such
probabilities, as the values usually differ accord-
ing to the type of target. However, the probabili-
ties do not vary with the location of a target, given
that the search field is homogeneous. Lastly, the
conditions stated are consistent with those of both
Morawski et al. (1980) and Arani et al. (1984).

The model is intended to represent a semisys-
tematic search that terminates upon detection of
any target. Several parameters characterize the
search:

a: area of search field, a ∈ ℜ, ∋ a > 0,
o: visual lobe; that is, area of an individual
cell, o ∈ ℜ, ∋ o > 0,
bj: number of type j targets in search field, j =
1, 2, …, h, bj ∈ Z+,
g: search time limit (in seconds), g ∈ ℜ, ∋ g >
0,
h: number of different target types in search
field, h ∈ Z+,
εt: systematic search efficiency – that is, the
probability of a systematic fixation at time t, 
εt ∈ [0,1], t ∈ Z*, and
ρj: perceptual sensitivity – that is, the propor-
tion of time that a type j target is perceived,

given that the cell that contains it has been fix-
ated, ρj ∈ [0,1], j = 1, 2, …, h. 

These parameters may also be considered in the
context of performance shaping factors. For ex-
ample, a, bj, g, and h are task factors, whereas o
is a participant factor. The parameter ρj is affected
both by task factors such as target conspicuity and
by participant factors such as visual acuity. Last-
ly, εt is the functional parameter that characterizes
search behavior referred to in the previous sec-
tion. Recall that its precise functional form will
be defined by memory retrieval and various other
performance-shaping factors, such as individual
differences in search strategy. Thus the model can
implicitly incorporate the forenamed stationary
and nonstationary (temporal) factors, as well as
others, via this function.

MODEL FORMULATION

The fundamental modeling approach is based
on the concept of what will be referred to here as
a scan, the number of distinct cells fixated within
a particular scan, the numbers and types of targets
contained in the partition formed by these cells,
and whether or not one of the targets in this parti-
tion is perceived. The concepts of scan and distinct
cells will be clarified before continuing. Ascan is
essentially a measure of coverage that segments
the search into blocks of n distinct fixations, in
which n corresponds to the number of cells in the
search field. The latter is established by comput-
ing the ratio of the area of the entire field to that
of the visual lobe:

n = a/o . (1)

Afixation is considered to be distinct if the newly
fixated cell has not already been glimpsed during
the current scan. Once n distinct fixations have oc-
curred, the current scan is complete; the next fixa-
tion demarcates a new scan. In other words, once
a new scan begins, the slate is wiped clean, so to
speak, and all new fixations are considered dis-
tinct until one of the cells in this new partition is
refixated.

Adopting this approach, the search process
will be modeled as a discrete-time nonstationary
Markov process (e.g., Ross, 2003). The states of
the process, Xt, will be represented by a 3-tuple
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(k,l,m). The substance of these three indexes was
alluded to previously. Descriptions of the individ-
ual indexes and the relationships that exist be-
tween them will now be presented by considering
the search as it progresses from the outset, through
the completion of the first scan, to the initiation
of the second.

The initial scan commences as the search is ini-
tiated, with a series of fixations. The first index, k,
is a nonnegative integer, the value of which cor-
responds to the number of distinct cells that have
been fixated. It is therefore a measure of field cov-
erage, which of course cannot exceed the cumu-
lative number of fixations. The maximum value
of k corresponds to the maximum number of fix-
ations, f, which is the quotient of

f = g/0.3 , (2)

in which 0.3 s is the duration of a single fixation
(e.g., Arani et al., 1984). (The number of fixations
is often used herein to express the concept of time.)
Each successive fixation will either increment k by
1 if the newly fixated cell is distinct or leave k un-
changed if it is not. Hence k is a nondecreasing
variable.

The second index, l, is a vector that has h ele-
ments, each of which corresponds to a different
target type. The jth element, lj, is a nonnegative
integer with a maximum value of bj, in which bj

denotes the number of type j targets in the search
field. (Herein, the convention will be to represent
all vectors in row form.) These elements serve to
enumerate the various types of targets that are
contained in the partition formed by the cells that
have been fixated. It follows therefore that

l∑ ≤ k (3)

for k = 0, 1, …, f, in which

l∑ = lj (4)

for lj = 0, 1, …, bj. Similarly,

n – k ≥ b∑ – l∑ , (5)

in which

b∑ = bj , (6)

or equivalently,

k ≤ n – (b∑ – l∑), (7)

because (n – k) and (b∑ – l∑) represent the number
of cells and targets that have not yet been fixated,
respectively.

On each successive fixation (with the excep-
tion of the fixation that initiates a new scan), either
one of the elements will be incremented by 1 if the
newly fixated cell is distinct and it contains a target,
or else, if not, the elements will remain unchanged.
In the former case, this index will be expressed as
l + I′j, in which I′j designates the transpose of the
jth column of the identity matrix (or, i.e., its jth row,
in accordance with the convention of representing
all vectors in row form), indicating that the distinct
cell fixated contains a type j target. Once all of the
targets have been fixated, lj = bj for j = 1, 2, …, h,
or equivalently, l = b.

The third index, m, is a binary variable that indi-
cates whether or not a fixated target has been per-
ceived; that is,

m = (8)

Clearly,

m ≤ l∑. (9)

Recall that the search terminates whenever a tar-
get is perceived.

Once all cells in the field have been fixated (at
least once), a scan is considered to be complete;
hence at this stage (the end of the first scan), k =
n. Moreover, because all of the targets must have
been fixated, it follows that l = b. Reaching this
stage signifies that a target has not been perceived
on the previous (t – 1) fixations. If a target is per-
ceived on the tth fixation, then m = 1 and the search
is terminated. Otherwise, the next fixation demar-
cates a new scan, whereupon l will be reinitial-
ized. After this fixation, either l = 0, indicating that
the cell fixated does not contain a target, or l = I′j,
indicating that this cell contains a type j target.
The index k is not reinitialized, however, as it is a
cumulative measure of coverage. Instead, a func-
tion, rk, is created,

0 when target is not perceived
on tth fixation, or

1 when target is (fixated and)
perceived on tth fixation

h

∑
j =1

h

∑
j =1
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rk = (10)

so that its value corresponds to the number of dis-
tinct cells that have been fixated during the cur-
rent scan. Thus, in general, rk = n at the end of the
ith scan, i∈ Z+, and

m ≤ l∑ ≤ rk ≤ n – (b∑ – l∑), (11)

because of Equations 3, 4, 6, 7, 9, and 10. (It will
be seen that this function also plays a central role
in determining the transition probabilities.) Final-
ly, this description (and the specifics) would apply
to subsequent scans without loss of generality,
other than k = n at the end of no scan other than
the first.

Thus, the states of the Markov process may
now be represented as

Xt = (k,l,m), (12)

for (k,l,m) ∈ Θt, in which Θt is the indexed set of
states (k,l,m) for all k, l, and m such that m ≤ l∑ ≤
rk ≤ n – (b∑ – l∑) and k ≤ t, for t = 0, 1,…, f, because
of Equations 4, 6, 10, and 11. The transitions of
the process form three distinct sets:

(k,l,0) → (k + 1,l,0), (k + 1,l + I′j,0), (k + 1,l +
I′j,1), (k,l,0), (k,l,1) for k ≠ n,2n,...,

(k,b,0) → (k + 1,0,0), (k + 1,I′j,0), (k + 1,I′j,1)

for k = n, 2n,..., , and

(k,l,1) → (k,l,1).

The first set contains transitions that occur during
an ongoing search at any time other than when a
scan is completed, the second set includes those
transitions that occur only at the time a scan is
completed, and the transitions in the third set in-
dicate that a target has been perceived and the
search terminated.

The conditions that define the transitions with-
in these sets will now be described. To begin, the
transition (k,l,0) → (k + 1,l,0) will be considered.
First observe that a distinct cell has been fixated,
given that the first index of the destination 3-tuple
has a value of (k + 1). Such a state change may oc-

cur by means of either a random or a systematic
fixation. Moreover, because the middle index re-
mains unchanged, this implies that the new cell
fixated does not contain a target. As a result, the
third index necessarily has a value of 0 because
a target (that is not present) cannot be perceived.
Next, the transitions (k,l,0) → (k + 1,l + I′j,0) and
(k,l,0) → (k + 1,l + I′j,1) differ from the previous
one in the respect that the distinct cell fixated
contains a type j target, because the jth element
of the middle index of the destination 3-tuple has
been incremented by one. In the former case the
target is not perceived, whereas in the latter case
it is, as indicated by the respective values of the
third index of the destination 3-tuple.

Conversely, the transitions (k,l,0) → (k,l,0)
and (k,l,0) → (k,l,1) signify instances in which a
cell is refixated, because the first index is un-
changed. Thus these particular transitions must be
the result of a random fixation. The second index
necessarily remains the same because the partition
(of distinct cells) has not been expanded to encom-
pass additional targets. In the former case, a target
is not perceived; this may be attributable either to
a failure to perceive a target when the cell that con-
tains it is refixated or to simply refixating a cell that
does not contain a target. However, the latter tran-
sition reflects an instance in which the refixated
cell includes a target that is perceived.

In contrast to the first set of state transitions de-
scribed previously, those included in the second
set, (k,b,0) → (k + 1,0,0), (k,b,0) → (k + 1,I′j,0) and
(k,b,0) → (k + 1,I′j,1), occur only at the instant a
scan is completed. In this case, the second index
of the origination 3-tuple must equal b because
the partition envelops the entire field, and thus all
the targets, once a scan is completed. According-
ly, this index is reinitialized in the destination 3-
tuples, because the commencement of a new scan
creates a new partition. Similarly, the first index
is incremented because the first fixation of a new
partition is necessarily distinct. The specific real-
izations of the second and third indices (of the
destination 3-tuples) of this set of transitions are
interpreted in a manner identical to that of the
previous set. The last transition to be considered,
(k,l,1) → (k,l,1), is characteristic of an absorbing
state (in a Markov process). In the current context,
absorption occurs when a target is perceived, be-
cause the search is terminated at that point.

Finally, the likelihood of any particular state

f – 1
———

n

k(mod n) k = 0,1,…, f, ∋ k ≠ n, 2n,…

n k = n, 2n,…
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change is governed by a set of transition proba-
bilities. These probabilities are obtained by con-
sidering the conjunction of several events. For
example, consider the transition (k,l,0) → (k +
1,l,0) once again. Recall that this transition may
occur via either a random or systematic fixation.
Under the assumption of the former, four events
must occur: There will first be a random fixation;
this fixation will glimpse a distinct cell; the fix-
ated cell will not include a target; and a target will
not be perceived. Asystematic fixation, of course,
alters the first event but not the others. Because
random and systematic fixations are exclusive, the
respective probabilities of these events would be
added. In this manner, the equation for the prob-
ability of this particular transition, denoted by
pt

(k,l,0),(k + 1,l,0), is obtained:

pt
(k,l,0),(k + 1,l,0) = (1 – εt) ⋅ ⋅ 

⋅1 + εt ⋅1 ⋅

⋅1 =
(13)

(n – rk – bΣ + lΣ) + .

The other transition probabilities are derived in a
similar fashion. A complete set of transition prob-
abilities may be found in the Appendix. It is note-
worthy that models for both random and systematic
searches could be obtained by setting εt = 0 and
εt = 1 in these equations, respectively, for all t.

PERFORMANCE MEASURES

There are several measures of interest, one of
which, the mean systematic search efficiency, ,
can be determined directly from averaging the sys-
tematic search efficiency at each time epoch:

= εt . (14)

The others,
αt, accuracy – (cumulative) probability of per-
ceiving a target by time t, αt ∈[0,1];
V, time to perception – number of fixations
required to perceive a target, v = 1,2,...f;
W, task time – number of fixations expended in

search task effort, irrespective of whether or not
a target is perceived, w = 1, 2,...f; and
Ct, coverage – number of distinct cells fixated
by time t in the initial scan of a field void of tar-
gets, relative to the number of cells in the field,
Ct ∈ (0,1];

are output measures in the strictest sense. These
metrics are a function of the transition probabili-
ties; they are also a function of state probabilities.

Let qt
(k,l,m) represent the probability that state

(k,l,m) is occupied at time t; that is,

q t
(k,l,m) = Pr[Xt = (k, l, m)] , (15)

for (k,l,m) ∈Θt, for all t. Now let qt
(k,l,m) be the

(k,l,m)th element of the state probability vector qt.
Also let pt

(k,l,0),(k + 1,l,0) be the (k,l,0)(k + 1,l,0)th
element of the transition probability matrix Pt, let
pt

(k,l,0),(k + 1, l + I′j,0) be the (k,l,0)(k + 1,l + I′′j,0)th ele-
ment of Pt, and so on. Then

qt = qt–1Pt–1 , (16)

for t = 1,2,…, f, with

q0 = [1, 0, 0,...,0], (17)

because q0
(0,0,0) = 1.

Now, the accuracyat time t is expressed in terms
of the absorbing state probabilities as

αt = qt
(k,l,1) (18)

for t = 1, 2,…, f, because absorption and target per-
ception are synonymous in this context.

The mean has been selected to characterize the
remaining measures, as they are random variables.
The equation for the second measure, the expect-
ed time to perception, is

µV = vdV (v), (19)

in which dV(v) denotes the mass function for the
random variable. The equation for the mass func-
tion

dV(v) = Pr(V = v) = DV(v) – DV(v – 1), (20)

f

∑
v =1

∑
l

(k,l,1)∈Θt

∑
k

f –1

∑
t =0

1
—
f

–ε 

–ε 

εt———
n – rk

1 – εt———
n

n – rk – (bΣ – lΣ)
————————

n – rk

n – rk – (bΣ – lΣ)
————————

n – rk

n – rk———
n
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for v = 1, 2,…, f, can be readily found using the
distribution function, DV(t), in which

DV(t) = Pr(V ≤ t) = (21)

for t = 1, 2,…, f, because the absorbing state prob-
abilities are cumulative over time.

Next, recall that the search will terminate in one
of two ways: when either a target is perceived or
time has lapsed as the consequence of an unsuc-
cessful search. Hence, the expression for the ex-
pected task time is a convex combination of the
mean time to perception and the time limit,weight-
ed by the respective probabilities of a “hit” and a
“miss”:

µW = αf µV + (1 – αf) f . (22)

The final measure is derived from a field void
of targets. Hence in this particular case l = b = 0,
from which it follows that

qt
(k,0,0) = 1 (23)

for t = 1, 2,…, f. The resultant equation for the ex-
pected coverage at time t, then, is

E[Ct] = (24)

for t = 1, 2,…, f. 
Heretofore, it has been assumed that the num-

bers of the various types of targets present (in the
field) are known with certainty. Indeed, this would
be the case in a synthetic task environment in the
context of training, for example. However, if the
numbers are not known (with certainty), then b
would not be fixed but instead would represent a
realization of a random vector, B. Nonetheless, all
of the output measures could still be found by using
a theorem of conditional expectation. For exam-
ple, the equation for the expected value of the task
time would become

µW = E[E[W|B]] = E[W|B = b]Pr(B = b), (25)

in which E[W|B = b] would be given by Equation
22. These performance measures will now be con-
sidered via a numerical example.

MODEL ILLUSTRATION

An example will be adapted from Arani et al.
(1984) in which n = 50, f = 200 (i.e., g = 60 s), h =
2, Pr(B = [1, 1]) = Pr(B = [1, 2]) = Pr(B = [2, 1]) =
Pr(B = [2, 2]) = 0.25, and ρ = [0.8, 0.5]. The 
corresponding state transition diagram is depicted
in Figure 1. Now, for the current model, let the sys-
tematic search efficiency be subject to exponential 

decay; specifically, let εt = xy , x ∈ (0,1], y ∈
[0,1], z ∈ ℜ, ∋ z > 0, for t = 0, 1,…, f – 1. Although
x will be fixed at 1 and z at 50 (that is, n) here, sev-
eral values of y will be considered in order to
demonstrate how different rates of decay affect
the various performance measures. These values
are listed in Table 1, along with the corresponding
average systematic efficiencies. In addition, plots
of the different systematic efficiencies over time
are depicted in Figure 2. The first value yields a
random search (with the condition that 00 = 0).
Cases 2 through 4 produce searches that become
random after 100, 150, and 200 fixations, respec-
tively. Cases 5 through 9 generate searches that
have respective systematic search efficiencies of
1%, 5%, 10%, 20%, and 40% after 60 s. Of course,
the last value yields a search that is strictly sys-
tematic.

Figure 3 reveals that coverage is directly relat-
ed to the degree of systematic efficiency, as expect-
ed. Moreover, this figure confirms that in the case
of strictly systematic search, the field coverage is
equal to 1 (or 100%) when the number of fixations
corresponds to the field size. (This also coincides
with the point at which the difference in coverage
yielded by the extreme behaviors reaches a max-
imum.) The expected field coverage of the other
cases will approach – but never achieve – a value
of 1 (for any finite number of fixations), because
complete coverage is not certain when any random
behavior is exhibited. Next, observe the striking
similarities between the expected coverage curves
and the corresponding accuracy curves, shown in
Figure 4. In particular, observe how closely the

t
—
z

∑
b

t

∑
k =1

αt—
αf

kqt
(k,0,0), t ≤ n

kqt
(k,0,0) + qt

(k,0,0), t > n
t

∑
k = n+1

n

∑
k =1

1
—
n

t

∑
k =1

1
—
n
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curves of Cases 2 and 3 parallel that of the ran-
dom search, and that Cases 6 through 9 converge
at 75 fixations. Thus these figures suggest a direct
link between expected coverage and accuracy. 

The expected perception times for the various
cases, however, tend to diverge at first as the
number of fixations increases, as displayed in
Figure 5. Moreover, although the curves of the
different cases maintain their respective positions
with respect to accuracy and coverage, the per-
ception time curves do not. The cases that are rel-

atively less systematic exhibit perception times
that are initially smaller, and later larger, than
their counterparts. The reason for this is that
when the less systematic searches are successful,
it is more likely that they will be successful early
on, as illustrated by the extreme cases in Figure
6a. This initial advantage is negated as the time
horizon is extended, however, because protract-
ed searches are more likely to be the by-product
of less efficient behavior, as demonstrated in
Figure 6b. Moreover, because it is less likely that

Figure 1. State transition diagram.
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these searches will be successful, the expected
task time curves (which represent a weighted
combination of the perception and unsuccessful
termination times) reflect the fact that less effi-
cient searches are consistently more time con-
suming on average, as shown in Figure 7.

CONCLUSION

An extended semisystematic search was mod-
eled with a discrete-time nonstationary Markov

process. The time-dependent, semisystematic
search behavior is expressed by an embedded
function. Given its generic nature, this function
is capable of generating not only time-dependent
decreases in efficiency but increments as well, if
appropriate. The function can be estimated from
performance data such as accuracy, or process
data such as coverage, although the latter are usu-
ally more difficult to obtain in practice.

The present model requires no assumptions
beyond those applied by Morawski et al. (1980)
to their models for random and strictly systemat-
ic search, despite its capacity to reproduce these
behaviors, as well as those characteristic of semi-
systematic search. (These particular models are
underscored because they are extensions of ear-
lier models of random [e.g., Krendel & Wodinsky,
1960] and strictly systematic search [e.g., Wil-
liams, 1966].) The same is also true with regard to
the assumptions imposed in the variable-memory
simulation model developed by Arani et al. (1984).
Nevertheless, the mathematical model proposed
here embodies both memory-related factors and
other determinants, and it is not subject to the sta-
tistical difficulties intrinsic to simulation methods.

TABLE 1: Selected Values of y With Correspond-
ing Average Systematic Search Efficiencies

Case y

1 .0 .0
2 .028747 .073
3 .076524 .100
4 .171375 .144
5 .318314 .219
6 .473083 .320
7 .562446 .393
8 .668760 .499
9 .795242 .656
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Figure 2. Systematic search efficiency versus number of fixations.
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Figure 3. Accuracy versus number of fixations.
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Figure 4. Expected empty field coverage versus number of fixations.
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Moreover, this model generates both perfor-
mance and process measures, whereas the vari-
able-memory model yields only accuracy.
Although the other models yield mean and medi-
an times to perception, in addition to accuracy,
these values represent approximations that are
apparently based on an infinite time horizon.
Consequently, a single value is produced, irrespec-
tive of the time limit.

Specifically, the measures that the present
model is able to produce are accuracy, field cov-
erage, time to perception, and task time. In par-
ticular, it was seen that as the search behavior
becomes more systematic, expected coverage
and accuracy increase and expected task time
decreases. These outcomes are consistent with
empirical studies (e.g., Megaw & Richardson,
1979; Schoonard & Gould, 1973; Wang et al.,
1997) and hence support the validity of the
model. It was also observed that whereas increas-
ingly systematic behavior ultimately yields
smaller expected perception times, the reverse is
true initially, which represents a finding that is
neither confirmed nor contradicted by the litera-
ture (to the best of our knowledge).

In addition to explaining these outcomes and
their interrelationships from a theoretical stand-
point, the model can predict these outcomes in
practice to a certain extent as it can create an
envelope defined by best- and worst-case search
performances. The practical value of the model
for predicting intermediate performance is
arguable, however, because doing so would
require the estimation of the search efficiency
parameter by means of either a pilot study or past
data from similar tasks. Nevertheless, it is note-
worthy that the model also has the capability of
supporting assessment. That is, it can be used to
assess the effectiveness of an individual’s search
performance, and to provide possible explana-
tions for this performance, through the use of one
or more of the output measures. In this manner,
the model can serve both initially to screen can-
didates for visual search tasks and, subsequently,
to identify interventions for those who routinely
perform these tasks. Finally, although the appli-
cation of this model is currently confined to
homogeneous search fields, it potentially could be
adapted to incorporate heterogeneous regions.
Such a model would not only have intrinsic value
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Figure 5. Expected time to perception versus maximum number of fixations.
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over abbreviated (a, above) and expanded (b, below) horizons.
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but would also represent the next step in the pro-
spective development of a model for extended
guided search.

APPENDIX

Recall that the transitions of the process consti-
tute three distinct sets:

(k,l,0) → (k + 1,l,0), (k + 1,l + I′j,0), (k + 1,l +
I′j,1), (k,l,0), (k,l,1),
(k,b,0) → (k + 1,0,0), (k + 1,I′j,0), (k + 1,I′j,1),
and
(k,l,1) → (k,l,1).

It can be shown that the equations for the proba-
bilities corresponding to the five transitions of the
first set are, respectively,

pt
(k,l,0),(k+1,l,0) = (n – rk – b∑ + l∑)

+ ,
(26)

pt
(k,l,0),(k+1,l+I′j,0) = (1 – ρj)(bj – lj)

+ , ∀j ,
(27)

pt
(k,l,0),(k+1,l+I′j,1) = ρj (bj – lj)

+ , ∀j ,
(28)

pt
(k,l,0),(k,l,0) = rk – ρj lj , (29)

and

pt
(k,l,0),(k,l,1) = ρj lj (30)

for (k,l,0) ∈ Θt, t = 0, 1,…, f – 1, such that k ≠
n,2n,..., and those for the three transitions from
the second set are
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Figure 7. Expected task time versus maximum number of fixations.
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pt
(k,b,0),(k+1,0,0) = pt

(0,0,0),(1,0,0) = , (31)

pt
(k,b,0),(k+1,I′′j,0) = pt

(0,0,0),(1,I′′j,0) =

(1 – ρj) , ∀j ,
(32)

and

pt
(k,b,0),(k+1,I′′j,1) = pt

(0,0,0),(1,I′′j,1) =

ρj , ∀j ,
(33)

due to Equations 26, 27, and 28, respectively, for

t = n, n + 1,…, f – 1 and k = n, 2n,..., ,  

such that k ≤ t. The last set of transitions to be con-
sidered, (k,l,1) → (k,l,1), merely signifies that the
target has been perceived, thereby terminating the
search. Clearly then,

pt
(k,l,1),(k,l,1) = 1, (34)

for (k,l,1) ∈ Θt, t = 1, 2,…, f – 1.
Finally, it is not difficult to demonstrate from

Equations 26 through 30 that

pt
(k,l,0),(k +1,l,0) + pt

(k,l,0),(k+1,l+I′′j,0) +

pt
(k,l,0),(k+1,l+I′′j,1) + pt

(k,l,0),(k,l,0) + (35)

pt
(k,l,0),(k,l,1) = 1,

for (k,l,0) ∈ Θt, t = 0, 1,…, f – 1, such that k ≠
n,2n,..., which is consistent with that fact that the
system must transit from (k,l,0) to either (k +1,l,0),
(k +1,l +I′j, 0), (k +1,l + I′j, 1), (k,l,0), or (k,l,1),and
from Equations 31 through 33 that

pt
(k,b,0),(k +1,0,0) + pt

(k,b,0),(k+1,I′j,0) +

pt
(k,b,0),(k+1,I′j,1) = 1

(36)

for t = n, n + 1,…, f – 1 and k = n, 2n,... ,

such that k ≤ t, which confirms that the system
must transit from (k,b,0) to either (k + 1,0,0), (k +
1,I′j,0) or (k + 1,I′j,1). When Equation 34 is in-
cluded, all of the transitions have been account-
ed for.
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