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Objective: Performance consequences related to integrating an imperfect alert with-
in a complex task domain were examined in two experiments. Background: Cockpit
displays of traffic information (CDTIs) are being designed for use in airplane cock-
pits as responsibility for safe separation becomes shared between pilots and con-
trollers. Of interest in this work is how characteristics of the alarm system such as
threshold, modality, and number of alert levels impact concurrent task (flight con-
trol) performance and response to potential conflicts. Methods: Student pilots per-
formed a tracking task analogous to flight control while simultaneously monitoring
for air traffic conflicts with the aid of a CDTTI alert as the threshold, modality, and
level of alert was varied. Results: As the alerting system became more prone to false
alerts, pilot compliance decreased and concurrent performance improved. There was
some evidence of auditory preemption with auditory alerts as the false alarm rate
increased. Finally, there was no benefit to a three-level system over a two-level sys-
tem. Conclusion: There is justification for increased false alarm rates, as miss-prone
systems appear to be costly. The 4:1 false alarm to miss ratio employed here improved
accuracy and concurrent task performance. More research needs to address the poten-
tial benefits of likelihood alerting. Application: The issues addressed in this research
can be applied to any imperfect alerting system such as in aviation, driving, or air
traffic control. It is crucial to understand the performance consequences of new tech-
nology and the efficacy of potential mitigating design features within the specific
context desired.

INTRODUCTION

In a variety of human-system integration con-
texts, humans are asked to act in parallel with
automation as diagnostic systems, discriminating
events from nonevents (Dixon & Wickens,
2006; Getty, Swets, Pickett, & Gonthier, 1995;
Madhavan, Wiegmann, & Lacson, 2006; Maltz
& Shinar, 2003; Meyer, 2004; Metzger & Para-
suraman, 2005; Sorkin & Woods, 1985; Wickens
& Dixon, 2007). In the current context, our inter-
est is in parallel human and automation perfor-
mance in airborne conflict detection/alerting
systems (Xu, Wickens, & Rantanen, 2007).

Such alerting systems have several important
and complex properties that are affected by their
design and, hence, affect the joint performance

of the human-automation “team” as these were
first studied by Pollack and Madans (1964) and
then analyzed in detail by Sorkin and Woods
(1985). Within the context of signal detection
theory, two important influences or impacts may
be considered: the reliability, or sensitivity, of the
automated system in discriminating events from
nonevents, and the threshold setting, or response
bias, of the alerting system, dictating the ratio of
the two kinds of automation responses (silent,
alarm) and, therefore, the two kinds of automa-
tion errors (misses vs. false alerts).

Regarding sensitivity (determined by the reli-
ability and quality of the algorithms that process
the raw data in the external world), one would im-
agine that improved automation sensitivity would
improve sensitivity of the human-automation
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system as a whole, a phenomenon that has been
well documented (e.g., Dixon & Wickens, 2006;
Maltz & Shinar, 2003).

More complex is the relationship between
reliability and human dependence on the automa-
tion system (e.g., agreement with automation ad-
vice; Wiegmann, 2002). Results indicate that with
high-reliability automation (reliability that is
greater than that of the human alone), total sys-
tem performance is improved above the capa-
bilities of the human alone (but less than total
dependence on the automated system would dic-
tate; Parasuraman, 1987). Then, as reliability de-
grades, humans also become less dependent, but
even as reliability drops below a threshold at
around r = .75 (d' = 1.35), humans may continue
to depend on the imperfect diagnostic automa-
tion, even if their performance would be better if
this automated advice were ignored (Maltz &
Shinar, 2003; Wickens & Dixon, 2007).

Further complicating the picture are two addi-
tional factors: (a) Dependence may be altered as
a function of how salient or obvious the automa-
tion errors are (Wiegmann, 2002; Madhavan et
al., 2006). (b) Of interest in the current study is
that there is a differential impact of automation
misses and automation false alarms. That is,
humans may trust or depend on the automation
more to the extent that it detects events (leading
to a higher hit rate, but also a higher false alarm
rate) or to the extent that it is more often silent
(leading to a greater miss rate).

Meyer (2001, 2004) analyzed the cognitive
processes related to these two threshold settings
and defined compliance as the state when the
alarm sounds and reliance as the cognitive state
when the alarm is silent (signaling “all is well”).
The distinction is important because the ratio of
automation detection to automation silent re-
sponses (influencing the respective frequency of
false alarms vs. misses when automation is im-
perfect) will lead to

e decreasing automation dependence when the auto-
mation sounds (decreasing compliance with the
alert — the “cry-wolf” phenomenon; Getty et al.,
1995) as automation false alarm rate increases; and

e decreasing automation dependence when the auto-
mation is silent (decreasing reliance upon the alert-
ing system) as automation miss rate increases.

These findings tend to be supported by the data
(Dixon & Wickens, 2006; Maltz & Shinar, 2003).

Although the false alarm and miss rates of
automation may be manipulated independently
(Dixon & Wickens, 2006; Maltz & Shinar, 2003),
in practice they are more often varied in a nega-
tively correlated fashion, as the threshold of the
automated system is varied (Getty et al., 1995; Levin-
thal & Wickens, 2005; Swets, 1991; Wickens,
Dixon, Goh, & Hammer, 2005). Indeed, designers
typically place the threshold low (low beta) in
order to guard against automation misses, which
are typically assumed to be more costly than auto-
mation false alarms (Getty et al., 1995).

However, a point not always realized by de-
signers is that high false alarm rates, creating the
cry-wolf effect (Breznitz, 1983), can lead the hu-
man operator to ignore automated advice, thereby
compromising the effectiveness of the combined
human-automation system (Maltz & Shinar,
2003). Indeed, Sorkin and Woods (1985) have
shown that the combined effectiveness of human
and automation may be greater than individual
human effectiveness only when this false alarm
rate is relatively low (the threshold is high). Add-
ing to the complexity of the picture is the fact that
a low base rate of hazard events to be detected,
typical in many real-world environments, will
further escalate the false alarm rate if the miss
rate is also to be kept low (Getty et al., 1995; Krois,
1999; Parasuraman, Hancock, & Olofinboba,
1997). Indeed, in some air traffic control conflict
detection systems, the probability that an alarm
will be false may be well over 0.50 (Krois, 1999).

As the alert threshold is varied, then, the states
of reliance and compliance will covary negative-
ly, with the reliance being high and the compli-
ance low, as the alert threshold is set to the typical
low value (e.g., with high false alarm rates). Im-
portantly, such variation has implications for
attention allocation and concurrent task perfor-
mance in the multitask domains in which alarms
have proven to be most effective (Getty et al.,
1995; Wickens & Dixon, 2007). The high reliance
induced by a low miss rate should assure opera-
tors that the system will alert them if a true fail-
ure occurs, and hence they will allocate plenty of
residual attention to concurrent tasks (Wickens,
Dixon, Goh, et al., 2005). The high false alarm
rate could lead to operators ignoring many of
those false alarms entirely and, hence, continu-
ing to support concurrent tasks. However, more
likely, those alarms (both true and false) will be
checked eventually, although after a cry-wolf
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delay. Hence the increased number of alarms
with the lower threshold will increase the total
number of interruptions and might harm the con-
current task as much as, or even more than, the
miss-prone system would.

Indeed, these two offsetting trends of lowering
the threshold, leading to (a) less concurrent task
disruption (because of more reliance when the
alarm is silent) and (b) more disruption (because
of an increasing number of alarms), seem to be
reflected by the relatively ambiguous pattern of
concurrent task performance that has been ob-
served in dual-task experiments as alert thresh-
old has been varied (Dixon & Wickens, 2006;
Dixon, Wickens, & McCarley, 2007; Levinthal
& Wickens, 2005; Wickens, Dixon, & Johnson,
2006; Wickens, Dixon, Goh, et al., 2005; see
Wickens, Dixon, & Ambinder, 2006, for a sum-
mary). A goal of the current study is to examine
the effect of varying the alert threshold of an air-
borne conflict alerting system on processing the
alert itself and on concurrent task performance.

In addition to its threshold level, a second
characteristic of the alert system that may influ-
ence how attentional resources are distributed
between the alerted task and the ongoing task or
tasks is the modality of the discrete alert. Audi-
tory presentation has typically been the modality
of choice for such alerts, but its attention-capturing
properties (Spence, 2001) can be disruptive to
concurrent ongoing tasks, leading to rapid pro-
cessing of the auditorily alerted task (compared
with a visual alert) but greater disruption of on-
going interrupted tasks. Such a disruption could
be serious if the ongoing task is of high priority
(e.g., flight control).

Whereas auditory preemption theory predicts
this asymmetric effect of modality on ongoing
task versus alerted task (Iani & Wickens, 2007,
Wickens & Liu, 1988), multiple-resource theory
(Wickens, 2002; Wickens & Hollands, 2000) pre-
dicts a symmetric benefit, such that both tasks
will benefit from an auditory (relative to a visual)
alert presentation when the ongoing task is itself
visual. The differing predictions of these two the-
ories will be evaluated.

A third factor of the alert that was manipulat-
ed in our experiments is the nature of the alarm
itself. Two-state “on-off” alarms are frequently used
in alerting situations, but cogent arguments have
been offered for the benefits of three (or more) state
likelihood alarms that can self-report their own

level of confidence that a dangerous state exists
(Latorella, 1996; Sorkin, Kantowitz, & Kanto-
witz, 1988; Sorkin & Woods, 1985; St. John &
Manes, 2002; Woods, 1995). Although Sorkin et
al. (1988) found no impact of likelihood alerting on
concurrent tracking performance, they did find that
when the ongoing (tracking) task difficulty was high,
a likelihood alert supported better performance on
the alerted task. St. John and Manes (2002) found
that visual likelihood alert information improved
accuracy on a search task, but they did not im-
pose a concurrent task. Together these studies sug-
gest that likelihood alerting will likely have some
positive impact on alerted task performance.

Finally, the fourth factor we varied was the
difficulty (stability) of the concurrent tracking
task, in order to establish the robustness of the ob-
served effects of the other three variables across
levels of workload.

The context for our evaluation of these four
factors is the cockpit display of traffic informa-
tion (CDTI), a system proposed within future cock-
pits to provide pilots with a traffic display that is
partially redundant with the air traffic controller’s
display and may, in some future airspace plans,
allow pilots to monitor their course for conflicts
and to initiate the choice to make route changes
(Johnson, Battiste, & Bochow, 1999; Thomas
& Wickens, 2005; Wickens, Helleberg, & Xu,
2002; Wickens, Goh, Helleberg, Horrey, & Talleur,
2003). Indeed, it has been proposed that such
systems be coupled with discrete alerts (Thomas
& Rantanen, 2006; Xu et al., 2007), paralleling
similar alerting systems for air traffic control
(Metzger & Parasuraman, 2005) and for more
emergency airborne conflicts (the Traffic Alert
and Collision Avoidance System [TCAS]).

A challenge for the CDTI alerting system is
that it is more strategic in nature than the tactical
TCAS, thereby imposing a longer look-ahead
time. But this longer time will induce greater un-
certainty as to the future state of potentially inter-
secting trajectories (Kuchar & Yang, 2000), hence
considerably lowering the reliability of the alert
system (its “sensitivity” in signal detection terms),
and hence will amplify the potential false alarm
(FA) problems described previously. A related
feature of such detection systems is that the
longer a discrete detection response is delayed
(longer response time [RTT]), the more reliable the
information will become, and hence the more
accurate the response is likely to be.
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Thus the current study was intended to inform
both the specific avionics design community, as
well as the more general audience of alert re-
searchers, regarding the joint effects of the four
independent variables: the modality of the alert;
the nature of the alert (likelihood vs. binary); the
difficulty of an ongoing task; and (between ex-
periments) the alert threshold, from a neutral set-
ting (equal frequency of automation misses and
FAs) to an FA-prone setting, more typical of op-
erational alerting systems.

We hypothesized the following:

1. The FA-prone automation will reduce compliance
with the automated system and, therefore, increase
the time (RT) for pilots to switch attention to the
alerting system and detect conflicts (cry-wolf effect).
However, a delayed response may actually improve
conflict detection accuracy.

2. In contrast, the FA-prone system will increase re-
liance (because of a reduced number of automation
misses) and therefore should improve concurrent
task performance because visual resources would not
need to be allocated to monitoring the raw traffic
data when the alert is “silent.” This effect may not
be strong, however, as it could be offset by the greater
interruption frequency of the FA-prone system.

3. Auditory alerts should improve performance on the
alerting task, but should (a) degrade the concurrent
task to the extent that preemption theory is operat-
ing and driving attention rapidly to the automated
domain or (b) improve the concurrent task to the ex-
tent that multiple resource theory is operating and
thus allow the pilot to capitalize on two (visual and
auditory) perceptual resources.

4. Performance on the concurrent task should improve
with the three-state likelihood alert, relative to the
two-state alert, because the likelihood alert, by pro-
viding more specific information about the severity
of a given threat, should allow pilots to more opti-
mally distribute attention between the two tasks.
The likelihood alert may lead to slower responses
to alerts (especially midlevel, less serious alerts) in
order to preserve ongoing task performance. How-
ever, conflict detection accuracy should not suffer.

EXPERIMENT 1
Methods

Twelve student pilots from the University of
Illinois Institute of Aviation were recruited to par-
ticipate in the 3-hr experiment. Pilots were paid
$9/hr. Figure 1 shows a display of the experi-
mental task. Each pilot completed two sessions
of a computer task wherein they performed an
ongoing, first order, compensatory tracking task

Figure 1. Display for the experimental task in Experi-
ments 1 and 2 with the centrally presented tracking task
and the CDTI in the upper right corner.

with a bandwidth of 0.30 Hz that was presented
centrally on the computer screen. Simultaneous-
ly, pilots monitored for air traffic conflicts on a
CDTI with the aid of an imperfect automated
alert. The tracking task required pilots to keep a
cursor within an acceptable position inside a tar-
get rectangle and was controlled with a joystick
using the left hand.

As shown in Figure 1, a simple CDTI display
was presented in the upper right corner of the
screen. The visual angle between the centered
tracking error cursor and the near corner of the
CDTI was 6°. The angle to the far corner was 11°.
The CDTI monitored for potential collision threats
of slowly moving aircraft (all at common altitude)
and warned pilots with a visual or an auditory
alert if a collision threat (proximity < 3 miles) was
predicted. The visual alert was of sufficient sali-
ence, illuminating the entire periphery of the
CDTIL, as to be easily seen when visual attention
was focused on the tracking display; thus any
costs to visual presentation could not be attribut-
able to scanning differences.

Automated conflict detection was less than
perfect (75% reliable, automation d' = 1.33), but
the ratio of automation FAs to misses was 1:1 (10
misses and 10 FAs, out of 46 conflict and 34 non-
conflict, events respectively; see Table 1a). In the
likelihood alert condition, the distribution is
shown in Table 1b. In Table 1b, the midlevel alert
was signaled only when separation was either 3
(conflict) or 4 (nonconflict) miles. Note that each
of these is a “difficult to judge” situation, either



IMPERFECT ALERTING

843

TABLE 1: Event Rates for the Two Experiments and Alert Conditions

Automation
Response Conflict Nonconflict  p(H) p(FA)
Experiment 1: High (Neutral) Threshold
(a) Binary
Yes 36 10 .78 .29
No 10 24
(b) Likelihood

Yes 30 7 Automation Yes = Hit: Automation Yes = Hit:
30/47 = .64 (high-level) 7/36 = .19

Maybe 10 11 Automation Yes + Automation Yes +
Maybe = Hit: Maybe = Hit:
40/47 = .85 (high + mid) 18/36 = .50

No 7 18 Automation Yes + Automation Yes +
2 Maybe = Hit: 2 Maybe = Hit:
35/47 = .74 12/36 = .33

Experiment 2: Low (FA-Prone) Threshold
(c) Binary
Yes 42 16 91 47
No 4 18
(d) Likelihood

Yes 30 12 Automation Yes = Hit: Automation Yes = Hit:
30/43 =.70 12/40 = .33

Maybe 10 10 Automation Yes + Automation Yes +
Maybe = Hit: Maybe = Hit:
40/43 = .93 22/40 = .55

No 3 18 Automation Yes + Automation Yes +

2 Maybe = Hit:
35/43 = .81

2 Maybe = Hit:
17/40 = .43

Note. For the likelihood condition, we present three different means of calculating hit (H) and false alarm (FA) rate. In the first, the
middle (“maybe”) category is assigned to an automation “no” response; in the second, it is assigned to a “yes” response; and in the
third, half of the “maybe"” events are assigned to “yes” and half to “no.”

anear miss or a near hit. The d' calculation based
on dividing these midcategory “maybe” respons-
es between “yes” and “no” yields ad’ of 1.15 (see
Table 1b). When pilots detected a conflict, they
clicked on the conflict aircraft’s icon with the left
or right mouse button to indicate the direction the
aircraft should be routed to in order to avoid a con-
flict with their own aircraft.

Pilots were instructed to place slightly greater
emphasis on tracking than on the detection task,
given the standard hierarchy in which aviating
has a higher priority than navigating (Schutte &
Trujillo, 1997). In addition, pilots were told that
the automation was not perfect and might miss
some conflicts and falsely identify nonconflicts
as conflicts.

Tracking difficulty (stable vs. unstable), alert
modality (visual vs. auditory), and alert type (bi-
nary vs. likelihood) were manipulated within
subjects. For the visual binary alert, the border was
changed to red for conflict trials. For the visual
likelihood alert, the border was also changed to
amber for the “maybe” near-conflict trials. For
the auditory binary alert, the synthesized voice
said “conflict conflict.” For the auditory likelihood
alert, the voice also said “traffic traffic” for the
“maybe” trials. Each group of pilots participated
in four separate conditions per session, and each
condition lasted approximately 14 min. During
each condition, a new aircraft appeared on the
screen every 10 s in a continuous stream, for a
total of 80 traffic aircraft per condition. There
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were never more than four aircraft icons on the
screen at one time.

Conlflict generation consisted of a random
assortment of conflict angles between 30° and
300°, from the left, from the right, and passing in
front of and behind ownship. Of the events, ap-
proximately 50% were conflict events, which were
manipulated to represent a range of threat seri-
ousness according to closest point of approach. In
the likelihood alert conditions, the passage of
each intruder was subdivided into three groups:
(a) less than 3 miles (conflict); (b) 3 miles (con-
flict) or 4 miles (nonconflict) from ownship (both
of these difficult-to-discriminate scenarios re-
ceived the midlevel auditory [“traffic”’] or visual
[amber] signal); and (c) greater than 4 miles (non-
conflict). Pilots were to judge a conflict to be any
aircraft that would penetrate their protected air-
space (3 nautical miles). As shown in Figure 1, a
standard 3-mile ring was placed around ownship
to support this judgment. Automation reliability
was 75%, with errors equally and randomly dis-
tributed between automation FAs and misses.

Pilots filled out an informed consent form and
instructions and then received three 3-min blocks
of practice: one block of tracking only, one block
of CDTI monitoring, and one block with both
tasks. They then experienced two sessions on con-

secutive days, one with the likelihood and one with
the binary alert. This order was counterbalanced.
Within each session, they experienced the four
conditions determined by modality and tracking
difficulty, again in a counterbalanced order.

Results: Experiment 1

Four dependent variables were analyzed: Time
to respond to the conflict (RT), accuracy in dis-
criminating conflicts from nonconflicts (¢, measure
of sensitivity), tracking error on the concurrent
task, and the percentage of dwell time on the track-
ing task as compared with the CDTI display. Data
were tested for skew, and all outliers (less than
1% of the data) were eliminated from the analy-
sis. Repeated measures ANOVAs were executed
with alarm type, alarm modality, and tracking dif-
ficulty as within-subjects independent variables.

Response time. Pilots had slower response times
to CDTI conflicts during unstable tracking as com-
pared with stable tracking, F(1, 11) =7.02, p <
.05. However, pilots were equally fast to respond
to CDTI alerts regardless of alert modality (audi-
tory vs. visual), F(1, 11) =0.45, p > .10, or alert
type (likelihood vs. binary), F(1, 11) =0.47, p >
.10. As shown in Figure 2, an interaction emerged
between alarm type and tracking difficulty, F(1,

Experiment 1: Response Time to CDTI Conflicts
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Figure 2. A significant interaction in Experiment 1 between alarm type (binary vs. likelihood) and tracking stability
(stable vs. unstable) for response times (in seconds), indicating a benefit for likelihood alerting with stable tracking

but a cost for likelihood alerting during unstable tracking.
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11) = 8.62, p < .05, which indicated a beneficial
effect of the likelihood alert with stable tracking
but a cost associated with the likelihood alert dur-
ing unstable tracking. This may be evidence that
the likelihood alert allowed for a better distribu-
tion of attention.

Sensitivity. Increased tracking difficulty had
no impact on pilots’ ability to detect CDTI con-
flicts, as reflected by sensitivity, F(1, 11) =2.20,
p > .10. Pilots were more accurate in detecting
CDTI conflicts in the auditory condition than in
the visual alert condition (M =2.14 vs. 1.37), F(1,
11) =54.07, p < .01. Alarm type (binary vs. like-
lihood) did not impact pilots’ conflict detection
accuracy, F(1, 11) =0.14, p > .10. There were no
other significant main effects or interactions.

Tracking error. Pilots’ tracking error was almost
double for the unstable tracking task as compared
with the stable tracking task (M =193.47 vs. 353.93),
F(1,11)=372.78, p < 0.01. Tracking performance
was the same regardless of the modality of the alert,
which, coupled with the improvement of conflict
detection accuracy with auditory alerts, supports
multiple resource theory. Tracking error was worse
during the likelihood alerting condition as com-
pared with the binary alerting condition (M =
282.25vs.264.5),F(1, 11)=8.26, p <.05. As with
the RT variable, there was no interaction between

alert modality and tracking difficulty, again sup-
porting multiple resource theory.

As shown in Figure 3, an interaction between
alert type and modality emerged, F(1, 11) =6.13,
p < .05, such that concurrent tracking was partic-
ularly hurt by visual likelihood alerts.

EXPERIMENT 2
Method

The method for Experiment 2 was identical to
that of Experiment 1 except that the ratio of auto-
mation FAs to misses was 4:1 (16 FAs out of 40
nonconflict trials, and 4 misses out of 40 conflict
trials) instead of 1:1. Twelve new student pilots
were used in Experiment 2 and were statistically
the same in experience and demographic vari-
ables as those who participated in Experiment 1.
The distribution of events is shown in Table Ic
(binary) and Table 1d (likelihood). Thus the alert
threshold was reduced in Experiment 2 in order
to examine the impact of increased FAs (inter-
ruptions) and decreased misses on both alerted
and concurrent task performance.

Results

Response time. Increased tracking difficulty
did not directly affect the time it took pilots to

Experiment 1(miss-prone) Tracking Error
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290
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Figure 3. Asignificant interaction in Experiment 1 for tracking error (RMSE = root mean square error) between alert
type (binary vs. likelihood) and alarm modality (auditory vs. visual) indicating a likelihood alarm cost only for visual

alerts.
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Experiment 1: Response Times to CDTI Conflicts During Stable and Unstable
Tracking
10.5
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Figure 4. A significant three-way interaction for response time in Experiment 2, wherein a cost emerged for visual like-
lihood alerts when tracking was difficult and unstable (right) that wasn’t present with the easier, stable tracking task.

respond to CDTI conflicts, F(1, 11) =2.3, p > .10.
There was a marginally significant effect of alarm
modality, with faster responses to auditory alerts
(M = 8.9 s) than to visual alerts (M = 9.5 s), F(1,
11)=4.09, p=07. There was no main effect of alarm
type (binary vs. likelihood) on response times to
the conflicts, F(1, 11) =0.16, p > .10. There were
no significant two-way interactions among alarm
type, alert modality, or difficulty when all re-
sponses were grouped. However, as shown in
Figure 4, there was a significant three-way inter-
action among alarm type, modality, and tracking
difficulty, F(1, 11) =5.2, p <.05. Only when track-
ing was difficult (unstable; right side of Figure 4)
did a cost for the visual likelihood alarm emerge
that wasn’t present with the stable tracking task.

Sensitivity. Increased tracking difficulty had no
direct impact on participants’ sensitivity, F(1,11) =
0.24, p > .10. However, tracking difficulty did in-
teract with alarm type, F(1, 11) =4.69, p = .05, such
that there was a likelihood alarm cost to sensitiv-
ity with difficult tracking. Pilots were marginally
more sensitive to auditory alerts (M =3.41) com-
pared to visual alerts (M = 3.34), F(1, 11) =3.41,
p = .06. There were no other significant main
effects or interactions.

Tracking error. Increased tracking difficulty
again increased tracking error (M = 172.45 vs.
316.50), F(1, 11)=675.66, p < .01. Also, there was

amarginally significant cost to tracking error when
an auditory alert was presented, as compared with
the visual alert (M = 250.36 vs. 238.60), F(1,11) =
3.59, p < .10. This indicates that unlike the miss-
prone system, for which multiple resource theory
seemed to prevail, the FA-prone system seems to
engender a modest preemptive effect with audito-
ry alerts. There were no other significant interac-
tions among alert modality, alarm type, or tracking
difficulty on tracking performance.

Between-Experiment Comparisons

Response time. A final set of analyses examined
the effects of alerting threshold by comparing the
results of Experiment 1 with those of Experiment
2. In the following, we discuss only effects involv-
ing the experiment (i.e., threshold level) inde-
pendent variable. Lowering the alert threshold
had no overall impact on pilots’ response time to
CDTI conflicts (M = 9.49 vs. 8.86), F(2, 22) =
0.22, p>.10. However, as shown in Figure 5, alert
threshold did interact with tracking stability, F(2,
22) =4.37, p < .05, indicating that the FA-prone
system increased RT, but only when the tracking
was stable.

There was also a marginally significant inter-
action of alert threshold with alert type (binary
vs. likelihood), F(2,22) =3.42, p = .07, indicating
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that the FA-prone system slowed RT, but only
with likelihood alerts.

Sensitivity. Pilots were much less accurate in
detecting CDTI conflicts with the miss-prone
system (M = 1.89) than with the FA-prone system
(M =3.38), F(2,22)=65.71, p < .01, even though
the alerting systems themselves were nearly equal-
ly sensitive for both experiments (automation
binary d'=1.33 vs. 1.54 for Experiments 1 and 2,
respectively; automation likelihood d'= approx-
imately 1.55 and 1.52, respectively).

Tracking error. Tracking error was reduced
with the FA-prone system of Experiment 2 (M =
244.7), as compared with the miss-prone system
of Experiment 1 (M = 273.70), F(2, 22) = 3.24,
p=.05. This difference is consistent with the the-
ory that as automation misses decreased, reliance
increased, leading to less monitoring of the raw
data in the alerted domain and therefore more
visual resources devoted to the concurrent (track-
ing) task. Alert threshold did not interact with
tracking difficulty, F(2,22)=2.58, p>.10, or with
alarm type, F(2, 22) = 2.24, p > .10. That alert
threshold did not interact with alarm type sug-
gests that the likelihood alert does not mitigate
the impact of increased interruptions by FAs. As
shown in Figure 6, there was an interaction be-
tween modality and alert threshold, F(2, 22)=4.64,
p < .05, such that the decrease in tracking error
with the decreasing system miss rate was greater
with visual alerts than with auditory alerts.

Finally, in each experiment, we assessed reli-
ance by examining RT on trials when the automa-
tion missed (long RT — high reliance) and assessed
compliance by examining RT on automation hit
trials (short RT — high compliance). In each exper-
iment, there was an interaction between trial type
(auto-miss vs. auto-hit) and alert type (binary vs.
likelihood), Experiment 1: F(1, 11) = 10.39, p <
.01; Experiment 2: F(1, 11) = 11.07, p < .01.

The pattern of the interactions showed that in
Experiment 1, the binary alert showed both low
reliance and low compliance, whereas the likeli-
hood alert showed a fainter trend in the opposite
direction. In Experiment 2, the binary alert showed
both high reliance and high compliance, where-
as the likelihood alert showed a smaller trend in
the opposite direction. Thus, with the binary
alert, lowering the threshold (from Experiment 1
to Experiment 2) and slightly raising the alert
sensitivity (in terms of d') produced a substantial
increase in automation dependence (increase in
both compliance and reliance). In contrast, with
the likelihood alert the same threshold shift pro-
duced a slight decrease in dependence.

DISCUSSION

The current experiments set out to evaluate
four hypotheses that address potential effects and
interactions among several factors relevant to
alert design in a multitask context, representative

Experiment 1(miss-prone) vs. Experiment 2(FA-prone) Response Times
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Figure 5. A significant two-way interaction for response time between alert threshold (Experiment 1, neutral, vs.
Experiment 2, FA-prone) and tracking stability, such that increasing false alarm rate from Experiment 1 to Experi-
ment 2 increased RT during stable, but not unstable, tracking.
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of the information processing demands of flying.
We examined four major hypotheses. First, we
hypothesized that lowering the threshold to create
the FA-prone system would reduce pilot compli-
ance with the automated alert (Dixon & Wickens,
2006; Meyer, 2004) and consequently degrade
conflict detection performance. This hypothesis
was partially supported. Response times were
indeed longer in Experiment 2, which had a high-
er FArate than that in Experiment 1: a 1-s length-
ening was observed when tracking was stable and
when the likelihood alarm was employed, and RT
was never shorter in Experiment 2.

We also assume that the increasing latency of
switching attention from the tracking task to the
alert task in Experiment 2 allowed more time for
the conflict to develop and, thereby, was partially
responsible for the increased detection accuracy
in Experiment 2. Although it is possible that the
increase in human sensitivity from Experiment 1
to Experiment 2 was also attributable to the
slightly higher automation sensitivity (d'= 1.50
vs. 1.33 for binary; equal sensitivity for likeli-
hood), we doubt that this small increase could
explain the much larger increase in pilot sensi-
tivity (3.38 vs. 1.89). Indeed, this large apparent
benefit to sensitivity of a lower alert threshold
level remains somewhat unexplained, but it does
suggest that pilots in the FA-prone system were
more optimally depending upon automation
when it was correct.

Second, we hypothesized that the increased
automation miss rate in Experiment 1 (as compared
with Experiment 2) would reduce reliance, and
hence degrade concurrent task (tracking) perfor-
mance, as more attentional resources were di-
verted to monitoring the raw data of the traffic
display. This effect was strongly supported (see
Figure 6), as it has been in some other studies
(e.g, Dixon & Wickens, 2006), but not in all (Dixon,
Wickens, & McCarley, 2007; Levinthal & Wickens,
2005); the effect suggested that the addition of
more automation FAs in Experiment 2 was not,
here, particularly more disruptive to concurrent
task performance. The analysis of RT to automa-
tion misses also indicated lower reliance in Ex-
periment 2 than in Experiment 1, at least when the
binary alert was used.

Third, we hypothesized that the auditory alert
would improve the alerted (CDTI) task because
of its attention-grabbing properties (Spence, 2001)
and also because it would support parallel use of
multiple perceptual resources (Wickens, 2002).
This was indeed the case for conflict detection
accuracy in both experiments and for RT in Ex-
periment 2. (There was no effect of modality on
RT in Experiment 1.) Concurrent flight control
performance was unaffected by modality in Ex-
periment 1, but it was marginally degraded by
auditory alerts in Experiment 2.

In Experiment 1, the lack of a modality-based
RT or tracking effect, coupled with increased

Experiment 1(miss-prone) vs. Experiment 2(FA-prone) Tracking Error
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Figure 6. A significant interaction for tracking difficulty between alert threshold (Experiment 1, neutral, vs.
Experiment 2, FA-prone) and alarm modality (auditory vs. visual), such that the decrease in tracking error with the
decreased miss rate in Experiment 2 was greater for visual than for auditory alerts. RMSE = root mean square error.
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accuracy for auditory alerts, seems consistent
with the parallel processing features of multiple
resource theory (Wickens & Hollands, 2000),
even in this paradigm, in which noticing the visu-
al alert did not require added scanning away from
the tracking display. In Experiment 2, in contrast,
faster and more accurate conflict detection, but
degraded tracking performance caused by audi-
tory alerts in the FA-prone system, suggests that
auditory preemption (Iani & Wickens, 2007) pre-
vailed with this system. This would imply that the
greater number of total alerts brings about the au-
ditory preemptive characteristic of those alerts.

Fourth, we hypothesized that the likelihood
alert would aid conflict detection and particular-
ly ongoing tracking (flight control) performance
because it would allow pilots to distribute atten-
tion between the two tasks more optimally
(Sorkin et al., 1988; St. John & Manes, 2002), es-
sentially allowing a rapid switch only when the
alerts were serious. However, we did not find evi-
dence that the likelihood alert generally aided
pilots in this way. In fact, we found costs associ-
ated with the likelihood alert in both the alerted
domain (slower response times and, in Experi-
ment 2, degraded accuracy for likelihood visual
alerts) and the concurrent task domain (increased
tracking error in Experiment 1).

CONCLUSION

In conclusion, the current results have both
theoretical and applied implications. Regarding
theoretical implications, the reliance-compliance
distinction proposed by Meyer (2001, 2004) and
reinforced by Dixon and Wickens (2006) can, in
part, account for the results: as the threshold was
shifted, both compliance-related cry-wolf effects
on latency and reliance-related effects on con-
current tasks were observed. The great improve-
ment in sensitivity as the threshold was shifted to
produce the FA-prone system remains to be
explained.

The data also suggest that both multiple re-
sources and preemption appear to operate as
mechanisms of task interference, with the relative
contributions of one versus the other dictated by
experimental factors — in particular, with auditory
preemption emerging to dominate as the fre-
quency of preemptive events (alerts) increased.

With regard to applications, the data support a
low alert threshold that does indeed produce an

asymmetry of automation errors favoring FAs
over misses (and therefore reinforcing the typical
cost matrix, in which the latter costs are more
severe than the former). This was particularly true
given the substantial improvement in both con-
current task performance and conflict detection
accuracy in Experiment 2. However, we recom-
mend caution in extending these benefits to more
extreme low-threshold settings. In Experiment 2,
the positive predictive value of the alert (likeli-
hood that an alert will be true) was .70. In some
systems with extremely low base-rate events, this
value may be well below .50 (Getty et al., 1995;
Krois, 1999), and in these cases, the escalating FA
rate may amplify the otherwise minor cry-wolf ef-
fects observed in the current results.

The data also speak to the general benefit of
auditory alerts; however, it is plausible to assume
that their benefits may diminish as the frequency
of false alerts increases substantially. Even here,
we found the auditory preemption mechanism
beginning to dominate the multiple resource ben-
efit in Experiment 2.

We also observed that the status and benefits
of the likelihood alert remain unclear. Its direct
benefits, observed (Sorkin et al., 1988) and pre-
dicted (Woods, 1995) elsewhere, failed to emerge
in either experiment. The only indirect benefit ap-
peared to be manifest with the higher threshold
setting in Experiment 1, in which the likelihood
alert appeared to engender more dependence on
automation (increased reliance and compliance),
a characteristic that with imperfect automation is
not altogether good. Clearly then, a considerable
degree of further research is required to understand
what circumstances, if any, will realize the pro-
posed benefits of the likelihood alarm concept.

Finally, we note here some limitations of the
current paradigm that partially limit its general-
izability to cockpit alerting and warrant more
research in more realistic flight simulations. First,
the tracking task was a low-fidelity simulation of
actual flight control and probably imposed
greater visual demands (because of its high band-
width) than would be typical. Second, the CDTI
was somewhat larger than might be characteristic
of some proposed CDTI designs, and hence visual
time-sharing could be placed at more of a premi-
um in the real cockpit. Finally, with regard to the
traffic task, our conflict event rate was certainly
higher than would be expected in a typical air-
space, even one with great traffic density (e.g., in
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an unstructured terminal environment). These
three factors certainly dictate the advisability of
more research in more realistic flight simulations.
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