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Introduction 

The goal of this study is to examine how driver behavior is influenced by the 

reliability of an in-vehicle warning system under naturalistic driving conditions.  Such 

behavioral data may help inform the design of in-vehicle warning systems that may not 

be perfect in distinguishing a true warning condition from other less critical conditions.  

Naturalistic data from the road departure crash warning (RDCW) project (LeBlanc et al., 

2006) were used to infer the effects of reliability on real-world driving performance.  One 

advantage of a naturalistic dataset is that subjects are presented with a more realistic 

operation of the warning system than is possible in controlled experiments (e.g., Ben-

Yaacov, Maltz, & Shinar, 2002) or in a driving simulator (Bliss & Acton, 2003; Maltz & 

Shinar, 2004, 2007; Meyer, 2001).  In such experiments, the rate of warnings is often 

accelerated, and subjects behave less naturally with an experimenter present in the back 

seat or nearby. 

Reliability 
Reliability can be defined as the extent to which a system yields the same results 

on repeated trials.  Thus, an outcome is said to be reliable if it is repeatable.  A reliable 

in-vehicle warning system is one that provides alerts that are consistent over time such 

that a driver can expect or predict the system’s behavior.  Reliability is not the same as 

correctness—a system can be reliably incorrect if it bases a warning on pre-crash features 

that, while obvious to a driver, may not always be predictive of a crash (or near crash).  

For example, a lateral drift warning (LDW) may incorrectly advise a driver that the 

vehicle is leaving the lane when in fact the lane markings on the roadway are improperly 

drawn.  If the driver knows that the warnings are based on lane markings, the driver may 

come to understand the warning to mean that lines on the roadway are being crossed, not 

that a lane departure is about to occur.  As long as the road features to which the alarm is 

responding are obvious to the driver, the alert may continue to be perceived by the driver 

as reliable even though it may be drawing incorrect conclusions about the vehicle’s actual 

lane position.  If the driver is able to understand the basic competence of the warning 

system, the system might be perceived as reliable and understandably incorrect from time 

to time.  However, even if a driver understands why an incorrect warning occurs, there is 
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probably a limit to the degree to which a driver will tolerate incorrect warnings under 

routine circumstances.  For example, if an LDW is sensitive to the slightest lane 

deviation, drivers may eventually disregard the warning. 

LDW is a simple warning, and in many respects its operation may be more 

transparent to drivers than other warning systems.  Drivers normally track lane position 

continuously as part of routine driving and are likely able to evaluate the operation of an 

LDW system.  In contrast, other warning systems are designed to enhance a driver’s 

normal perceptual or attentional capabilities.  They may detect unseen objects (e.g., a 

vehicle’s presence in the blind spot) or road conditions with precision that is beyond a 

driver’s normal ability (e.g., range or closing speed on a forward vehicle), or make 

judgments about complex traffic configurations (e.g., intersection gap acceptance) that 

may exceed a driver’s ability to quickly comprehend.  In such cases, a warning may 

occur for no reason that is immediately apparent to the driver, unless the warning system 

also provides some explanatory information.  For example, a lateral collision warning 

system may need to provide more precise warning messages about the radial direction of 

a threat so that a driver understands that the system occasionally mistakes stationary 

roadside objects for vehicles.  Without an understanding of the system’s competence, 

drivers may perceive the warnings as inconsistent and unreliable.  Although a system 

may be perfectly accurate in detecting dangerous road conditions (i.e., according to 

design), from the viewpoint of the driver it may appear to be producing unpredictable 

warnings without cause.  A driver’s opinion about a warning system’s reliability may 

thus be negatively affected if it is difficult to understand the reason for a warning.  

Apart from the problem of subjective reliability, a system’s objective performance 

might be characterized by the kinds of objective warning errors it makes.  There are two 

kinds of such errors.  If a warning is given when the target condition is not present, it is 

considered to be a false positive (FP or false alarm).  If a warning fails to be given when a 

target condition is present, it is called a false negative (FN or a miss).  In collision 

warning systems, perceived reliability is likely to be based on the proportion of FP events 

to all warning events.  The discrete nature of a warning event may prompt a driver to 

judge the appropriateness of the warning when a warning occurs; the correctness of a 

nonwarning event is unlikely to be noticed in the same way.  Consequently, false positive 
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alerts (false alarms) are likely to be noticed by a driver, but false negatives—failures of 

an alert to occur when it should (i.e., a miss)—may not be noticed, especially if the 

condition is a priori difficult to perceive (e.g., presence of a vehicle in the blind spot).   

The possibility that perception of a warning system’s reliability is determined by 

the proportion of perceived false positive warnings among all the warnings generated 

raises the problem that a driver’s incomplete knowledge of the system’s operation can 

create an impression of unreliability.  This situation is further aggravated if the warning 

system is designed to warn about exceedingly rare events.  As will be discussed in the 

next section, even the most accurate of such warning systems is likely to generate more 

false positives than may be considered acceptable. 

Low Base Rate Events and Reliability 
In general, warning systems are designed to minimize false negatives (misses—

the probability of not warning when an event has occurred).  Viewed another way, it is 

the same as maximizing the probability of reporting a warning when one truly exists (i.e., 

the hit rate).  At the same time, another design goal is to minimize the number of false 

positive warnings (false alarms—the probability of warning when an event has not 

occurred).  However, when the base rate of the target event—the rate of the event that the 

collision warning system is designed to address—is very small, even a system that has a 

very high hit rate and a very low false alarm rate may produce warnings that are 

predominantly false alarms (Parasuraman, Hancock, & Olofinboba, 1997).  For example, 

suppose that a system generates a warning of a crash with 99 percent accuracy.  When a 

crash situation arises, 99 times out of 100, the system will produce a warning.  Also 

suppose that the warning system generates a false alarm 1 percent of the time.  When 

there is no crash condition, 1 time out of 100, the system may produce a warning.  If the 

base rate of the event is very small, say 1 in 100, half of the 198 warnings produced are 

false positives and half are true positives (shown in Figure 1).  The proportion of true 

positive (TP) warnings to all warnings (TP + FP) is called the positive predictive value of 

a warning (PPV).  The proportion of true negatives (TN) to all negatives (TN + FN) is 

called the negative predictive value (NPV).  
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With very small base rates, the PPV of a warning declines, presenting an 

increasing credibility problem for low probability events.  In this paper, we use the term 

reliability to refer to PPV to be consistent with previous literature.  Thus, if we assume a 

low base rate and exclude the subjective viewpoint of the driver, even a fairly accurate 

warning system is likely to have a low PPV. 

The problem of false positives (nuisance alarms) might be acceptable if the driver 

understands the reason for the warnings.  However, as discussed earlier, warning systems 

are often designed to warn about circumstances that may be beyond a driver’s ability to 

detect or comprehend.  This makes it nearly impossible for the driver to fully evaluate 

why the warning system generated a nuisance alarm (unless the system also supplies that 

information).  The driver has no choice but to believe that the alarm is incorrect (as it 

often will be) without knowing exactly why.  This is likely to contribute an additional 

component to the driver’s perception of system reliability. 

   

  
Figure 1.  This diagram illustrates the effect a low base rate has on proportion of true 
positive warnings (hits) to all warnings, or the positive predictive value (PPV) of a 
warning.  Although the warning system’s capability to discriminate warning conditions is 
actually fairly good, the PPV is 50 percent.  The negative predictive value in this example 
is exceedingly large (9801/9802 = 99.99 percent). 
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It is unclear whether the NPV of a warning system—the probability that a 

dangerous condition is not present when no warning occurs—plays a role in a driver’s 

perception of warning system reliability.  In many cases, the driver may simply not notice 

that the warning system failed to warn about a potential collision event.  More often, 

collision warning systems are designed with a bias to warn because the cost of failing to 

warn is high.  Coupled with a low base rate that a warning condition is present, there may 

be too few nonwarning events where a threat is actually present to base perceived 

reliability on this type of warning failure.   

Perceived Reliability, Time History, and Context  
The perceived reliability of a collision warning system (CWS) is subject to 

development and change over time.  For example, at initial exposure to a CWS, drivers 

are likely to have some preconceived beliefs about the system’s reliability.  During the 

initial learning period, drivers likely adjust their perceptions of system reliability as they 

learn more about the system.  As drivers are exposed to more and more warnings (both 

true and false), further adjustments in perceived reliability are likely to occur.  Drivers’ 

perception of the reliability of a warning system may wax with true warnings and wane 

with false warnings.  There are also likely to be individual differences in the degree to 

which drivers are influenced by true and false warnings.   

Reliability may also be influenced by driving context.  With specific knowledge 

about a warning system’s capabilities, drivers may learn to alter expectations about 

system performance in different driving conditions.  For example, expectations about a 

lateral drift system may be different in wet weather compared to dry, or on smooth well-

marked roads versus in construction sites.  Drivers might discount nuisance warnings in 

one context, and weigh them heavily in another context.  The effects of time history, 

operating context, task workload, self-confidence, and trust contribute to a person’s use 

of automation and have been discussed by Lee and his colleagues (Gao & Lee, 2006; Lee 

& Moray, 1992, 1994; Lee & See, 2004), and by Parasuraman and Riley (1997).  In the 

following analysis, some contextual influence may be observed as effects associated with 

light level, weather conditions, and road class. 
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Measurable Response Changes in Driver Performance 
A general problem faced by studies that attempt to link system reliability to driver 

performance is that objective system reliability may not match subjective reliability.  In 

the case of LDW, subjective impressions of reliability may coincide with objective 

reliability because the operation of the warning system may be somewhat transparent to 

the driver.  However, it is possible that a system might be perceived as unreliable even 

though its objective performance is completely reliable.  To the extent that both the driver 

and the warning system share the same idea of what constitutes a threat, objective and 

subjective reliability should converge.  It is assumed, in this case, that both the warning 

system and the driver have access to the same basic pre-crash data; in the example of 

LDW, that would be the vehicle’s position in the lane. 

To infer the effects of perceived reliability from driver performance, measurable 

performance characteristics are required that indicate changes in a driver’s reliance on or 

compliance with the system.  Possible indicators may include the proportion of alerts 

ignored by a driver (indicative of false positives and a measure of subjective reliability) 

and the driver’s latency to respond to an alert.  Low reliability may result in an increased 

latency to respond or outright ignoring of the alert.  High reliability may result in 

decreased latency responses and few ignored alerts.  Underlying these suggested effects 

is the relationship among calibration, resolution, and automation capability (Lee & See, 

2004; Parasuraman & Riley, 1997).  If drivers do not trust the system, they may calibrate 

their responses to ignore the system completely (i.e., disuse).  On the other hand, if 

drivers place excessive trust in the system, they may misuse the system.  An extreme 

example of this would be a driver who no longer actively monitors lane position and 

instead guides his/her vehicle by the LDW warnings.  This may be measured as short, 

automatic, response times or an increased number of warning events. 

Finally, it should be mentioned that the influence of warning reliability on a 

driver’s performance is also dependent on workload.  Under light workload, a driver may 

have sufficient “spare” capacity so that reliance on the warning system is minimal.  If the 

driver is monitoring lane position assiduously, steering response may be independent of 

the warnings.  Under heavy workload, drivers may be compelled to distribute their 

attention over several tasks, inducing them to rely on the lateral drift warning more 
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heavily.  In this context, an unreliable warning may not only be unwelcome, but it may 

also be apportioned less attention, resulting in increased response delays (see Wickens & 

Dixon, 2005, for a discussion about the influence of reliability under high and low 

workload).  Wickens and Dixon found in a meta-analysis of 20 studies that the effect of 

reliability on performance in high workload conditions is greater than in low workload 

conditions.  A greater dependence on automation was found to be imposed by high 

workload situations.  This could be revealed as an interaction between the reliability 

measure and high-workload conditions such that differences in reliability affect responses 

to LDW more when visibility is poor (e.g., at night or in wet weather) or when traffic is 

less predictable (e.g., on surface streets). 
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Analysis Overview 

The determination of how warning system reliability affects driving performance 

in naturalistic driving requires both a clear definition of the measure of warning 

reliability along with a measure of driver performance.  For this analysis, we focused on 

the operation of the lateral drift warning (LDW) system (Pomerleau et al., 1999) used in 

the road departure crash warning (RDCW) field operational test (for details about the 

LDW operation see LeBlanc et al., 2006; Pomerleau et al., 1999 ). In naturalistic driving 

conditions, the pacing of warnings is more realistic, roadside events are less predictable, 

and driving is more purposeful than in a structured experiment.  Some of these 

differences may affect the degree to which driving performance is influenced by warning 

reliability.  

The LDW system uses image analysis techniques and radar to determine whether 

the host vehicle is departing from the roadway.  Auditory or haptic warnings are 

generated whenever the vehicle crosses a painted line, or road edge, or laterally veers 

toward a solid object alongside the road.  Two kinds of alerts are generated: a cautionary 

alert when the vehicle crosses a dashed line and an imminent alert when the vehicle 

crosses a solid line or veers toward an object.  The cautionary alert is a vibration on the 

left or right side of the driver’s seat (the same side as the lane deviation) with a 

cautionary message presented on a display; the imminent alert is an auditory warning 

with a warning message on the display.  In this study, both imminent and cautionary 

warnings were considered together. 

Data were collected just after activation of the LDW system for each participating 

driver.  It contains detailed driving data for 78 laypersons driving one of 11 instrumented 

test vehicles for a period of 26 days each.  Both the LDW and curve speed warning 

(CSW) systems were activated on the seventh day of driving and remained active for 20 

days following activation.  These 20 days of driving data are the basis of the present 

analysis.  
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Method 

Subjects 
The 78 participants were equally divided into three age groups: 26 young (20 to 

30 years old), 26 middle-aged (40 to 50 years old), and 26 older (60 to 70 years old) 

subjects.  Each group was evenly split by gender.   

Dependent Measure 
In this study, the driver’s response was defined as the time taken to initiate a 

corrective action after a warning is given.  In the case of LDW, that would be the delay 

between an LDW and the driver’s steering correction to adjust the vehicle’s lane position 

away from the lane edge.  The start of the corrective maneuver was determined by 

examining the rate of change in the steering wheel angle during a time window that 

began three seconds before the warning and ended three seconds after it.  The 

computational procedure first eliminated any fixed offset errors in the steering wheel 

angle measurement by subtracting the steering wheel angle offset found during straight 

driving.  Steering wheel angle was then converted to steering rate-of-change.  Steering 

rate-of-change was examined for events that exceeded a ±3 deg/sec threshold within a 

six-second time window that was centered on the time of an LDW warning.  The 

resulting algorithm identified the start times of relatively abrupt steering activity in the 

direction opposite of the warning around the time of an LDW.  An example of the 

resulting steering response detection algorithm is shown in Figure 2.  It shows a steering 

response preceding a warning, and another steering response following a warning.  The 

primary response measure, the latency to respond to an LDW, was calculated as the time 

delay between the warning and the detected start of a corrective steering response.  

Nonresponses and steering responses that involved lane changes were excluded from this 

analysis. 

The LDW system often delivered a warning after a driver’s corrective steering 

action was underway (i.e., in the three seconds preceding the warning).  There are also 

cases in which the steering action was initiated within 200 ms after the warning was 

produced.  In both the former and the later cases, it is unlikely that the driver was actually 
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responding to the LDW, but rather was taking independent action to correct a self-

monitored lateral drift.  Thus, for each LDW, a driver could be characterized as either 

(1) not producing any steering response in the six-second window around the warning, 

(2) responding with a steering correction too early for it to be considered a reaction the 

warning, or (3) responding in the 200-3000 ms interval after the warning.  The reaction 

time for the third option was the dependent variable in this analysis. 
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Figure 2.  This plot shows the detected steering response around the time of an LDW.  
The pre-alert steering response (inside the gray band on left) identifies an abrupt steering 
response that preceded the LDW.  The post-alert steering response (inside the gray band 
on right) identifies the time of an abrupt steering response that follows an LDW. 

 

Measurement of Reliability 
In the case of the LDW system discussed in this report, objective measures of 

system reliability were not readily available.  Even if such measures were available, it is 

possible that they might not fully agree with the driver’s perceived reliability of the 

system.  Instead, a surrogate measure of perceived reliability was developed which was 

defined as the proportion of LDW warning events in which a lane-position correction was 

initiated by the driver near the time of the warning.  An LDW event was identified as a 
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false positive if no steering response was observed within the six-second time window 

surrounding the warning.  It was considered a correct detection (a hit) if any appropriate 

steering response occurred (i.e., a brisk steering response in the direction away from the 

lateral drift), including responses that preceded the warning.  This was based on an 

assumption that a driver would regard the warning as reliable as long it occurred in close 

temporal proximity to an actual condition that would require a steering correction.  That 

is, the driver might have a more relaxed view of the appropriateness of the warning 

timing, and may not regard a late warning as a false alarm.  LDW reliability was then 

characterized by the ratio of true positive warnings to the total number of warnings.  As 

mentioned earlier, negative predictive value played no role in the reliability measure. 

Perceived reliability may also have a dynamic/historic characteristic that might 

change over the course of the study.  It was therefore modeled as a time-based predictor 

of steering response latency.  For each driver’s steering response to a warning, a 

perceived reliability measure was calculated for that response.  The measure was 

calculated as the proportion of LDW warnings that elicited a steering response over the 

previous 24-hour period—the day proportion.  If the perceived reliability of the warning 

influences driving behavior, we might expect to observe it in the driver’s latency to 

initiate a steering correction.  Similar effects on response time have been reported with 

respect to driver braking (e.g., Bliss & Acton, 2003) and it is reasonable to expect that 

steering responses may be affected in similar ways. 

Three variables were also examined as surrogate workload manipulations: 

weather condition (clear/active precipitation), ambient light level (dark/light), and road 

class (limited access/surface roadways).  Driver workload is likely to be higher during 

times of active precipitation and in darkness when visibility is reduced, and on local 

roads where there is often little separation between vehicle traffic and pedestrian activity.  

Age and gender were also examined to determine if response time to LDWs are 

influenced by these factors.  Driver age was classified into three categories: young (20 to 

30 years old), middle (40 to 50 years old), and old drivers (60 to 70) years old. 
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Results 

In the three-week interval examined in this report, driver age groups differed in 

the number of times a warning was given: the mean total warning count was 58 for 

younger drivers, 53 for middle-aged drivers, and 28 for older drivers, F(2,75) = 3.9, 

p = .02.  Drivers with fewer than 10 responses to the LDW were excluded from these 

analyses and, as mentioned earlier, cases in which a post-warning steering response 

occurred less than 200 ms after the warning were also excluded.  Finally, cases in which a 

steering response was preceded by another steering response (i.e., before the warning) 

were also excluded from the analysis.  In these cases, the driver is already engaged in a 

corrective steering maneuver and the driver’s action is unlikely to have been instigated by 

the warning system. 

Of the original 78 drivers in the study, 42 drivers remained in the sample after the 

above filtering procedures were applied.  The filter affected older drivers more than it 

affected the other age groups.  Table 1 shows the final breakdown of subjects by age and 

gender. 

 

Table 1   
Breakdown of number of drivers by age and gender with 10 or more responses to the 

LDWs.  The mean number of responses for the three-week observation period is given in 
parentheses. 

 
Age Male Female Total 

Young 7 (12.6) 9 (15.7) 16 (14.3) 
Middle 9 (16.1) 7 (11.0) 16 (13.9) 

Old 5 (9.0) 5 (14.2) 10 (11.6) 
Total 21 (13.2) 21 (13.8) 42 (13.5) 
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A mixed-model analysis of variance examined the effects of two categorical 

between-subject factors—age group (young, middle, older) and gender (male, female)—

and three categorical within-subject factors—ambient light levels (dark, light), 

windshield wiper state (off, on), and road class (limited access, surface streets)—on 

steering response latency.  In addition, each subject’s day proportion measure of 

reliability was included in the analysis as a within-subject covariate.  Drivers whose prior 

24 hours experience of the LDW system involved proportionally higher responses to 

warnings also displayed shorter reaction times, F(1, 325) = 4.34, p < .05 (shown in Table 

2).  The estimated slope of reaction time as a function of reliability was -323 ms; that is, 

as the percentage of steering responses to LDW over the prior 24 hours increases from 0 

to 100 percent, reaction time is projected to decrease by 323 ms. 

 
Table 2 

Results of a mixed-model ANOVA relating steering reaction time to gender, age, wiper 
state, light level, road class, and day-ratio.  The asterisk indicates statistical significance 

at .05 level. 
 

Effect F-Ratio p 
Gender F(1,28.3) = 0.58 .45 

Age Group F(2,24.4) = 2.83 .08 
Wiper State F(2, 324) = 0.96 .38 
Light Level F(1,31.6) = 0.32 .57 
Road Class F(1,82.3) = 0.76 .47 

Day Proportion F(1,325)  = 4.34 .04*

 

A marginal effect of age group was also observed in the data (see Table 2).  This 

was further explored by simplifying the model to drop some factors that are likely to be 

correlated with age.  For example, older drivers appear to be less inclined to drive in 

darkness, in bad weather, and on limited access roadways than younger drivers (Baldock, 

Mathias, McLean, & Berndt, 2006; Ball et al., 1998; Langford & Koppel, 2006).  Thus 

the variables light level, road class, and wiper state in the present analysis may be related 

to age, absorbing some of the explanatory effects of age on response.  If these factors are 

removed from the analysis, a main effect of driver age is observed, F(2, 479) = 5.17, 
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p < .01.  The older driver group is faster to respond to the warning than the younger 

drivers by about 354 ms, t(479) = 3.15, Bonferroni adjusted p < .01, and faster than the 

middle-aged group by about 295 ms t(479) = 2.63, Bonferroni adjusted p = .03.  Perhaps 

the age factor should be considered a cluster of behavioral patterns that include 

preferences for roadway, daylight, and clear weather, as well as a possibly more 

compliant attitude that results in faster responding to the LDW system. 
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Discussion 

The present results suggest that there is a relationship between a driver’s prior 

experience of the LDW warning system in the 24 hours before a responded to warning 

and the speed of that response.  Drivers appear to respond faster if the prior warnings are 

perceived to be reliable.  It is important to note that this result is not exhibited by all 

drivers in the study, and that it is a correlational outcome.  That is, perceived reliability 

was not directly manipulated in the study.  It is also important to remember that the 

definition of reliability used here is nonstandard.  It is neither an objectively defined 

measure nor a directly manipulated measure and may not be easily comparable to other 

studies in which reliability is directly manipulated.  Indeed, in the analysis of naturalistic 

driving, direct manipulation of variables is often not feasible and control over the analysis 

is imposed by selection of “relevant” conditions.  The derived reliability measure should 

not be mistaken for an independent variable and its relationship to steering response 

latency could be mediated by other variables that were not measured.  It is also worth 

noting that these data do not include nonresponses to alerts, because a nonresponse could 

mean either that a driver ignored a true warning or dismissed the warning as false.  

Despite these limitations, it is the first evidence that driving performance may be related 

to the reliability of prior warnings found in a naturalistic driving dataset. 

The observed effect on driver performance is relatively weak.  The observed 

difference in steering latency between a warning system with zero percent and 100 

percent reliability is about 300 ms.  Given that warning reliability normally varies in a 

much smaller range, actual behavioral effects are likely to be much smaller.  This may 

not be surprising.  Ben-Yaacov, Maltz, and Shinar (2002) have reported no effect of 

reliability with a headway warning system in a semi-realistic driving study where 

reliability varied between 60 and 95 percent. (In the present study, the averaged day 

proportions among drivers ranged between 37 and 100 percent, with a mean of 77 

percent.)  This is somewhat different from results reported in simulator studies.  For 

example, Bliss and Acton (2003) reported that increased reliability increases the 

frequency and appropriateness of reactions to warnings.  However they also found that 
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the collision rate was smaller in their lowest reliability condition, attributing it to the 

potentially distracting effect of the high urgency warnings used in the study.   

Unlike many recent studies of reliability, the present method allows for the 

possibility that a driver’s perception of reliability is influenced by immediate past 

experience with the system.  Stated another way, this method attempts to associate 

performance with a near-term measure of reliability, allowing for the possibility that 

perceived reliability may vary over time.  This view is related to previous theoretical 

work on trust in automation that suggests trust evolves and is influenced by past 

experience with the system operation.  Trust, in turn, influences how (and if) an operator 

will engage automation (Gao & Lee, 2006; Lee & Moray, 1992, 1994; Lee & See, 2004; 

Parasuraman & Riley, 1997).   

It is important to note that, in this study, no baseline data are available that 

describes driver performance in the absence of the LDW system.  What is shown is a 

relationship between a measure of reliability and the driver’s latency to react with a 

steering correction.  Thus, cost and benefit of the LDW system cannot easily be 

determined as in other collision warning studies (e.g., Wickens & Dixon, 2005).   

The most important contribution of the present study is that it examines driver 

behavior outside of a well-structured experimental context in which warning events are 

relatively frequent and scripted, participants are willing and compliant, safety is 

guaranteed, and the possibility that demand characteristics may influence observations is 

ever-present.  The present study provides a realistic view of how the reliability of one 

kind of warning system influences the latency to initiate a compliant response. 
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