
at 5/2012

Anwendungen ���

Vision-based Control of Assistive
Robot FRIEND: Practical Experiences
and Design Conclusions
Bildbasierte Regelung des Assistenzroboters FRIEND: Praktische Erfahrungen
und Entwurfsentscheidungen

Axel Gräser, Olena Kuzmicheva, Danijela Ristíc-Durrant, Saravana K. Natarajan, Christos Fragkopoulos,
University of Bremen

Summary In this publication, we describe the evolution of
control structures for vision-based control over several gener-
ations of the assistive robot FRIEND1. We also publish some
evaluation results which were the basis of design decisions for
the following system generation.

��� Zusammenfassung In diesem Artikel wird die Evo-
lution der bildbasierten Regelung des Assistenzroboters FRIEND
über mehrere Generationen beschrieben. Dabei werden Eval-
uationsergebnisse dargestellt, die die Grundlage für Entwurf-
sentscheidungen der jeweils nächsten Generation waren.
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1 Introduction
Vision-based control of robots is a key field in the re-
search and application of autonomous robots. There
are many different approaches that can be distinguished
within this field, including mono/stereo based, pos-
ition/image based and pure/hybrid visual control [1; 2].
In the control community especially, visual servoing is of
particular interest, because it exploits the simple structure
of a feedback control loop to provide reduction of sys-
tem sensitivity to lack of knowledge or inaccuracies in the
coordinate transformations between the robot, environ-
ment and cameras or imprecision of the robot motion.
However, there are real-world robot applications such

1 FRIEND (Functional Robot arm with user-frIENdly interface for
Disabled people)

as object manipulation in cluttered environments (as for
the robot FRIEND) in which visual servoing as proposed
by Hager has also shortcomings because the robot arm
needs to execute specific paths for object manipulation
while avoiding obstacles.

In this paper we present the key technologies used
and key concepts and algorithms for vision-based control
developed over the different generations of the assistive
robot FRIEND which belongs to the group of intelli-
gent wheelchair-mounted manipulators and is intended
to support disabled people with impairments of their
upper limbs in Activities of Daily Living (ADL) and in
professional life [3]. We discuss our design decisions
which were not only influenced by experiences that we
made with specific visual control methods but also by
the availability of new technology and by the goal that
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the robot should become available within a reasonable
time frame to its potential users. A key requirement
that we focus on in the following discussion is that
a useful assistive robot has to carry out complex se-
quences of actions and not only single isolated actions.
We discuss vision-based control structures ranging from
classical image-based visual servoing to modified vision-
based control structure which allows the introduction
of a 7DOF manipulator collision free path planning
which is necessary in complex robot scenarios. Since the
vision-based control relies on a reliable 3D reconstruc-
tion of the robot’s environment, we particularly focus
on the design of the necessary robust 3D real-world ob-
ject reconstruction method. That had to be developed
in parallel with the development of vision-based control
in order to achieve the high dependability required of
the complete robot system FRIEND. These robust 3D
reconstruction method is based on the introduction of
feedback structures at the image segmentation level and
on novel 3D modelling of real-world objects. The feed-
back structures provides robustness of image processing
against variable illumination while the novel 3D object
modelling provides robustness against unstructured and
cluttered scenes as it does not require a priori knowledge
on object geometry and it is independent of object tex-
ture.

2 Evolution of Vision-Based Control in FRIEND
Figure 1 shows the different generations of the research
platform FRIEND that has been developed at the IAT
during the last 14 years. In this paper, we concentrate
on the different vision-based control methods which are
described in the following.

The robot arm of the first prototype FRIEND I was
a 6 degrees of freedom (DOF) MANUS robot arm. Since
manual control of the robot arm via joystick or by speech
control was very tiresome for the user, autonomous po-
sitioning of the robot arm was designed. However, due
to its lightweight and soft design that generation of the
MANUS robot arm had limited accuracy, low repeatabil-

Figure 1 Different generations of research platform FRIEND.

ity, large backlash and position dependent friction. The
position sensors were integrated into the robot base and
so were not able to detect position errors of the gripper.
In order to deal with these drawbacks of the robot arm,
image-based visual servoing was used to control the robot
arm.

FRIEND II and the current system FRIEND are
equipped with 7 DOF light-weight robot arms which
were developed and designed jointly by IAT and Schunk
GmbH & Co. KG for use with FRIEND. High reliability,
accuracy, repeatability and precise measurements enable
the use of the robot measurements directly for control
purposes. The improvement of the robot and the need
to master manipulation in complex real world scenarios
lead to the extension of research from pure visual robot
control to advanced trajectory and path planning. In par-
allel, the camera technology as well as the algorithms for
stereo vision, camera calibration and image processing
have evolved. That again had significant influence on the
overall system design and on the choice of algorithms.
Our experiences with FRIEND demonstrated that in ev-
eryday support scenarios image processing is the weak
point within the robot control structure and that it has
to be significantly improved. The idea of feedback struc-
tures was introduced in image processing [4] in order to
enhance robustness of the vision algorithms and provide
reliable and stable information for vision-based reaching
and grasping. Considerable resources within the FRIEND
program were therefore shifted from visual control to
R&D activities in image processing.

2.1 Support Scenarios to be Mastered by FRIEND
For paralysed people who depend on 24 h support by
nursing staff, any independence is welcome. In order to
justify the high investment in a robot support system, at
least 90 min of independence from personal support has
to be achieved [5]. The justification of the investment
would be strengthened if the disabled person was able to
return to professional life with the use of FRIEND and
the chance to get the necessary financial support would
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Figure 2 Real-world scenes from FRIEND assistive robot environment in “serving a drink” scenario. (a) Refrigerator scene (b) Table scene.

increase tremendously. To realize 90 min or more inde-
pendence from nursing staff for the user it is necessary
that FRIEND does not only carry out isolated manipu-
lations but is able to manage a large variety of complete
action.

In the different stages of R&D for FRIEND, different
support scenarios have been considered. Starting from
a simple “serve a drink” scenario in FRIEND I, more ad-
vanced scenarios requiring advanced manipulative skills
were developed with the next generations of the proto-
type, FRIEND II, including extended “serving a drink”
and “serving a meal” and maintenance scenarios. At the
time of writing of this paper, FRIEND is being prepared
to support a quadriplegic person for her work in a library
where all manual book handling at the specific work place
will be carried out by FRIEND.2

In order to have a consistent description and also be-
cause of limited space, we consider in this paper the
evaluation of FRIEND visual perceptual and control ca-
pabilities only for the “serving a drink” scenario.

The very first “serving a drink” scenario, realized with
FRIEND I, was defined as a fixed sequence of manipula-
tions. The precondition for the scenario is that a bottle
and a glass are placed anywhere on the tray and are vis-
ible for the camera system. After the glass and bottle are
placed on the tray, the user can start the complete sce-
nario with the single speech command “serve a drink”.
The system executes the task as a sequence of the follow-
ing actions: grasp the bottle, bring it to a suitable position
relative to the glass, pour a drink into the glass, put bottle
back on the tray, grasp the glass and move it close to the
user’s mouth. In this scenario, two essential requirements
to provide effective image based visual servoing for the
control of the robot arm are: firstly, to reliably recognize
the objects (the glass, bottle and gripper) in both 2D
camera images during the whole scenario execution, and,
secondly, to keep the objects continuously in the field of
view of both cameras.

2 FRIEND is purchased by Schunk as research platform for institutes
with an open source software license provided by IAT. FRIEND is
also used by IAT in specific research projects with disabled people to
verify its benefit in professional and daily life for the users.

In the current generation of FRIEND, this “serving
a drink” scenario is embedded in a series of actions which
also includes the preparation of a meal in a microwave
oven and feeding the user. The drink scenario has now
two phases. The first task of the FRIEND’s manipulator
is to fetch a bottle from a fridge, and to pour a drink
from the bottle into a glass placed anywhere on a table.
The manipulator then has to put down the bottle, has to
fetch the glass and bring it close to the user’s mouth.

To allow the manipulator to perform these tasks, it
is crucial for the robotic system to perceive its environ-
ment visually. In particular, the robot vision system must
recognize obstacles and the bottle among other objects
inside the fridge and must be robust against changes in
illumination. It is necessary to localize the bottle in the
fridge in 3D with accuracy high enough to be able to
grasp it with the robot. In the second phase of the “serve
a drink” scenario, the FRIEND vision system must be
able to reconstruct the location of the glass in 3D. For
this purpose, it is first necessary to reliably distinguish the
glass from the other objects on the table and to correctly
recognize it in 2D camera images to enable reliable 3D
object reconstruction.

Figure 2 shows images of two scenes from the “serving
a drink” scenario. The first imaged scene contains a fridge
with various real-world objects placed inside it. Figure 2b
shows the scene from the second phase of the “serving
a drink” scenario, containing the table with a glass and
a bottle placed on it. For the images shown here, both
scenes were imaged in the same artificial light conditions.
However, the additional light inside the fridge and differ-
ent background light reflection conditions being present
while carrying out the tasks, caused completely different
illumination conditions. That results in different appear-
ances of the same bottle in every trial. The vision system
therefore has to be robust against different environmen-
tal influences. In a cluttered scene, it cannot be assumed
that the same objects will always be identically arranged
in the target object’s neighbourhood. A high robustness
against variable lighting conditions is also necessary be-
cause lighting and shadow can change over a wide range
even while an action is carried out.
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Figure 3 Visual control in FRIEND I. (a) Overall control structure. (b) Control loop for adjustment of single camera orientation. (c) Rules for zoom
adjustment.

2.2 Vision-Based Control of MANUS Robot Arm
in FRIEND I

The main idea of image-based visual servoing, which
was chosen to realize object manipulation within the
FRIEND I scenario, is to use the location of objects in
the image plane directly as feedback for robot control,
see Fig. 3a. The vision system continuously tracks the
objects of interest, the glass, the bottle and the robot
gripper. The image I control error eI is defined as the
image distance between the reference point rI

actual and the
target rI

desired. Driving this error to zero in both images
captured by stereo cameras is equivalent to driving the
reference point, i. e. robot gripper, to the target point, e. g.
bottle, in 3D. The visual controller includes the image Ja-
cobian matrix J, which describes the relationship between
the Cartesian robot motion and the motion of the robot’s
image in the camera image frame. A proportional con-
troller is used to calculate the control signal u, i. e. the
Cartesian (world W) end-effector velocity ṙW :

u= ṙW = KpJ–1
(

rW , αL,R, βL,R, fL,R

)
eI (1)

where Kp – is a constant, J–1 – (pseudo)inversed image
Jacobian matrix, αL,R , βL,R – pan and tilt angles of left

(L) and right (R) camera accordingly, fL,R – focal length
of the left/right camera.

For the system described, successful control is only
possible if both the reference point (robot’s end-effector)
and the target (object to be manipulated) are visible and
recognized in both camera images. To satisfy the first
condition in a wide range of possible locations, the con-
trol of camera parameters, αL,R, βL,R (pan and tilt angles
and fL,R (focal length) had to be included. After the initial
object recognition was successful and the objects (bottle,
glass) were found, an image-based control loop could
be applied to adjust both cameras orientation and focal
length. The principle structure of the control loop for
orientation adjustment is presented in Fig. 3b.

The control error eI
PTH is defined for each camera as

the difference between the current position of the tracking
image feature SI

actual = [u, v]T and the coordinates of the
image centre SI

desired = [u0, v0]T :

eI
PTH =

[
u – u0 v – v0

]T
(2)

The control signal is calculated using a proportional
controller and an inversed image Jacobian matrix for
the pan-tilt heads J–1

PTH which describes the relationship
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between pixel motions in images [u̇L, v̇L, u̇R, v̇R]T and
changes in camera orientations [α̇L, β̇L, α̇R, β̇R]T , as in [7]:

uPTH =

⎡
⎢⎢⎣

α̇L

β̇L

α̇R

β̇R

⎤
⎥⎥⎦= KPTHJ–1

PTH

⎡
⎢⎢⎣

u̇L

v̇L

u̇R

v̇R

⎤
⎥⎥⎦ (3)

The adjustment of the focal length enables the scaling of
the objects in the image so that the imaged size of the
object may be kept almost constant during the control se-
quence, simplifying the object identification. Moreover,
due to the control of the focal length, the adaptation
of the field of view of the camera allows the objects of
interest to be kept visible by the cameras. To avoid con-
tinuously zooming in and out, the zoom control loop
includes a rule based controller. Simple rules are used for
zooming, see Fig. 3c:
• If object and gripper are in section 1 (centre) then

increase zoom
• If object and gripper are in section 2 (grey) then freeze

zoom
• If object and gripper are in section 3 (boundary) then

decrease zoom.
For successful task realization through visual servoing,
reliable object recognition is of major significance. In
addition, reliable visual servoing in the system FRIEND
requires a particular frame rate, because of the hardware
requirements of the controller of the MANUS robot arm.
The sampling time of the MANUS controller is 60 ms.
Since WINDOWS® is no real-time operating system, an
additional response time of about 40 ms must be added
if cycle time is considered. Therefore, maximal 10 fps are
possible which limits the control results considerably. As
described below, additional measurement is then neces-
sary to support the visual control loop.

To facilitate the process of object detection and lo-
calization, during the early stage of development of the
FRIEND vision system, artificial markers were used. In
order to avoid these artificial object markers in FRIEND
I, colour based object detection, using colours as natural
characteristics of the object that clearly distinguishes it
from other objects, was employed [6]. At that stage, the
objects used within the scenario, glass, bottle and gripper
marker, had different but consistent colours. To provide
the required high frame rate despite the restrictions of

Figure 4 Object description in FRIEND I.

the used computing hardware (CPU with 2800 MHz),
the objects in the image are approximated (see Fig. 4) as
ellipses which are described by:
• Image coordinates of the ellipse centre
• Major and minor axis
• Orientation of the ellipse.
The data which are required for visual servoing are de-
pendent on the task to be performed. In case of “grasp
a bottle” task, the reference point is defined as the centre
of the gripper which is marked by an LED and the target
is defined as a virtual point above the large ellipse [6]
which describes the bottle.

As described above, the visual perception capability
of FRIEND I system was quite restrictive and could not
provide all information required for a purely vision based
execution of the complete scenario. Hence a smart tray
was developed and integrated into the system to support
the robot vision [7]. The smart tray provides weight and
position information on the objects which are placed on
it. These measurements have a much smaller delay than
the visual measurements and are used to control the pour
in process and to recognize the objects and the free space
on the tray. The weight changes which are measured by
the scale are used to detect the contact between bottle
and tray during the “put down” action immediately, to
stop the robot movement and to open the gripper. The
inclusion of the tray measurements enhanced the relia-
bility of the “serve a drink” process considerably.

To evaluate the results of scenario execution and to
identify remaining problems the “serve a drink” scenario
was carried out for 70 trials (40 mornings and 30 after-
noons for different illumination). For each trial the bottle
and the glass were placed on arbitrary positions on the
tray and the task execution was started. The user could
hold, cancel or restart the execution at any time. Table 1
summarizes the results.

It could be concluded from the results that the scenario
was successfully executed in multiple trials despite weak
calibration of the system and that the low positioning
accuracy of the robot arm was well compensated through
image based visual servoing. However, the results un-
derlined the strong dependence of vision based control
on reliable object recognition. If the object recognition
was incorrect or incomplete, the task execution failed as
well. Object recognition was limited to the recognition of
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Table 1 Results of reliability tests [8].

mornings afternoons total

Total number of trials 40 30 70
Successful trials 33 20 53

6** 6** 12**
Totally fail 1 4 5
Object identification fails 1 2 3
Hardware failure – 2 2

** due to failure the object recognition task was cancelled but successfully
executed after intervention by user

small cylindrical objects. The extremely simplified object
approximation with ellipses became insufficient as soon
as the manipulation of objects with more complex shape
was required. Also, the results were only possible with the
hybrid visual servoing by inclusion of the smart tray into
the control structure.

Additional restrictions arose through the visual servo-
ing loop. In particular, both the object to be manipulated
and the robot gripper had to be visible continuously in
both 2D images. This condition limited the work space
of the robot arm and consequently of the whole system
to a rather small area in front of the stereo camera system
and also to a quite artificial robot configuration.

In order to resolve the restrictions of vision-based
control in FRIEND I and to enable reliable robot op-
eration in an unstructured environment and to enhance
manipulability, further development is now focused on
improvement of FRIEND’s vision capabilities. In par-
ticular, methods for robust 3D object reconstruction are
researched and developed.

Figure 5 Position-based control with internal joint control of the robot.

2.3 Vision-Based Control of 7 DOF Robot Arm
in FRIEND

The development of the robust 3D object reconstruction
methods which provide reliable information on the pose
of objects to be manipulated was performed in parallel to
the development and implementation of a precise light
weight robot arm with 7 DOF. The built-in sensors of the
robot provide precise information on the position of the
gripper and of all joints. Furthermore, currently avail-
able calibration algorithms allow a precise determination
of the camera coordinate system in relation to the cho-
sen world coordinate system. The combination of these
elements led to our decision to implement a position-
based visual control structure into FRIEND as shown in
Fig. 5. This choice of visual robot arm control also al-
lows easy integration of collision free path planning. The
main modules of this vision-based control structure are
described briefly in the following.

Robust 3D Real-World Object Reconstruction
in FRIEND
3D object reconstruction in FRIEND is based on novel
method for 3D modelling of real-world objects which
enables autonomous object manipulation in an unstruc-
tured environment and defines 3D object models reliably
without a priori knowledge on object geometry. Crucial
for 3D reconstruction is the robust object segmenta-
tion in stereo images of the FRIEND vision system.
The FRIEND segmentation method combines dispar-
ity based segmentation with robust closed-loop colour
region based segmentation. The disparity map segmen-
tation leads to the definition of object region of interest
(ROI) and assures robustness against cluttered scenes.

302



Vision-based Control of Assistive Robot FRIEND ���

In the determined ROI the objects are segmented from
their background, using closed-loop colour region based
segmentation which assures robustness against variable
illumination. The inclusion of feedback control at seg-
mentation level was proposed by authors [4; 9]. The main
idea behind feedback structures in image processing is
to change image processing parameters in a closed-loop
manner until the desired processing quality is achieved
independently of external influences such as variable
illumination. The FRIEND 2D object segmentation is de-
scribed in detail in [10]. In this paper it is just mentioned
briefly to stress its main function, providing reliable input
to the 3D object reconstruction module which estimates
the object geometry and pose. It is also important to
stress that in contrast to state-of-the-art methods [11]
the FRIEND object recognition method is independent of
textured features and can recognize objects with texture as
well as texture less objects so that it enables reconstruc-
tions of real-world objects in the robot’s unstructured
environment.

The real-world object modeling implemented in
FRIEND is based on 3D contours which are based on
good continuation of the local feature primitives such as
edges. As such, 3D contours provide geometric and shape
information on the object. The details of robust segmen-
tation of different objects from the “serving a drink”
scenario can be found in [10]. In the following, as an ex-
ample, the segmented image of a “Bonaqua” water bottle
from the image scenes in Fig. 2 is considered. The seg-
mented bottle object in the left stereo image is given in
Fig. 6a.

In the process of computation of the 3D object con-
tour, first multiple convex hull fitting is performed.
Gaussian kernel based contour smoothing [12] is applied
on the segmented object boundaries to overcome small
perturbations due to noise and to get a smooth object
curvature. As the change in gradient Δx of object curva-
ture represents the local shape of the object, 2D dominant
shape points are defined on the object boundary accord-
ing to:

Δx = xi – xi–1 ; i= 1...b

k= k + 1 , if abs(Δx > 0) ,
(4)

where k is the number of dominant shape points,
xi, xi–1 are horizontal pixel coordinates of the neighboring
boundary points in the image and b is the number of 2D
boundary points on one side of the objects symmetry axis.
Due to the presence of lateral symmetry in the object, the
dominant points are computed only on one side of the
objects symmetry axes as illustrated in Fig. 6a.

A convex hull between two neighboring dominant
shape points results in a ‘slice’ of the segmented object.
In general, the 2D robustly segmented object image is
divided into k slices based on the number of dominant
points as seen in Fig. 6b.

Figure 6 Multiple hull fitting procedure. (a) Dominant shape points on
one side of the object symmetry axis. (b) Multiple hulls fitted on the 2D
robust segmented left stereo image. (c) Computed 3D contour of the
object.

To compute the 3D object contour, it is necessary to
solve the stereo correspondence problem. The stereo cor-
respondences of the determined dominant shape points
in the left stereo image are determined by searching along
the epipolar line in the right stereo object image [13]. The
obtained stereo correspondences are represented as

pLi = (xLi , yLi) ,

pRi = (xRi , yRi) , i= 1...k
(5)

where pLi , pRi are the obtained stereo correspondent
points in the left and right object image respectively
and k is the number of dominant shape points. Due
to both, different perspective views of the stereo cameras
and external influences like noise, the obtained stereo
correspondences may not satisfy the epipolar constraint
(6).

pT
Ri

FpLi = 0 , (6)

where F is the fundamental matrix which relates the cor-
responding points in the stereo images. To overcome this
problem, the optimal stereo correspondences are com-
puted by minimizing the sum squared distances between
the obtained image points and the back-projected point
on the epipolar line satisfying the epipolar constraint [10]

(p̂Li , p̂Ri)= argmin
{

dL(pLi , l)2 + dR(pRi , l′)2
}

(7)

where p̂Li , p̂Ri are the optimal stereo correspondences in
the left and right object image, l, l′ are the epipolar lines
in the left and right object images respectively, dL, dR are
the Euclidean distance between the image point and the
point on the epipolar line. Minimization procedure of
(7) using first order approximation [13] yields optimal
correspondences which are the maximum likelihood esti-
mates for the true image point correspondences. Hence,
the obtained optimal correspondence points are robust
against noise and outliers. With the known camera ma-
trices and the optimal correspondences for the dominant
shape points, the 3D point is found by the intersection
of the two projection lines in the 3D space using the
linear stereo triangulation procedure described in [14].
The obtained 3D boundary points for each slice in the
multiple hulls are approximated by fitting a 3D contour.
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The resulting multi modal 3D contour of the bottle in
Fig. 6b is shown in Fig. 6c. As obvious, the resulting 3D
object contour allows generation of 3D object model that
fits to the actual shape of the object.

In [10] 3D modelling of cylinder as well as of cuboid
objects starting from computed 3D contours was ex-
plained. In this paper, the 3D modeling of real-world
objects from the robot’s environment is illustrated by the
modelling of a cylinder object such as the above consid-
ered bottle object. In order to model the full 3D view of
a cylinder object, both the radius of the brim circle and
the object height is to be determined with high accuracy
from the 3D object contour. Due to the viewing configu-
rations of the stereo camera, only one face of the object is
imaged. For the “serving a drink” scenario the assump-
tion is made that objects are symmetrical around their
vertical axis. The vertical axis of the object is calculated
using the surface normal vector information of the 3D
boundary points in 3D contour. The height and radius
of each 3D contour is estimated to model its equivalent
cylindrical structure about the vertical axis of the object.
The shortest distance between the two horizontal 3D lines
in the contour gives the 3D contour height while the
shortest distance between the two vertical 3D lines gives
the contour width. The result of 3D modelling of the
bottle object which is shown in Fig. 2b (bottle in the
image of table scene) is given in Fig. 7a.

The generated 3D models of objects to be manipulated
are used further to update the workspace representation,
which is implemented into FRIEND as a Mapped Vir-
tual Reality (MVR) [15], see Fig. 7b. Beside 3D models
of objects to be manipulated, 3D reconstruction of so-
called “container” objects is used for MVR adaptation.
“Containers” are objects in the FRIEND environment
such as the fridge, table, microwave oven and book shelf.
Hence, “containers” are the objects in which/on which
the objects to be manipulated are placed. Bearing in
mind that the container objects in the FRIEND environ-
ment are a permanent feature of the scenarios, the SIFT
method [16] is used for their recognition. This method
uses an artificial marker as a model image and during
on-line system operation the SIFT algorithm searches for
the model image in the scene through a matching based

Figure 7 (a) 3D model of the reconstructed bottle object from the image
of table scene of “serving a drink” scenario (b) Mapped Virtual Reality
(MVR) representation of the robot environment.

algorithm. Once the model image has been detected, its
pose (position and orientation in 3D space) can be re-
constructed using model based matching. Knowing the
position of the model image placed on/in a container
(e. g. in the fridge), the container pose can further be
reconstructed. It was necessary to enhance the real time
behaviour of SIFT before it could be used in FRIEND.
The details of the implemented “VF-SIFT” method can
be found in [17]. In this paper, the correct 3D reconstruc-
tion of containers achieved by SIFT model based method
is used as the input to MVR.

MVR uses a simplified representation of the robot arm
and of real-world objects in its environment. It is used
for online monitoring of the robot workspace and pre-
diction of possible collisions, which is required for safe
object manipulation and trajectory planning [15]. Before
a reliable object recognition was available, domain spe-
cific knowledge was used to describe the environment in
MVR. With the availability of the above described object
recognition, the MVR is not completely abandoned but
used as a redundant source of information. The MVR
is initialized with domain specific knowledge like a pri-
ory known 3D-models of the permanent objects in the
scenarios (such as “container” objects). The MVR model
is then continuously updated and extended with the in-
formation on location of dynamic objects in the robot
workspace using the online generated 3D-models of ob-
jects to be manipulated and also 3D data on “containers”
pose.

Path and Trajectory Planning
The module of visual control structure in Fig. 5 named
“Path and Trajectory Planning” generates the collision-
free path. The input of the trajectory planning is derived
from different nets (a hierarchy of AND/OR nets and
Petri nets) [18] to which we refer here as the scenario.
The scenario contains primarily information on the ob-
jects to be manipulated and the task that the manipulator
should accomplish. For example the “serve a drink” sce-
nario describes among others that the recognised object
“bottle” should be grasped and be taken out of the fridge.
The scenario is used by the scheduler to request a series
of manipulative operations which are responsible for exe-
cuting manipulator tasks. For each operation, a trajectory
must be constructed and executed by the robot arm. The
inputs for the trajectory calculation are the target object
and MVR model of the scene. The procedure includes
three phases:
• Calculation of the goal configuration
• Collision free path generation
• Trajectory calculation.
Calculation of the goal configuration: As already men-
tioned, the location of the object is provided by the vision
system and the 3D model is added to the MVR. Using
this location, a Tool Center Point (TCP) frame is calcu-
lated and a goal configuration is computed. The latter is
selected from an on line calculated set of possible inverse
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kinematic solutions which correspond to the same TCP
frame. Due to the 7 DOF in theory, an infinite number
of solutions exist, but only a limited set is calculated. The
criteria for selecting one out of the large number of pos-
sible configurations are the maximum distance between
manipulator and obstacles and the minimum difference
between a solution and the start configuration of the
robot. Using the symbols {W} as the world, {G} as
gripper and {O} object’s coordinate system, the trans-
formation between the world and final end effector TCP
frame {G′} can be calculated as follows [19].

TW
G′ = TG

O ·
(

TW
O · TO

sample

)–1
(8)

Figure 8 illustrates each coordinate system in the equa-
tion (8). The TO

sample is a sample frame calculated from
a random position and rotation that the target object
can have in the object’s coordinate system. For instance,
a bottle can be rotated about the Y axes of the TW

O frame.
Collision Free path generation: A new path planning

approach is implemented into the current FRIEND gen-
eration. The inputs for the path planning are the goal
configuration and the actual MVR scene. The planner
is called CellBiRRT [20]. It is based on the concept of
Rapidly exploring Random Trees (RRT). The main fea-
ture of this approach is the ability to solve path planning
tasks while, at the same time, it can handle additional
position and orientation constraints of the end-effector.
This is done by dividing the Cartesian space into cells
and selecting an appropriate one as a basis for generating
random configurations. One of these random configura-
tions is used later in order to expand the trees randomly.

Figure 8 (a) MVR representation of grasping scene with related coord-
inate systems (b) Example of different inverse kinematics solution for
different TO

sample.

Figure 9 (a, b) Examples of cell selection. The cell with minimum distance to a target TCP is selected. (c, d) Path generation for placing bottle on the
table. Start (c) and goal (d) configurations are presented.

Figure 9a, b presents the cells and how the configuration
is chosen. Figure 9c, d shows the path generation result
for a part of the “serve a drink” scenario namely grasping
the bottle in a fridge and placing it on a serve table.

A path planning algorithm requires an efficient
method for computing distances and detecting possible
collisions of objects. A configuration is in collision if the
overall minimum distance between robot arm and obsta-
cles is less than a tolerance limit which is equal to the
scene 3D reconstruction’s error of the vision system. The
collision detection method used in FRIEND is presented
in [21]. It distinguishes near and far obstacles and reduces
dynamically the number of samples in a segment between
two configurations that have to be checked for collision.
It is a combination of oversized Oriented Bounding Boxes
(OBBs) and an algorithm for calculating the minimum
distance between two convex polyhedrals. The algorithm
for calculating the minimum distances is the Gilbert-
Johnson-Keerthi (GJK) algorithm [22].

A trajectory calculation step is included to enhance the
path generated in previous steps in order to make the
robot movement smoother. The resulting trajectory is
then provided to the robot controller in order to move
the robot arm along it.

Performance Evaluation
In order to evaluate the performance of the vision-based
control in the current FRIEND system, experiments were
conducted in which the robustness of the described 3D
object reconstruction as a key factor for reliable manip-
ulator control was assessed. 100 test images containing
objects that are commonly found in both phases of the
“serve a drink” ADL scenario were taken in different
illumination conditions. The objects were imaged under
both daylight and artificial lighting conditions. The light-
ing conditions were varied from 50 to 500 lx. This range
of illumination corresponds to a variation of the light in-
tensity from a family living room (50 lx) to the standard
lighting level of an office (500 lx).

The objects in each test image were segmented using
the proposed segmentation method which combines dis-
parity map segmentation with closed-loop colour region
segmentation. The segmented object images were used
as reliable inputs to the 3D object reconstruction module
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Table 2 Experimental results for cylinder object reconstruction.

Objects Height [m] X [m] Y [m] Z [m] Volume Fraction
Vf [%]

Sauce Jar in fridge Ground Truth 0.110 0.183 0.533 0.095 100
Reconstruction in 500 lx experiment 0.111 0.181 0.530 0.092 98.32
Mean for 15 trials 0.106 0.176 0.532 0.092 96.48
σ 0.003 0.004 0.005 0.001 1.490

Bottle of “bonaqua” water Ground Truth 0.285 0.355 0.375 0.340 100
in fridge and on the table Reconstruction in 500 lx experiment 0.287 0.357 0.378 0.337 98.42

Mean for 15 trials 0.286 0.353 0.373 0.338 96.39
σ 0.001 0.003 0.004 0.002 3.44

Glass on the table Ground Truth 0.125 0.300 0.280 0.125 100
Reconstruction in 500 lx experiment 0.124 0.294 0.277 0.124 98.17
Mean for 15 trials 0.123 0.296 0.275 0.123 97.06
σ 0.002 0.003 0.004 0.001 1.14

where the 3D coordinates X, Y and Z of the object grasp-
ing point were calculated. The automatically calculated
3D objects coordinates were compared with the ground
truth position errors obtained in off-line experiments
using a high precision laser range finder. Also geometrical
characteristics such as height, and radius for cylindrical
objects were computed from the extracted 3D contour
and the computed results were compared to ground truth
data. In order to compute the accuracy of the generated
3D model, the volume of the reconstructed object was
compared with the actual volume of the considered ob-
ject. The measure of reconstructed volume fraction (Vf )
is defined as:

Vf =
Volumereconstruted

Volumeactual
×100[%] (9)

where Volumeactual represents off-line determined ground
truth.

The required precision of 3D reconstruction to suc-
cessfully grasp various objects without toppling them was
evaluated in off-line experiments for the considered ADL
scenario. The largest position error in each direction for
which the object could still be successfully grasped was
calculated for various real-world objects. The mean of
error tolerance for the different dimensions over 50 trials
is presented in Table 3.

The experimental results for representatives of cylin-
drical objects which are usually present in both scenes (in
the refrigerator and on the table) of the “serve a drink”
scenario are shown in Table 2. The results of object re-
constructions in one single experiment are given together
with statistical descriptors of a number of experiments.
Reconstruction in the 500 lx experiment refers to the
obtained object reconstruction results under office light-
ing conditions (500 lx), while the statistical results are
obtained from 15 trials under variable illumination con-
ditions. From the presented experimental results, it is
observed that the error in 3D reconstruction is within the

Table 3 Error tolerance levels XT , YT and ZT in X, Y and Z direction
for 3D reconstruction accuracy for object grasping.

XT [m] YT [m] ZT [m]

0.015 0.020 0.010

tolerance limits given in Table 3 and, hence, the objects
can be dexterously grasped by the manipulator.

3 Conclusions
In this paper, the experiences of IAT in visual robot con-
trol in different generations of the FRIEND system have
been presented and also the key technological develop-
ments are presented which led to the implementations in
the newest FRIEND generation.

During the development of FRIEND, a pragmatic bal-
ance has been sought and achieved between, on the one
hand, developing innovative solutions based on the lat-
est research and available technology, and on the other
hand, keeping to a time frame for each generation that
enabled an acceptable rate of progress towards the objec-
tive of using the system in a real world based application.
Presently FRIEND is being prepared for the support of
a completely paralysed person who will be reintegrated in
professional life and who will work in the University Li-
brary (SUUB) as a librarian who retro-catalogues books
into the data base. All manipulative skills necessary to
handle the books at that working place will be carried
out by FRIEND.
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