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Abstract

In this paper, a unified approach to sequence-based control and estimation of linear networked
systems with multiple sensors is proposed. Time delays and data losses in the controller-actuator-
channel are compensated by sending sequences of control inputs. The sequence-based design
paradigm is further extended to the sensor-controller-channels without increasing the load of the
network. In this context, we present a recursive solution based on the Hypothesizing Distributed
Kalman Filter (HKF) that is included in the overall sequence-based controller design.

1. Introduction

With advances in the development and distribution of modern network technologies such as
Ethernet or WLAN (IEEE 802.11), general purpose networks for cordless communication have
become an easy and cheap alternative to complex field buses. Although new flexibility is acquired,
the communication is typically less reliable than in wired real-time architectures and, hence, users
are faced with additional challenges regarding network-specific disturbances such as transmission
delays and data losses. In control theory, these kinds of network-related problems are investigated
in the area of Networked Control Systems (NCS).

In the NCS community, several approaches have been proposed that consider transmission delays
and stochastic data losses in the controller design (see [1] for an overview). In this contribution, we
focus on a design philosophy called sequence-based control, which stems from the idea that modern
digital communication networks usually transmit data in form of atomic packets, which enforce
that either all data of a packet is received or none. Therefore, the idea is to not only send the usual
data over the network, but also extra information that is used to mitigate the network-induced
effects. However, the transmission of extra information increases the network load and in general
causes higher transmission delays and/or loss rates. Nevertheless, it is a common assumption that
transmitting additional information within a data packet leads to an increased system performance
as long as the additional information is not too extensive.
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For the connection between controller and actuator (CA-channel), additional information is
usually attached in form of predicted control inputs that are applicable at future time steps. The
actuator stores these control inputs in a buffer so that it can fall back upon a predicted control
input in case a data packet is lost or delayed.

In literature, three major lines of sequence-based controller designs can be distinguished. The
first line of methods is based on a nominal controller that is designed for the system without
consideration of networked-induced effects and that is extended afterwards to generate sequences [2,
3]. The second line of methods stems from Model Predictive Control (MPC) theory, where the
control sequences are generated as byproduct of solving an open-loop receding-horizon optimization
problem [4]. In the third line of methods, the sequence-based NCS is formulated as a stochastic
optimal control problem that is solved offline for some system classes [5, 6].

In this contribution, we extend a result of the third line that has been derived in [5] for linear
systems and TCP-like network connections in two ways (see Sec. 2 for comments on TCP-like
networks). First, we extend the system to multiple independent sensors that individually send
partial state measurements over the network. We show that in this scenario the separation principle
holds and discuss the structure of the optimal control law that depends on the minimum-mean-
squared-error estimate of the state. Second, we apply the sequence-based design philosophy of the
CA-channel to the data connection between sensors and controller (SE-channel).

An intuitive approach for the latter extension is that each sensor not only sends the most recent
measurement to the controller, but also a (finite) set of measurements obtained in previous time
steps [3]. This way, the estimation performance is improved since in case a sensor transmission
has been dropped or delayed by the network, the missing information is also part of following
transmissions. But, as pointed out above, the sent measurement sequences should not be too large.
In particular, in the presence of multiple sensors, the network load increases considerably with the
number of measurements transmitted per packet.

Hence, in this paper we investigate an approach how information contained in (possibly infinitely
long) measurement sequences can be comprised in recursive variables. For that reason, we assume
the sensors to be capable of performing minor processing tasks. While the Kalman Filter is the
optimal estimator when all measurements can be processed at one node [1], the estimation quality
is no longer optimal when local Kalman Filters are employed on multiple sensors [7].

As we are interested in an estimation principle that is equivalent to processing the respective
measurement sequences, we utilize recent results in estimation theory, where it has been shown
in form of the so called Distributed Kalman Filter (DKF) [8, 9] that measurement data can be
processed by a group of independent local sensors in a way that the fused result still yields a
globally optimal result.

Unfortunately, in the presence of lossy communication networks, the DKF does not work as
it is necessary to have a complete set of all sensor data at the controller side to generate a state
estimate. A generalization that manages to provide estimates even under uncertain conditions is
the Hypothesizing Distributed Kalman Filter (HKF) [10, 11]. The second part of this contribution
focuses on the extension and integration of the recursive HKF algorithm into the sequence-based
controller design.

The following of the paper is structured as follows. After the problem formulation in Sec. 2,
we generalize the sequence-based control result from [5] in Sec. 3 by showing that the separation
principle holds for further classes of available measurement information. The main part of this
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Figure 1: The considered scenario with one actuator and multiple sensors that are connected to the controller via a
network.

contribution is presented in Sec. 4, where we derive a generalization of the HKF in order to extend
the sequence-based methodology to the measurement channel. In particular, we propose novel
recursive sum formulas for the HKF, introduce a method to initialize estimates from measurements,
and derive an extension of the HKF that is capable of handling the subsequent inclusion of control
inputs at the controller side. After discussing the application of the proposed algorithm, we give a
short summary and an outlook in Sec. 5.

2. Problem Formulation

In this paper, we consider the system setup depicted in Fig. 1 consisting of a plant that is
controlled and observed over a digital network. The plant is supposed to be linear and time-
invariant and its output is not directly observable but measured by M ∈ N>0 independent sensors1

according to

xk+1 = Axk + Buk + wk , (1)

yi
k

= Cixk + vi
k , (2)

where xk ∈ R
n, uk ∈ R

m, and yi
k

∈ R
qi denote the plant’s state, the control input applied by

the actuator and the measured output of the i-th sensor (with i ∈ N>0 and i ≤ M). The matrix
A ∈ R

n×n is assumed to be regular. The matrices A, B ∈ R
n×m, and Ci ∈ R

qi×n are known by
the controller and the sensors. The terms wk ∈ R

n and vi
k ∈ R

qi represent mutually independent,
zero-mean, Gaussian white noise processes with covariance matrices Ξ ∈ R

n×n and Θi ∈ R
qi×qi.

The initial state of the plant is assumed to be Gaussian distributed with mean x0 and covariance
matrix P0.

1The setup can easily be extended to the case of multiple actuators and a time-variant plant. In order to give a
concise description of the unified sequence-based approach we limit ourselves to this simpler setup.

3



The digital network connections are subject to time-varying transmission delays and stochastic
packet losses. The stochastic characteristics of these effects are assumed to be known. Furthermore,
a TCP-like protocol is used for transmissions in the CA-channel. This means that successfully
transmitted data packets to the actuator are acknowledged at the controller within the same time
step2. For transmissions between sensors and controller we relax this assumption and consider the
less restrictive case that no acknowledgments are available. Finally, we assume the network nodes
to be synchronized, data packets to be tagged with a time-stamp, and controller, actuator, and
sensors to be time-triggered.

To compensate for time delays and data losses between controller and actuator, at every time
step the controller sends control sequences to the actuator that not only contain a control input in-
tended for application in the current time step uk|k, but also NA ∈ N0 control inputs for consecutive
future time instants. Such a control packet is referred to as Uk and is of the form

Uk =
[
uT

k|k uT
k+1|k . . . uT

k+NA|k

]T
, (3)

where, for example, uk+1|k denotes a control input calculated at time step k that is intended to be
applied at time step k + 1. The actuator is equipped with a buffer to store the control sequence
with the most recent information (among all received sequences). By applying the control input
of this buffered sequence that matches the current time step, time delays and losses of subsequent
data packets can be compensated until a packet with more recent information arrives. In case the
actuator does not receive a new control sequence until the buffer runs out of applicable control
inputs, the actuator applies a known default control input ud.

As a counterpart to the CA-channel, network effects between sensors and controller are also
compensated by a sequence-based design philosophy. More precisely, the sensors not only use the
measurement of the current time step k to generate a data packet but also include measurements
of the last NS ∈ N0 time steps. The information used to generate the output packet of the i-th
sensor Zout,i

k can formally be described by

Zout,i
k = g(yi

k−NS :k) , (4)

where g(·) denotes an arbitrary sensor algorithm and the notation ya:b denotes the set of measure-
ments {yk|a ≤ k ≤ b}. The union of all M sets Zout,i

k is denoted by

Zout
k = Zout,1

k ∪ Zout,2
k ∪ · · · ∪ Zout,M

k . (5)

Due to network disturbances, the controller may receive no, one, or even more than one packet per
sensor at each time step. The set of packets received by the controller of the i-th sensor at time
step k is defined by the set Z in,i

k and the union of these sets at time step k over all M sensors by
Z in

k .

2A TCP-like network does not reflect real Ethernet-TCP/IP networks, where acknowledgments may be subject
to a considerable time delay. However, it is possible to realize a TCP-like network connection by, e.g., message
prioritization. Furthermore, TCP-like networks are also of theoretical interest since they give insights into the far
more complex cases of real TCP connections or connections where no acknowledgments are provided by the network
(as, e.g., for Ethernet UDP/IP networks).
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The problem investigated in this paper is to find an admissible control law that minimizes the
quadratic cost function

CK
0 = E

{
xT

KQxK +
K−1∑

k=0

xT
k Qxk + uT

k Ruk

∣∣∣∣∣U0:K−1, x0, P0

}
, (6)

where K ∈ N>0 is the final time step and Q and R are symmetric weighting matrices that are
positive semi-definite and positive definite, respectively. A control law is called admissible if it
requires only information that is available to the controller. In our case, the information available
to the controller is described by the information set

Ik =
{

x0, P0, Z in
1:k, U 0:k−1, θ0:k−1

}
, (7)

where θk represents the information provided by the acknowledgments of the TCP-like connection
between controller and actuator.

3. Optimal Control Law

To solve the sequence-based optimal control problem formulated in Sec. 2, we use a result
derived in [5], where a simpler problem setup was considered containing only one sensor that
transmits one raw measurement per time step. It turns out that the results can easily be extended
to the considered setup with multiple sensors that send (possibly pre-processed) measurement
information. We summarize the extended result in the following theorem that is formulated in
terms of the augmented state

ξ
k

=




xk

[uT
k|k−1 uT

k+1|k−1 · · · uT
k+N−1|k−1]T

[uT
k|k−2 uT

k+1|k−2 · · · uT
k+N−2|k−2]T

...
[uT

k|k−N+1 uT
k+1|k−N+1]T

uk|k−N

ud




, (8)

that contains the state of the plant and all control inputs of already sent control sequences that
still could be applied to the plant. The last entry is the default control input.

Theorem 3.1 Consider the problem of finding an optimal control law to generate control sequences
of length NA ∈ N>0 minimizing the cost function (6) subject to the available information (7), system
dynamics (1), actuator logic described in Sec. 2, and M sensors that process data according to (2)
and (4). Then,

1. similar as in standard LQG control, the separation principle holds, i.e., the optimal control law
can be separated into a) an optimal state estimator that calculates the conditional expectation

E
{

ξ
k
|Ik

}
and b) an optimal state feedback controller that utilizes the feedback matrix Lk,

5



2. the optimal control law is linear in the conditional expectation of the augmented state according
to

Uk = Lk · E
{

ξ
k
|Ik

}
,

3. and the state feedback matrix Lk explicitly depends on the delay probability distribution of
the controller-actuator-network. It can be calculated as given in Theorem 1 of [5] since it is
identical to the feedback matrix for the same system with only one sensor sending one raw
measurement per time step.

Proof. When we replace the measurement equation and information set Ik of [5] with the corre-
sponding equations (2) and (7) of our problem, Lemma 1 of [5] still holds. Therefore, the conditional

expectation E
{

ξ
k
|Ik

}
is stochastically independent of the control sequence Uk. This implies that

the separation principle holds and thus, proves part one of the theorem. Part two and three can
be proved analogously to the proof of Theorem 1 in [5] with Ik replaced by (7). �

Remark 3.1 It is interesting to note that Theorem 3.1 also holds for all information structures that
can be characterized by cumulative subsets Ĩk of the information set Ik, i.e., by subsets that satisfy
Ĩk−1 ⊆ Ĩk and Ĩk ⊆ Ik. This holds regardless of the choice of NS, i.e., how much information of
previous time steps is transmitted per packet. Therefore, Theorem 3.1 also holds for the case of
infinite measurement sequences.

According to Theorem 3.1, the optimal control law consists of the combination of an optimal
state estimator and an optimal state feedback controller. Since the optimal state feedback controller
is the same as in [5], we focus on finding the optimal sequence-based state estimator to calculate

the conditional expectation E
{

ξ
k
|Ik

}
in the following.

4. Optimal Estimator

As discussed in the introduction, one way to implement a sequence-based information approach
for the SE-channel is to include the last NS measurements into the sensor output packet at every
time step. This corresponds to setting g ≡ id in (4), and results in

Zout,i
k =

{
yi

k, yi
k−1, · · · , yi

k−NS

}
(9)

for the output packet of the i-th sensor with yi
r = ∅ for r < 1. Let Z in

1:k(NS) denote the set of all

received measurement sets Zout,i
t with 1 ≤ t ≤ k, i ∈ {1, . . . , M} at the controller side conditioned

on NS and Ik(NS) the corresponding information set. Then,

Z in
1:k(0) ⊆ Z in

1:k(1) ⊆ · · · ⊆ Z in
1:k(k) ⊆ Ik (10)

and thus, the estimation accuracy of the conditional mean

E
{

ξ
k

∣∣∣Ik

}
= E

{
ξ

k

∣∣∣Ik(NS)
}

6



is best when the complete sequence of measurements is transmitted to the controller, i.e., NS = k.
As this is not realizable due to the growing size of the data packet, we seek to find a recursive

estimation algorithm that gives the same accuracy as E
{

ξ
k

∣∣∣Ik(k)
}

, i.e., an algorithm that provides

the same results as a central Kalman filter. Note, that in the given scenario, E
{

ξ
k

∣∣∣Ik(k)
}

is

identical to E
{

xk

∣∣∣Ik(k)
}

as the u’s in (8) are known.

In the following, an extension of the so called Hypothesizing Distributed Kalman Filter (HKF)

is derived that calculates E
{

xk

∣∣∣Ik(k)
}

based on locally pre-processed measurements when an

assumption about the global measurement model has been met by the estimates.

4.1. Hypothesizing Distributed Kalman Filter

The idea of the HKF is to process local estimates in a transformed state space and filter
measurements according to gains that are optimized according to a global measurement model.
As the globalization of gains leads to biased local estimates in general, a correction matrix is
maintained that allows to eliminate the induced bias.

A detailed derivation of the algorithm including consistent mean-squared-error (MSE) matrix
bounds is given in [12]. More precisely, the correctness of a central version of the HKF has been
derived in [10] and has been extended in [12] to the concept of maintaining local variables that
allow the calculation of a combined correction matrix. In this paper we limit ourselves to the
presentation of key formulas and derive the subsequent incorporation of control inputs in more
detail afterwards. All derivations and conclusions are given for the time-invariant system from
Sec. 2, but are applicable one-to-one to the time-variant case.

Let G
f
k ⊆ {1, . . . , M} contain indices of sensors whose estimates are available at the controller.

In order to apply the HKF, a hypothesis about the global measurement model (HGMM), i.e.,

(
Pz

k

)−1
≈

∑

i∈G
f

k

(
Ci

)⊤(
Θi

)−1
Ci (11)

is necessary, which is chosen according to experimental data or is updated iteratively. Although
an unbiased estimate is provided by the HKF in any case, the estimation quality in terms of the
MSE matrix depends on the choice of the HGMM and is only equivalent to the globally optimal
one when the HGMM meets the sum of the measurement models in (11).

We consider sensors that have no prior information and that initialize local values xi
k and Pk

by help of the first locally obtained measurement according to

xi
1 = Li

1yi
1

and P1 = Pz
1 with Li

k = Pk

(
Ci

)⊤(
Θi

)−1
. (12)

When initial estimates xi
0, P

i
0 are given on sensor side, we set

xi
0 = P0(P

i
0)−1xi

0 and P0 =

( N∑

i=0

(P
i
0)−1

)−1

.

The variables are predicted according to

xi
k+1 = Axi

k and Pk+1 = APk

(
A

)⊤
+ Ξk .

7



Using Li
k from (12) and Kk = Pk

(
Pk|k−1

)−1
, the filter operation is given by

xi
k =Kkxi

k|k−1+Li
kyi

k
and Pk =

(
(Pk|k−1)−1+(Pz

k)−1)−1
.

For further processing, it is sufficient to transmit xi
k to the controller, where the fused estimate

x
f
k =

∑

i∈G
f

k

xi
k (13)

is obtained. It has been shown that x
f
k equals the (central) linear minimum MSE result when

equation (11) holds exactly with G
f
k representing the sources of the estimates that are available [10].

Otherwise, x
f
k is biased and must be corrected.

To this end, a further variable ∆
xi

k is maintained that allows to reconstruct unbiased estimates

independently of G
f
k and of the HGMM. The idea is to make sure that E{xk} = E

{
(∆xi

k )−1xi
k

}
holds

for all local estimates at all time steps. Thus, we initialize the correction matrix with ∆
xi
1 = Li

1Ci

when the estimates are initialized from measurements, or – when initial estimates are utilized –

with ∆
xi
1 = P1(P

i
1)−1 . The prediction of the correction matrix is led back to the last time step by

∆
xi

k+1 = A∆
xi

k

(
A

)−1
,

and in the filter step, we set

∆
xi

k = Kk∆
xi

k|k−1 + Li
kCi .

The correction matrix that corresponds to the fused estimate x
f
k is given by

∆
xf

k =
∑

i∈G
f
k

∆
xi

k . (14)

It is worth mentioning that ∆
xi
1 is not regular at the initialization step when the rank of Ci

is below the state dimension. However, this problem also occurs in the central processing schema
and is likewise solved after fusing values that together cover the complete state. Apart from that,
measurement models do not need to be known at remote sensors as potential differences between
the HGMM and the actually utilized models in (11) can be corrected by helps of ∆x

k .

4.2. Subsequent Inclusion of Control Inputs

Up to now, we have not considered control inputs from the state space model (1), which com-
plicates the estimation process as the local sensors have to recursively estimate the state without
having information about the deterministic inputs and thus, without knowing the complete system
model. In the following, we determine the part of the control inputs that was not comprised in the
processed measurements and needs to be added to the estimate. In a second step, we prove that
the derived procedure provides globally optimal estimates iff the basic HKF is optimal.

In order to simplify the calculations, we w.l.o.g. expect prediction and filter steps to be alter-
nating. This assumption allows us to find sum formulas for the key variables. We define

Gl··k =

( k−1∏

t=l

(
A

)⊤(
Kt+1

)⊤
)⊤

and
(
Al··k

)−1
=

k∏

t=l

(
A

)−1
,

8



with
(
At··l

)−1
= I when t = l or t = l + 1, and

(
At··l

)−1
:= Al+1··t−1 when t > l + 1. Hence, the

local estimation values and correction matrices are obtained as

xi
k =

k∑

t=1

Gt··kLi
ty

i
t

and ∆
xi

k =
k∑

t=1

Gt··kLi
tC

i
(
At··k−1

)−1
.

The values of the fused estimate result in

x
f
k =

k∑

t=1

Gt··k

( ∑

i∈G
f

k

Li
ty

i
t

)
(15)

and

∆
xf

k =
k∑

t=1

Gt··k

( ∑

i∈G
f

k

Li
tC

i
)(

At··k−1

)−1
, (16)

which verifies the key result from [12] that the estimation result of the HKF does not depend on
whether information are processed locally or centrally as long as they are finally combined. The
true state is given by

xk =
k−1∑

t=0

(
At+1··k−1But + wt

)
+ A0··k−1x0 (17)

and, hence, measurements can be represented as

yi
t

= Ci

( t−1∑

l=0

(
Al+1··t−1Bul + wl

)
+ A0··t−1x0

)
+vi

t . (18)

By means of these formulas, we derive the part of the control inputs that is already included in x
f
k

and thus, determine the vector that still needs to be added in order to yield an unbiased estimate.
We obtain:

Theorem 4.1 The variable x
f
k =

(
∆

xf

k

)−1(
x

f
k + x

uf

k

)
with

x
uf

k =
k−1∑

t=0

Gt··k∆
xf

t

(
A

)−1
But (19)

is an unbiased estimate of a system with dynamics (1).

Proof. Appendix A. �

With x
uf

k from Theorem 4.1, we are able to reconstruct an unbiased estimate at the controller
even if measurements are processed locally at the sensors. But, as we do not expect to have the
same estimates available at every time step, we need the following corollary that allows to maintain
the control input parts for every node separately.

9



Corollary 4.1 The variable x
uf

k from (19) equals the sum of node-specific variables

xui

k =
k−1∑

t=0

Gt··k∆
xi
t

(
A

)−1
But . (20)

Proof. Simple matrix algebra using (16). �

It is worth mentioning that (20) depends on the control input as well as on the actually utilized
model at the node (implicitly by ∆

xi
t ) and thus, both types of information have to be available at

either the controller or the sensors. In this paper, we focus on the first case, where ∆
xi
t is obtained

at the controller. Nevertheless, it would also be possible to communicate the control inputs directly
from the actuator(s) to the sensors and transmit xui

k in combination with xi
k to the controller.

Before we finish the derivations, we provide a Lemma concerning the optimality of the proposed
procedure.

Lemma 4.1 The HKF with subsequent control input inclusion is globally optimal when the HGMM
has met the sum of the actually utilized measurement models from (11) at all time steps.

Proof. When the global measurement model is met, ∆
xf

t = I, ∀t ∈ 1, . . . , k holds, and therefore,

the fused estimate x
f
k is obtained by

(
∆

xf

k

)−1(
x

f
k + x

uf

k

)
= x

f
k + x

uf

k

(15)(19)
=

k∑

t=1

Gt··k

( ∑

i∈G
f
k

Li
ty

i
t

)
+

k−1∑

t=0

Gt··k

(
A

)−1
But =

k∑

t=1

Gt··k

( ∑

i∈G
f
k

Li
ty

i
t
+ KtBut−1

)
.

By splitting up Kt and Li
t, we obtain

k∑

t=1

Gt··kPt

( ∑

i∈G
f
k

(
Ci

)⊤(
Θi

)−1
yi

t
+

(
Pt|t−1

)−1
But−1

)
,

which equals the recursive information form of the Kalman Filter when all measurements are pro-
cessed centrally and therefore, is the linear optimal solution. �

4.3. Application

In the following, the derived approach is applied to the plant that has been depicted in Sec. 2.
In order to minimize the communication and computation at the sensors, we calculate only xi

k at
the distributed nodes and maintain xui

k and ∆
xi

k at the controller. As estimates can be delayed or
lost, the controller stores the measurement models and control inputs since the last time step of

10



successfully received variables xi
t, t < k. By helps of this information, the estimation variables are

predicted according to

xi′

k = Gt··kxi
t , ∆

xi′

k = Gt··k∆
xi
t

(
At··k−1

)−1

and

x
ui′

k = xui
t +

k−1∑

l=t

Gl··k∆
xi

l

(
A

)−1
Bul = xui

t +
k−1∑

l=t

Gt··k∆
xi
t

(
At··l

)−1
Bul =

x
ui
t + Gt··k∆

xi
t

k−1∑

l=t

(
At··l

)−1
Bul

when no estimate of the current time step is available. If it is likely that transmissions fail, it is
meaningful to store these predicted variables as future predictions are based on them. Otherwise,
it is sufficient to hold variables xi

t, ∆
xi
t , x

ui
t , Pt for the latest estimate for each sensor, and uk for

each time step for which there is a chance that an estimate is predicted from.
Although several matrices have to be stored and calculated at the controller, this is unlikely

to be a problem in real-world applications where it is necessary to spatially separate controller,
actuators, and sensors at the costs of a poor communication. Apart from that, optimal out-of-
sequence algorithms, which are the alternative to the proposed algorithm, have at least comparable
costs.

It remains to discuss how the HGMM is chosen best. In order to apply the HKF it is possible to
set the HGMM to an arbitrary matrix. However, as we are interested in optimizing the estimation
quality at the controller, two strategies are meaningful in the context of the presented scenario.
When the HGMM is set to the sum of the measurement models of all available nodes, i.e., G

f
k =

{1, . . . , M} in (11), the estimate at the controller is globally optimal when all estimates from one
time step are received. This is especially meaningful when packet losses and delays are unlikely.
Alternatively, the HGMM is chosen according to the expected “measurement quality”, e.g., as the
half of the sum of all measurement models when the sensor measurement models are similar and
it is expected that slightly more than half of the transmissions fail.

In plants with slowly changing communication quality, a more sophisticated approach can be
employed. Although the exact procedure is out of the scope of this paper, it is reasonable to adapt
the HGMM when the fused correction matrix (14) differs substantially from the identity matrix
over multiple time steps. In this case, the HGMM should be reduced in dimensions with negative
deviation to the identity matrix and increased otherwise.

Independent of the specific strategy, the estimation result is almost optimal when the HGMM
approximately meets the actually utilized models. In [11], it has been shown for multiple systems
and measurement models in a sensor network consisting of ten nodes that the MSE of the HKF
does not exceed the one of the linear optimal solution by more than six percent when the actually
utilized global measurement model from (11) does not deviate by more than 40 percent from the
HGMM.

In summary, we have proven that by means of xui

k from (20), it is possible to reconstruct an
unbiased estimate from recursively gained information that is globally optimal when the HGMM
fits to the measurement models of the available estimates, even if the control inputs are not known
to the sensors but are subsequently included at the controller. In order to apply the proposed
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algorithm, we have discussed strategies to maintain the relevant variables and to choose the HGMM
appropriately.

5. Conclusion

In this contribution, a unified approach to sequence-based control for networked control systems
was proposed. We have extended recent results on the optimal sequence-based control for systems
with only one sensor sending raw data to the case of multiple sensors, that process measurement
data in a sequence-based information framework. To this end, we introduced and extended the
Hypothesizing Distributed Kalman Filter as distributed estimation algorithm. Although we have
not presented an estimator that is equivalent to the central Kalman Filter in all cases, we have
suggested methods for choosing a meaningful hypothesis about the global measurement model
so that the estimator provides slightly suboptimal to optimal estimates when the communication
model does not change abruptly.

Future research will focus on relaxing the TCP-like assumption on the controller-actuator-
channel and on suitable approximations of the multiple actuator scenario. The estimation procedure
can be improved by handling measurement failures. Apart from that, we see great potential in
applying the proposed algorithm to a real plant.

Appendix A. Proof of Theorem 4.1

Proof. In order to prove the theorem it is sufficient to show the equality between E
{

x
f
k + x

uf

k

}

and E
{

∆
xf

k xk

}
. First, we note that the inner terms of x

uf

k from (16) are given by

Gl··k∆
xf

l

(
A

)−1 (16)
=

l∑

t=1

Gt··k

( ∑

i∈G
f

k

Li
tC

i
)(

At··l

)−1
. (A.1)

The expected value of the estimate without considering control inputs is given by

E
{

x
f
k

}
(15)
=

k∑

t=1

Gt··k

( ∑

i∈G
f

k

Li
tE

{
yi

t

} )
(18)
=

k∑

t=1

Gt··k

∑

i∈G
f

k

Li
tC

i

( t−1∑

l=0

Al+1··t−1Bul + A0··t−1E{x0}

)
,

which is transformed in order to factorize the control inputs to

k−1∑

l=0

( k∑

t=l+1

Gt··k

( ∑

i∈G
f
k

Li
tC

i
)
Al+1··t−1

)
Bul +

k∑

t=1

Gt··k

∑

i∈G
f
k

Li
tC

iA0··t−1E{x0} . (A.2)

The inner term of (A.2) can be combined with the corresponding inner term of x
uf

k that is given

by Gl··k∆
xf

l

(
A

)−1
as

k∑

t=l+1

Gt··k

( ∑

i∈G
f

k

Li
tC

i
)
Al+1··t−1 + Gl+1··k∆

xf

l

(
A

)−1 (A.1)
=

k∑

t=1

Gt··k

( ∑

i∈G
f

k

Li
tC

i
)(

At··l

)−1
,
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and thus, we obtain for E
{

x
f
k + x

uf

k

}

k−1∑

l=0

( k∑

t=1

Gt··k

( ∑

i∈G
f
k

Li
tC

i
)(

At··l

)−1
)

Bul +
k∑

t=1

Gt··k

∑

i∈G
f
k

Li
tC

iA0··t−1E{x0} . (A.3)

With (16) and (17), the second term E
{

∆
xf

k xk

}
is given by

( k∑

t=1

Gt··k

( ∑

i∈G
f

k

Li
tC

i
)(

At··k−1

)−1
)( k−1∑

l=0

Al+1··k−1Bul + A0··k−1E{x0}

)
,

which is simplified with
(
At··k−1

)−1
Al+1··k−1 =

(
At··l

)−1
to (A.3). �
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