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Modellreduktion durch approximatives Balanciertes Abschneiden: eine vereinigende
Formulierung
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Summary A novel formulation of approximate truncated
balanced realization (TBR) is introduced to unify three ap-
proaches: two iterative methods for solving the underlying
Lyapunov equations – the alternating directions implicit (ADI)
iteration and the rational Krylov subspace method (RKSM) –
and a two-step procedure that performs a Krylov-based pro-
jection and subsequently direct TBR. The framework allows
to compare the three methods with respect to solvability, fi-
delity, numerical effort, stability preservation and global error
bounds, which suggests to merge ADI with the two-step
procedure. ��� Zusammenfassung Eine neue For-

mulierung des approximativen Balancierten Abschneidens ver-
einheitlicht drei Varianten: zwei iterative Lösungsverfahren
der zugrundeliegenden Ljapunow-Gleichungen – Alternating
Directions Implicit (ADI) Iteration und Rational Krylov Sub-
space Method (RKSM) – und ein Zwei-Schritt-Verfahren (ZSV),
welches nacheinander eine Krylow-Projektion und Balanciertes
Abschneiden durchführt. Die einheitliche Beschreibung er-
möglicht den Vergleich hinsichtlich Lösbarkeit, Approximations-
güte, numerischem Aufwand, Stabilitätserhaltung und glo-
baler Fehlerschranken, was eine Fusion von ADI und ZSV
empfiehlt.

Keywords Model order reduction, truncated balanced realization, Krylov, ADI ���
Schlagwörter Modellordnungsreduktion, balanciertes Abschneiden, Krylov, ADI

1 Introduction
Model order reduction (MOR) aims to approximate
large-scale dynamical systems by another model of re-
duced order [1]. For linear time invariant (LTI) systems
of the form

Eẋ(t)= Ax(t) + Bu(t) , y(t)= Cx(t) , (1)

the dynamics are described by E, A ∈ Rn×n and
B ∈ Rn×m, C ∈ Rp×n; and x(t) ∈ Rn, u(t) ∈ Rm and
y(t) ∈ Rp denote the states, inputs and outputs of the
system, respectively. It is assumed that E is non-singular:

det(E) �= 0. With the usual abuse of notation, let G(s)
denote the transfer function of system (1) in the Laplace
domain as well as the dynamical system itself.

For model order reduction of (1), different approaches
have been shown to be well-suited, such as the Krylov
subspace methods, [1; 13], or the Truncated Balanced Re-
alization (TBR), [1; 17]. TBR has been widely investigated
and is known to yield a good approximation of G(s). Ad-
ditionally, an a priori error bound permits to judiciously
assign the reduced order. However, TBR suffers from
high numerical effort compared to the Krylov subspace
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Methoden

methods. To be precise, the main costs are the solutions
of two dual Lyapunov equations of the form

APET + EPAT + BBT = 0, (2)

ATQE + ETQA + CTC= 0, (3)

where P defines the Controllability Gramian and ETQE
the Observability Gramian of system (1), [1]. Although
good direct solvers are available for (2) and (3) – when
n becomes large – their execution might be too time
consuming or might even fail due to shortage of RAM.

A remedy is to employ algorithms that compute ap-
proximate solutions P̂ ≈ P and Q̂ ≈ Q. Here, we consider
two iterative methods, which is on the one hand the alter-
nating directions implicit (ADI) iteration, that was adapted
to large-scale systems in [16; 20]. Comprehensive analy-
sis is available in [21; 23] and recent results can be found
in [5–7; 22; 27]. On the other hand, the rational Krylov
subspace method (RKSM) was introduced recently in [9]
as a generalization of [25]. Further analysis of RKSM can
be found in [4; 8; 29]. First attempts to link both methods
in special cases are made in [5; 8; 11].

Another possibility to circumvent the direct solution of
(2) and (3) is to use a two-step procedure [15], that first
reduces the original system (1) to moderate order k < n
by the numerically efficient Krylov subspace methods.
The resulting intermediate system, which is assumed to
be a good approximation of (1), is subsequently further
reduced by TBR to a reasonable final order. Although
only heuristically motivated, the two-step procedure per-
forms well, as reported e. g. in [15; 24].

This work introduces a novel framework for ap-
proximate TBR, that contains the three aforementioned
methods: low-rank solution of the Lyapunov equations
by ADI or RKSM and the two-step procedure. The uni-
fying formulation is based on the construction of two
virtual systems stemming from particular projections of
(1). Both systems provide a degree of freedom to pro-
duce the outcome of the three methods, which allows
their reasonable comparison.

Towards this aim, low-rank TBR is reviewed in Sect. 2
and ADI and RKSM in Sect. 3. The three methods are
included into the new framework in Sect. 4. Their per-
formance is compared in Sect. 5 and a technical example
is given in Sect. 6.

2 Low-Rank Square-Root Method
for Approximate TBR

Standard TBR computes a state transformation – called
the balancing transformation – such that the transformed
state variables xi are equally controllable and observ-
able. This is reflected in diagonal and equal Gramians:
P= ET QE= diag(σ1, ..., σn). The square roots of the
eigenvalues of PET QE are called the Hankel singular
values (HSV) σi and are system invariants. Truncating
those states that correspond to small HSVs results in
a reduced system that retains only the best control-

lable/observable states. The balancing and the truncation
can be performed in a single step, which leads to the
square-root method, reviewed in the following.

2.1 Square-Root TBR
The basic course of action for square-root TBR is
sketched in Algorithm 1; for details please refer to [1].

Algorithm 1 (Square-root method).
1. Solve the two dual Lyapunov equations (2), (3) for

P, Q and compute their Cholesky factors P=: RRT ,
Q=: SST .

2. Compute the singular value decomposition (SVD)

STER=: M�NT

3. Select the first q columns from M and N, denoted
by M(:,1:q) and N(:,1:q), respectively, and take the first
q singular values � (1:q,1:q) = diag(σ1, ..., σq) to define
the projection matrices

VBal := RN(:,1:q)�
–1/2
(1:q,1:q) ∈ Rn×q ,

WBal := SM(:,1:q)�
–1/2
(1:q,1:q) ∈Rn×q .

4. Compute the reduced system matrices of order q

Ar :=WT
BalAVBal, Er :=WT

BalEVBal ,

Br :=WT
BalB, Cr := CVBal .

The singular value decomposition (SVD) is assumed to
arrange the singular values σi in descending order: σ1 ≥
... ≥ σn. The outcome of Algorithm 1 is a reduced system
Gr(s) with the state-space representation

Erẋr(t)= Arxr(t) + Bru(t) , yr(t)= Crxr(t) , (4)

in balanced form. By construction, Er = Iq is always iden-
tity, which follows from the properties of the SVD,

Er =WT
BalEVBal (5)

=�
–1/2
(1:q,1:q)MT

(:,1:q)STERN(:,1:q)�
–1/2
(1:q,1:q) (6)

=�
–1/2
(1:q,1:q)MT

(:,1:q)M�NTN(:,1:q)�
–1/2
(1:q,1:q) (7)

=�
–1/2
(1:q,1:q)

[
Iq, 0q×n–q

]
�

[
Iq

0n–q×q

]
�

–1/2
(1:q,1:q) (8)

= Iq , (9)

where 0i×j denotes the zero matrix of dimension i× j. Al-
gorithm 1 is stated for general state-space representations
(1), however, the standard form is included by setting
E= In.

An important feature of TBR is an a priori error bound
in the H∞ norm, based on the truncated HSVs σi, [1]:

‖G – Gr‖∞ ≤ 2
n∑

i=q+1

σi . (10)
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Model Order Reduction by Approximate Balanced Truncation ... ���

2.2 Low-Rank Square-Root TBR
The direct (also called dense) solvers [26] for the two
dual Lyapunov equations in Algorithm 1 are restricted
to small or medium scale systems. Therefore, when n
becomes large, indirect methods are required for the ap-
proximate solution of (2) and (3). The approximations
P̂ ≈ P and Q̂ ≈ Q are typically represented by low-rank
factorizations: let rank(̂P)= kB and rank(Q̂)= kC, then
the low-rank Cholesky factorizations read as

P̂=: YYT , Q̂=: ZZT , (11)

where Y ∈Rn×kB and Z ∈Rn×kC . In order to perform TBR
with the approximations (11), we assume q ≤ kB, kC ≤ n,
and replace the Cholesky factors R and S in Algorithm 1
by the low-rank Cholesky factors Y and Z, respectively.
This yields the low-rank square-root method in Algo-
rithm 2; for details please refer to [21].

Algorithm 2 (Low-rank square-root method).
1. Find low-rank Cholesky factors Y and Z such that

P̂=: YYT ≈ P , Q̂=: ZZT ≈ Q .

2. Compute the singular value decomposition (SVD)

ZT EY=: M�NT

3. Select the first q columns from M and N, denoted
by M(:,1:q) and N(:,1:q), respectively, and take the first
q singular values � (1:q,1:q) = diag(σ1, ..., σq) to define
the projection matrices

VBal := YN(:,1:q)�
–1/2
(1:q,1:q) ∈ Rn×q ,

WBal := ZM(:,1:q)�
–1/2
(1:q,1:q) ∈ Rn×q .

4. Compute the reduced system matrices of order q

Ar :=WT
BalAVBal , Er :=WT

BalEVBal ,

Br :=WT
BalB , Cr := CVBal .

Here again Er = Iq holds. Algorithm 2 can be applied for
arbitrary low-rank Cholesky factors Y, Z, but we consider
two methods for their computation – RKSM and ADI –
reviewed in the following.

3 Approximate Solution of Lyapunov Equations

The low-rank factors Y, Z of both RKSM and ADI span
rational Krylov subspaces, reviewed in the following.

3.1 Krylov Subspaces
A block Krylov subspace is generally defined as:

K j(A, B)= Range
{

B, AB, ... , Aj–1B
}

. (12)

Towards rational input Krylov subspaces, a complex val-
ued expansion point si ∈ C and a desired multiplicity
mi ∈ N+ has to be selected:

Kmi
si

:=Kmi
(
(A – siE)–1E, (A – siE)–1B

)
. (13)

For the ease of presentation it is assumed that all di-
rections defining a block Krylov subspace are linearly
independent. This implies that the block Krylov subspace
(13) has full column rank mi · m. If the assumption does
not hold, deflated block Krylov subspaces should be em-
ployed [12]. However, they can be incorporated into the
presented framework in a straightforward way, which we
omit here for the ease of presentation.

Let V denote the basis of the union of arbitrary input
block Krylov subspaces:

Range(V) ⊇Kmi
si

, i= 1, ..., nK . (14)

Due to numerical reasons, the basis V of a rational Krylov
subspace is often computed as an orthogonal matrix,
VTV= I, or such that VTEV= I. Both ways are typically
accomplished by the Arnoldi algorithm [1].

From the concept of duality, the rational output Krylov
subspaces readily follow by replacing A, E and B with
AT , ET and CT , respectively, in (13). A basis of the union
of arbitrary output Krylov subspaces will be denoted as
W in the following.

For the remainder of this paper, it is assumed,
that a set of expansion points, denoted by the vector
s := [s1, s2, ..., snK ], is given. Furthermore, let the vector
m := [m1, m2, ..., mnK ] denote the associated multiplici-
ties. Using s and m in the Arnoldi algorithm then defines
the rational input and output Krylov subspaces V ∈Rn×kB

and W ∈Rn×kC , respectively. (The dimensions kB and kC

depend on s, m, m and p, respectively). Of course, it is
possible to use individual sets s and m for the input and
output side. However, this case is excluded for the ease
of presentation. Several works are available on the choice
of expansion points s, see e. g. [9; 10; 14; 20] to mention
just a few.

3.2 Projective Model Order Reduction
Rational Krylov subspaces are commonly used for the
reduction of dynamical systems. Assume kB = kC =: k,
then the reduced dynamical system Gk(s) of order k has
the state-space representation

Ekẋk(t)= Akxk(t) + Bku(t) , yk(t)= Ckxk(t) , (15)

with Ak :=WTAV, Ek :=WTEV, Bk :=WTB and
Ck := CV, and stems from a projection of (1) such that
the so-called Petrov–Galerkin condition is fulfilled [13].
The classical result for the projection by rational Krylov
subspaces is that the reduced model (15) matches 2mi

(block) moments around the respective expansion points
si, if si is neither an eigenvalue of E–1A nor an eigen-
value of E–1

k Ak, [1; 12; 13]. Moments are defined as the
coefficients of the Taylor series expansion of the transfer
function around si. As the rational transfer function Gk(s)
interpolates G(s) at the given frequencies si, this method
for model reduction is referred to as rational interpolation
or rational Krylov.
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3.3 Two-Step Procedure for Approximate TBR
The two-step procedure for approximate TBR starts with
rational interpolation: the projected system Gk(s) from
(15) can be interpreted as an intermediate approximation
of moderate order, that allows to perform square-root
TBR (Algorithm 1) with direct solvers for the two dual
Lyapunov equations. The outcome is a final reduced sys-
tem of order q that can be considered as the reduction
of (1) by approximate TBR, if the intermediate system
represents a sufficiently good approximation. The pre-
requisite is equal dimensions of V and W.

So far, the two-step procedure is a heuristic approach
for model reduction: use the numerically efficient Krylov
subspaces to reduce the original system to moderate but
still high order and hope for a good approximation; sub-
sequently, perform TBR of the intermediate system with
direct methods to find a reduced model of reasonable
order. However, the two-step procedure is justified by
comparing it to RKSM and ADI in Sects. 5 and 6.

3.4 Rational Krylov Subspace Method
RKSM uses projections by rational Krylov subspaces to
iteratively compute the low-rank square-roots Y and Z
of the solutions of the two Lyapunov equations (2) and
(3), respectively. We assume the sets s and m to be given,
which uniquely define the Krylov subspaces V and W.
Then, P̂ and Q̂ are generally defined by

P̂RK = VPRK VT , Q̂RK =WQRK WT , (16)

where PRK ∈RkB×kB and QRK ∈RkC×kC represent reduced
Lyapunov solutions. RKSM determines these reduced so-
lutions as follows: plugging P̂RK and Q̂RK into the original
Lyapunov equations (2) and (3) leads to residuals RP and
RQ, respectively:

AP̂RK ET + EP̂RK AT + BBT =: RP , (17)

ATQ̂RK E + ETQ̂RK A + CTC=: RQ . (18)

If equation (17) is multiplied by VT and V from the left
and right, respectively, and if equation (18) is multiplied
by WT and W from the left and right, respectively, two
reduced Lyapunov equations result

AVPRK ET
V + EVPRK AT

V + BVBT
V = 0 , (19)

AT
WQRK EW + ET

WQRK AW + CT
WCW = 0 , (20)

where the following notation is employed

AV = VTAV , EV = VTEV , BV = VTB , (21)

AW =WTAW , EW =WTEW , CW = CW . (22)

Solving (19), (20) for PRK , QRK by direct methods fi-
nally defines the approximations P̂RK and Q̂RK by (16).
This approach implies that the residuals vanish in the
subspaces V and W: VTRPV= 0 and WTRQW= 0, re-
spectively. Therefore, the reduced Lyapunov equations
(19), (20) result from orthogonal projections of the ori-
ginal Lyapunov equations; for details, please refer to [9].

The approximations (16) can be used for the low-rank
square-root method by computing the Cholesky factor-
izations of the reduced Lyapunov solutions:

PRK = RRK RT
RK , QRK = SRK ST

RK . (23)

The low-rank square-roots then are P̂RK = YRK YT
RK and

Q̂RK = ZRK ZT
RK , with

YRK = VRRK , ZRK =WSRK . (24)

Approximate TBR with RKSM follows by plugging the
low-rank Cholesky factors (24) into Algorithm 2.

3.5 Alternating Directions Implicit (ADI)
For the application of ADI, we assume again that the set
of complex shifts s (here in the right half of the complex
plane) with associated multiplicities m is given. Let P̂0 be
an initial selection (e. g. P̂0 = 0) of the Lyapunov solution
in (2), then basic ADI is defined by the following iteration
(for the case E= In):(
A – siI

)
P̂i– 1

2
= –BBT – P̂i–1

(
AT – siI

)
,(

A – siI
)

P̂
T
i = –BBT – P̂i– 1

2

(
AT – siI

)
.

(25)

Li et. al. observed in [16], that for the choice P̂0 = 0 the
q-th iterate of (25) can be reformulated as a low-rank
factorization P̂ADI = YADIY∗

ADI with YADI = [y1, ..., ykB ]
where (now for arbitrary E)

y1 =
√

2 Re(s1)
(

A – s1E
)–1

B ,

yi+1 =

√
Re(si+1)

Re(si)

[
I + (si+1 + s̄i) · (

A – si+1E
)–1

E

]
yi ,

i= 2, ..., kB . (26)

The iteration (26) generally delivers a complex valued
YADI ∈Cn×kB ; however, if the set s is closed under conju-
gation, the iteration (26) can be easily adjusted in order
to deliver a real basis YADI ∈ Rn×kB , [7].

Equation (26) specifies an iteration that is easy to im-
plement. Together with a dual version for the output side,
the iteration delivers the low-rank Cholesky factors YADI

and ZADI , that can be plugged into Algorithm 2.
It was observed in [16] that the ADI basis YADI spans

a rational Krylov subspace; but only recently it was
shown in [27], that P̂ADI = YADIYT

ADI can alternatively
be generated via particular projections by rational Krylov
subspaces. This procedure is crucial for incorporating
ADI into the framework for approximate TBR in the
next section, which is why it is reviewed in the following.

Let V be a basis of the input Krylov subspace with
the expansion points s and multiplicities m. The ADI
solution (26) can be constructed by a projection onto the
so-called H2 pseudo-optimal reduced system, [27]. This
is achieved by a distinct projection matrix WADI ∈ Rn×kB

that leads to the reduced matrices of order kB:

AADI :=WT
ADIAV , EADI :=WT

ADIEV ,

BADI :=WT
ADIB .

(27)
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Model Order Reduction by Approximate Balanced Truncation ... ���

The H2 pseudo-optimum is characterized by the fact
that the expansion points s are the mirror images of the
eigenvalues of the matrix pair EADI , AADI , with respect to
the imaginary axis. Therefore, a projection matrix WADI

is sought-after, that places the reduced eigenvalues at
–s. Several approaches are possible to find such a WADI ;
here we will follow the pole-placement approach due to
Antoulas [2], by defining Ĉ ∈Rm×n that satisfies

ĈV= 0 . (28)

One possibility is to choose

Ĉ= BT
(

I – V
(
VTV

)–1
VT

)
. (29)

Then, for all si in s, the following directions have to be
contained in the span of WADI

span
(
WADI

) ⊃ [
(AT + siE

T )–1ET
]j–1 · (AT + siE

T)–1Ĉ
T

,

j= 1, ..., mi (30)

This means that WADI has to span the output Krylov
subspace with the virtual output vector Ĉ for the mir-
rored set of expansion points –s with multiplicities m.
The reduced system (27) then has its eigenvalues at –s
with multiplicities m. Please note, that alternative ways
to compute (27) are the parameterization from [3] or the
PORK algorithm from [28].

For constructing the ADI basis YADI by Krylov projec-
tions, the Controllability Gramian of system (27) has to
be computed by solving the Lyapunov equation

AADIPADIET
ADI + EADIPADIAT

ADI + BADIBT
ADI = 0 , (31)

which yields the low-rank Gramian of the ADI method

P̂ADI = VPADIVT . (32)

With the Cholesky factorization PADI =: RADIRT
ADI , the

low-rank square-root can be identified

YADI = VRADI . (33)

Remark 1. The calculation of the ADI basis (26) via (29)–
(33) is an auxiliary way that helps to incorporate the
ADI iteration into the framework in the next section. In
practice, one would rather use the numerically efficient
iteration (26).

Please note, that the low-rank Cholesky factor YADI is
not unique. Think e. g. of a column permutation in
YADI , which, however, does not affect the approximation
P̂ADI = YADIYT

ADI . In this respect, YADI as the output of
the iteration (26) might be different from the computa-
tion by (33), although the approximate solution P̂ADI is
identical.

The low-rank square-root ZADI of the output side can
be computed in a dual way: the Lyapunov equation (3)
is projected onto the subspace of the dual matrix VADI ,
orthogonally to the rational output Krylov subspace W.
This can guarantee pole-placement at the mirror images
–s in a similar way as described above.

3.6 Procedure in Iterative Methods
We assumed the sets s and m to be given. In practical
applications, however, m is often determined iteratively.
A typical approach is to first accumulate a set s of
distinct shifts by some heuristics or algorithms, see
e. g. [9; 10; 14; 20; 23]. These shifts are then repeatedly
used in the construction of the low-rank square-roots,
leading to higher multiplicities. This iteration automat-
ically determines the ranks kB and kC of P̂ and Q̂,
respectively, and can be characterized as follows:
• Compute ki ∈ N+ new directions of the Krylov sub-

spaces V, W or of the ADI bases YADI , ZADI .
• Evaluate an appropriate stopping criterion: this can be

the norm of the residual in the Lyapunov equations
(see e. g. (17) and (18)) or the relative change of the q
leading singular values (in step 2 of Algorithm 2).

• If the desired accuracy is achieved, stop the algorithm;
if not, restart by calculating ki new directions.

3.7 Problem Setting
The freedom in the three methods for approximate TBR –
ADI, RKSM and the two-step procedure – is the choice
of appropriate shifts s with associated multiplicities m
(possibly determined by iterative methods). Together, s
and m not only uniquely define the output of the three
methods, but also the column span of the bases V and W
of the input and output Krylov subspaces, respectively.
By comparing (33) with (24) it follows that the low-rank
square-roots of ADI and RKSM span the same subspace.
As will be shown in Theorem 1, the two-step procedure
can be interpreted as a way to compute low-rank square-
roots Y2step and Z2step, that are plugged into Algorithm 2.
Since Y2step and Z2step also span the rational Krylov sub-
spaces, the low-rank Cholesky factors of all methods span
the same subspace:

span
(

Y2step

)
= span

(
YRK

)
= span

(
YADI

)
, (34)

span
(

Z2step

)
= span

(
ZRK

)
= span

(
ZADI

)
. (35)

Since the only difference is the basis that each method
creates, the problem that we tackle here can be summa-
rized in the following question:

What is the difference between the bases of the low-rank
Cholesky factors, and how does it affect the reduction by
approximate TBR via Algorithm 2?

4 The Unifying Framework
The low-rank square-roots of RKSM are related to par-
ticular (possibly virtual) intermediate systems. Towards
the unifying framework we define two generalized in-
termediate systems (one for the input and one for the
output side), that contain all three methods.

4.1 Intermediate Systems
Let the sets s and m be fixed and compute the associated
input and output Krylov subspaces V ∈ Rn×kB and W ∈
Rn×kC , respectively. Further define two (possibly virtual)
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Methoden

projection matrices, Ṽ ∈Rn×kC and W̃ ∈Rn×kB , that shall
be considered as the degrees of freedom in the framework.
The choice of Ṽ and W̃ then uniquely defines the transfer
behavior of the TBR approximation by defining the two
intermediate systems

ÃB = W̃
T

AV, ẼB = W̃
T

EV, B̃= W̃
T

B, (36)

ÃC =WTAṼ, ẼC =WT EṼ, C̃= CṼ, (37)

where ÃB, ẼB ∈ RkB×kB , B̃ ∈ RkB×m describe the interme-
diate input system, and ÃC, ẼC ∈ RkC×kC , C̃ ∈ Rp×kC the
intermediate output system. If we assume asymptotic
stability in both systems, the solutions P̃ ∈ RkB×kB and
Q̃ ∈ RkC×kC of the Lyapunov equations

ÃB P̃ ẼT
B + ẼB P̃ ÃT

B + B̃ B̃
T
= 0, (38)

ÃT
C Q̃ ẼC + ẼT

C Q̃ ÃC + C̃
T

C̃= 0 (39)

exist and are unique. Their Cholesky factorizations

P̃= R̃R̃
T

, Q̃= S̃̃ST (40)

finally define the low-rank Cholesky factors

Ỹ= VR̃ , Z̃=WS̃, (41)

that can be used for approximate TBR by Algorithm 2.

4.2 Incorporating the Methods
We are now ready to state the main theorem, which
presents how the degrees of freedom Ṽ and W̃ have to
be chosen to generate the three methods.

Theorem 1. For given sets s and m, let V and W be
the associated rational input and output Krylov subspaces,
respectively. Let Ṽ and W̃ determine the approximate trun-
cated balanced realization via (36) – (41) and Algorithm 2.
Then the following choices deliver the outcome of RKSM,
ADI, and the two-step procedure:

Two-step RKSM ADI

Ṽ := V W VADI

W̃ := W V WADI

Proof. The proof for RKSM is trivial: choosing Ṽ:=W,
W̃:=V and comparing (21), (22) with (36), (37) yields:

ÃB = AV , ẼB = EV , B̃= BV , (42)

ÃC = AW , ẼC = EW , C̃= CW . (43)

Therefore, P̃= PRK and Q̃=QRK , which proves the re-
sult. The proof for ADI is similar when following the
computation via (29)–(33). It is left to prove the two-
step procedure: choosing Ṽ := V and W̃ :=W leads to

ÃB = ÃC = Ak , ẼB = ẼC = Ek , (44)

B̃= Bk , C̃= Ck , (45)

with Ak, Ek, Bk and Ck from (15). Therefore, P̃= Pk and
ET Q̃E= ETQkE are the Controllability and Observability

Gramians, respectively, of the intermediate system from
the two-step procedure. Their Cholesky factorizations
Pk = RkRT

k and Qk = SkST
k define the low-rank square-

roots Y2step = VRk, Z2step =WSk that can be plugged into
Algorithm 2. The resulting singular value decomposition

ZT
2stepEY2step = ST

k WTEV︸ ︷︷ ︸
Ek

Rk =M�NT , (46)

is the same SVD as the one in Algorithm 1 during the two-
step procedure. Taking Ar as an example, we show that
the choice Ṽ := V, W̃ :=W together with Algorithm 2
results in the same reduced system as the two-step pro-
cedure including Algorithm 1:

Ar =WT
BalAVBal (47)

=�
–1/2
(1:q,1:q)MT

(:,1:q)ZT
2stepAY2stepN(:,1:q)�

–1/2
(1:q,1:q) (48)

=�
–1/2
(1:q,1:q)MT

(:,1:q)ST
k WT AV︸ ︷︷ ︸

Ak

RkN(:,1:q)�
–1/2
(1:q,1:q) (49)

Equation (49) reveals, that Ar in the framework is equal
to the TBR of Ak, which completes the proof. �

Remark 2. The two virtual intermediate systems (36) and
(37) allow to unify the three methods: for the two-step
procedure, (36) and (37) merge into one intermediate
system (15); for RKSM, (36) and (37) become the or-
thogonally projected systems (21) and (22); and for ADI,
(36) and (37) become the virtual intermediate systems
(27) and its dual version.

4.3 Interpretation
How do the degrees of freedom Ṽ and W̃ affect the re-
duction by approximate TBR, i. e. what is the difference
between the reduced systems of the three methods? To
answer this question, we consider the general case, i. e. Ṽ
and W̃ are arbitrary matrices of appropriate dimensions.
Plugging general low-rank Cholesky factors Ỹ and Z̃ from
(41) into Algorithm 2 yields the generic SVD

Z̃TEỸ= S̃TWTEVR̃= S̃T EkR̃=: M̃�̃ ÑT . (50)

Following Algorithm 2 then defines the reduced matrices

Ar = �̃
–1/2
(1:q,1:q)M̃

T
(:,1:q)̃ST WTAV R̃Ñ(:,1:q)�̃

–1/2
(1:q,1:q)

= W̃
T
BalAkṼBal (51)

Er = �̃
–1/2
(1:q,1:q)M̃

T
(:,1:q)̃ST WTEV R̃Ñ(:,1:q)�̃

–1/2
(1:q,1:q)

= W̃
T
BalEkṼBal (52)

Br = �̃
–1/2
(1:q,1:q)M̃

T
(:,1:q)̃ST WTB = W̃

T
BalBk (53)

Cr = CV R̃Ñ(:,1:q)�̃
–1/2
(1:q,1:q) = CkṼBal (54)

with the projection matrices ṼBal := R̃Ñ(:,1:q)�̃
–1/2
(1:q,1:q) and

W̃Bal := S̃M̃(:,1:q)�̃
–1/2
(1:q,1:q). Both ṼBal and W̃Bal exhibit the

structure of balancing and truncating projection matri-
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Figure 1 The unifying framework for approximate TBR.

ces in terms of the square-root method. It is remarkable,
that this structure shows up for arbitrary choices of Ṽ, W̃;
and from (51)–(54) it follows that ṼBal and W̃Bal always
project the same intermediate system (15) – which is an
oblique projection of (1) by the Krylov subspaces V and
W. This means, that the overall reduced system of all
three methods stems from a kind of balanced truncation
of the same intermediate system (15). In other words, any
method for approximate TBR presented here, virtually
generates the intermediate system (15), and subsequently
further reduces (projects) it with the matrices R̃Ñ(:,1:q)

and S̃M̃(:,1:q). (The additional matrix �̃ (1:q,1:q) in (51)–
(54) only defines a diagonal scaling matrix, that does not
affect the transfer behavior of the overall reduced sys-
tem.) To sum up, all three methods can be interpreted as
a two-step procedure: compute the intermediate system
(15) by an oblique projection with V and W and then
further reduce it by some kind of balanced truncation.
Therefore, the degrees of freedom Ṽ and W̃ – i. e. the
difference in the three methods – can solely affect how
the intermediate system (15) is further reduced. These
findings are summarized in Fig. 1. The influence of Ṽ
and W̃ on the reduced system is discussed in Sect. 5.

Remark 3. Please note, that approximate TBR by ADI
will always be calculated by the iteration (26) and the
subsequent execution of Algorithm 2. Therefore, the in-
termediate system (15) – that originates from an oblique
projection by Krylov subspaces – will not be constructed
explicitly; it will be rather virtually generated during the
procedure, as shown above. The same conclusion holds
for approximate TBR by RKSM.

4.4H 2H 2H2 optimal shifts
A special case of high interest is the choice of H2 optimal
shifts/expansion points sH 2 , mH 2 . The concept of H2

optimality will be briefly reviewed in the following. For
the ease of presentation, we concentrate on single input
and output, m= p= 1, although the results can be gen-
eralized to multiple inputs and outputs.

Definition 1. A reduced dynamical system Gk(s) of order k
is called (locally) H2 optimal if

G(–λi)= Gk(–λi) , i= 1, ..., k (55)

G′(–λi)= G′
k(–λi) , i= 1, ..., k (56)

where λi denote the poles of Gk(s) and G′(s) denotes the
derivative with respect to s.

Therefore, anH2 optimal reduced model interpolates the
original system and its derivative at the mirror images of
the reduced poles. It can be shown, that (55) and (56)
are first-order necessary conditions for minimal error in
the H 2 norm, [14]. Neglecting condition (56) leads to
the concept of pseudo-optimality.

Definition 2. A reduced dynamical system Gk(s) of order k
is called H2 pseudo-optimal if for all poles λi, i = 1, ..., k
of Gk(s)

G(–λi)= Gk(–λi) . (57)

H 2 pseudo-optimality is necessary forH 2 optimality and
can be enforced for arbitrary sets {λi} := {λ1, ..., λk} by
projective model reduction, e. g. via (28)–(30). Therefore,
as shown in Sect. 3.5, the virtual ADI system (27) is H2

pseudo-optimal.
The first-order necessary conditions (55) and (56)

cannot be enforced for arbitrary sets of reduced poles.
However, an iterative algorithm – the Iterative Rational
Krylov Algorithm (IRKA) – converges to such a set of
locally optimal shifts; see [14] for details. We are now
ready to state a connection between the ADI method and
the two-step procedure for H 2 optimal shifts.

Lemma 1. Assume that IRKA has been executed in order
to find k H 2 optimal shifts. If these shifts are used for com-
puting both the Krylov subspaces V, W and the ADI bases
YADI, ZADI, then the approximate Gramians P̂ and ETQ̂E
by ADI and the two-step procedure are equal. Therefore, the
resulting reduced systems by approximate TBR are equal.
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Proof. The transfer behavior of anH2 pseudo-optimal re-
duced system is uniquely defined by 2k values: k reduced
eigenvalues are fixed and k interpolation constraints (57)
are fulfilled. Therefore, the virtual intermediate systems
(27) of ADI and also its dual version are equal to the
intermediate systems from the two-step procedure (15).
This is due to the fact that the intermediate system (15)
using IRKA shifts is H 2 optimal and therefore, also H 2

pseudo-optimal, and that the (virtual) ADI systems (from
both input and output side) are H 2 pseudo-optimal,
see [27]. �
Remark 4. Lemma 1 holds only for k H2 optimal
shifts. Allowing higher multiplicities, as e. g. in iterative
methods, leads to an intermediate system (15) that is not
H2 optimal anymore. Then, Lemma 1 does not apply
anymore, and the ADI method and the two-step proced-
ure will result in different reduced systems, as shown by
the numerical example in Sect. 6.

Remark 5. A closely related result was independently
observed in [5; 8; 11]: ADI and RKSM are equal for par-
ticular sets of pseudo-optimal shifts, that can be found
by a slightly modified IRKA.

5 Discussion
The unified formulation (51)–(54) allows to compare the
three methods for approximate TBR with respect to dif-
ferent aspects in the following.

5.1 Existence and Solvability
The preservation of stability is crucial in model order
reduction methods. However, in the presented frame-
work, two aspects of stability have to be distinguished: the
preservation of stability in the final reduced system and
preservation of stability in the intermediate systems (36)
and (37). We first tackle the second question, which is in
fact a question of solvability: the intermediate solutions
(40) admit a Cholesky factorization (which is required by
Algorithm 2) if and only if they are positive definite. This
in turn is true if and only if the intermediate matrix pairs
ÃB, ẼB and ÃC, ẼC have their generalized eigenvalues in
the open left half of the complex plane. Therefore, a re-
duced model by approximate TBR can be found if and
only if both intermediate systems (36) and (37) preserve
stability of the original system.

The ADI method guarantees solvability by construc-
tion: the eigenvalues of AADI , EADI are the mirror images
of the expansion points s, which are most appropriately
chosen in the right half of the complex plane.

RKSM relies on the direct solution of the intermediate
Lyapunov equations (19), (20) that do not necessarily
have positive definite solutions. However, a sufficient
condition for preserving asymptotic stability by ortho-
gonal projections is: E > 0 and A + AT < 0. (For example,
second-order systems can be efficiently transformed into
a first-order state space realization that fulfills E > 0 and
A + AT < 0, [18].) Therefore, RKSM guarantees solvabil-

ity for original systems that fulfill E > 0 and A + AT < 0,
because the intermediate Lyapunov equations (19) and
(20) stem from orthogonal projections.

In contrast, the intermediate system in the two-step
procedure originates from an oblique projection, for
which asymptotic stability cannot be guaranteed in gen-
eral.

Another prerequisite of the two-step procedure – in
contrast to the other methods – is equality in the di-
mensions of input and output Krylov subspaces: kB = kC.
This however is not restrictive, as it can be resolved by
the user: assume e. g. more inputs than outputs, m > p;
applying the same sets s and m for both input and output
side results in bases V, W of different dimensions kB > kC.
But then, kC can easily be aligned to kB by recycling some
expansion points to compute additional vectors in W
(resulting in higher multiplicities).

5.2 Stability Preservation
The second aspect of stability preservation is: do the
methods guarantee stable reduced systems (output of Al-
gorithm 2), if the original system is stable? For ADI and
RKSM, preservation of stability cannot be guaranteed, as
confirmed by the technical example in Sect. 6.

In contrast, the two-step procedure guarantees stable
reduced systems – once a solution exists – because the
reduced system is a balanced truncation of the interme-
diate system (15), and TBR is known to preserve stability.
Therefore, if the intermediate system (15) is stable – i. e.
the two-step procedure is solvable – also the final reduced
system is stable.

5.3 Numerical Effort in Iterative Methods
We briefly compare the numerical effort for the different
approaches. Once a low-rank Cholesky factor is found,
all three methods run Algorithm 2, including an SVD as
the main cost. In large-scale settings, however, the main
effort for all three methods is usually the solution of n-
by-n linear systems of equations, in order to compute the
Krylov subspaces or ADI bases.

The difference is that RKSM and the two-step pro-
cedure additionally solve two intermediate Lyapunov
equations by direct methods. (An efficient implemen-
tation of the two-step procedure might take advantage
of the equal coefficient matrices Ak, Ek in the two dual
Lyapunov equations, resulting in a slightly faster two-step
procedure compared to RKSM.) In contrast, ADI implic-
itly “solves” the intermediate pseudo-optimal Lyapunov
equations by the iteration (26) and therefore requires
less numerical effort. This however, might be negligible
for the case k 
 n, because then the direct solution of
two Lyapunov equations of order k takes marginal time,
compared to the solution of 2k systems of equation of
order n-by-n.

In iterative methods, however, the additional effort
might be significant: for every evaluation of the con-
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vergence criterion, the two dual Lyapunov equations of
increasing dimension have to be solved. For a high num-
ber of iterations, this repeated solution considerably raises
the numerical effort of RKSM and the two-step procedure
compared to the ADI iteration.

5.4 Heuristic Evaluation of Performance
The intermediate system (15) (virtually) appears in all
three methods, and it is further reduced by some kind of
balanced truncation in (51)–(54), see Fig. 1. But which
way of further reducing (15) generally yields the best
approximation of the original system (1)?

Theorem 1 reveals, that the two-step procedure uses
the Controllability and Observability Gramians of system
(15) for the SVD (50). In this respect, the two-step pro-
cedure performs true TBR of (15). From an engineering
point of view, this sounds reasonable: all available infor-
mation on the transfer behavior of (1) is condensed in
the Krylov subspaces V, W and hence in the intermediate
system (15). The best one can do for approximate TBR
of (1) is then to apply TBR by direct methods to the
intermediate system (15).

In contrast, ADI and RKSM use Gramians in the
SVD (50), which belong to different intermediate systems
(given by equations (19), (20) and (31), respectively).
This results in some kind of “pseudo square-root TBR”
of (15), because the Gramians of the virtual systems (21),
(22) or (27) are employed for the balanced truncation of
system (15).

To sum up, the two-step procedure conducts “true”
square-root TBR, whereas ADI and RKSM conduct
“pseudo” square-root TBR of (15). Therefore, the
two-step procedure should usually lead to the best ap-
proximation of the reduced system from direct TBR of
(1). Admittedly, this is a heuristic statement that cannot
be proven in a mathematically rigorous way. However,
the above considerations strongly suggest this conclu-
sion, which is also supported by the technical example in
Sect. 6 and the observations in [15; 24].

5.5 Possible Application of Error Bounds
A severe drawback of the low-rank square-root method
is the loss of the a priori error bound (10): the bound
relies on the knowledge of the truncated Hankel singular
values; in low-rank TBR, depending on kB and kC, one
can usually expect only a good approximation of the
retained HSVs.

A remedy is to upper-bound all truncated HSVs by
the first truncated one: σi := σq+1, i = q + 2, ..., n. This
however might introduce a huge overestimation. Fur-
thermore, the exact σq+1 might be larger than the
approximated one. For that reason, the bound might not
be rigorous, but with a decent convergence analysis this
case can be practically excluded.

Nevertheless, rigorous global error bounds can be
stated, based on the intermediate system (15). Although
no general error bounds are available for Krylov-based

projection methods, first attempts for special system
classes can be found for example in [19]. In this respect,
we now assume that some error bound γ1 in the H∞
norm is available for the intermediate system (15):

‖G – Gk‖∞ ≤ γ1 . (58)

We are interested in the overall error, i. e.

G(s) – Gr(s)= [G(s) – Gk(s)]+ [Gk(s) – Gr(s)] (59)

The advantage of the two-step procedure is that the error
bound (10) can be applied to the second step

γ2 := 2
k∑

i=q+1

σi ≥ ‖Gk – Gr‖∞ . (60)

Due to the triangular inequality, taking norms in (59)
leads to a rigorous bound on the H∞ error,

‖G – Gr‖∞ ≤ γ1 +γ2 , (61)

which solely applies to the two-step procedure, and only
if a bound γ1 for the first step is available.

If a global bound for RKSM or ADI is desired, one
would have to compute the H∞ norm of the error sys-
tem in the second step ‖Gk(s) – Gr(s)‖∞ by some direct
method. This results in a higher effort than evaluating
the bound (60) for the two-step procedure.

5.6 Résumé
The previous findings are summarized in Table 1, where
the different methods are opposed to each other. RKSM
suffers from almost the same problems as the two-
step procedure and never outperforms it. Therefore, one
should prefer the two-step procedure to RKSM in ap-
proximate TBR.

The two-step procedure preserves stability and gener-
ally yields the best approximation. Its drawbacks are the
high numerical effort and that it might not be solvable
(due to an unstable intermediate system), which in turn
are the advantages of ADI: guaranteed existence of a so-
lution and low numerical effort.

The benefits of both methods can be combined by
the following approach: first apply ADI, because it guar-
antees a solution at low numerically effort; as soon as
convergence occurs in iterative methods, explicitly con-
struct the intermediate system (15) via projection by the

Table 1 Comparison of the different methods. (+: good, 0: medium,
–: bad).

Two-step RKSM ADI

Solvability – 0 +
Stability preservation + – –
Numerical Effort – – +
Performance + 0 0
Error Bound + 0 0

553



T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r. 

Methoden

ADI bases V := YADI and W := ZADI , and subsequently
perform TBR by direct methods. The justification of this
approach is that the numerical effort for one final TBR
step is usually moderate and that the approximation is
generally improved. In this respect, performing ADI with
a final two-step procedure combines the benefits of both
methods: numerical efficiency with good performance
and most likely preservation of stability.

Remark 6. It is also reasonable to perform direct TBR
of the intermediate system at arbitrary iteration cycles
of the ADI method. This leads to a trade-off: on the
one hand, one would like to perform many intermediate
steps with direct TBR to achieve a good approximation
and therefore, a fast decay in the convergence criterion;
on the other hand, one would like to perform as few
intermediate steps as possible to be numerically efficient.
Giving a general compromise is challenging and out of the
scope of the paper. However, this approach was already
suggested in [21], where it is referred to as a projection
based acceleration technique for ADI.

Remark 7. Another relevant approach for approximately
solving Lyapunov equations is the Krylov-plus-inverse-
Krylov (KPIK) method, suggested in [25]. This is
equivalent to RKSM, but with a distinct choice of ex-
pansion points, namely for the input side

K
(

A–1E, A–1B
)∪K (

E–1A, E–1B
)

, (62)

and for the output side

K
(

A–TET , A–T CT
)∪K (

E–TAT , E–T CT
)

. (63)

This means that KPIK applies the set of expansion points
sKPIK = [0, ∞] with multiplicities mKPIK = [k/2, k/2].
This is why KPIK was excluded in this work so far, be-
cause the expansion points 0 and ∞ are prohibited for
the ADI method. Nevertheless, the comparison between
RKSM and the two-step procedure, as carried out before,
also applies for the Krylov bases (62) and (63): on the one
hand, the two-step procedure generally leads to a better
approximation than the low-rank Cholesky factors by
(24); on the other hand, for systems that fulfill E > 0 and
A + AT < 0, the existence of a solution is guaranteed by
(24) but not by the two-step procedure.

6 Technical Example
As a first technical example we consider the “beam” from
the SLICOT benchmark collection1. The model is a spatial
discretization of a partial differential equation describing
the dynamics of a clamped beam. The single input is
a force at the free end and the single output the resulting
displacement. The order is n= 348, and TBR by direct
methods is performed for comparison.

1 Y. Chahlaoui and P. Van Dooren. A collection of Benchmark Ex-
amples for Model Reduction of Linear Time Invariant Dynamical
Systems. Slicot working note, 2002.

As all three methods intend to be an approximation
of direct TBR, it is fair to compare them with the re-
duction by direct TBR – rather than with the original
model. In order to contrast the three methods, we a pri-
ori fix the final reduced order q and also the dimension
of the low-rank Cholesky factors kB = kC = k. The Lya-
punov equations of the intermediate systems were solved
in every iteration, starting with the qth iteration. All com-
putations were performed in MATLAB on a dual-core
processor with 3 GHz.

In the first use case, we set the final reduced order
to q= 8 and applied Algorithm 1 for exact TBR, which
took 1.63 seconds. We chose k logarithmically spaced ex-
pansion points in the interval [0.1, 10] and performed
all three methods for k= 8, ..., 26. The H2 errors, rela-
tive to the reduced system computed by direct TBR, are
shown in Fig. 2. (The relative H∞ errors showed similar
behavior.) Missing points of ADI correspond to unsta-
ble final reduced systems, and missing points of both
other methods correspond to reductions that were not
solvable, i. e. the intermediate systems were unstable. It
can be seen, that the two-step procedure – if solvable –
outperforms the other methods. For k= 26, the execu-
tion of ADI took 0.47 seconds, of RKSM 0.74 seconds and
of the two-step prodecure 0.65 seconds. As suggested in
Sect. 5.6, we combined ADI with a final step of direct
TBR, which took 0.51 seconds altogether. This combines
numerical efficiency with good performance.

The performance of ADI strongly depends on an
appropriate choice of shifts, [21]; and it was recently

Figure 2 RelativeH 2 errors for beam model with q= 8 and k logarith-
mically spaced shifts.

Figure 3 Relative H 2 errors for beam model with q= 6 and 4 IRKA
shifts.
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Model Order Reduction by Approximate Balanced Truncation ... ���

Figure 4 Relative H 2 errors for steel profile with q= 4 and 2 IRKA
shifts.

shown in [5], that the H 2 optimal shifts are also opti-
mal for ADI. In this respect, we ran IRKA, which took
1.79 seconds, to find 4H 2 optimal expansion points. Set-
ting q= 6, we performed the three methods for the values
k= 6, 8, 10, 12. The relativeH2 errors are shown in Fig. 3.
For k= q= 6 all three methods have to yield the same
reduced system. By increasing k, the two-step procedure
rapidly converges to the balanced truncation by direct
methods, whereas the approximation is only marginally
improved by ADI and RKSM.

As a second example we consider a semi-discretized
heat transfer problem for optimal cooling of steel profiles2

of the order n= 1357. We chose the model from the first
input to the first output and set q= 4. Direct TBR by
Algorithm 1 took 154 seconds. We ran IRKA to compute
twoH2 optimal shifts. The Algorithm converged in 9 iter-
ations, which took 0.72 seconds. The three methods were
performed for all even values of k= 4, ..., 18. The relative
H2 errors are shown in Fig. 4. The two-step procedure
rapidly converges to the reduction by direct TBR, whereas
ADI converges slowly and RKSM does not converge at
all. For k= 18, the execution of ADI took 0.14 seconds,
of RKSM 0.32 seconds and of the two-step procedure
0.29 seconds. ADI together with a final step of direct
TBR took 0.22 seconds. Therefore, the combination of
ADI with the two-step procedure can outperform direct
TBR of the original system.

7 Conclusions and Outlook
This work considers approximate truncated balanced re-
alizations by three different approaches: the two-step
procedure and the approximate solution of Lyapunov
equations by RKSM or ADI. We presented a novel frame-
work that unifies these three methods by introducing two
projection matrices Ṽ and W̃, that are able to trigger the
respective solutions. The framework allows the reason-
able comparison of the different methods and suggests
strategies for their usage. A technical example confirmed
the findings.

2 Oberwolfach model reduction benchmark collection, Oct. 2003,
Available online at http://portal.uni-freiburg.de/imteksimulation/
downloads/benchmark.
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