
it 6/2008

Schwerpunktthema ���

Future Internet Architecture –
A Service Oriented Approach

Future Internet Architecture – Ein serviceorientierter Ansatz

Paul Mueller, Bernd Reuther, University of Kaiserslautern

Summary The development of the Internet during the last
years has shown that it becomes harder to integrate new func-
tionality in order to fulfill the demands of new applications and
the capabilities of new transport technologies. Especially the
core mechanisms (TCP/IP) are hard to change. Thus the de-
velopment of a new Internet architecture has been discussed
for some time now. In this work we present a service-oriented
approach for a new network architecture. At first it is argued
which kinds of flexibility should be provided by an archi-
tecture. Then it will be shown which common principles of
service-orientation support this flexibility. Further we present
technical considerations for implementing network functionality
by services. ��� Zusammenfassung Die Entwicklung
des Internets in den letzten Jahren hat gezeigt, dass es im-

mer schwieriger wird, neue Funktionalität zu integrieren, um
Anforderungen seitens der Applikationen zu erfüllen und auf
veränderte Rahmenbedingungen der Transporttechnologien zu
reagieren. Insbesondere die Kernmechanismen (TCP/IP) sind
nur schwer veränderbar. Daher wird seit einiger Zeit die Ent-
wicklung einer neuen Architektur für ein zukünftiges Internet
diskutiert. In dieser Arbeit stellen wir einen serviceorientier-
ten Ansatz für eine neue Netzwerkarchitektur vor. Zuerst wird
begründet, welche Arten der Flexibilität eine neue Architek-
tur mindestens aufweisen sollte. Anschließend wird gezeigt,
welche Grundprinzipien serviceorientierter Architekturen diese
Flexibilität unterstützen können. Des Weiteren werden grundle-
gende Techniken für eine Realisierung von Netzwerkfunktiona-
lität durch Services vorgestellt.

KEYWORDS C2.1 [Computer Systems Organization: Computer-Communication Networks: Network Architecture and Design]
network communications; C2.2 [Computer Systems Organization: Computer-Communication Networks: Network
Protocols]

1 Introduction
Driven by the demands of ever
emerging applications and the cap-
abilities of new communication net-
works, the Internet has become
an architectural patchwork result-
ing in increasing complexity and
unpredictable vulnerabilities. This
patchwork is the result of layer
violations (e. g., cross-layer design),
sub-layer proliferation (e. g., MPLS
at layer 2.5, IPsec at layer 3.5, and
TLS at layer 4.5), and erosion of the
end-to-end model (middle-boxes,
such as firewalls, NATs, proxies,
caches, etc.) – see Fig. 1. This ero-

sion of the formerly clearly layered
architecture is not just because of
too much functionality but because
of lots of implicit dependencies, i. e.,
tight coupling. Under these circum-
stances, all changes result in a rise of
complexity which finally lead to an
ossified Internet.

The problems mentioned above
are not related to specific proto-
cols or mechanisms of the current
Internet but are mainly caused by
the inability to integrate new mech-
anisms. These problems are caused
by the architecture of the Inter-
net and thus could be solved by

a newly designed architecture [1].
In the context of this paper we de-
fine an architecture according to [2]
as the fundamental organization of
a system, the relationship of com-
ponents as well as the design and
evolution principles (see [3] for fur-
ther discussion).

Our approach for a new and
open network architecture is based
on principles of service-oriented
architectures (SOA) [25]. By defin-
ing open, standardized and generic
service interfaces, it is possible to
decouple logic from implementa-
tion. This enables a simplified in-

it – Information Technology 50 (2008) 6 / DOI 10.1524/itit.2008.0510 © Oldenbourg Wissenschaftsverlag 383



Schwerpunktthema

Figure 1 The Internet Patchwork.

tegration of new technologies and
increases flexibility of communica-
tion systems in order to be prepared
for future complex applications.

The next section provides a brief
overview of related work. Then we
argue that a next generation net-
work should be flexible in several
ways. Section 4 describes how basic
concepts found in service-oriented
architectures can meet these de-
mands. In Section 5 we present
technical considerations for imple-
menting a framework based on
service-oriented architecture prin-
ciples. The paper concludes with
a summary and an outlook.

2 Related Work
In the current debate, there is a lot
of work related to the topic “Future
Internet”. Interesting clean-slate ap-
proaches which are related to the
work presented here can be seen
in the “Role-Based Architecture”
(RBA) [4], the “Service Integra-
tion, controL and Optimization”
(SILO) [5], the “Recursive Net-
work Architectures” (RNA) [6], and
the “Data Oriented (and Beyond)
Network Architecture” (DONA) [7]
approaches.

The RBA approach introduces
a non-layered architecture to the
design of network protocols and
organizes communication in func-
tional units referred to as “roles”.
Roles are not hierarchically organ-
ized and thus may interact in many

different ways. The main motivation
for RBA is to address the frequent
layer violations that occur in the
current Internet architecture, the
unexpected feature interactions that
emerge as a result, and to accom-
modate middle boxes. The SILO
approach also introduces a non-
layered design based on silos of ser-
vices. Furthermore it offers a more
flexible header structure than the
RBA approach. The overall goal of
the SILO architecture is to facilitate
cross-layer interactions in a manner
that meets the user requirements
accurately and optimizes perform-
ance. The RNA approach examines
the implications of using a sin-
gle, tunable protocol for different
layers. RNA reuses basic protocol
operations across different protocol
layers, avoiding redundancy of im-
plementation as well as encourag-
ing cleaner cross-layer interaction.
It allows protocols and protocol
stacks to adjust at runtime. This
results in a more dynamic compo-
sition of services, both within stacks
and in the way networks com-
bines the stacks of individual hops
into an overall network architec-
ture. DONA takes into account that
the vast majority of today’s Internet
usage is data retrieval and service
access, whereas the architecture was
designed around host-to-host appli-
cations.

RBA, SILO, RNA, DONA, and
our concept are similar in that all

avoid layering and aim at defining
a highly flexible architecture. The
main motivation for RBA, SILO,
and RNA was to address the fre-
quent layer violations and cross-
layer interactions that occur in the
current Internet architecture. The
approach presented here has a focus
on network flexibility and evolution
by utilizing principles of service-
oriented architectures. The chal-
lenge is to implement these ideas in
the lower layers of the network. In
addition to RBA, SILO and RNA,
the definition of interfaces between
services as well as synergistic in-
teraction of applications with the
network are the focus of the pre-
sented approach.

Approaches like active and pro-
grammable networks [21] as well as
dynamic configuration of protocol
stacks discussed in [22] and [23]
have influenced our work, too. Es-
pecially in the former approach,
the separation of the communica-
tion plane from the control plane is
a major concern. Such a separation
is difficult to realize in today’s In-
ternet. This is because the network
nodes are vertically integrated and
content providers have no direct
access to the control plane. Our ap-
proach on SOA principles based on
horizontally distributed functional-
ities promises more flexibility as
described in Section 5.

Beside these approaches, a lot
of new initiatives within the 6th
and 7th Framework Program of the
European Commission about “Net-
works of the Future” are already
started. Within FP6, it is worth to
mention the projects HAGGLE [8],
ANA [9] and DAIDALOS [10].
Noteworthy, the ANA project which
aims to design and develop a novel
autonomic network architecture has
some similarities with the presented
SOA approach. ANA tries to en-
able a flexible, dynamic, and fully
autonomous formation of network
nodes as well as whole networks.
Our approach uses several concepts
that are also found in ANA. The
major differences to our approach
is that ANA is based on functional

384



Future Internet Architecture – A Service Oriented Approach ���

blocks (FB) which are organized
in sets (compartments) instead of
using abstract services and (dy-
namic) workflows. In continuation
of the initiatives within FP6, in
FP7 some new projects are already
started. For example 4WARD [11],
TRILOGY [12] and PSIRP [13] are
projects dealing with architectural
questions. Moreover within FP7,
Euro-NF [14] as a network of excel-
lence and EIFFEL [15] as a support
action are platforms for discussion
of the European vision of the Future
Internet.

Furthermore worldwide, there
are programs under way address-
ing the topic “Future Internet”.
Here the projects under NSF
funding like GENI [16] and
FIND [17] and the Clean-Slate Pro-
gram at Stanford University [18]
should be mentioned. In Asia,
the platform programs from Ko-
rea “Future of the Internet for
Korea” (u-IT836) [19] and Japan’s
“Collaborative Overlay Research
Environment” (CORE) [20] have an
impact to this topic.

3 Demands on a Flexible
Network Architecture

There are many demands on a fu-
ture network architecture. Here we
focus on the demand for a flex-
ible architecture. This is important
because a next generation network
faces various requirements from yet
unknown applications. It also has to
adapt to new transport technologies
(wired and mobile) with different
capabilities, and should enable evo-
lutionary changes of the network
itself.

Adaptation to different trans-
port technologies is required in
order to integrate a wide range
of endsystems like sensor nodes
and high performance systems. This
adaptability can be achieved by flex-
ible provisioning of functionality.

The network should be flex-
ible enough to handle different re-
quirements of various applications.
Changing requirements may also
be caused by users. For example,
requirements on trust, price and

reliability may vary according to
a user’s goal [27]. It should be as-
sumed that such requirements are
given at runtime of an application
only. Thus the network must react
fast. This can be achieved by flexible
selection of provided functionality.

In addition to such demands
from the outside, there are de-
mands for flexibility from the net-
work itself. We assume that there
will not be a fixed set of pro-
tocols/mechanisms, which are well
suited to fulfill all requirements on
all transport technologies for all
time. This implies that evolution-
ary changes of networks must be
possible to avoid extensive and thus
costly transitions in the future.

Changing network functionality
in a large scale network will in-
evitably lead to a heterogeneous net-
work where different nodes provide
different sets of functionalities. This
is because a synchronous exchange
of functionality affecting many mil-
lion nodes residing in many thou-
sands of administrative domains is
an infeasible task. As a consequence,
the architecture of a next generation
Internet should be able to handle
heterogeneity.

The nodes of the Internet to-
day rely on the protocols of TCP/IP,
i. e., the mechanisms of TCP/IP are
mandatory for a node in the Inter-
net. Thus it is hard to change these
mechanisms. For example, substan-
tial changes like migrating from
IPv4 to IPv6 are going on for more
than 15 years now. From this, we
derive the requirement that there
should be as few as possible manda-
tory mechanisms in a next gener-
ation network.

4 SOA Approach
for the Future Internet
In our approach of a Future Internet
architecture, we consider the Inter-
net as a large, distributed (software)
system. Hence we address a new
inter-network architecture by using
software engineering methodology.
A promising methodology is the
service-oriented architecture (SOA)
paradigm for organizing and utiliz-

ing distributed capabilities that may
be under the control of different
ownership domains [25].1 In the
rest of this section, we describe how
principles of service orientation can
provide solutions for requirements
described in the previous section.
Figure 2 illustrates some terms used
within our approach.

Services are the essential build-
ing blocks of SOA. A service pro-
vides self-contained functionality,
has well-defined interfaces and must
not make assumptions about inter-
nals of other services (loose coup-
ling). A service is an abstraction of
specific algorithms and data struc-
tures (i. e., mechanisms) used to
implement the service.2 These prin-
ciples simplify adding and removing
service as well as changing the im-
plementation of services.

Workflows provide more com-
plex functionality by selecting sets
of services and defining their inter-
action. A workflow can be defined
explicitly by a requester or may be
derived from known dependencies.
The dynamic definition of work-
flows allows responding in short-
term to user requests or changing
environmental conditions.

The goal is to encapsulate
(micro-)protocols by services. Then
services offer an abstract view on the
functionality of these protocols, in
contrast to hiding mechanisms by
layers [26]. For example, there may
be a service for “ensuring reliable
transmission” which can be imple-
mented by different retransmission
protocols. Services and applications
may depend on the functionality
provided, but the protocols used
to implement the service are trans-
parent to them. Thus the service
concept enables modifying or even
exchanging protocols transparently
to other services and services users.

Communication in general re-
quires a common basis or language;

1 Note: SOA is a paradigm, and thus it does
not rely on a specific technology (e. g., Web
Services) and is not limited to specific ap-
plication areas (e. g., enterprise information
integration).
2 See [24] for more principles of SOA.

385



Schwerpunktthema

Figure 2 Basic concept of a service-oriented approach for a Future Internet architecture.

in case of computer networks com-
mon protocols are required. Thus
different instances of the same ser-
vice on different nodes have to use
the same protocol. But changing
and introducing services in a large
scale network will inevitably lead to
a heterogeneous network.

From the point of view of
a single node, heterogeneity causes
an uncertainty about the proto-
cols that are supported by other
nodes. A node can basically handle
this in two ways: removing uncer-
tainty in advance of communication
or handling such problems during
communication.

Removing uncertainty in ad-
vance of communication in turn re-
quires communication between two
or more nodes. Nodes may ne-
gotiate their capabilities with each
other or may consult a registry
immediately before user data will
be exchanged. This causes a de-
lay before communication can start,
even if caching techniques are used.
Thus these methods should be used
rarely, e. g., when using highly spe-

cific protocols. Nodes that interact
often could decide to negotiate their
capabilities in advance. Such nodes
can build capability domains to
share information about common
capabilities (see Fig. 2). A node may
be a member of several capabil-
ity domains covering different types
of capabilities. For example, a set
of nodes may share the capability
of supporting specific address types.
Capability domains could be de-
fined statically or dynamically. The
latter requires distribution of infor-
mation. This might be implemented
similarly to routing protocols and
will also produce overhead by addi-
tional communication.

The second method is to han-
dle uncertainty at runtime. This can
be done at least by three different
methods. (1) For some protocols
it is appropriate if these are just
ignored by nodes which do not
support the protocols. For example
having flow-control support within
the network fosters efficiency, but it
is not necessary that all nodes sup-
port flow-control mechanisms. (2)

If there is uncertainty only about
few alternatives then it might be
possible to offer all alternatives. An
example is to use two address types
for the same destination. (3) Finally
it is possible to delegate the process-
ing to another node which is able to
handle the protocol. The delegation
may also inform the origin host to
change its behavior.

5 Technical Considerations
Building a network based on prin-
ciples of service-oriented architec-
tures requires specific supporting
techniques. Web Services and XML
are obviously inappropriate to im-
plement services on a network level.
Thus we will investigate techniques
and principles suitable for service-
oriented network architectures.

As shown in Fig. 2, we assume
that a network is made up of in-
terconnected nodes and that each
node provides a framework for net-
work services. The common generic
protocol provides a technique for
message exchange between the same
services on different nodes. All

386



Future Internet Architecture – A Service Oriented Approach ���

other techniques enable interaction
of different services within the same
node.

5.1 A common generic protocol
Communication between nodes
takes place between instances of the
same service only. Thus the task
of a generic protocol is to separate
messages of different services and to
identify the service a message be-
longs to. This can be achieved by
a sequence of simple type, length,
value (TLV) structures, whereby the
type identifies the service and the
length identifies message bound-
aries. The values of a TLV can be
a service specific data structure or
may be a sequence of TLV again.
Advantages of using TLVs are:
• Messages can be ordered ar-

bitrarily. This supports loose
coupling, e. g., services send data
only when needed instead of
using fixed protocol headers.

• The message length is variable.
This enables adding extended or
redundant data and thus sup-
ports heterogeneity.

• TLVs with an unknown type
can be forwarded transparently.
This also supports heterogeneity
(ignore or delegate messages).

A sequence of TLVs can carry
the same information as any other
protocol because the type and
length are additional meta-data
only.

5.2 Flow and Context
The concept of flows and context
is closely related to the technique
for data exchange between services
within a node. The term “flow” usu-
ally denotes a sequence of packets
which are semantically related to
each other. Within our approach,
a flow denotes a sequence of se-
mantically related messages.3 Flows
are separated by a specific flow-ident
message. It is assumed that all mes-
sages arriving at the same interface
belong to the same flow until a new

3 It is possible to associate several messages
within a packet with different flows.

flow-ident message is received. Thus
on unreliable links, each data unit
(e. g., packet or frame) must begin
with a flow-ident message to en-
sure that messages are processed in
the correct context. The value of
a flow-ident message can contain
arbitrary data types, typically some
kind of addresses or labels. Such
a flow identifier is valid only on one
link. Nodes sharing the same link
are free to change flow identifiers as
needed.

All messages that belong to the
same flow are processed within the
same context. The context is im-
plemented as a tuple space (a set
of <name, value> pairs). Whenever
a service receives a message for pro-
cessing, it also gains read and write
access to the associated context.
Thus the context enables data ex-
change between services with tem-
poral and referential decoupling of
services [28]. For example, a rout-
ing service may provide information
about an outgoing port without
having knowledge when or which
service may read that information
from the context. All status infor-
mation of a service is kept in the
context so that each service is state-
less. This fosters the autonomy of
services and improves their stability.

Each message is associated
with a flow and thus also with
a context. But this does not
imply a connection-oriented behav-
ior. Connection-less behavior (i. e.,
using stateless protocols) is im-
plemented by deleting a context
whenever a new flow-ident mes-
sage is received (i. e., the context
is transient). Connection-oriented
behavior (i. e., using stateful pro-
tocols) is implemented by storing
the context for later reuse whenever
a new flow-ident message is received
(i. e., the context is persistent).

Flows can be designed to trans-
port payload transparently. Such
a flow may be used as a virtual link
by other flows, i. e., a flow can be
embedded into another flow. This
way, a flow might offer common
functionality like reliable and secure
transmission which can be reused by

several other flows. The concept of
embedding flows is similar to layer-
ing, but the functionality of a flow
is not fixed and can be defined as
needed.

5.3 Dispatcher
Dispatchers are responsible for as-
signing incoming messages to ser-
vices. Therefore services must regis-
ter to the types of messages they
are willing to process. Dispatchers
also control the sequence of mes-
sage processing. The trivial case is
sequential processing in order of
arrival. In addition to that, inde-
pendent services might be processed
in parallel. In case of known de-
pendencies, a dispatcher might even
reorder messages. Such dependen-
cies might be specified explicitly by
an administrator or may be derived
from read and write accesses to the
context of a flow (e. g., there must
a be routing decision before data
can be forwarded). Defining a pro-
cessing order corresponds to the
definition of a workflow in SOA.

A service is called with three in-
put parameters: a message that has
triggered the service, a context and
an optional list of additional mes-
sages. The output parameters are
a list of messages and an indicator
for success or failure. If a service
fails, all succeeding messages will be
skipped up to the next flow-ident
message. For example, an expired
time-to-live or a CRC error will
cause an interruption of the current
workflow.

5.4 Notification Broker
Notifications enable dynamic con-
trol of service processing. Notifica-
tions are handled by a notification
broker. Services can publish named-
notifications and can subscribe for
specific notifications or classes of
notifications. In contrast to a mes-
sage arriving on a link, notifications
can be delivered to zero, one or
multiple services, whereas a message
is expected to be handled by ex-
actly one service. Just like messages,
notifications are associated to a con-
text.

387



Schwerpunktthema

An example for using notifica-
tions is a queuing service that de-
tects the lack of memory resources.
The queuing service may then pub-
lish a notification. The notification
broker can forward the notification
to a flow control service and to a re-
source monitoring service if these
have subscribed for this type of no-
tifications in advance.

6 Summary and Outlook
In this article, we argued that a next
generation network must be highly
flexible by design. Then we dis-
cussed how typical principles of
SOA can offer a viable approach
to such an architecture. These are
autonomous services, dynamic gen-
eration of workflows, handling het-
erogeneity of the network, loose
coupling, and well-defined inter-
faces.

In order to investigate service-
orientation on a network level, our
approach is to implement an ex-
perimental infrastructure that pro-
vides several techniques to enable
or at least foster the implementa-
tion of the mentioned SOA prin-
ciples: a generic protocol based on
TLV structures fosters loose coup-
ling of services and thus supports
autonomous services. Managing the
status of a flow in a context which
is handled by the service framework
enables stateless services. A dis-
patcher and a notification broker
enable dynamic workflows and thus
allow short-term flexibility. Hetero-
geneity is supported by flexible TLV
message structures. Supporting het-
erogeneity by removing uncertainty
could be implemented through the
use of specific services. Well de-
fined interfaces and loosely coupled
services abstract from service mech-
anisms and thus avoid the definition
of mandatory mechanisms, which
are hard to change in the future.

We plan to use the described
techniques to implement several
communication scenarios in order to
investigate how service-orientation
can be supported on a network
level. Particularly the mechanisms
of TCP/IP will be adopted to

demonstrate how well known func-
tionality can be organized according
to service-oriented principles. This
will also offer the opportunity to
provide a seamless interaction be-
tween the current Internet and an
experimental network architecture.

References
[1] D. Clark et al. New Arch: Future

Generation Internet Architecture.

Final Technical Report,

http://www.isi.edu/newarch/.

[2] IEEE Std. 1471-2000 IEEE Recom-

mended Practice for Architectural

Description of Software-Intensive

Systems – Description.

[3] How Do You Define Software

Architecture? Software Engin-

eering Institute, Carnegie Mellon.

http://www.sei.cmu.edu/architecture/

definitions.html.

[4] R. Braden, T. Faber, and M. Handley.

From Protocol Stack to Protocol

Heap – Role-Based Architecture. In:

Proc. of the First Workshop on Hot

Topics in Networking (Hotnets-I), ACM

SIGCOMM, Princeton, NJ., Oct. 2002.

[5] R. Dutta, G. N. Rouskas, I. Baldine,

A. Bragg, and D. Stevenson. The SILO

Architecture for Services Integration,

Control, and Optimization for the

Future Internet. In: IEEE Int’l Conf. on

Communications, ICC apos 2007.

[6] J. D. Touch, Y. S. Wang, and V. Pingali.

A Recursive Network Architecture.

ISI Technical Report ISI-TR-2006-626,

Dec. 2006.

[7] T. Koponen, M. Chawla, B.-G. Chun,

A. Ermolinskiy, K. H. Kim, S. Shenker,

and I. Stoica. A Data-Oriented (and

Beyond) Network Architecture.

In: ACM SIGCOMM Computer

Communication Review, Vol. 37,

issue 4, Oct. 2007.

[8] J. Scott, P. Hui, J. Crowcroft, and

C. Diot. Haggle: A Networking

Architecture Designed Around

Mobile Users. In: IFIP WONS 2006,

Jan. 18–20, Les Menuires, France.

[9] ANA: Autonomic Network Architec-

ture. http://www.ana-project.org/.

[10] C. Werner, Y. Liang, J. Jähnert, and

M. Ebner: Daidalos – A scenario based

approach from scenarios towards

integration.

[11] 4ward. http://www.4ward-project.eu.

[12] Trilogy. http://www.trilogy-project.org.

[13] Publish-Subscribe Internet Routing

Paradigm. http://www.psirp.org.

[14] Euro-NF.

http://euronf.enst.fr/en_accueil.html.

[15] EIFFEL: Evolved Internet Future for

European Leadership.

http://www.fp7-eiffel.eu/.

[16] L. Peterson, T. Anderson, D. Blumen-

thal, D. Casey, D. Clark, D. Estrin,

J. Evans, D. Raychaudhuri, M. Reiter,

J. Rexford, S. Shenker, and J. Wroclaw-

ski: GENI design principles. In: IEEE

Computer Magazine, 2006.

[17] Future INternet Design (FIND).

http: //www.nsf.gov/pubs/2007/

nsf07507/nsf07507.htm.

[18] Cleanslate.

http://cleanslate.stanford.edu/.

[19] u-IT839 Future of the Internet for Ko-

rea. http://eng.mic.go.kr/eng/user.tdf?

a=user.index.IndexApp&c=1001.

[20] CORE.

http://www.nict.go.jp/index.html.

[21] D. L. Tennenhouse, J. M. Smith,

W. D. Sincoskie, D. J. Wetherall,

and G. J. Minden. A survey of

active network research. In: IEEE

Communications Magazine, Jan. 1997,

Vol. 35, issue 1.

[22] S. W. O’Malley and L. L. Peterson.

A Dynamic Network Architecture. In

ACM Trans. on Computer Systems,

Vol. 10, No. 2, May 1992, pp. 110–143.

[23] M. Zitterbart, B. Stiller, and

A. N. Tantawy. A Model for Flexible

High-Performance Communication

Subsystems. In: IEEE Journal on

Selected Areas in Communications,

Vol. 11, No. 4, May 1993.

[24] T. Erl. Service-Oriented Architecture

Concepts, Technology, and Design.

Prentice Hall, 2005.

[25] OASIS Reference Model for Service

Oriented Architecture 1.0. Official

OASIS Standard, Oct. 12, 2006.

[26] J. Day. Patterns in Network Archi-

tecture – A Return to Fundamentals.

Prentice Hall, 2008.

[27] D. Clark, J. Wroslawski, K. Sollins,

and R. Braden. Tussle in Cyberspace:

Defining Tomorrow’s Internet. In:

ACM SIGCOMM, Aug. 2002.

[28] D. Gelernter. Generative communi-

cation in Linda. In: ACM Transa. on

Programming Languages and Systems,

Vol. 7, No. 1, Jan. 1985.

388

http://www.isi.edu/newarch
http://www.sei.cmu.edu/architecture
http://www.ana-project.org
http://www.4ward-project.eu
http://www.trilogy-project.org
http://www.psirp.org
http://euronf.enst.fr/en_accueil.html
http://www.fp7-eiffel.eu
http://www.nsf.gov/pubs/2007
http://cleanslate.stanford.edu
http://eng.mic.go.kr/eng/user.tdf?
http://www.nict.go.jp/index.html


Future Internet Architecture – A Service Oriented Approach ���

1 2

1 Prof. Dr. Paul Mueller is a Professor for

computer science and head of the computing

department at the Technical University of

Kaiserslautern, Germany. His research group

on Integrated Communication Systems

(www.ICSY.de) focuses on communication

systems and service-oriented architectures

(SOA), with special interests in Future Inter-

net and Grid architectures.

Address: University of Kaiserslautern,

Gottlieb-Daimler-Straße 47, 67663 Kaisers-

lautern, Germany, Tel.: +49-631-2052263,

Fax: +49-631-2052161,

E-Mail: pmueller@informatik.uni-kl.de

2 Bernd Reuther is a research assistant

in the department of computer science

at the University of Kaiserslautern. His

research interests include middleware,

service-oriented architectures, computer

networks and concepts for evolution of

networks. He graduated in computer science

1996 at the University of Kaiserslautern.

Address: University of Kaiserslautern,

Gottlieb-Daimler-Straße 47, 67663 Kaisers-

lautern, Germany, Tel.: +49-631-2052161,

Fax: +49-631-2053056,

E-Mail: reuther@informatik.uni-kl.de

389

http://www.ICSY.de
mailto:pmueller@informatik.uni-kl.de
mailto:reuther@informatik.uni-kl.de

