138

Special Issue

it 3/2012

4

Managing Uncertainty: The Road
Towards Better Data Interoperability

Verwaltung von Unsicherheit: Der Weg zu besserer Interoperabilitat

Maurice van Keulen, University of Twente, Enschede, The Netherlands

Summary Data interoperability encompasses the many data
management activities needed for effective information man-
agement in anyone’s or any organization's everyday work such
as data cleaning, coupling, fusion, mapping, and information
extraction. It is our conviction that a significant amount of
money and time in IT that is devoted to these activities, is about
dealing with one problem: “semantic uncertainty”. Sometimes
data is subjective, incomplete, not current, or incorrect, some-
times it can be interpreted in different ways, etc. In our opinion,
clean correct data is only a special case, hence data manage-
ment technology should treat data quality problems as a fact
of life, not as something to be repaired afterwards. Recent ap-
proaches treat uncertainty as an additional source of informa-
tion which should be preserved to reduce its impact. We believe
that the road towards better data interoperability, is to be found
in teaching our data processing tools and systems about all
forms of doubt and how to live with them. In this paper, we
show for several data interoperability use cases (deduplication,
data coupling/fusion, and information extraction) how to for-
mally model the associated data quality problems as semantic
uncertainty. Furthermore, we provide an argument why our ap-
proach leads to better data interoperability in terms of natural
problem exposure and risk assessment, more robustness and
automation, reduced development costs, and potential for nat-
ural and effective feedback loops leveraging human attention.
»»» Zusammenfassung Dateninteroperabilitdt umfasst
die zahlreichen Datenverwaltungsaktivitdten, die fiir effek-

tives Informationsmanagement nétig sind, z.B. Datenreini-
gung, Kopplung, Fusion, Mapping oder Informationsextrak-
tion. Wir beobachten, dass ein erheblicher Anteil monetarer
und zeitlicher Ressourcen in der IT, die auf diese Bereiche
entfallen, der Ldsung eines einzelnen Problems gewidmet
werden: der ,semantischen Unsicherheit”. Manchmal sind
Daten subjektiv, unvollstandig, nicht aktuell oder nicht kor-
rekt, manchmal konnen sie unterschiedlich interpretiert wer-
den, usw. Wir sind der Meinung, dass saubere und korrekte
Daten nur einen Spezialfall von Daten darstellen und so
sollten Datenmanagementtechnologien Datenqualitatsproble-
me als eine Tatsache behandeln statt diese im Nachhinein zu
reparieren. Neuere Ansdtze betrachten Unsicherheit als eine
zusatzliche Informationsquelle, die erhalten werden sollte, um
Auswirkungen der Unsicherheit zu reduzieren. Wir glauben,
dass der Weg zu einer besseren Interoperabilitdt von Daten
darin besteht, unseren Werkzeugen und Systemen zur Daten-
verwaltung beizubringen, welche Formen der Unsicherheit es
gibt und wie man diese handhabt. In diesem Beitrag zeigen
wir flir mehrere Fallbeispiele der Dateninteroperabilitdt (Dedu-
plizierung, Datenkopplung/Fusion und Informationsextraktion),
wie die entsprechenden Datenqualitatsprobleme als seman-
tische Unischerheit modelliert werden konnen. Desweiteren
motivieren wir, warum unser Ansatz zu einer besseren Interop-
erabilitdt beziglich Risikobeurteilung, Robustheit und Automa-
tisierung, Entwicklungskosten und Potenzial fir effektive Feed-
backschleifen unter Nutzung menschlicher Interaktion fihrt.

Keywords D.2.12 [Software: Software Engineering: Interoperability]; H.1.1 [Information Systems: Models and Principles: Systems
and Information Theory]; H.2.5 [Information Systems: Database Management: Heterogeneous Databases] »»»
Schlagwarter Interoperabilitat, Systeme und Informartionstheorie, heterogene Datenbanken

it — Information Technology 54 (2012) 3 / DOI 10.1524/itit.2012.0674 ~ © Oldenbourg Wissenschaftsverlag

“19pjoy JybuAdos ayy Aq uoissiwiad uapum yum pamoje Ajuo si asn JayyQ *Ajuo asn jeuosiad InoA 1oy ajaiue siyy anquiisip pue Ados Aew no) ‘mej JybAdos uewas Aq pajosyoid si sjdiue

1 Introduction

Data interoperability encompasses the many data man-
agement activities needed for effective information
management in any organization’s everyday work. Ex-
amples of such activities are data cleaning, coupling,
fusion, evolution, migration, but also schema matching
and mapping, information extraction from un/semi-
structured text, etc. A significant amount of money and
time in IT is devoted to these activities. For example,
web shops are confronted with customers creating a new
account while they already had one. Hence its customer
database needs to be deduplicated regularly, ordinarily re-
quiring, even with tool-assistance, significant amounts of
mundane manual data checking. The result is inherently
unclean, even with human inspection, because humans
make mistakes as well and customers may move or die
without informing the company.

Effectively dealing with data quality (DQ) in data inter-
operability activities becomes a more important problem
in many areas. Enterprises often have quality assurance
processes involving data auditing and profiling. In data
warehousing part of the ‘T” in ETL is commonly de-
voted to data cleaning. Many methods for effective DQ
management have been proposed, such as Master Data
Management (MDM). Also in science, data interoper-
ability is increasingly problematic. Data-intensive science
is considered to be a new, fourth paradigm for scien-
tific exploration [7] where scientists re-use and combine
data of others to answer previously unforeseen research
questions. One activity is emphasized to be of utmost im-
portance: curation, the active and on-going management
of data through its life cycle of interest and usefulness, in-
cluding quality maintenance, enrichment with metadata,
trust management, etc. More examples can be given that
not only indicate the importance of DQ, but also the
struggle of enterprises in controlling it.

It is our conviction that most of the money and time
in data interoperability activities is devoted to dealing
with one problem: semantic uncertainty. A deduplication
algorithm can never always perfectly determine whether
or not two records refer to the same customer; even we
humans can not perfectly do this without sometimes ex-
plicitly asking them. Data may be subjective, not current,
open for multiple interpretations, etc. We have observed
that current technology supports users in manipulating
huge volumes of data, but that it does not support users
well in handling data with problems.

In our opinion, clean correct data is only a spe-
cial case, so technology should fundamentally treat data
as partially flawed; And it should treat DQ problems
as a fact of life, not as something to be repaired af-
terwards; or as [10] puts it: “While traditional data
integration methods more or less explicitly consider un-
certainty as a problem, as something to be avoided, recent
approaches treat uncertainty as an additional source of in-
formation, something that is precious and that should be
preserved [...] One of the objectives of data quality pro-

cessing is to reduce the amount and impact of imperfect
data”.

By modeling DQ problems as semantic uncertainty
and managing this uncertainty explicitly, we believe there
is much potential for better support for handling data
with problems. Therefore, we believe that the road to-
wards better data interoperability, is to be found in
teaching our data processing tools and systems about all
forms of doubt and how to live with them.

In Sect. 2, we provide a method for formalizing DQ
problems as uncertainty in the data. Section 3 investigates
three data interoperability problems: deduplication, data
coupling/fusion, and information extraction. Section 5
argues why our approach of modeling DQ problems as
semantic uncertainty leads to better interoperability in
terms of natural problem exposure and risk assessment,
more robustness and automation, reduced development
costs, and potential for natural and effective feedback
loops leveraging human attention.

2 A Model of Uncertain Data

In this section, we provide a formalization of a prob-
abilistic database. We have chosen this particular
formalization, because it is rather close to the data models
of concrete probabilistic databases while being abstract
enough to be sensible in the context of other data models
and models of uncertainty (see Sect. 4). Table 1 gives an
overview of our notation.

Table 1 Notation.

var universe description

D data item
D DB database/possible world
0 RW real-world object
0] D — RW reference relation between data items

and the real world
r R random variable
R PR set of random variables
v V=N value
w R~V world set
~[0..1]

(r—wv) random variable assignment
Ow R~V valuation for W
Ow (Ow) all possible (total) valuations for W
D PDB probabilistic database
ow WSD w world set descriptor (wsd)
() evaluation of ¢ under 0

compact probabilistic database

PD x WSDy setofalternative data items each with
its wsd

19p|oy Jybrhdos ayy Aq uoissiwiad uspim yym pamojje Ajuo si asn 1ayjQ “Ajuo asn jeuosiad inok 10} aja1pie sy} anquisip pue Ados Lew noj ‘mej Jybrkdos uewas Aq payosjoud si ajoe

139

140

y

Special Issue

2.1 Preliminaries

We model a database D € D3 in an abstract way as a set
of data items DB =PD. Typically, a data item d e D
would be

e a tuple for a relational database,

e an XML element for an XML database, and

e a triple for an RDF store.

To be able to talk about semantic issues, we model real-
world objects 0 € RW and that data items refer to them
with a reference relation w, which of course are both
unavailable to a computer and its algorithms.

2.2 Example of Data with a Problem: Duplicates
Figure 1 shows an example database and a part of the real
world it is supposed to represent. It belongs to a company
selling car components and contains sales for car brands.
A preferred customer program is meant to avoid im-
portant customers switching to a competitor. A preferred
customer is one with sales over 100.

Observe that looking only at the data, at first glance
there is no preferred customer. But the database has
a problem with duplicates. The “same” car brand may
occur more than once under different names. A com-
mon cause is a merge of data from autonomous sources
using their own conventions and standards. Although
there are 6 data items d;...ds, it contains data on only
3 car brands 0y, 0, 04. Data items d; and d; are duplicates
iff i # jAw(d;) = w(d;), e.g., d3 and dg refer to the same
car brand and their combined sales is 106, so ‘Mercedes-
Benz’ is a preferred customer after all.

Typical data cleaning solutions support duplicate re-
moval. Based on advanced string similarity and other
techniques, data items are automatically matched and
clustered. Each cluster contains data items that most likely
all refer to the same real-world object. These data items
are then merged or fused into one data item. This tech-
nology would readily be able to find duplicates d; and ds
and fuse them into a new data item dy5; ds, dg — ds¢ anal-
ogously. But, it is quite possible that an algorithm would
not detect that also d, refers to ‘BMW’. Note that this
seemingly small technical glitch has a profound business

Y

w Real world

Database (of car brands)
Car brand Sales
d; [B.M.W. 25| -
d Bayerische sl -1
2 | Motoren Werke

d3 | Mercedes 67 | -4

dy | Renault 45| -

ds | BMW 72| -

d@ Mercedes-Benz 39| -1

Figure 1 The relationship between data items in a database and the real
world.

consequence, namely it determines if ‘BMW’ is consid-
ered a preferred customer or not, risking loosing them
to a competitor which the preferred customer program
is designed to prevent.

Be honest, did you as a human know that BMW’
stands for ‘Bayerische Motoren Werke’? This is semantic
knowledge. What do we as humans do if we do not know
but suspect that this is the case? We are in doubt; in the
terminology of this paper, we are uncertain about the
semantics of ‘BMW’. Consequently, we simply consider
both cases, reason that in case d, also refers to ‘BMW’,
then its sales are over 100; hence we decide that ‘ BMW’
might be a preferred customer. Moreover, we decide that
it is important and likely enough to act upon. It is this be-
havior of ‘doubting’ and ‘probability and risk assessment’
that we propose to mimic.

2.3 Modeling Semantic Uncertainty
as Random Events

We propose to model the uncertainty about whether or
not w(d;) = w(d;) as a random event, i.e., we introduce
a random variable r € R with two possible assignments
(r+—= 0) representing w(d;) # w(d;) and (r+— 1) rep-
resenting o(d;) = w(d;). Observe that the uncertainty
around ‘BMW’ and ‘Mercedes’ are independent of each
other. Therefore, they can be modelled with two dif-
ferent random variables. We call the collection of all
possible random variable assignments (rvas for short)
with their probabilities our world set W e R ~»V ~»
[0..1]. We denote with P(r+> v) = W(r)(v) the prob-
ability of a rva. It should hold that Vr € dom(W):
2 vedom(w(ry) P(r=>v) = L.

‘Considering a case’ means that we choose a value
for one or more random variables and reason about
the consequences of this choice. We call such a choice
a valuation Oy where Yr € dom(Qy) : 0w (r) € rng(W(r)).
If the choice involves all the variables of the world set,
the valuation is total. ®y and Oy are the sets of all
possible valuations resp. total valuations for W. Random
variables are independent, hence the probability of a valu-
ation P(Oy) =]_[(,HV)EQW P(r+— v). We often omit the W
in Oy if it is clear from the context.

2.4 Probabilistic Databases
A probabilistic database D € PDB is a database ca-
pable of handling huge volumes of data items and
possible alternatives for these data items while still
being able to efficiently query and update. As a foun-
dation for an intuitive and simple semantics, possible
world theory views a probabilistic database as a set
of possible databases each with a likelihood, i.e.,
PDB ={D e PDB x [0..1] | ¥ ,)cp p = 1}. D is called
a possible world with probability P(D) iff (D, P(D)) € D.
Obviously, an implementation would not store the
possible worlds individually, but as a compact represen-
tation capable of representing vast numbers of possible
worlds in limited space. Possible world theory prescribes

“19pjoy JybuAdos ayy Aq uoissiwiad uapum yum pamoje Ajuo si asn JayyQ *Ajuo asn jeuosiad InoA 1oy ajaiue siyy anquiisip pue Ados Aew no) ‘mej JybAdos uewas Aq pajosyoid si sjdiue

that a query Q on a compact representation should result
in a compact answer representing all possible answers
(equal to evaluating Q in each world individually).

The compact representation is based on linking al-
ternative data items and the world set by means of
world set descriptors (wsd) gw € WSDyy. It is a con-
junction! of rvas (r; — v;) such that Vi:v; € rng(W(r;)).
The wsd determines which data items exist for which
rvas. The compact representation D = (D, W) is a set
of data items each with a wsd and a world set, where
DePD xWSDyw. A wsd ¢ can be evaluated under
a valuation 6 denoted by ¢(0):

false if i jiiEjAri=r1iAVi £V
true ifVi:(r;+— v;) €6

false otherwise

P(¢) is defined as the sum of all valuations under which
it is true: P(¢) = gco,, rpe) P(0), using independence

p) = n(riHVz‘)Ew P(ri =).

A total valuation induces one possible world in
a compact probabilistic database: (D) = {d | (d,) € DA
¢(0)}. In this way, the concept of valuation bridges
the gap between the compact representation and pos-
sible world theory. The set of all possible worlds
PWS(D) ={D |6 € ® AD =0(D)}. The probability of
aworld D is P(D) = 3 4.6, ap—a(5) P(0)

Figure 2 illustrates the given concepts for our example.
We distinguish three possible cases for the possibility of

D w

car | sales) rva P
dy 25 (Il — 0) (71 = 0) 0.1 | ‘dq,ds, ds different’
dy ... 8| (r1—0) (r —1)]0.6 | ‘d1,ds same’
d5 e 72 (T‘l = 0) (7‘1 = 2) 0.3 ‘dl,dg,d;; same’
dis 97 (7”1 — 1) (7‘2 — 0) 0.2 | ‘ds, dg different’
dy ... 8| (ri+—1) (r2 — 1) | 0.8 | ‘d3, dg same’
d125 e 105 (71 — 2)
dy . 45 (@ = SELECT SUM(sales)
ds o 67 | (12— 0) FROM carsales
dg 39| (2 —0) WHERE sales> 100
dse | ... 106 | (r2 — 1) ‘sales of preferred customers’

All possible worlds with their answer to Q

¢ 6(D) P(0) Qo
Dy [{(ri = 0),(ra > 0)} | {d1,d2,d3,dy,d5,dg} | 0.1-0.2=0.02| 0
Do | {(ri = 1),(r2 = 0)} | {di5,do,d3,ds,ds} | 0.6-02=0.12] 0
D3 [{(r1 = 2),(r2 = 0)} | {di25,d3,d4,ds} 0.3-0.2=0.06 | 105
Dy [{(r1 = 0),(ra =~ 1)} | {d1,d>,d36,ds,d5s} | 0.1-0.8=0.08] 106
Ds [{(r = 1), (r2 = 1)} [{d15,d2, d36,da} 0.6-0.8 = 0.48 | 106
Dg {(T‘l = 2) (T‘z = 1)} {d1257d35.’ d4} 0.3-0.8=0.24 | 211

Possible answers Other derivable figures

sum(sales) | P description sum(sales) | P
01]0.14 Minimum 00.14
105 | 0.06 Maximum 211 0.24
106 | 0.56 Answer most likely world 106 | 0.48
2111 0.24 Most likely answer 106 | 0.56
Second most likely answer 211 | 0.24
Expected value 116.3 | N.A.

Figure 2 Example of a probabilistic database (resulting from indeter-
ministic deduplication of Figure 1) with a typical query and its answer.

! Theoretically an arbitrary propositional formula with A, Vv, and —
is possible, but here a simple conjunction suffices.

duplicates among d;, d,, and ds; and two cases for d3 and
ds. We have introduced random variables r; and r, for
both respectively. There are 3 -2 = 6 possible valuations,
hence 6 possible worlds. A choice for either (r; + 0) or
(r; > 1) has no effect on the answer to Q, so there are
ultimately 4 different possible answers.

Typical data cleaners only produce a best effort result,
which can be observed here as the most probable world
Ds. We already determined that this is not the correct
world. Typically a business analyst would first ask for the
most likely answer which would allow him/her to work
almost completely in the same way as with an ordinary
database. The difference now is that despite the unre-
liability of the data cleaner, he will not make a costly
mistake, because he is made aware that the answer may
not be 106 but 211.

3 Modeling Data Interoperability

In this section, we provide a formalization of the three
use cases in terms of data in a probabilistic database. Our
modeling of the first data operability problem, seman-
tic duplicates, is rather precise and thorough, while the
other two, data fusion and information extraction, are
presented in a more sketchy way for space reasons.

3.1 Deduplication and Data Coupling

the Indeterministic Way
In the previous sections, we saw a glimpse of indetermin-
istic deduplication, i. e., deduplication with an uncertain
result. In [12] we proposed a general approach for in-
deterministic deduplication. It starts with the traditional
steps of matching pairs of data items on their attributes
and classifying them in certain matches (M), certain non-
matches (U), and possible matches (P) typically involving
two thresholds distinguishing between M and P, and U
and P, respectively. The tuples and their pair-wise deci-
sions can be seen as a graph which is partitioned into
clusters C; by removing the U-edges.

From here onward, [12] deviates from traditional
deduplication and proposes adaptations to generate
data associated with multiple possible deduplications.
Analogous to finding possible worlds, the P-edges in
C; give rise to many possible matching graphs G. by
replacing each P-edge with either a M- or U-edge.
Some of the matching graphs are inconsistent due to
transitivity: di,dy,ds € G], AN (dl, d) e M A (dz, d;) € M,
then (d;,ds) € M. We generate a compact probabilis-
tic database D = (D, W) as follows. For each cluster
Ci, we introduce one random variable r; with a dif-
ferent value v} for each consistent matching graph:?
W = {(r;,v,,p) | 3G::p = P(G})}. We refer to [12] for
how to calculate the associated probabilities P(G}). Each

2[12] is based on the uncertain data model of Trio, which does not
have random variables. The concept of ‘indicator’, however, plays the
role of random variable, and ‘indicator table’ of world set.

141

*1op|oy JybLIAdos ayj Aq uoissiwiad uapum yym pamoje Ajuo si asn JayjQ *Ajuo asn jeuosiad InoA 1o} sjaiue siyy anqguisip pue Ados Aew no) mej JybrAdos uewas) Aq pajosyoud si sjdiue

142

Special Issue

y

matching graph G! represents a possible deduplication
for the cluster of data items. We can generate the as-
sociated data D simply edge-by-edge by inserting both
tuples d and d” separately if (d',d”) € U and a fused
tuple d = u(d’, d") (see Sect. 3.2) if (d',d") € M.

Example

For our example of Sect. 2.2, this approach forms 3 clus-
ters. We consider no certain matches (M) to keep the
example interesting.

Ci1 = ({dy, d», ds}, {(dy, d», P), (d1, d5, P), (da, d5, P)})
CZ - ({d4}1 “)
C3 = ({d3)d6}) {(d3)d6)P)})

There are 8 possible matching graphs for C; of which

only 5 are consistent. C; and C; produce only 1 and 2

matching graphs, respectively.
Figure 3 shows the result. The generic approach

slightly differs from Fig. 2 in the following two ways:

(a) It generates a random variable for C, with only one
value. Although not harmful, it is easy to avoid this.

(b) It considers two more possibilities for C;. Although
these have the lowest probabilities and one could ap-
ply a threshold to delete them, observe that even
without that, they do not influence query results
much, hence the result is ‘good enough’ as it is.

D w
car | sales © rva P
dy e 25 (7‘1 — 0) (7'1 [d 0) th dz, d5 different’
ds 8| (r1—0) (rn—1) ‘dy, do same’
ds ... 72 (r1 —0) (r —2) ‘dy,ds same’
dio e 33 (7‘1 — 1) (Tl = 3) 4dz, d5 same’
ds . 72 (7‘1 — 1) (Tl = 4) 500 4dl, dg, d5 same’
d15 e 97 (7‘1 = 2) (7‘2 [d O) 1.0 Ad47
dg e 8 (7'1 — 2) (7‘3 [d O) Adg, d6 different’
d25 e 80 (7'1 — 3) (7‘3 [d 1) Ld37d6 same’
d1 P 25 (T‘1 — 3)
d125 . 105 (T‘l — 4)
d4 P 45 (T‘Q — 0)
d3 . 67 (7‘3 — 0)
ds . 39 (7‘3 = 0)
dsﬁ 106 (1"3 — 1)

Figure 3 Result of indeterministic deduplication of Figure 1.

Data Coupling

We speak of data coupling if we have two databases
D; and D, with data on the same real-world objects,
and we try to find the ones that ‘belong to each other’,
L. €., (dl,dz) where d1 € Dl,dz €D, and a)(dl) = (,z)(dz)
Typically, these data items contain overlapping sets of
‘attributes’. This activity is very similar to deduplication
and can be handled analogously. The result is an uncer-
tain table with data item identifier pairs. Combining the
information can simply be accomplished by performing
a query with a three-way join of both databases with this
‘coupling’ table.

3.2 Data Fusion with Conflicts

A good survey on data fusion is [4]. It describes data
fusion as “the process of fusing multiple records representing
the same real-world object into a single, consistent, and
clean representation.” For a large part, the survey is about
handling conflicts. We already saw a typical example of
a conflict: if &’ and d” are duplicates, their representations
should be merged into u(d’,d”); but what is the value of
the “car brand” for w(ds, dg) in Fig. 12 Is it “Mercedes”,
“Mercedez-Benz”, or something else?

We view this problem as a form of uncertainty: it is un-
certain which value is the correct one. For each attribute
with a conflict, we introduce a new random variable r
allowing storage of all possible merged representations
in one probabilistic database. The approach can be com-
bined with the indeterministic deduplication approach
(see Fig. 4).

D
car sales ©
ds | Mercedes 67 | (13— 0)
dg | Mercedes-Benz 39 | (r3—0)
dse | Mercedes 106 | (13— 1) A(rq — 0)
dse | Mercedes-Benz | 106 | (13— 1) A (14 — 1)
w
rva P
(7‘3 — 0) ‘ds, dg different’
(rg —1) ‘d3, dg same’
(r4 —0) ‘Car brand value for u(ds,ds) is given by dg’
(ra— 1) ‘Car brand value for u(ds,ds) is given by dg’

Figure 4 Fusing possible duplicates ds and dg.

This conflict handling strategy is called ‘CONSIDER
ALL POSSIBILITIES’ in [4]. Note, however, that the strat-
egy is only an initial or default approach. It is a good basis
for both immediate use and further refinement, because
it is automatic as well as information and uniqueness
preserving (in all possible worlds where ds and dg are du-
plicates, there exists exactly one data item ds¢). The other
conflict handling strategies of [4] can be implemented
as subsequent operations on this default. Although for
many applications, the default is ‘good enough’, this is
not always the case. For instance, while merging tuples in
our example, the ‘sales’ values do not conflict, but should
be summed. In Sect. 5 we elaborate on the importance
of striving for an automatic ‘good enough’ initial result
containing uncertainty.

3.3 Information Extraction

Unstructured text is another major data interoperability
obstacle. (Too) much data is still inaccessible for data
processing, because it is textually embedded in docu-
ments, webpages, or text fields. Information extraction
(IE) is a technology capable of extracting entities, facts,
and relations from unstructured text. Because natural
language is highly ambiguous and computers are still in-
capable of ‘real’ semantic understanding, IE is a highly

“19pjoy JybuAdos ayy Aq uoissiwiad uapum yum pamoje Ajuo si asn JayyQ *Ajuo asn jeuosiad InoA 1oy ajaiue siyy anquiisip pue Ados Aew no) ‘mej JybAdos uewas Aq pajosyoid si sjdiue

imperfect process. For example, it is ambiguous how to

interpret the word “Paris”: it could be a first name, a city,

etc. Even resolving it to a city, note that there are over 60

other places called “Paris” besides the capital of France

and that 46 % of toponyms’ are ambiguous [6].

We sketch here how to model ambiguousness in nat-
ural language interpretation as semantic uncertainty. We
base ourselves on [15]. In IE results of the various kinds
of analyses are represented as annotations. For example,
the phrase “Paris Hilton” could be annotated with an
entity type ‘Hotel’ and its precise location. Annotations
can simply be stored in a table with a begin and end
point in the text. Annotations can ‘overlap’: there may be
another annotation on “Paris”.

An information extractor, however, may not be able to
immediately attach these annotations to the text, because
there are underlying ambiguities. To name three,

(a) The phrase may refer to a person (the media person-
ality), the Hilton hotel in Paris, or even a fragrance.

(b) Since there are over 60 places called Paris, there may
be more than one with a Hilton hotel (for illustration
purposes, say that there are two).

(c) There is more than one Hilton hotel in the capital
of France (there seem to be five, but let us restrict
ourselves to the one near the Eiffel Tower and the
one at Charles de Gaulle Airport).

All these ambiguities can be viewed as semantic uncer-

tainty, the former regarding the entity type, the latter two

regarding the location at two levels of granularity: city
level determined by the annotation for phrase 1-5 and
hotel level. The example ultimately leads to five possibil-
ities for annotating “Paris Hilton” and two possibilities
for annotating “Paris”. In terms of our formalization,
an annotation is a data item d where the different am-

biguities concern different semantic choices. Figure 5

illustrates the resulting probabilistic database. Observe

how the dependencies between the annotations are natu-

D
pos | entity location ®
1-12 | Person NULL (r1 —0)
1-12 | Hotel N48° 51 E 2° 18" | (11 > 1) A (12 = 0) A (r3 = 0)
112 | Hotel N4 0 E 2234 | (1= 1) A (12— 1) A (13 — 0)
1-12 | Hotel (m—=1)A(rs—1)
1-12 | Fragrance | NULL (rm—2)
1-5 | City N 48° 51’ E 2° 21’ | (13— 0)
15 | City (ry = 1)
w
rva P
(r1—0) ‘Phrase 1-12 has entity type Person’
(rn—1) ‘Phrase 1-12 has entity type Hotel’
(rn—2) ‘Phrase 1-12 has entity type Fragrance’
(r2—=0) ‘Hotel 1-12 refers to one near Eiffel Tower’
(rp— 1) ‘Hotel 1-12 refers to one at CdG airport’
(r3 — 0) ‘City 1-5 refers to capital of France’
(3= 1) ‘City 1-5 refers to the other city’

Figure 5 Annotating the phrase “Paris Hilton”.

3 A toponym is any name that refers to a location including, e.g.,
names of buildings

rally encoded in the wsd’s. Also observe that annota-
tion ambiguity is the dual of a duplicate: with d;,d,

possibly being duplicates we have w(d,) Z w(d,), with an-
notation d being ambiguous we have Jo0y, 0;:0; . w(d) A

0y = w(d).

4 Related Work

Probabilistic Relational Databases

In recent years, the database community produced sev-
eral prototypes of scalable uncertain relational databases,
each with its own way of modelling uncertainty in the
relational data model. The model that we generalized
for our formalization is the U-relation [2] underlying
the MayBMS system. It supports wsd’s stored as a set
of additional columns in an otherwise ordinary table;
each random variable assignment is represented by three
columns: an ID for the random variable, an ID for the
value, and the probability. These columns are typically
hidden to the general user, who can ‘create’ uncertain
data with the REPATIR KEY statement. MayBMS sup-
ports efficient querying using a slightly extended variant
of SQL.

Another well-developed model and system is the
ULDB model [3] underlying the system Trio. Trio
supports x-tuples containing alternative values and prob-
abilities for uncertain attributes. It has a different but
equivalent way of representing dependencies: alternatives
contain lineage: propositional formulas referencing the
alternatives that gave rise to them.

One more system deserves mentioning, namely
MCDB [8] which is geared towards what-if analyses
and risk analysis. It does not directly store uncertainty,
but one specifies variable generation (VG) functions
which are used to pseudorandomly generate values for
uncertain attributes. By storing parameters and not prob-
abilities, and by estimating rather than exactly computing
the probability distribution over possible query answers,
MCDB avoids many limitations: it handles arbitrary
joint probability distributions over discrete or continuous
attributes, arbitrarily complex SQL queries, and arbi-
trary functionals of the query-result distribution such as
means, variances, and quantiles.

Other Data Models

Uncertainty in data is an orthogonal aspect of the data
independent of the actual data model. The Probabilis-
tic XML model of [14] introduces special node kinds
representing possible subtrees. [1] introduces families of
Probabilistic XML models with varying degrees of expres-
siveness. The semantic web community also addresses the
issue of representing uncertainty. There is a W3C incu-
bator group URW3-XG*. It has investigated use cases,
methodologies, and benefits for reasoning with uncer-
tainty. An example of an uncertain RDF model is [13].

4 http://www.w3.0rg/2005/Incubator/urw3/XGR-urw3/

19p|oy Jybrhdos ayy Aq uoissiwiad uspim yym pamojje Ajuo si asn 1ayjQ “Ajuo asn jeuosiad inok 10} aja1pie sy} anquisip pue Ados Lew noj ‘mej Jybrkdos uewas Aq payosjoud si ajoe

143

http://www.w3.org/2005/Incubator/urw3/XGR-urw3/

144

y

Special Issue

It supports the specification of soft rules, first-order logic
rules over RDF facts which introduce weights for inferred
facts, and hard rules which define mutual exclusive sets
of facts.

Other Data Interoperability Problems Tackled with
Explicit Management of Uncertainty

The survey [10] gives an overview of data integration ap-
proaches that use uncertainty management. An important
one is schema heterogeneity, e. g., [5] views ambiguity in
schema matching as uncertainty to which type an in-
stance belongs which gives rise to probabilistic mappings
producing data befitting our framework.

We like to emphasize that uncertainty management
can be applied in advanced ways. To illustrate, [16] ef-
fectively detects problems in workflows handling physical
objects by correlating workflow instances with sensor
observations despite granularity differences, sensor mal-
functions, and bypassed workflow steps or sensors.

5 Why Data Quality and Robustness

are Improved
5.1 Exposure and Risk Assessment
The first important aspect of explicitly expressing seman-
tic uncertainty in data is that it naturally exposes DQ
problems in query answers, i.e., to end users. Straight-
forward risk assessment based on

Risk = Impact x Probability

can easily notify high-risk problems while suppressing
others. In our preferred customer example, the most
likely answer 106 had a high risk problem behind it:
with a significant probability of 24% the answer could be
twice as large (high impact).

5.2 Robust Automation

Not only in the use of data by end users we observe a nat-
ural robustness, it also makes it easier to develop robust
automatic processes for data interoperability and clean-
ing. Human intervention is not needed for producing an
intial result, because software need only detect problems,
not solve them. Wherever a semantic decision is required,
software can postpone the decision by generating data for
all possible cases.

As we have seen with data fusion and information
extraction, different names for the same thing can nat-
urally co-exist in the database. This provides robustness
against the problem of conventions. For example, some
gazetteers refer to Lake Como with “Lake Como”, others
with “Como”. By storing alternative annotations, look-
ups do not fail because of different conventions [6].

This robustness is only achieved with ‘safe’ thresholds
favoring a bit more recall at the expense of precision.
For example, a deduplication process should not miss
a duplicate to ensure that the correct answer to a query
will be among the possible answers. [1] showed that DQ
is rather insensitive to moderate variations in threshold

settings on side of a ‘safe’ setting. Furthermore, more
precision can be achieved later (see Sect. 5.4), but not the
other way around.

5.3 Trade-off Between Development Effort
and Data Quality

A rule of thumb states that 90% of the development effort
in data interoperability and cleaning, is devoted to solving
the 10% of hard cases. By striving for a less perfect, but
near-automatic probabilistic result, they are less of a de-
velopment obstacle. The result is “good enough”, because
it is accomodating to immediate use, notably already after
10% of the development effort.

A thorough experimental investigation of the effects
and sensitivity of rule definition, threshold tuning, and
user feedback on data integration quality can be found
in [1]. For a sizeable use case of enriching data from
a TV guide (100 movies) with IMDB (250 000 movies),
we showed that the approach works for larger dirty data
sets, and that indeed 85% to 92% of the cases were easy
to resolve with a few simple rules and rough safe thresh-
olds. Furthermore, subjecting the probabilistic result to
a series of user feedback from a user interacting with
the application showed this feedback to be effective in
quickly improving the quality of the enriched data, i.e.,
in resolving the 10% hard cases the developer did not try
to solve (see Sect. 5.4).

In effect, a developer can trade development time for
DQ. He would add and refine rules until the result is
considered good enough even though it still contains
problems. “Good enough” is meant in terms of DQ.
Note the difference between the notions of uncertainty
and quality. Uncertainty is an indication of how much
a system “doubts” its own data, a figure derivable from
the data itself. Data quality is the degree in which the data
corresponds with “the truth” (the real world). Measuring
DQ typicially involves a ‘ground truth’ for a sample [1].

Some applications can naturally handle a probabilis-
tic result directly, e.g., data mining. Most data mining
techniques are statistical in nature, hence allow a straight-
forward adaptation: roughly speaking, whenever things
are counted, one takes the sum of probabilities instead.
The intuition is that data items only count for as much
they are likely to exist or for as much the database dares to
claim that they are true. Quality metrics for data mining
results can be adapted analogously.

5.4 Leveraging Human Attention
in Feedback Loops

The business analyst we mentioned earlier naturally in-
vestigated the situation further. This offers a powerful
opportunity to allow him/her to give feedback, for ex-
ample, that the second most likely answer 211 was
actually the correct answer to Q. It is possible to use
this naturally appearing evidence to improve the DQ
by conditioning the database according to this correct
query answer [9]. In fact it would resolve both issues

“19pjoy JybuAdos ayy Aq uoissiwiad uapum yum pamoje Ajuo si asn JayyQ *Ajuo asn jeuosiad InoA 1oy ajaiue siyy anquiisip pue Ados Aew no) ‘mej JybAdos uewas Aq pajosyoid si sjdiue

of our example, because 211 can only be the answer if
P(ri — 2) AP(ry — 1). All data items in D with a ¢ in-
consistent with (r; — 2) and (r, — 1) can be deleted,
leaving only possible world Dg.

As mentioned earlier, we showed that user feedback
was effective in quickly improving the quality of the
enriched TV guide [1], hence in resolving the remain-
ing semantic problems. We took an enriched TV guide
generated under very bad threshold conditions. We sub-
sequently ran a series of 100 consecutive feedbacks made
by a simulated user who randomly picks a query an-
swer and gives feedback according to whether or not the
answer was correct. By storing data interoperability prob-
lems as semantic uncertainty, feedback can automatically
be translated into combinations of random events becom-
ing impossible; the probabilistic database can be updated
accordingly. We measured DQ with expected precision
and recall of the answers of 43 queries. Even with this
limited form of feedback, both measures showed gradual
improvement with occasional jumps.

This shows that our approach not only provides devel-
opment benefits. As argued by [11] “the only way to truly
improve data quality is to increase the use of that data”.
An additional important aspect of our approach is that
we created an earlier opportunity for getting the end user
in the loop and we effectively deferred the resolution of
the remaining 10% data interoperability problems to the
end users who are more knowledgeable than a developer
and their involvement can be naturally embedded in their
everyday’s work.

6 Conclusions

In this paper, we propose a generic approach for
modeling data interoperability problems as semantic un-
certainty. The essence is to determine where semantic
choices are being made. If an automatic process cannot
make an absolute decision on a choice with enough cer-
tainty, it should make that choice at all, but that it should
enumerate several sufficiently likely cases and estimate
their probabilities. Those cases can be stored simultan-
eously and without human intervention in a probabilistic
database. In this way, the uncertainty is preserved and
stored with the data as an additional source of infor-
mation, fit for both immediate use as well as further
refinement. We demonstrated our approach in detail for
three use cases: deduplication, data coupling/fusion, and
information extraction.

We furthermore provided an argument why our ap-
proach leads to better data interoperability. First, it
naturally exposes DQ problems during normal use and
allows for effective risk assessment. Second, it reduces
costs because it provides more robustness and automa-
tion, and because one can trade DQ for development
effort. Finally, it offers more potential for natural and
effective feedback loops leveraging human attention for
continuous improvement of DQ.

In our future research, we plan to apply our ideas to
more applications to demonstrate its power. The area of
information extraction has our special attention, because
much valuable information is locked away in unstruc-
tured text inaccessible for automated processes. Because
of its potential for continuous improvement and adap-
tation, we furthermore plan to focus on feedback loops,
not only ones involving end users, but also involving
automated processes based on machine learning.

References

[1] S. Abiteboul, B. Kimelfeld, Y. Sagiv, and P. Senellart. On the ex-
pressiveness of probabilistic XML models. In: The Int’l Journal on
Very Large Data Bases (VLDB), 18(5):1041-1064, 20009.

L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple

relational processing of uncertain data. In: Proc. of the 2008 IEEE

24th Int’l Conf. on Data Engineering (ICDE), pages 983-992, 2008.

[3] O. Benjelloun, A.D. Sarma, A.Halevy, and J. Widom. ULDBs:
Databases with uncertainty and lineage. In: Proc. of the 32nd Int’l
Conf. on Very large Data Bases (VLDB), pages 953-964, 2006.

[4] J. Bleiholder and F. Naumann. Data fusion. In: ACM Computing
Surveys, 41(1):1-41, 2009.

[5] X.Dong, A.Y.Halevy, and C. Yu. Data integration with uncer-
tainty. In: Proc. of the 33rd Int’l Conf. on Very large Data Bases
(VLDB), pages 687—698, 2007.

[6] M.B. Habib and M. van Keulen. Named entity extraction and

disambiguation: The reinforcement effect. In: Proc. of the 5th Int’l

Workshop on Management of Uncertain Data (MUD), pages 9-16,

2011.

T. Hey, S. Tansley, and K. Tolle. The Fourth Paradigm: Data-

Intensive Scientific Discovery. Microsoft Research, 2009. ISBN

978-0-9825442-0-4.

[8] R.Jampani, F. Xu, M. Wu, L. L. Perez, C. Jermaine, and P.]. Haas.
MCDB: a monte carlo approach to managing uncertain data. In:
Proc. of the 2008 ACM SIGMOD Int’l Conf. on Management of
Data, pages 687-700, 2008.

[9] C.Koch and D. Olteanu. Conditioning probabilistic databases. In:
Proc. of the VLDB Endowment, 1(1):313-325, 2008.

[10] M. Magnani and D. Montesi. A survey on uncertainty manage-
ment in data integration. In: Journal of Data and Information
Quality (JDIQ), 2(1):5:1-5:33, 2010.

[11] K. Orr. Data quality and systems theory. In: Communications of
the ACM, 41(2):66-71, 1998.

[12] F. Panse, N. Ritter, and M. van Keulen. Indeterministic handling
of uncertain decisions in duplicate detection. In: Journal Data and
Information Quality (DIQ), Accepted for publication, 2012.

[13] M. Theobald, M. Sozio, F. Suchanek, and N. Nakashole. URDF:
Efficient reasoning in uncertain RDF knowledge bases with soft
and hard rules. Technical Report MPI-I-2010-5-002, Max-Planck
Institut fiir Informatik, Saarbriicken, 2010.

[14] M. van Keulen and A. de Keijzer. Qualitative effects of knowledge
rules and user feedback in probabilistic data integration. In:
The International Journal on Very Large Data Bases (VLDB),
18(5):1191-1217, 2009.

[15] M. van Keulen and M. B. Habib. Handling uncertainty in infor-
mation extraction. In: Proc. of 7th Int’l Workshop on Uncertainty
Reasoning for the Semantic Web (URSW), CEUR Workshop Pro-
ceesings, volume 778, pages 109-112, 2011.

[16] A. Wombacher. How physical objects and business workflows can
be correlated. In: Proc. of the 2011 IEEE Int’l Conf. on Services
Computing (SCC), pages 226-233, 2011.

S

[7

Received: November 21, 2011, accepted: March 22, 2012

19p|oy Jybrhdos ayy Aq uoissiwiad uspim yym pamojje Ajuo si asn 1ayjQ “Ajuo asn jeuosiad inok 10} aja1pie sy} anquisip pue Ados Lew noj ‘mej Jybrkdos uewas Aq payosjoud si ajoe

145

146

4

Special Issue

Dr. ir. Maurice van Keulen is Associate Profes-
sor in data management technology at the Uni-
versity of Twente, The Netherlands. He received
his PhD from this university in 1997. He was
an Information Architect with the company Or-
dina until 1999. Since 1999 he has been affil-
iated with the University of Twente again. He
was co-founder of the international team who
developed the XML database MonetDB/XQuery.
His current research interests include data in-
teroperability, probabilistic databases, informa-

tion extraction, data quality, and business
intelligence. He is a member of the IFIP
WG 2.6 on Databases, ACM SIGMOD, and the
EUSFLAT WG on Soft Computing in Data-
base Management and Information Retrieval
(SCDMIR).

Address: Faculty of EEMCS, University of
Twente, P.O. Box 217, 7500 AE Enschede, The
Netherlands, Tel.: +31-53-4893688, Fax: +31-53-
4892927, e-mail: m.vankeulen@utwente.nl

“19pjoy JybuAdos ayy Aq uoissiwiad uapum yum pamoje Ajuo si asn JayyQ *Ajuo asn jeuosiad InoA 1oy ajaiue siyy anquiisip pue Ados Aew no) ‘mej JybAdos uewas Aq pajosyoid si sjdiue

mailto:vankeulen@utwente.nl

	1 Introduction
	2 A Model of Uncertain Data
	2.1 Preliminaries
	2.2 Example of Data with a Problem: Duplicates
	2.3 Modeling Semantic Uncertainty as Random Events
	2.4 Probabilistic Databases

	3 Modeling Data Interoperability
	3.1 Deduplication and Data Coupling the Indeterministic Way
	Example
	Data Coupling

	3.2 Data Fusion with Conflicts
	3.3 Information Extraction

	4 Related Work
	Probabilistic Relational Databases
	Other Data Models
	Other Data Interoperability Problems Tackled with Explicit Management of Uncertainty

	5 Why Data Quality and Robustness are Improved
	5.1 Exposure and Risk Assessment
	5.2 Robust Automation
	5.3 Trade-off Between Development Effort and Data Quality
	5.4 Leveraging Human Attention in Feedback Loops

	6 Conclusions
	References

