
it 5/2013

Special Issue ���

Trends in Free, Libre, Open Source
Software Communities:
From Volunteers to Companies
Aktuelle Trends in Free-, Libre-, und Open-Source-Software-Gemeinschaften:
Von Freiwilligen zu Unternehmen

Jesus M. Gonzalez-Barahona∗, Gregorio Robles, Universidad Rey Juan Carlos, Spain

∗ Correspondence author: jgb@gsyc.urjc.es

Summary The first free/libre/open source software (FLOSS)
development communities were composed almost exclusively
of volunteers. They were individuals who, despite their
affiliation, contributed to the project on their own. They
decided which project to join, and their contributions were
personal in nature, even when in some cases they were
employees of companies with some interests in the project.
GNU, the first of such communities, and some others that
emerged during the late 1980s and 1990s, followed this
pattern. During the 1990s corporate interests started to
have a role in some FLOSS communities. Companies hired
people from those communities to gain influence, or tasked
their employees to contribute to them, again with the idea
of influencing their decisions. During the 2000s, corporate
communities, in which companies are first-class citizens,
have emerged, changing the rules and redefining the role of
volunteers and non-affiliated individuals. However, the role
of developers, with independence of the company for which
they work, is still important even in these communities.
This paper addresses this transition from volunteer-based
to company-based development communities, and explores
the structure and behavior of the latter. ��� Zusam-
menfassung Die ersten „Free-, Libre-, und Open-Source-

Software“-Gemeinschaften (FLOSS) bestanden fast durch-
gängig aus Freiwilligen. Diese Personen trugen zu den
Projekten unabhängig von ihrem Arbeitgeber bei. Auch
wenn gelegentlich Unternehmen Interesse an den Open-
Source-Aktivitäten ihrer Mitarbeiter hatten, war doch deren
aktive Beteiligung persönlich motiviert. Das GNU-Projekt, die
erste solche Open-Source-Gemeinschaft, wie auch die nächste
Generation an Open-Source-Projekten der 1980er und 1990er
Jahre, folgte diesem Muster. Während der folgenden 1990er
Jahre entwickelten Unternehmen ein Interesse an Open-
Source-Gemeinschaften. Unternehmen stellten Entwickler aus
den Projekten ein, um Einfluss zu gewinnen, oder sie
beauftragten ihre Angestellten aktiv mitzuarbeiten, ebenfalls
mit dem Ziel, Einfluss zu gewinnen. In den 2000er Jahren
dann entstanden Open-Source-Gemeinschaften, in denen die
Unternehmen selbst als aktive Mitspieler agierten. Diese
Entwicklung definierte die Projektregeln und die Rollen von
Frewilligen neu. Trotz dieser Entwicklung spielen unabhängige
Entwickler weiterhin eine wichtige Rolle. Dieser Artikel
untersucht den Übergang von der freiwilligen-getriebenen
Gemeinschaft hin zur unternehmens-getriebenen Gemein-
schaft und exploriert Struktur und Verhalten dieser neuen
Form von Open-Source-Gemeinschaft.

Keywords ACM CSS → Software and its engineering → Software creation and management → Collaboration in software
development → Open source mode; volunteer open source; commercial open source; open source community; open source history
��� Schlagwörter Freiwilligen-Open-Source, kommerzieller Open Source, Open-Source-Gemeinschaften,
Open-Source-Geschichte

it – Information Technology 55 (2013) 5 / DOI 10.1515/itit.2013.1012 © Oldenbourg Wissenschaftsverlag 173

mailto:jgb@gsyc.urjc.es


Special Issue

1 Introduction
Richard Stallman started the GNU project, the first
FLOSS project in the modern age of FLOSS, in 1983,
after quitting his job at MIT. In the first announce [14],
he called for contributions from both individuals and
companies. But each of them were called for different
kinds of contributions: individuals were asked for code,
while companies were asked for equipment. He also asked
for donations, which would be used to hire develop-
ers. Therefore, the GNU project was already considering
two kinds of developers: volunteers working in their own
time, and developers hired to work on the project. How-
ever, he did not call explicitly for companies contributing
with hired developers working for them.

One year later the first release of the X Window Sys-
tem [13] was published by MIT. After being licensed to
some companies, in 1985 it was released as FLOSS. At
that time, several of these companies (notoriously DEC,
but also HP, Sun and others) were already collaborating
in its development. In January 1988 the MIT X Consor-
tium formed, as a non-profit vendor group serving as
an umbrella for the development project. This was the
first occasion in which a group of competing compa-
nies teamed up to form a corporate FLOSS community
(or, as they named themselves, a consortium). Although
centered around MIT, which was funded to lead the
development effort, participating companies contributed
not only with money, but also with their developers.

GNU and X are two early examples of FLOSS projects
which show two very different models of development
communities. GNU is a good example of a commu-
nity project driven by individuals, under the umbrella of
a Foundation (the Free Software Foundation) established
to promote and support the project. X is also a commu-
nity project, but most of the developers work on behalf of
their companies. The MIT X Consortium, their umbrella
organization, was the result of an agreement between
companies, which were the real actors in the community.
Individual developers retained a good degree of freedom
with respect to technical decisions, but companies were
also present, with their employees having their interests
into account.

Still today we can classify many FLOSS projects on
one of these two models: communities of individuals
and communities of companies. However, most projects
are somewhere in between these two extremes. In add-
ition, communities of individuals may have different
relationships with related companies, while communities
of companies may also have different policies with respect
to individual developers.

To better understand all these cases, we propose
a complete characterization of FLOSS communities ac-
cording to how companies and individuals interact in
them, based on the analysis of several dimensions. We
will also explain how these characteristics can be linked
to other aspects of the projects, such as their evolution
or their resiliency to changes.

2 Participation of Companies in FLOSS
Communities

Although it happened early, the case of X was rare in
FLOSS communities of the 1980s and early 1990s. Most
of the FLOSS projects of the time were run by, and
composed of, individual developers. Companies still had
a role, since many of those developers were actually hired
personnel, and contributed to the project during their
work hours [7]. But since companies were not really
a part of the community, this role was subtle, and in
some sense more difficult to understand. However, ten-
sions aroused, in some cases even leading to community
splits.

An early case of a FLOSS project with some corporate
involvement is illustrative of this complex relationship.
The GCC compiler was one of the flagship developments
of the GNU project. It had in fact its own development
community, as many subprojects in GNU do. Some of the
developers in this community were working for Cygnus,
a company established in 1989 to provide commercial
support for GNU software, with some specialization in
GCC. Since then, the strategy of Cygnus started to be
a component of the GCC strategy, via their developers in
the project. This helped to maintain and improve GCC,
since in many aspects, what was good for GCC was good
for Cygnus.

But eventually, the interests of different parts of the
community diverged, and Cygnus led the EGCS fork.
They wanted a more functional system, while others,
including the Free Software Foundation (FSF), favored
stability over new functionality. EGCS was developed
independently for several years, until 1999, when the
current version of EGCS become again GCC. In EGCS
most developers were affiliated with companies which
payed them to work on the compiler. After being merged
back in the GNU project, this has remained the same. In
March 2013, 11 out of 13 members of the GCC steering
committee are affiliated with companies [6].

Therefore, GCC was born as a project run by inde-
pendent developers, with a strong role by an umbrella
foundation, the FSF. But as it grew in industrial impor-
tance, and companies started to offer commercial support
for it, and relayed on it for their business, increasingly
more contributors were affiliated with those companies.
This caused tensions, to the point of breaking the com-
munity in two. The most corporate part of it moved to
a new project, which after some time established their
own mechanisms to ensure neutrality, and prevent that
any dominant company got control, the most visible of
which was the self-appointed steering committee. Per-
sons belong to this committee as individuals, and not as
representatives of their companies.

Many other projects followed a similar path from vol-
unteer to mostly-corporate communities as the software
they produce becomes more used by and more important
for companies. However, this is not the only trend: some
projects with a clear corporate origin, such as Mozilla or

174



Trends in Free, Libre, Open Source Software Communities ���

OpenOffice.org have evolved to be more inclusive with
individuals, as will be shown later. Today, probably all
communities of a certain size have developers affiliated
with companies, but those companies have very different
statuses and influences in the corresponding projects.

This relationship between companies in FLOSS
communities, and between companies and FLOSS com-
munities, has been studied in the past. One of the
first observational studies in the field [3] already real-
ized how complex these relationships can be, classifying
the approach of companies towards FLOSS communities
in three groups: symbiotic, commensalistic, and para-
sitic. However, that study does not really enter into
the relationships within the project, but focuses on how
companies try to obtain benefit from it. From that classi-
fication, our interest in this paper is mostly related to the
symbiotic companies, since they are the ones interested
in supporting the project, and therefore could put some
developers to work on it.

Fitzgerald identified as a new paradigm the case of
companies collaborating with practices similar to those
of “classical” FLOSS projects [4]. His analysis shows how
companies can be the primary actors in FLOSS commu-
nities, and how that changes their rules, since corporate
interests have to be taken into account explicitly. He also
describes a type of FLOSS community led by companies,
which use FLOSS as a new way of establishing alliances
among them, sharing some aspects of their strategy and
business lines. These companies enjoy a certain control
on the evolution of the project and the resulting software,
which is in itself a reward for them.

The relationship between participation in FLOSS com-
munities and performance improvements for companies
is analyzed quantitatively in [15]. It shows how, when
certain conditions are met (large companies, or compa-
nies intensive in R&D), performance improvements can
be large when companies engage extensively in the de-
velopment effort. These improvements explain in part,
from a self-interest point of view, why companies are
interested in what could otherwise be seen as an altruistic
action. The results of their development efforts may ben-
efit any other company that uses the resulting software
without devoting any resources to the project, but they
will not experiment those performance improvements.
Some other studies [1; 8; 17] describe some other strate-
gies that companies use to benefit from this relationship,
which further explains their interest in joining or helping
to form FLOSS communities.

Another trend explaining the increasing involvement
of companies in FLOSS communities is the commodifica-
tion of industrial software in the form of FLOSS [16]. In
many cases, FLOSS components are substituting COTS
(components off the self) software, and companies with
a strategic dependence on those components have interest
in helping to ensure their improvement and maintenance,
and to influence their evolution, by participating in the
corresponding communities.

A more comprehensive description of the reasons for
companies to join FLOSS communities can be found
in [11], which can be summarized in cost savings, in-
creased profits per sale, a higher number of sales, and
a larger addressable market.

But the relationship does not only benefit companies.
FLOSS projects with corporate participation tend to be
more popular, and have a better structural quality [2],
in addition to the obvious availability of resources and
developers contributed by companies.

3 Dimensions to Characterize FLOSS
Communities

As seen, companies participate in FLOSS communities
because of their own interest, and they are accepted in
these communities in various roles because they also ben-
efit from this collaboration. However, having companies
in FLOSS projects also causes some problems:
• Tensions between a company and the community. The

objectives of a company may diverge from those of
the community as a whole, or of a significant part of
it. In this case, both parties are interested in finding
a common ground in which the community benefits
from the resources and development effort contributed
by the company, while the company still can push
towards its objectives. How, and to which extent,
companies are taken into account in a FLOSS project
reflects how it has found that common ground, and
has a great impact on its community architecture.

• Tensions between companies. The participation of sev-
eral companies in the community, some of which
may be fierce competitors, may cause tensions be-
tween them for the control, or perceived control, of
the project. Usually, rules, policies and bodies are es-
tablished so that the community remains neutral in
these situations. The different ways of ensuring this
neutrality, and to which extent neutrality is sought as
a target, lead to different structures for the communi-
ties themselves.

When those tensions cannot be handled by the commu-
nity, the project may be forked, as the history of GCC
showed. Therefore, all successful communities have an
architecture capable of handling them. However, these
architectures are different, since tensions may be ad-
dressed in different ways depending on the number of
companies involved, their characteristics, the importance
of other actors, the history of the community, its size,
and some other factors [12; 18].

We propose four dimensions to characterize FLOSS
communities, which help to understand the role of com-
panies in them, and how tensions due to their presence
are addressed.
• Lead: centralized vs. distributed lead. In some cases,

a single actor my be the recognized leader of the com-
munity. This actor may be a person, as Linus Torvalds
in the Linux kernel project, a foundation, as the Open
Document Foundation in the LibreOffice project, or

175



Special Issue

a company, as was Sun Microsystems in the OpenOf-
fice.org community. When these actors exist, they take
the ultimate decisions for the project. Depending on
their leadership practices, they may be involved in
any important decision, or they just decide when the
project is unable to reach a consensus.
In the opposite side of the spectrum, actors are equal
with respect to the decision taking process. Decisions
are taken by consensus or by some voting mechanism
among the relevant actors. This is the case of Debian,
where developers recognized as such are the actors,
or of Apache, with several levels of elective decision
making.
Somewhere between these two extremes lie commu-
nities which use some kind of weighted voting, or
communities in which some actors have special rights
for some decisions. This could be the case of the
Apache community, where members of some commit-
tees, such as Project Management Committees, have
some specific responsibilities and privileges.
A specific case in this dimension is that of a company
initiating a project, and investing heavily in it, but
wanting to have a collaborating community around it.
Usually, this company has to keep a delicate balance
between holding some control of the community, to
ensure its leadership, and the alignment of the prod-
uct with its strategy, on one side, and letting other
contributors participate in the decision-making pro-
cess, on the other. The Eclipse community is a good
example, with IBM initiating the project, but success-
fully finding ways for others to have enough decision
power to participate.

• Policies: formal versus informal policies. FLOSS com-
munities usually develop certain policies over time.
When they are small and young, those policies are
informal, known by the actors because they developed
them. As time passes, some communities establish for-
mal policies, which may include formal institutions to
act as an umbrella for the project, but which may also
be detailed technical guidelines related to the develop-
ment process. Therefore, in one end of the spectrum
we have communities with no formal policies, and in
the other formal organizations, with bylaws and poli-
cies based on them. Detailed formal policies without
an umbrella organization are also possible, although
less common.
Companies usually prefer formal policies and gov-
ernance documents, which can be checked by their
law and engineering departments, and produce some
certainty. Therefore, it is usual that communities in-
volving companies are closer to the formal end than
to the other one. A recent example is the Open-
Stack Foundation, established only two years after the
project started, with a complete collection of formal
procedures and committees. But in many cases very
few formalities are enough. The WebKit community
is a good example of a project with very intense cor-

porate involvement but a really minimal set of formal
policies.
The reverse is also possible: some communities in
which companies are only in the background may have
very elaborate formal policies. Debian in an example:
they have an umbrella foundation, a constitution, and
many rules and formal procedures. But in general,
it is more usual that communities formed mainly by
relatively small teams of individuals working in their
own time are not that interested in these formalities.

• Actors: companies vs. individual developers as main
actors, and recognized source of authority in the
project. Although developers are in the end the mem-
bers of the community, companies may be recognized
as such (formally or informally), and have certain
obligations and privileges, such as electing members
of some boards, or vetoing certain decisions. In the
other end, other communities have special care in all
their members being individuals, and ask them to act
independently of the company for which they work.
Examples of the former case are OpenStack or Eclipse,
where companies are recognized in the policies (which
are formal in those cases), and some of them have cer-
tain privileges to elect members of some boards and
take certain decisions. GNOME, on the other hand,
recognizes only individuals as members of the commu-
nities, and has special provisions to prevent employees
of any company being a large part of some commit-
tees [5] (for example, no organization can hold more
than 40% of the board seats). WebKit is an example
in which although companies are clearly the drivers of
the project, only individual developers are considered
in technical discussions.

• Ownership: shared versus individual ownership of
assets. Who owns the results of the effort of the
community, and the resources at its disposal, is also
important. And among all the assets, the code is
probably the most prominent one. The ownership of
the code can be shared, if all of it is owned by the
community as a whole, or individual, if each of the
contributors own their own parts of the it1. The shared
ownership of the produced code is implemented usu-
ally by assigning it to an umbrella foundation, such as
GNOME or Apache do. In the case of individual own-
ership, owners may be individuals or companies. For
example, in the WebKit project companies own the
copyright of the code produced by their employees.
This is important for several reasons. First, only copy-
right owners can relicense the code. Therefore, those
owning the copyright have in their hands the future
licensing policies of the project. Second, only copy-
right owners can enforce the license. Therefore, only
they can defend the project against violations of the

1 We use “shared” and “individual” in this sense, and not in the legal
sense, in which a code licensed together by a number of individuals
is a shared code, while eg. foundations are “legal individuals”, which
own all the code.

176



Trends in Free, Libre, Open Source Software Communities ���

license. In the case of shared ownership, some form of
copyright transfer is needed, either from individuals
(in the case of those contributing in their own time)
or from companies.
A similar discussion could be done for other assets,
such as trademarks (if any) or computing resources.

These dimensions are not specific to companies, but ap-
ply to all kinds of FLOSS communities. However, in the
common case of corporate involvement, they help to un-
derstand how companies are dealt with.

There are other schemes targeted at specific aspects
of the community. For example, both the Open-By-Rule
Benchmark [10] and the Open Governance Index [9]
explore how open is a community governance. However,
to our knowledge, there is no other focusing on the rela-
tionship of companies with FLOSS communities.

4 Analysis of Some FLOSS Communities
In this section some FLOSS communities will be charac-
terized according to the previous schema. In some cases,
they are subcommunities of larger projects (such as GCC
in the GNU project), but they have identity by themselves.
The analysis has been done based on documentation and
discussions publicly available in the Internet, usually in
the project websites. When possible, formal documents
by the projects have been used.

4.1 GCC (GNU project)
GCC is one of the longest-living FLOSS projects, started
by Richard Stallman in 1985. In its current form, its
characteristics are:
• Lead: distributed. In its origins, the lead was cen-

tralized, with Richard Stallman as the leader. When
Cygnus became a large contributor, and started to
diverge from Stallman’s goals, the tension could not
be handled with this model, and the project forked.
Currently, after a remerge, the project recognizes the
historical importance of Richard Stallman, but takes
decisions in general by consensus.

• Policies: mostly informal. Since it is a GNU project, it
adheres to GNU policies, and those of their umbrella
foundation, the FSF. But these are only a few, and
for the rest, the only formal body is the GCC steering
committee, which was appointed as the official GNU
maintainer by the FSF. Since official maintainers have
a lot of freedom in GNU, and no further formal poli-
cies have been established, the project is mainly ruled
using informal procedures.

• Actors: individual. Although most developers con-
tribute to the project in their work time, companies
are not considered actors in the project. For example,
it is clearly stated that membership of the steering
committee is personal, and members do not represent
their companies.

• Ownership: shared. All code belongs to the FSF. Indi-
viduals and companies must sign a copyright transfer
for all non-trivial contributions.

GCC is developed currently mainly by companies and
research institutions, and has become fundamental for
many commercial products. The project has achieved
neutrality with respect to companies by putting individual
developers in the first place, while the shared ownership
has ensured that licensing terms are properly protected
when needed.

4.2 The Linux Kernel
Linux is one of the most well known FLOSS projects.
Since mid-1990s, companies have contributed most of
the code in it, either by putting new developers to work,
or by hiring kernel developers to work for them. The
characteristics of its community are:
• Lead: centralized. Since the beginning of the project

Linus Torvalds had the role of “benevolent dictator”.
Usually, his management style favors consensus, but
he takes decisions when needed. Although he has no
formal role, his decisions are respected.

• Policies: informal. Except for some coding standards
and contributing procedures, Linux has no formal
policies. Most processes are known only by practice,
and enforced by senior developers.

• Actors: individual. In general, decisions are taken
based on technical arguments. Developers do not rep-
resent their companies, and companies have no official
role in the project.

• Ownership: individual. Contributors maintain copy-
right over their work, although all of them use the
same license.
Probably Linux is the FLOSS project on which most

companies depend. In many cases, this dependence is
critical, since complete product lines are using it as the
base of their software. Therefore, this is also the com-
munity with most corporate interests, and one in which
tensions with and among companies are common. How-
ever, the management style of Linus Torvalds, together
with the general respect of the main developers, has been
enough to maintain the project together, and keeping
companies as heavy contributors.

4.3 OpenStack
Although still young, OpenStack is a quickly growing
FLOSS project, and it is becoming one of the largest ones.
It is also one of those with more corporate involvement,
and causing more corporate strategies to be dependent
on it. It can be characterized as:
• Lead: distributed. Although it was clearly led by

RackSpace during its early life, it has quickly evolved
towards a distributed leadership, with several compa-
nies (Red Hat, IBM, HP and others) deeply involved
in it, and a decentralized decision structure.

• Policies: formal. After only two years, the OpenStack
Foundation has been established. With the foundation
and its bylaws, several formal governance documents,
procedures and bodies have also been defined.

177



Special Issue

• Actors: companies and individual. The OpenStack
Foundation bylaws recognize not only individual de-
velopers, but also companies as members of the
community. In fact there are some memberships (plat-
inum and gold), which are usually companies, who
have special privileges. From this point of view, al-
though individuals also have their rights and influence,
companies seem to have access to more control of the
project.

• Ownership: shared. All contributors have to transfer
copyright to the OpenStack Foundation.
OpenStack is close to a “community of companies”.

Although individual developers also participate in the
decision-making procedures, companies have special
roles available, which let them influence the project.
Clearly, the community is oriented towards corporate
participation, and this recognition of influence tries to
make relationships between companies more transparent.

4.4 WebKit
The origins of WebKit are in two KDE projects, KHTML
and KJS, which were forked by Apple for its Safari
browser. Later, Apple decided to publish as FLOSS some
other components of Safari, and the WebKit project was
born in 2005. Later, other companies such as Google,
Nokia, RIM, Adobe and Samsung joined the project. Cur-
rently, its characteristics are:
• Lead: distributed. Although the project was initially

driven by Apple, now many other companies, headed
by Google, take part in decisions.

• Policies: informal. There are only a few documents
describing formal policies for WebKit, and those that
exist are mostly technical. There are no formal com-
mittees or voting procedures.

• Actors: individual. Although companies are the driving
force behind the projects, they have no formal agree-
ments, and only individual developers are recognize
by their peers to take decisions.

• Ownership: individual. Contributors hold the copy-
right to their contributions, usually as companies.
WebKit is an extreme case of a very critical project, on

which the strategy of important product lines from sev-
eral companies rely. However, it works as a community
of individuals. Maybe this is the reason why it can work,
with such as deep involvement of fiercely competing com-
panies: letting developers discuss without representing
companies help to keep decisions technical and neutral.
Of course companies are influencing the project, but this
influence is usually in specific areas (ports) that don’t
affect competitors. Common decisions affecting all com-
panies are usually taken by consensus.

5 Conclusions
Modern, successful FLOSS communities usually rely at
least in part on contributions made by companies. It
is also increasingly usual that companies have strong

interests in FLOSS projects. Therefore, the relationship
between companies and FLOSS communities has become
a very important issue for the IT industry.

However, this relationship is not easy. Involvement
of companies causes tensions both between companies
and communities, and between companies themselves.
These tensions are reduced with different community ar-
chitectures. In this paper we propose four dimensions to
characterize those community architectures. This char-
acterization allows for a more detailed understanding of
how companies integrate in communities, and shows how
diverse are the mechanisms for this integration.

Looking at FLOSS communities from an historical
point of view, many of them adapted to increasing com-
pany participation over time. Well known projects such
as GNU, Linux, Apache, GNOME or KDE started as
volunteer communities formed by individuals who were
working in their own time. But as time passed, when
the project showed its value, companies became involved
either by hiring developers with experience in the project,
or by allocating some of their own developers to it. But
not all projects reacted to this phenomenon in the same
way, leading to the variety of community architectures
that can be found today.

During the late 1990s and 2000s, communities ap-
peared which were designed from their start to allow
for strong corporate contributions. In some cases, such
as OpenOffice.org, WebKit or Eclipse, a company pub-
lished some product they owned as free software. In some
others, such as OpenStack or GENIVI, a group of compa-
nies decided to collaborate early in the life of the project,
or even gave birth to it. Although these scenarios are
new, they are using models already found in previous
cases, and the same dimensions can be used to charac-
terize their community architecture.

Many details of how all these communities behave are
subtle, but very important for the companies participat-
ing in them. This is why it is important to have detailed
information about how they are actually working, and
how they are enforcing the formal or informal proced-
ures that they have established. Knowing in detail some
of their characteristics, such as how neutral the are to
competing companies, or how much influence specific
companies have, is needed as well. Fortunately, these
communities usually work in the open, which makes it
much more easy to find the data to get that knowledge.

However, the proposed classification has some draw-
backs, which future work should address. Among them,
the following can be mentioned:
• The four dimensions are not completely orthogonal.

For example, Policies and Ownership are interrelated,
since in most cases decisions about ownership comes
from policies. Some interleaving can also be observed
between Actors and Lead.

• Some of the dimensions could be split. For ex-
ample, Policies refer both to technical policies and
legal policies. The former are usually decided by the

178



Trends in Free, Libre, Open Source Software Communities ���

developers themselves, with little intervention by com-
panies, while the latter are more interesting for the
legal departments in participating companies. There-
fore, it could make sense to have them as separate.

• Some methodology is needed for the characteriza-
tion. For this paper we have used review of public
documents and some own judgment to decide on the
characterization of the case studies. A more detailed
methodology should be defined for making it more
predictable and useful.

• Each of the dimensions identified shows how commu-
nities have dealt with different tensions. For example,
Actors show how the project decided to put more
power in the direct hands of companies, or preferred
a more company-neutral project by empowering in-
dividual developers. However, it is not clear to which
extent these decisions worked, or if they had an impact
on the evolution of the projects over time. It would
be very interesting to further study these impacts, and
the influence on the development process, if any.
The dimensions cannot in general be read as degrees

of “company-friendliness”, although some of them show
areas which are more company friendly. For example,
as it was mentioned, companies are usually more com-
fortable with clear written rules, specially in the areas of
decision-making and participation. This would mean that
communities more formally structured would be more
friendly to companies. However, there are clear counter-
examples, with the Linux kernel and WebKit being cases
in which there is almost no legally-binding documents,
despite of which they had a great success in attracting
companies to collaborate. The same may be said, for ex-
ample, about recognition of companies as actors, which
usually would make them more interested in the commu-
nity, but could also make it very difficult for competing
companies to deal with the tensions of making decisions
at the corporate level in collaboration with their com-
petitors.

To us, it is not clear which forces lead a certain com-
munity to move to a certain place in the four described
dimensions. In some cases it could be the very history of
the project, while in others it is a deliberate decision of the
communities themselves, or of the companies promoting
them. Further research is needed to decide where there
are areas in the dimensions which are better or worst for
dealing with certain tensions, or which are more effective
for attracting, and sustaining, corporate collaboration.

In summary, the four dimensions we propose can be
considered as a first step in the direction of new method-
ologies for comparing and benchmarking how FLOSS
communities are dealing with company participation.

Acknowledgements

The work leading to this paper has been funded in
part by the European Commission under project ALERT
(FP7-IST-25809), and by the Spanish Government under

project SobreSale (TIN2011-28110). We thank the re-
viewers for their help in improving it.

References

[1] Andersen-Gott, M., Ghinea, G., and Bygstad, B. Why do commer-
cial companies contribute to open source software? International
Journal of Information Management 32, 2 (2012), 106–117.

[2] Capra, E., Francalanci, C., Merlo, F., and Rossi-Lamastra, C. Firms
involvement in open source projects: A trade-off between software
structural quality and popularity. Journal of Systems and Software
84, 1 (2011), 144–161.

[3] Dahlander, L. and Magnusson, M. G. Relationships between open
source software companies and communities: Observations from
nordic firms. Research Policy 34, 4 (2005), 481–493.

[4] Fitzgerald, B. The transformation of open source software. MIS
Quarterly 30, 3 (Sept. 2006), 587–598. Published by Management
Information Systems Research Center, University of Minnesota.

[5] Foundation, G. Bylaws of GNOME Foundation as of April 5, 2002,
April 2002.

[6] Foundation, T. F. S. Gcc steering committee. http://gcc.gnu.org/
steering.html, retrieved on July 8th 2013.

[7] Ghosh, R. A., Glott, R., Krieger, B., and Robles, G. Free/libre and
open source software: Survey and study. deliverable d18: Final re-
port. Tech. rep., International Institute of Infonomics, University
of Maastricht, June 2002. http://flossproject.org/report/, retrieved
on July 8th 2013.

[8] Jullien, N. and Zimmermann, J.-B. Floss in an industrial eco-
nomics perspective. Revue d’Economie Industrielle, 136 (2011),
1–27.

[9] Laffan, L. A new way of measuring Openness, from An-
droid to WebKit: The Open Governance Index. http://www.
visionmobile.com/blog/2011/07/the-open-governance-index-
measuring-openness-from-android-to-webkit, retrieved on July
8th 2013.

[10] Phipps, S. The Open-By-Rule Benchmark. http://webmink.com/
essays/open-by-rule/, retrieved on July 8th 2013.

[11] Riehle, D. The economic case for open source foundations. Com-
puter 43, 1 (2010), 86–90.

[12] Riehle, D. and Berschneider, S. A model of open source developer
foundations. In Proceedings of the 8th International Conference on
Open Source Systems (OSS 2012) (2012), Springer Verlag, pp. 15–
28.

[13] Scheifler, R. W. and Gettys, J. The X window system. ACM Trans-
actions on Graphics 5, 2 (Apr. 1986), 79–109.

[14] Stallman, R. New unix implementation: the initial announcement
of the GNU project, Sept. 1983. http://www.gnu.org/gnu/initial-
announcement.html, retrieved on July 8th 2013.

[15] Stam, W. When does community participation enhance the per-
formance of open source software companies? Research Policy 38,
8 (2009), 1288–1299.

[16] van der Linden, F., Lundell, B., and Marttiin, P. Commodification
of industrial software: A case for open source. Software, IEEE 26,
4 (2009), 77–83.

[17] West, J. and Gallagher, S. Challenges of open innovation: the
paradox of firm investment in open-source software. R&D Man-
agement 36, 3 (2006), 319–331.

[18] West, J. and O’Mahoney, S. The role of participation architectures
in growing sponsored open source communities. Industry and
Innovation 15, 2 (2008).

Received: April 1, 2013

179

http://gcc.gnu.org/steering.html
http://gcc.gnu.org/steering.html
http://flossproject.org/report/
http://www.visionmobile.com/blog/2011/07/the-open-governance-index-measuring-openness-from-android-to-webkit
http://www.visionmobile.com/blog/2011/07/the-open-governance-index-measuring-openness-from-android-to-webkit
http://www.visionmobile.com/blog/2011/07/the-open-governance-index-measuring-openness-from-android-to-webkit
http://webmink.com/essays/open-by-rule/
http://webmink.com/essays/open-by-rule/
http://www.gnu.org/gnu/initial-announcement.html
http://www.gnu.org/gnu/initial-announcement.html


Special Issue

Dr. Jesus M. Gonzalez-Barahona teaches and researches at Universidad
Rey Juan Carlos, and collaborates with Bitergia, a software development
analytics company. He is interested in understanding free/open source
software development, in finding ways to improve its efficiency, and in
sharing this knowledge.

Address: Universidad Rey Juan Carlos, Spain, e-mail: jgb@gsyc.urjc.es

Dr. Gregorio Robles is associate professor at the Universidad Rey Juan
Carlos. His research interests involve software engineering in free/libre
open source software, mining software repositories and technology en-
hanced learning.

Address: Universidad Rey Juan Carlos, Spain, e-mail: grex@gsyc.urjc.es

180

mailto:jgb@gsyc.urjc.es
mailto:grex@gsyc.urjc.es

