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An Attention-based System Approach
for Scene Analysis in Driver Assistance
Ein aufmerksamkeitsbasierter Systemansatz zur Szenenanalyse in der Fahrerassistenz

Thomas Michalke, Robert Kastner, Jürgen Adamy, Sven Bone, Falko Waibel, Marcus Kleinehagenbrock, Jens Gayko,
Alexander Gepperth, Jannik Fritsch, and Christian Goerick

Research on computer vision systems for driver assistance resulted in a variety of isolated
approaches mainly performing very specialized tasks like, e. g., lane keeping or traffic sign
detection. However, for a full understanding of generic traffic situations, integrated and flex-
ible approaches are needed. We here present a highly integrated vision architecture for an
advanced driver assistance system inspired by human cognitive principles. The system uses
an attention system as the flexible and generic front-end for all visual processing, allowing
a task-specific scene decomposition and search for known objects (based on a short term
memory) as well as generic object classes (based on a long term memory). Knowledge fusion,
e. g., between an internal 3D representation and a reliable road detection module improves
the system performance. The system heavily relies on top-down links to modulate lower
processing levels, resulting in a high system robustness.

Bildbasierte Fahrerassistenzsysteme verfügen in der Regel über starre Funktionen, die sehr
spezialisierte Aufgaben, wie Spurhaltung oder Verkehrszeichenerkennung, in fest defi-
nierten Situationen bearbeiten. Fahrerassistenzsysteme, die in einer großen Bandbreite
von möglichen Verkehrssituationen robust und sinnvoll reagieren sollen, benötigen je-
doch integrierte und flexiblere Ansätze. In der vorliegenden Arbeit wird ein integriertes
Fahrerassistenzsystem vorgestellt, dessen Bildverarbeitungssubsystem durch Signalverar-
beitungsprozesse im menschlichen Gehirn motiviert ist. Das Subsystem verwendet ein bio-
logisch motiviertes Aufmerksamkeitsmodul als flexibles und generisches Front-end für alle
Bildverarbeitungsprozesse. Das Aufmerksamkeitsmodul erlaubt eine aufgabenabhängige
Szenenzerlegung, das Wiederfinden von bereits erkannten Objekten aus dem Kurzzeit-
speicher des Systems sowie die generische Detektion von beliebigen Objektklassen über
den Langzeitspeicher des Systems. Die Fusion von Informationen verschiedener Teilmodu-
le, z. B. zwischen der internen 3D-Umfeldrepräsentation und einem Modul zur Detektion
von unmarkierten Straßenflächen, erhöht die Güte des Gesamtsystems. Der Ansatz ver-
wendet rekurrente Signalwege (so genannte top-down Verbindungen), welche Module auf
tieferen Systemstufen online dynamisch parametrisieren, um die Robustheit und Reaktions-
geschwindigkeit des Gesamtsystems zu verbessern.

Keywords: Attention, human-like signal processing, task-dependent scene interpretation

Schlagwörter: Aufmerksamkeit, menschliche Signalverarbeitung, aufgabenabhängige
Szeneninterpretation

1 Introduction

The goal of realizing Advanced Driver Assistance Systems
(ADAS) can be approached from two directions: either
searching for the best engineering solution or taking the

human as a role model. Today’s ADAS are engineered
for supporting the driver in clearly defined traffic situa-
tions like, e. g., keeping the distance to the forward vehicle.
While it may be argued that the quality of an engineered
system in terms of isolated aspects, e. g., object detection
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or tracking, is often sound, the solutions lack necessary
flexibility. Small changes in the task and/or environment
often lead to the necessity of redesigning the whole sys-
tem in order to add new features and modules, as well
as adapting how they are linked. In contrast, biological
vision systems are highly flexible and are capable of adapt-
ing to severe changes in the task and/or the environment.
Hence, one of our design goals on our way to achieve an
“all-situation” ADAS is to implement a biologically mo-
tivated, cognitive vision system as perceptual front-end of
an ADAS, which can handle the wide variety of situa-
tions typically encountered when driving a car. Note that
only if an ADAS vision system attends to the relevant sur-
rounding traffic and obstacles, it will be fast enough to
assist the driver in real time during all dangerous situa-
tions.

One important principle in cognitive systems is the exist-
ence of top-down links in the system, i. e., informational
links from stages of higher to lower knowledge integra-
tion. Top-down links are believed to be a prerequisite for
fast-adapting biological systems living in changing envi-
ronments (see, e. g., [21]). Consequently, a cognitive vision
system should realize a task-dependent perception using
top-down links for modulating and parameterizing submod-
ules, that is operating successfully without being explic-
itly designed for specific tasks of a scenario. Using this
paradigm, the same scene can be decomposed by the vision
system in different ways depending on the current task.

In order to realize such a cognitive vision system we have
developed a robust attention sub-system [8] that can be
modulated in a task-oriented way, i. e., based on the current
context. The attention sub-system is a central component
of the overall vision system realizing temporal organization
of different visual processes. Its architecture is inspired by
findings of human visual system research (see, e. g., [13])
and organizes the different functionalities in a similar way.
In a first proof of concept, we have shown that a purely
saliency-based attention generation can assist the driver
during a critical situation in a construction site by perform-
ing autonomous braking [12].

While our earlier work concentrated mainly on saliency-
based attention [8; 12], this contribution describes the ad-
ditional incorporation of environmental 3D representations
and static domain specific tasks, in order to use context
information (“where is the road”) to guide attention and,
therefore, analysis of the overall scene. For all acquired
information our enhanced system builds up internal 3D rep-
resentations that support scene analysis and at the same
time serve for behavior generation. Using a metric repre-
sentation of the road area in combination with detected
traffic objects, the system can guide its processing on rele-
vant objects in the context of the current road area. For
example, this allows to perform warning and emergency
braking if a parked car is detected on our lane and dur-
ing its by-passing the pro-actively adapted attention detects
oncoming traffic on the road.

2 Related work

Recently, the topic of researching intelligent cars is gaining
increasing interest as documented by the DARPA Urban
Challenge [1] and the European Information Society 2010
Intelligent Car Initiative [2] as well as several European
Projects like, e. g., Safespot or PReVENT.

Regarding vision systems developed for ADAS, there have
been few attempts to incorporate aspects of the human
visual system into complete systems. In terms of com-
plete vision systems, one of the most prominent examples
is a system developed in the group of E. Dickmanns [3].
It uses several active cameras mimicking the active na-
ture of gaze control in the human visual system. However,
the processing framework is not closely related to the
human visual system. Without a tunable attention system
and with top-down aspects that are limited to a number
of object-specific features for classification, no dynamic
preselection of image regions is performed. A more biolog-
ically inspired approach has been presented by Färber [4].
This publication as well as the recently started German
Transregional Collaborative Research Centre ‘Cognitive
Automobiles’ [5] address mainly human inspired behavior
planning whereas our work currently focuses more on task-
dependent perception aspects.

More specifically, in the center of our work is a computa-
tional model of the human attention system that determines
the how and when of scene decomposition and interpre-
tation. Attention is a principle that was found to play an
important role in the human vision processing as a me-
diator between the world and our actual perception [6].
Somewhat simplified, the attention map shows high activa-
tion at image positions that are visually conspicuous, i. e.,
that pop out (bottom-up attention) or that are important
for the current system task (top-down attention). Derived
from the first computational attention model [17], which
showed only bottom-up aspects, some more recent models
have been developed that also incorporate top-down in-
formation (see, e. g., [7; 8; 18; 19]). Please refer to [8] for
a comprehensive comparison between the state-of-the-art
attention systems [7; 18] and our computational attention
model.

Recently, some authors stress the role of incorporat-
ing context into the attention-based scene analysis. For
example [20], proposes a combination of a bottom-up
saliency map and a top-down context driven approach. The
top-down path uses spatial statistics, which are learned dur-
ing an offline learning phase, to modulate the bottom-up
saliency map. This is different to the system described here,
where no offline spatial prior learning phase is required. In
our online system context is incorporated in the form of
top-down weights that are modified at run time and road
information, as will be described in Sects. 3.1 and 3.3.

To our knowledge in the car domain no task-dependent tun-
able vision system that mimics human attention processes
exist.
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3 System

The proposed overall architecture concept for a robust
attention-based scene analysis is depicted in Fig. 1. It con-
sists of four major parts: the “what” pathway, the “where”
pathway, a part executing static domain specific tasks, and
the behavior generation. The distinction between “what”
and “where” processing path is somewhat similar to the
human visual system where the dorsal and ventral path-
way are typically associated with these two functions (see,
e. g., [13]). Among other things, the “where” pathway in
the human brain is believed to perform the localization
and tracking of a small number of objects. In contrast, the
“what” pathway considers the detailed analysis of a single
spot in the image (see theories of spatial attention, e. g.,
spotlight theory [13]). Nevertheless, an ADAS also requires
specific information of the road and its shape, generated by
the static domain specific part.

3.1 The “what” pathway

Starting in the “what” pathway the 400×300 color input
image is analyzed by calculating the attention map Stotal .
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Figure 1: System structure allowing attention based scene analysis.
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Figure 2: (a) Visualization of the object training
region (RoI) for TD weight calculation against the
background (rest), (b) Prediction of object ego mo-
tion (dots: Kalman tracked object position, squares:
ego motion predicted object position, dashed line:
accumulated object ego motion).

The attention map Stotal results from a weighted linear
combination of N = 130 biologically inspired input fea-
ture maps Fi (see Eq. (1)). More specifically, we filter the
image using, among others Difference of Gaussian (DoG)
and Gabor filter kernels that model the characteristics of
neural receptive fields measured in the mammal brain. Fur-
thermore, we use the RGBY color space [7] as attention
feature that models the processing of photoreceptors on the
retina. All features are computed on 5 scales relying on
the well-known principle of image pyramids in order to al-
low computationally efficient filtering. All feature maps are
postprocessed non-linearly in order to suppress noise and
boost conspicuous or prominent scene parts (see [11] for
a detailed description of these nonlinear processing steps).

The top-down (TD) attention can be tuned (i. e., parameter-
ized) task-dependently to search for specific objects. This
is done by applying a TD weight set wTD

i that is computed
and adapted online, based on Eq. (2), where the thresh-
old φ = Kconj Max(Fi) with Kconj = (0, 1] (see Fig. 2a for
a visualization). The weights wTD

i dynamically boost fea-
ture maps that are important for our current task/object
class in focus and suppress the rest. The bottom-up (BU)
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weights wBU
i are set object-unspecifically in order to de-

tect unexpected potentially dangerous scene elements. The
parameter λ ∈ [0, 1] (see Eq. (1)) determines the relative
importance of TD and BU search in the current system
state. For more details on the attention system please refer
to [8]. It is important to note that the TD weights (calcu-
lated using Eq. (2)) are dependent on the features present in
the background (rest) of the current image, since the back-
ground information is used to differentiate the searched
object from the rest of the image [7]. Because of this,
it is not sufficient to store the TD weight sets wTD

i of
different object classes directly and switch between them
during online processing. Instead, all feature maps of ob-
jects Fi,RoI are stored. To compensate the dependency from
background the stored object feature maps are fused with
the feature maps of the current image before calculating the
TD weights. In plain words, the system takes the current
scene characteristics (i. e., its features) into account in order
to determine the optimal TD weight set that shows a max-
imum performance in the current frame. Put differently, the
described separability approach includes the current scene
context on a sensory level.

Stotal = λ

N∑
i=1

wTD
i Fi + (1 −λ)

N∑
i=1

wBU
i Fi (1)

wTD
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mRoI,i

mrest,i
∀mRoI,i

mrest,i
≥ 1

−mrest,i

mRoI,i
∀mRoI,i

mrest,i
< 1

(2)

with m{RoI, rest},i =
∑

∀x,y∈{RoI, rest}
Fi(x, y)

size region {RoI, rest}

and Fi(x, y) =
{

Fi(x, y) ∀(x, y), Fi(x, y) ≥ φ

0 else

Now, we detect the maximum on the current attention map
Stotal and get the focus of attention (FoA) by generic re-
gion growing based segmentation on Stotal . In the following,
only the FoA is classified using a state-of-the-art object
classifier that is based on neural nets [9]. This procedure
(attention generation, FoA segmentation and classification)
models the saccadic eye movements of mammals, where
a complex scene is scanned and decomposed by sequential
focusing of objects in the central 2–3◦ foveal retina area of
the visual field. The system uses a time integrating mech-
anism to decide on the object class, in order to improve
the reliability of the classifier decision. More specifically,
all detected objects are tracked and reclassified in the fol-
lowing frames. On each frame a majority decision (voting)
on the current and all stored classifier results decides on the
object class.

The proposed system incorporates the biologically moti-
vated concept of TD-links. Based on these links informa-
tion on higher levels of knowledge integration modulate

lower levels of knowledge integration. This brain-like con-
cept improves robustness, increases the relevance of input
data for higher system levels, and accelerates the system re-
action (see evaluation results in Sect. 4). Our system uses
such links for the task-specific modulation of the TD at-
tention (i. e., by adapting system parameters online, as,
e. g., the previously described TD-weights wTD

i ) and for
suppressing the detected road (see Sect. 3.3) as context in-
formation in all feature maps Fi before fusing them in the
overall saliency Stotal . Additionally, TD-links are used for
the modulation of the attention based on detected car-like
holes in the found drivable road segment (see “where” path
in Fig. 1). Such car-like holes are detected by searching for
car-sized openings in the road memory, which is part of
the 3D representation. Initially, the road segment is trans-
formed to the metric bird’s eye view (for an example see
Fig. 4d) by inverse perspective mapping for the fusion with
the 3D representation. In a nutshell, the bird’s eye view
is the representation of the scene as viewed from above,
computed by transforming a monocular camera image tak-
ing intrinsic and extrinsic camera parameters into account
(refer to [11] for more details).

3.2 The “where” pathway

The next step is the fusion between the newly detected ob-
ject and the already known ones. The result will be further
processed in the ‘where’ pathway and stored in the short
term memory (STM). The objects in the STM are then sup-
pressed in the current calculated attention map to enable the
system to focus on new objects. The principle of suppress-
ing known objects was proved to exist in the human vision
system as well and is termed inhibition of return (IoR),
refer to [10] for details.

All known objects are tracked using a 2D tracker that is
based on normalized cross correlation (NCC). The tracker
gets its anchor (i. e., the 2D pixel position where the corre-
lation based object search on the new image will be started)
from a Kalman filter based prediction on the 3D repre-
sentation taking the ego motion of the camera vehicle and
tracked object into account. The predicted 3D position is
transformed to 2D pixel positions (x,y) using a pin hole
camera model that contains all intrinsic and extrinsic cam-
era parameters (in detail these are the 3 camera angles θX ,
θY , and θZ , the 3 translational camera offsets t1, t2, t3, the
horizontal and vertical principal point cu and cv, as well as
the horizontal and vertical focal length fu and fv), refer to
Eqs. (3) and (4).

In case the NCC tracker is able to re-detect the object in
2D pixel coordinates, the 3D position in the representa-
tion is updated using 4 different depth cues for the 2D
pixel (x, y) to 3D world (Xobj, Yobj, Zobj) transformation.
More specifically, our system uses stereo data, radar, depth
from object knowledge, and depth from bird’s eye view
(see Fig. 4 and [11; 12] for more details on these cues).
The available depth cues are combined using the biologi-
cally motivated principle of weak fusion (see [16]). Weak
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fusion combines the depth sources based on their reliability
(i. e., sensor variances). The fusion is realized using an Ex-
tended Kalman Filter (EKF) that combines the cues based
on dynamically adapted weights depending on the static
predefined sensor variances and the available depth sources,
as not every cue is available in each time step. The EKF
uses a second order process model for its prediction step
that models the relevant kinematics of the car (velocity and
acceleration).

x = − fu
r11(X-t1)+ r12(Y -t2)+ r13(Z-t3)

r31(X-t1)+ r32(Y -t2)+ r33(Z-t3)
+ cu (3)

y = − fv
r21(X-t1)+ r22(Y -t2)+ r23(Z-t3)

r31(X-t1)+ r32(Y -t2)+ r33(Z-t3)
+ cv (4)

with

r11 = cos(θZ)cos(θY )

r12 = −sin(θZ)cos(θX)+ cos(θZ)sin(θY )sin(θX)

r13 = sin(θZ)sin(θX)+ cos(θZ)sin(θY )cos(θX)

r21 = sin(θZ)cos(θY )

r22 = cos(θZ)cos(θX)+ sin(θZ)sin(θY )sin(θX)

r23 = −cos(θZ)sin(θX)+ sin(θZ)sin(θY )cos(θX)

r31 = −sin(θY )

r32 = cos(θY )sin(θX)

r33 = cos(θY )cos(θX)

Objects whose updated position leave the represented sur-
rounding scene or whose Kalman variances are too high
(i. e., they received no new measurements for several
frames) are deleted from the STM. The concept of ap-
pearance based 2D tracking (analysis of motion in 2D)
supported by a 3D representation (interpretation of motion
in 3D) was found in humans as well [13]. From a technical
point of view, the advantage of this approach is the sim-
ple correction of the ego motion relying on the internal 3D
representation. The vehicle ego motion (translations ∆Xe

and ∆Ze, as well as the change of the yaw angle ∆θX)
is determined based on a standard single track model and
compensated in the Kalman prediction step (see Eqs. (5)
and (6) for the state vector E and process model A). There-
fore, we do not need a computationally intensive optical
flow based prediction. The main reason for the strong ob-
ject motion in the 2D image is compensated by correcting
the ego motion based position change of objects, which
eases the tracking task considerably.

E = [
Zobj Xobj vZ,obj vX,obj

]
(5)

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos(∆θX) sin(∆θX) T 0 −∆Ze

−sin(∆θX) cos(∆θX) T 0 −∆Xe

0 0 cos(∆θX) sin(∆θX) 0

0 0 −sin(∆θX) cos(∆θX) 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
(6)

A comparison between the current Kalman fused 3D object
position Pt = [Zobj, Xobj] and the predicted 3D object pos-
ition P′

t decides, based on the state variances σ2
P′

t
and σ2

Pt
,

if the tracked object is static or dynamic (see Fig. 2b). P′
t is

calculated by an ego motion based prediction starting from
the stored Kalman fused value Pt−4. For the comparison,
βth is used as a threshold on the measure β(Pt , P′

t ) de-
fined in Eq. (7). The calculated measure is motivated from
a statistical parameter test that checks for the equality of
two distributions. It showed good performance on various
test streams. If β(Pt, P′

t ) is bigger than βth (i. e., the ob-
ject is detected to be dynamic) the Kalman filter receives
the object ego motion vZ,obj �= 0 and vX,obj �= 0 that is de-
rived from the integrated object position change Dobj,egot as
measurement.

β(Pt, P′
t ) =

∣∣∣∣∣∣
Pt − P′

t√
σ2

Pt
+σ2

P′
t

∣∣∣∣∣∣ (7)

From a representational point of view, the “where” path-
way of our system consists on the one hand of the STM,
that stores all properties of sensed objects in a 3D repre-
sentation and on the other hand of a long term memory
(LTM) that stores the generic properties of object classes.
The LTM is filled offline with typical patches and cor-
responding feature maps Fi of specific object classes. For
evaluation purposes we use cars, reflection posts, and signal
boards as LTM content, but our system can detect any other
object types as well, if the attention and the object recog-
nizer are trained accordingly. In the default state the system
searches for the generic LTM object class car. This is done
by calculating the geometric mean of all TD weight sets
of the LTM objects that were calculated based on Eq. (2).
These weights tune the TD attention in the “what” pathway.

As described above, in case the tracker has re-detected
the object in the current frame the 3D representation is
updated. In case the tracker looses the object the system
searches for the lost STM object in the following frames.
This is realized by calculating a TD weight set that is spe-
cific to the lost STM object using Eq. (2). The object Of

found by the STM search is then compared to the searched
object Os by means of the distance measure δ(Of , Os) that
is based on the Bhattacharya coefficient (a measure for de-
termining the similarity between two histograms) calculated
on the histograms of all N object feature maps H

Of
i and

H Os
i (see Eq. (8)).

δ(Of , Os) =
N∑

i=1

√
1 −γ(H

Of
i , H Os

i ) (8)

γ
(

H
Of
i , H Os

i

)
=

∑
∀x,y

√
H

Of
i (x, y)H Os

i (x, y)

The LTM and STM object search run in parallel as indi-
cated visually in Fig. 1. It is important to note that our
system is not restricted to the detection and tracking of
cars, reflection posts, and signal boards. By using different
LTM object patches and by offline training of our object
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classifier in combination with the generic concept of on-
line tunable TD attention our system is highly dynamic and
flexible.

3.3 Static domain specific tasks

The third major part of our system handles the domain
specific tasks of marked and unmarked road detection.
The marked road detection is based on a standard Hough
transform whose input signal is generated by our generic
attention system. The scale-selective TD attention weight
set used here boosts white and yellow structures on a darker
background (so called on-off contrast), to which the bio-
logical motivated DoG filter (see Sect. 3.1) is selective.
The yellow on-off structures are weighted stronger than the
white to allow the handling of lane markings in construc-
tion sites.

The state-of-the-art unmarked road detection evaluates
a street training region in front of the car and two non-
street training regions at the side of the road. The features
(stereo, edge density, color hue, color saturation) in the
street training region are used to detect the drivable road
based on dynamic probability distributions for all cues. Ad-
ditionally, region growing that starts at the street training
region assures a crisp distinction between the road and the
sidewalk. The region growing uses dynamic self-adaptive
thresholds that are derived from the feature characteristics
in the street training as compared to the non-street training
region. No fixed parameters for detecting the road are used,
which makes the system adaptive to its environment and
hence robust. A temporal integration procedure between
the current and past detected road segments based on the
bird’s eye view is used to increase the completeness of the
detected road by decreasing the number of false negative
road pixels. More specifically, based on the measured ego-
motion of the car the road segments detected in the past are
shifted and fused with the currently detected road segments.
Refer to [11] for a comprehensive description of the tempo-
ral integration procedure. In the final step, a fusion between
the marked and unmarked detected road segments is used to
derive the present drivable lanes.

3.4 Behavior control

The system can interact with the world via a behavior con-
trol module. Currently our ADAS implementation uses a 3
phase danger handling scheme depending on the distance
and relative speed of a recognized obstacle. When an ob-
stacle is detected in front at a rapidly decreasing distance,
a visual and acoustic warning is issued and the brakes are
prepared. In the second phase the brakes are engaged with
a deceleration of 0.25 g followed by hard braking of 0.6 g
in the third phase (refer to [12] for details on the behavior
control). Other behaviors, like trajectory planning and ac-
tive steering, as well as the detection of possible collisions
and their active avoidance based on predictions on intern-
al 3D representations are possible and planned in the near
future.

4 Results

In Sect. 4.1 we will evaluate different individual system
modules that play an important role in our cognitive ADAS
architecture. In Sect. 4.2 the overall system performance
will be assessed based on a scenario showing a stationary
car in a construction site.

4.1 Evaluation of system modules

Evaluation of attention subsystem: In order to evaluate
the generic nature of the attention based TD search, we
used cars and reflection posts (useful for unmarked road de-
tection as done, e. g., in [14]) as LTM search objects. The
results are depicted in Table 1, showing that incorporating
TD information improves the search performance consid-
erably. Please note that when changing the LTM search
object, besides an exchange of the LTM image patches and
an appropriate training of the object classifier no modifica-
tion in the system structure is required. For evaluation the
measures average FoA hit number (Hit) and average detec-
tion rate (DRate) were calculated. While DRate is the ratio
of the number of found task-relevant objects to the overall
number of task-relevant objects, Hit states that the ob-
ject was found on average with the Hit’th generated FoA.
Hence, the smaller Hit is, the earlier an object is detected
(see [7] for a more detailed definition of these measures).
The choice of training images has only small influence
on the search performance as the comparable results for
different sets of training images show (see Table 1). The
evaluation shows the highest hit numbers and detection
rates for pure TD search (λ = 1). However, as will be dis-
cussed in Sect. 4.2 a combination of BU and TD influence
in the attention system is recommended.

The presented results support the generic nature of the TD
tunable attention subsystem during object search. More-
over, we see the attention system as a common tunable
front-end for the various other system tasks, e. g., as lane

Table 1: Search performance for BU and TD based LTM object search
for cars and reflection posts for 2 different training sets each.

# Test # Trai- Hit (DRate)
Target images ning im pure BU pure TD

(objects) (λ = 0) (λ = 1)

Cars 54 1.53
(self test) (100%)

T.set 1 54 3 3.06 1.82

(58) (56.9%) (96.6%)

T.set 2 3 1.74
(93.1%)

Reflect. 56 1.85
posts (self test) (66.3%)

T.set 1 56 6 2.97 2.25
(113) (33.6%) (52.2%)

T.set 2 7 2.36
(52.2%)
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marking detection (as described in Sect. 3.3). Following
this concept, the task-specific tunable attention system can
be used for scene decomposition and analysis, as it is
shown exemplarily on two typical German highway scenes
in Fig. 3.

Evaluation of classifier performance: For a proof of con-
cept, we trained the classifier to distinguish cars from non-cars
(clutter). A set of image segments generated by our vision
system during online operation was used for training. It
contains 11 000 square image patches of size 64×64 pixels,
and was divided into the classes ‘car’ (2952 patches), ‘sig-
nal boards’ (2408 patches) and ‘clutter’ (5803 patches) by

(a) (b) (c)

(d) (e) (f)

Figure 3: Attention based scene decomposition: (a) Highway scene, (b) TD attention tuned to lane markings, (c) TD attention tuned to cars, (d) Con-
struction site (e) TD attention tuned to signal boards (f) TD attention tuned to cars.
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Figure 4: (a) Depth from Stereo (calculated as a median over the object region), (b) Depth from radar, (c) Depth from object knowledge (for all
objects detected as cars), (d) Depth from bird’s eye view (using threshold based detection of intensity changes on the road).

visual inspection. Car segments contain complete back-
views of cars (at any position) which must be at least half
as large as the patch in both dimensions. At equal false pos-
itive and true negative rates, for cars an error of 4.7% and
for signal boards an error of 9.7% was obtained on equally
large test sets. The performance of the trained classifier is
shown in Fig. 7a in form of a ROC curve that visualizes
the trade-off between false positive (clutter recognized as
objects) and false negative (objects recognized as clutter)
detections when varying the classification thresholds. The
ROC was generated using 5-fold cross validation. Further-
more, the quality of the classification is enhanced by the
voting process described in Sect. 3.1.
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Qualitative evaluation of depth cues: For a more qualita-
tive evaluation Fig. 4 shows the unpreprocessed results for
all depth cues in a typical inner city stream. The cues show
strong differences in accurateness (especially depth from
bird’s eye view and object knowledge show a high vari-
ance). However, this is uncritical, since the sensor variances
(that were determined offline) are taken into account during
the EKF based sensor fusion (see [12] for more a detailed
depth cue evaluation).

Evaluation of unmarked lane detection: In order to
evaluate how much of the pixels representing road area are
classified correctly, we generated ground truth by manual
hand labeling of 440 test images of an inner city stream.
We use different ground truth based measures (see [15])
for evaluation (with pixels being True Positives (TP), False
Negatives (FN), and False Positives (FP)):

Completeness = TP

TP+FN
(9)

Correctness = TP

TP+FP
(10)

Quality = TP

TP+FP+FN
(11)

The Completeness states how much of the present street
was really detected while the Correctness states how much

Table 2: Comparison of unmarked lane detection with and without
temporal integration (TI).

Road detect. #test Correct- Complet- Quality
approaches im. ness ness

Without TI 440 98.1% 61.5% 60.5%

With TI 440 95.2% 94.1% 89.9%

Detected street segment Detected street segment,
temporal integrationwithout temporal integrationwith

Frame 97

Frame 105 Frame 105

Frame 97

Figure 5: Road detection on example images of an inner city stream
(left column: Without temporal integration, right column: With tem-
poral integrated road segment).

of the detected street is actually street. The Quality com-
bines both measures, as between the Completeness and
Correctness a trade-off is possible (FN street pixels against
FP street pixels). Therefore, the Quality should be used for
comparison (it weights the FP and FN pixels equally) while
Completeness and Correctness state what exactly caused
a difference in Quality.

Evaluation results for the road detection algorithm with and
without temporal integration (see Sect. 3.3 and Table 2).
A Quality of 89.9% is reached using temporal integration
as opposed to a Quality of only 60.5% without tempo-
ral integration. While the highest Correctness of 98.1% is
reached without temporal integration, this comes at the cost
of a low Completeness and, consequently, a low Quality.

For further evaluation Fig. 5 shows the street detection re-
sults on a number of example frames of the inner city
stream used for evaluation.

4.2 Evaluation of overall system performance

The performance gain of incorporating the detected driv-
able street, the internal metric 3D representation, and TD
links are evaluated on a real-world construction site sce-
nario. The results gathered with the proposed system are
then compared with our previous system [12].

In a nutshell, the scenario described in [12] concentrated on
typical construction sites on highways. A traffic jam end-
ing exactly within a construction site is a highly dangerous
situation: due to the S-curve in many construction sites,
the driver will notice a braking or stopping car quite late
(see Fig. 6). The evaluation was done offline by averaging
on 3 streams that were stored during the online demon-
stration of the previous ADAS. As depicted in Fig. 7b the
current system architecture can classify the stationary car
from 25 to 42 meters on. How early the car is detected
depends on how much TD influence is incorporated. For
λ = 0 the car is detected late, because only visually con-
spicuous object features are incorporated that draw BU
attention. For a growing λ the car is detected early since
“car-like” features are boosted stronger in the TD atten-
tion. Based on Fig. 7b the best choice of λ for detecting
cars would be 1, which equals pure TD search mode. How-
ever, such a parameterization is not appropriate because this
leads to a reduced capability of detecting other objects that
are only prominent in the BU attention map. As depicted in
Fig. 7b with growing λ (i. e., with growing influence of car
features in the attention) the mean detection distance of sig-
nal boards as BU salient objects drops. Stated differently,
the system ignores all other objects while searching for cars
in pure TD mode (λ = 1), which might lead to dangerous
situations. The measured effect was also proved to exist in
biology and is termed “inattentional blindness” (see [6]).
This suggests to set λ to an intermediate value of about
0.5, which was also the setting used during our online tests
(see [12]).

Also compared to our previous system [12] for all λ values
a better system performance was achieved. In our previ-
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distance of 48 m
signal boards at a
emerges behind

Stationary car

car
Stationary

(b)(a)
Figure 6: (a) Schematic sketch of the construction
site scenario. Stationary car is visible from 48 meters
on. (b) Real scenario.
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ous system an appearance based 2D tracking as opposed to
the 3D tracking presented here was used. Furthermore, the
TD weights were computed offline as opposed to the on-
line LTM object search in the current system. Additionally,
information drawn from the road detection module is in-
cluded and combined to the attention module in the current
system (see Sect. 3). The attained performance gain affirms
the soundness of these cognitive system extensions.

For further system evaluation Fig. 8 depicts internal system
variables for three sequential frames of an inner city stream
with cars as LTM search object. As described in Sect. 3,
for each new image the attention is calculated and a new
FoA is generated via maximum search and segmentation on
the attention map. The detected road area (and thereby also
the present lane markings) are mapped out of the attention
map, which decreases the false positive rate of generated
FoAs, i. e., less non-car FoAs are generated. In the first
frame, the car in front is detected and stored in the rep-
resentation based on a car-like hole in the detected street
segment that modulates the attention. Please note that car
2 and 3 are not stored in the internal representation, since
their position is beyond the represented road environment.

5 Summary

In this contribution, we presented an integrated, advanced
driver assistance system that relies on human-like cognitive
processing principles. The system uses a biologically moti-
vated attention system as the flexible and generic front-end
for all visual processing. Based on TD links modulating
the attention task-dependently, the used internal 3D rep-
resentation, a state-of-the-art object classifier, and a road
recognition system, we realized a highly flexible and robust
system architecture. We currently port the described exten-
sions from Matlab to integrate them in our existing online
system [12], in order to evaluate them on our prototype
vehicle.
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