
it 4/2009

Aktuelle Forschungsschwerpunkte

DFG Research Training Group
“Algorithmic Synthesis of Reactive
and Discrete-Continuous Systems
(AlgoSyn)”
DFG-Graduiertenkolleg ,,Algorithmische Synthese reaktiver und diskret-kontinuierlicher
Systeme (AlgoSyn)”

Wolfgang Thomas in collaboration with Kai Bollue, Dominique Gückel, Gustavo Quirós, Michaela Slaats, and
Michael Ummels, RWTH Aachen

Summary While methods of software validation and verifi-
cation are by now well established, the approach of automatic
synthesis of software (and hardware) is as yet only developed in
quite rudimentary form. Algorithmic program synthesis is pos-
sible in restricted scenarios, in particular in reactive multi-agent
systems with low data complexity and in control systems. Central
issues are the establishment of system models that support
algorithmic solutions, thecombinationof discreteandcontinuous
parameters (in hybrid systems), and the exploration of applica-
tions. The aim of the Research Training Group AlgoSyn is to unify
the expertise from computer science, mathematics, and four en-
gineering disciplines (processor architectures, automatic control,
process control engineering, train traffic systems), inorder to push
forward the desired integration of methods. ��� Zusam-
menfassung Während Methoden der Softwarevalidierung

und -verifikation inzwischen gut etabliert sind, ist der Ansatz
der automatischen Synthese von Software (und Hardware) erst
rudimentär entwickelt. Algorithmische Programmsynthese ist in
eingeschränkten Szenarien realistisch, insbesondere für reak-
tive (Multi-Agenten-) Systeme mit eingeschränkter Datenkom-
plexität sowie in Leit- und Steuerungssystemen. Zentrale Prob-
leme sind die Etablierung von System-Modellen, die algorith-
mische Lösungen unterstützen, die Kombination von diskreten
und kontinuierlichen Parametern (hybride Systeme) und die
Erschließung neuer Anwendungen. Ziel des Graduiertenkol-
legs AlgoSyn ist es, diese Forschungen durch Bündelung der
Expertise aus Informatik, Mathematik und vier Ingenieurdiszi-
plinen (Prozessorarchitekturen, Regelungstechnik, Prozessleit-
technik sowie Schienenverkehrswesen) voranzutreiben und zu
der notwendigen Methodenintegration beizutragen.

Keywords D.2.2 [Software: Software Engineering: Design Tools and Techniques]; Algorithmic game theory, reactive systems,
automatic control, hybrid systems, multi-agent systems, formal methods, model-based software development, process control
engineering, automatic control ��� Schlagwörter Algorithmische Spieltheorie, reaktive Systeme, hybride Systeme,
Multiagenten-Systeme, Modell-basierte Softwareentwicklung, Steuersysteme

222 it – Information Technology 51 (2009) 4 / DOI 10.1524/itit.2009.0545 © Oldenbourg Wissenschaftsverlag



DFG Research Training Group AlgoSyn ���

1 Introduction
The construction of correct and efficient hardware and
software systems is one of the central challenges in com-
puter science. Formal methods have by now a long
tradition and a record of convincing success in verifi-
cation. In particular, the method of model-checking has
reached a status where large-scale industrial applications
are possible. However, verification always has a flavour of
“a posteriori analysis”, in which a possibly faulty program
or system (for a given specification) is the starting point,
and subsequent development steps are devoted to the
elimination of bugs.

The main objective of the research training group
AlgoSyn is to overcome the paradigm of verification
a posteriori, but rather to devise methods for the algorith-
mic synthesis of systems from specifications. This highly
ambitious approach involves much more complex tasks
than verification, and in a large range of application do-
mains one faces immediately well-known phenomena of
undecidability or high complexity which prohibit a clean
algorithmic solution. Nevertheless, the approach of al-
gorithmic synthesis has turned out to be possible in
a number of restricted scenarios which are interesting
from a methodological viewpoint and significant in real
applications. In particular, this is true for all systems in
which the flow of control is more dominant than the
transformation of data, as in control systems, communi-
cation protocols, and process engineering.

A methodology of automatic synthesis exists so far
only in quite rudimentary form. There are prominent
special examples where an algorithmic solution of the
synthesis problem is known. For example, automatic syn-
thesis is possible for reactive finite-state programs with
specifications in terms of regular properties (which cover,
for example, properties expressible in linear time tempo-
ral logic). These results belong to automata theory and are
part of the vast and fastly increasing field of algorithmic
game theory. In real-life applications, this approach has
to be integrated with other methodologies, among them
the idea of hierarchical system structure and, as a related
aspect, techniques of stepwise refinement. Another cru-
cial feature of application scenarios is the combination
of discrete with continuous components of models (or
specifications), leading to the concept of hybrid system.
Here the aspect of continuous data can enter in a variety
of ways: in terms of probabilistic system properties, by
including timed specifications, or by modelling behaviour
using differential equations rather than automata. In this
wider context, the task of algorithmic system construction
often involves some kind of optimization problem (where
the system is required to minimize or maximize parame-
ters like probabilities, time bounds, or thresholds of other
continuous physical values like pressure or temperature).

2 The Structure of AlgoSyn
The research areas addressed by these questions span
a wide spectrum. First, several disciplines of theoretical

Figure 1 Structure of AlgoSyn.

computer science are relevant, regarding the development
of algorithmic approaches and adequate formal models
of reactive systems or multi-agent systems. Over this ba-
sic layer, the embedding into the software development
process has to be realized, using different (and usually
much more complex) formalisms for describing system
behaviour. A third layer is represented by concrete appli-
cation areas, which in AlgoSyn come from engineering
disciplines like process control engineering, hardware de-
sign, or railway engineering. Figure 1 gives an overview.

At RWTH Aachen University, all branches of such
a highly interdisciplinary objective are represented, and
so it was natural to form a research training group with
a potential to help integrating foundational work with ap-
proaches from engineering. A group of ten professors was
formed, with one professor from mathematics, five from
computer science, and four from four different faculties
of engineering (civil engineering, mechanical engineering,
material science, and electrical engineering/information
technology). In the third year of the funding period,
a new position of junior professor in the domain of hy-
brid systems was adjoined to AlgoSyn. In order to have
an intensive training “on the spot”, the young researchers
funded from AlgoSyn are integrated into the respective
research groups, but pursue all their joint activities to-
gether (in the regular seminar, training in supplementary
skills, and special compact courses). These joint activities
turned out to be essential since a main issue in the work
of the research training school is the development of an
understanding between, e. g., theoreticians and engineers.

3 Research Program
The problem of program synthesis is a fundamental ques-
tion in computer science, and decades of research have
treated numerous aspects of it. The focus of AlgoSyn is
concerned only with selected topics that are suitable for
an algorithmic approach.

In standard programs that transform input data into
output data, the behaviour is given by the input-output
relation R(x, y), and the problem of synthesis is to design
an algorithm A, transforming input x into output A(x),

223



Aktuelle Forschungsschwerpunkte

such that for all x we have R(x, A(x)). Input and output
values usually belong to an infinite data domain and are
given and produced, respectively, as a whole.

In many projects of the research training group Algo-
Syn we pursue an orthogonal view, as it arises typically in
reactive systems. In this scenario, the parameters x and y
are successively (and in an interleaving mode) produced
by two agents as contributions to a “system run”. The
same idea underlies the concept of online algorithm. So
x and y are streams (formally, infinite words over a finite
alphabet) that together have to satisfy a given specifica-
tion R(x, y). The task of synthesis is to devise a method
to produce a stream y in an online mode while x is
observed, such that R(x, y) holds. Many reactive systems
are modelled in this way, and a prominent framework
for describing desired relations R is temporal logic. In
recent years, this simple model has been extended to
much more complex forms. These extended models are
studied in two research areas, numbered 1 and 2 below,
and belonging mostly to theoretical computer science.
The bridge to applications is built in two stages described
in the research areas 3 and 4.

3.1 Research Area 1: Algorithmics for Agent Based,
Probabilistic, and Hybrid Systems

The requirements for algorithmic solutions of control
synthesis in technical systems usually have to take into
account incomplete information on the behaviour of the
process under control as well as a discrete-continuous
dynamics of the entire system. Available approaches to
algorithmic synthesis are built on simplifying assump-
tions and have to be extended to cope with realistic
applications. This sets the task of developing complex
system models that merge reactive, stochastic, and hybrid
behaviour. In particular, we have to integrate various ap-
proaches, such as game theoretic methods in agent based
optimization, primal dual algorithms, techniques for the
analysis of Markov chains, and stochastic automata.
Applications range from distributed resource manage-
ment to job shop scheduling, and routing in networks.
Examples of research topics are approximate solutions
of complex optimization problems, synthesis of cost-
optimal scheduling strategies, and the synthesis of hybrid
systems.

3.2 Research Area 2: Formal Models
and Game-Theoretic Methods

A simple but powerful model for basic reactive sys-
tems (consisting of the two components “controller”
and “environment” with discrete, non-terminating be-
haviour) is that of an infinite two-person game. An
infinite play of the game amounts to a system run that
is built up in alternation between these two players
“controller” and “environment”, and a specification of
the system amounts to a winning condition of controller
on such infinite plays. In an abstract sense, the winning
condition is a language of infinite words. For the class

of finite-state systems and the so-called regular winning
conditions, one knows how to check whether a speci-
fication is realizable by a controller, and in this case
it is possible to construct a controller that ensures the
specification for any choice of behaviour by the environ-
ment. This beautiful classical result (due to Büchi and
Landweber) has two essential defects: The complexity of
the known procedures is too high to allow applications
of interesting size, and the game theoretic model is too
simple for many interesting application domains since
phenomena like infinite state spaces, incomplete infor-
mation, the existence of more than two players, real-time
requirements, and non-discrete aspects in the winning
condition have to be taken into account. The extension
of the existing methodology with the aim to overcome
these defects is a chief objective of this research area of
AlgoSyn.

3.3 Research Area 3: Software Engineering
and Modelling Languages

This research area addresses the interface between the
foundational studies in AlgoSyn and engineering disci-
plines. It is well known, for example from experiences
in the development of control software systems, that this
is a highly nontrivial task and that the integration of
progress in algorithmics and theoretical foundations into
the development process takes a long time. Not only
a systematic embedding of new methodologies into the
development process is lacking. Equally problematic is
the discrepancy between the simple and clean formalisms
studied in theoretical computer science (transition sys-
tems, temporal logics, timed automata, etc.) and the
much more complex shape of formalisms used in the
industrial context, as found in languages like UML or
Esterel. Hierarchical structures and the merge of discrete
and continuous aspects are typical reasons for this com-
plexity. We address this problem in selected and relevant
cases aiming at algorithmically manageable abstractions
that allow – at least in interesting partial domains – the
application of synthesis methods developed in the foun-
dational research areas 1 and 2.

3.4 Research Area 4: Applications
and Demonstrators

This research area is divided into four topics; for each of
them we give a short outline.

Design Tools for Multiprocessor Systems
In the development of embedded systems we currently
observe a shift from custom ASICs to programmable ap-
plication specific processors (ASIPs). Architecture and
instruction sets of ASIPs are tuned to specific needs
of an application domain; they also represent a good
compromise between flexibility and efficiency. Although
a number of software tools exists that support ASIP de-
sign, the current methodology relies to a large extent
on the principle of trial and error. Another challenge

224



DFG Research Training Group AlgoSyn ���

is the emergence of heterogeneous multiprocessor sys-
tems on chip (MPSoC). For these, the choice of optimal
processing elements and communication structures is
a dominating problem. As for ASIPs, the state of the art in
MPSoC design rests on simulation, profiling/analysis and
an ad hoc interaction by the human developer. There is an
urgent need to automate this process by the construction
of synthesis tools. They should cover, for instance, the
allocation of processes to MPSoC components, subject
to restrictions on cost, performance, efficiency, and real-
time constraints.

Process Control Engineering
The main task of process control engineering is to control
chemical engineering processes according to production
requirements. The required control functionality is usu-
ally implemented as a network of individual control
functions. These are designed, implemented, and oper-
ated individually for every plant and for every process.
Current research topics in process control engineering
are:
• integration of digital field devices with their increasing

functionality;
• a merger of current production management systems

with the system services of process control engineering;
• further development of continuous and sequential

control functions into qualitative high-class robust
self-configuring components;

• conceptual design of software service agents for sup-
porting operations flexibly by executing extensive
testing and diagnostic tasks;

• consolidation of the properties of hardware and
software components in product data systems for elec-
tronic management and electronic trade;

• formalisation and automation of the design and im-
plementation process itself.

A set of requirements for further development of process
control methods and concepts may be derived from these
objectives. These requirements refer to the advancement
of the way in which control software is itself organised.
For instance, the concepts for the integration of func-
tion block and sequential descriptions must be further
developed. This demands an extension of the communi-
cation possibilities as well as the introduction of modern
design methods within the functional units. In addition
to the requirements concerning the architecture of the
automation software itself, requirements for managing
process control systems and handling their workflow may
also be derived from the objectives mentioned above.

Automatic Control
Complex technical systems are usually built from nu-
merous components that together realize discrete and
continuous behaviour. Current design methods handle
these two aspects of behaviour separately, i. e., succes-
sively, largely ignoring mutual dependencies that may
occur. Therefore, a central objective of research in auto-

Figure 2 Model Plant at RWTH Aachen Institute of Automatic Control.

matic control is an integrated treatment of control, both
regarding correctness and optimization of efficiency of
the system under consideration. Closely related are the
tasks of devising techniques for an adequate decompos-
ition of specifications and systems, the development of
interfaces between components, and the design of dis-
tributed control systems. While there are well-established
and mathematically clean methods for designing systems
with continuous behaviour, most available techniques
for the construction based on discrete event systems
are far from efficient and practicable. We address these
challenges in typical scenarios, using the Petri net state
space model (in the format according to IEC 61499).
A crucial first step is the automatic synthesis of discrete
controllers, using this rich formalism for specification
and implementation. A model plant at the Aachen Insti-
tute of Automatic Control serves as a test environment
(see Fig. 2).

Railway Engineering
Due to the safety requirements of railway operations
a train control system is indispensable. The train con-
trol system determines the way how train operations take
place on a railway system. The deterministic behaviour
of the railway system can be modelled by discrete event
systems. For the capacity planning of railway systems
these models are fed with worst case assumptions re-
garding the underlying railway safety system in order to
guarantee safe operation. In particular, for large railway
nodes of a railway system, these worst case assumptions
lead to an underestimation of available railway capacity.
Incorporating stochastic models for the capacity planning
instead of worst case assumptions is an approach that may
lead to a more detailed view on the railway system and
thus to exploit the capacity in large railway nodes more
efficiently. The focus of our research is the development
of a hybrid model, combining the deterministic model
for railway operation with a stochastic model for the rail-
way safety system in order to synthesize optimised train
timetables that make better use of the available railway
capacity. This research is supported by a laboratory test

225



Aktuelle Forschungsschwerpunkte

bed installation that is used for the simulation of railway
operation in the Institute of Transport Science of RWTH
Aachen University.

4 Five Example Projects
In the research training group, 15 doctoral research
projects are carried out. In order to give the reader a con-
crete impression, we present here five short presentations
of ongoing research done in AlgoSyn.

4.1 Synthesis of Controllers with Nested Pushdown
Store (Michaela Slaats)

The classical set-up of automatic synthesis of reactive
programs is best described by the model of infinite two-
person game. We call the two players Adam and Eve,
where Adam stands for the (possibly hostile) environ-
ment and Eve for the controller. The game arena is a finite
transition graph where each state belongs to either Adam
or Eve. The game is played by moving a token through
the arena along the edges, where Adam and Eve, respec-
tively, chooses an edge to a next vertex from a vertex that
belongs to him or her, respectively. An infinite play is
won by Eve if it satisfies a “regular winning condition”.
Several equivalent definitions of regular winning condi-
tions exist (in terms of Büchi automata, logical formulas,
or other kinds of expressions); a very useful normal form
is the so-called parity condition. It is known that these
finite-state games for regular winning conditions can be
“solved”: One can compute whether Eve has a winning
strategy for plays from a given initial vertex of the game
arena, and one can compute such a winning strategy
in the format of a finite input-output automaton. This
solvability result (going back to Büchi and Landweber in
1969) is the starting point of the algorithmic theory of
infinite games.

We address the problem how to extend this algorith-
mic result to infinite game arenas. Usually they arise
by attaching some kind of infinite store to a given fi-
nite arena. It is known (by work of Walukiewicz) how
to do this if the store is a pushdown stack. It is also
obvious from the fundamentals of computability theory
that the attachment of two pushdown stacks prohibits
an algorithmic solution of the corresponding games. In
our work we investigate another structure of “multiple
stacks”, namely nested stacks. A level-1 stack is a stan-
dard stack, a level-2 stack is a stack of stacks, and so on.
This kind of storage is needed, for example in the im-
plementation of higher-order recursive programs. Even
in this quite general framework, it is possible to provide
an automatic synthesis of winning strategies and hence
of suitable controllers.

The main problem in solving games over arenas that
involve nested stacks (or counters) is to develop an appro-
priate format of controller (again with the same storage
structure) that has enough power to implement pos-
sible winning strategies. We have developed a synthesis

method for such controllers based on generalized con-
cepts of “regular stack language” [1; 2], and we analyze
the applicability in several domains, including scheduling
problems.

4.2 Synthesis of Nash Equilibria in Infinite Games
(Michael Ummels)

The algorithmic theory of infinite two-player zero-sum
games has proven very fruitful in synthesizing controllers
for monolithic reactive systems. However, a system that
consists of several components is best modelled by an
infinite game with several players and not necessarily op-
posing objectives. Consider, e. g., the following situation:
There are two processes that share a single resource (e. g.,
a printer). If the resource is not busy, the two processes
are polled alternately. If one of them wants to use the
resource, the resource becomes blocked, and it only be-
comes available again when the process which has blocked
it releases it. Moreover, let us assume that every process
needs to use the resource infinitely often to complete its
task. This situation is naturally modelled by an infinite
game with two players whose objectives are not conflict-
ing, which is depicted in Fig. 3.

The classical solution concept offered by game the-
ory for games with multiple players is that of a Nash
equilibrium. A profile of strategies, one for each player,
constitutes a Nash equilibrium if no player can gain from
switching to a different strategy (while all other players
stick to their strategy). In our example, there are several
Nash equilibria. In particular, there is a Nash equilibrium
where only the first process (i. e., daemon) has access to
the resource infinitely often and ones where both pro-
cesses do: If each time a process has access to the resource,
it blocks the resource for a finite amount of time and then
hands back control to the other process, both processes
have access to the resource infinitely often. Clearly, the
latter solution is preferable to one where only one process
meets its specification.

Figure 3 Two processes (penguin and daemon) sharing a common
resource. Both the penguin and the daemon want to be connected to
the resource again and again.

226



DFG Research Training Group AlgoSyn ���

In general, we aim at synthesizing Nash equilibria
where certain players win and certain other players lose
(and for the rest, we do not care). It turns out that this is
a hard task: the corresponding decision problem is NP-
hard, even for very simple types of objectives [3]. If one
allows more sophisticated models of systems, like systems
that can change their state randomly, the synthesis prob-
lem may even become undecidable [4].

4.3 Synthesis of Tools for Software Model Checking
(Dominique Gückel)

The foremost problem in model checking is to find an
appropriate system model. The model has to cover every
important aspect of the system. In the case of an embed-
ded system, that may range from the software over the
executing hardware to the plant controlled by the device.
However, due to the potentially very high number of
states encountered during the analysis, the model must
not be too fine, or else the analysis will abort due to mem-
ory limitations. Having made that decision, the developer
has to translate his system into the model checker’s input
language.

The modelling and translation steps require a lot of ex-
pert knowledge and can hardly be automated, hence they
are expensive. To make model checking more applicable
to real software, one can use an assembly code model
checker. An example of such a tool is the [mc]square
model checker. [mc]square uses a binary representation
of the testee program just as it is created by a compiler.
It then simulates program execution on a simulator for
the target platform. Starting from the device’s reset state,
it successively creates all reachable states and verifies the
validity of a temporal logic formula. There is no need to
perform any preprocessing or provide an environment
because the simulator simply assumes that all input from
the environment is nondeterministic.

State representation in [mc]square is partially sym-
bolic. This means that machine states can contain
symbols which indicate unresolved nondeterminism. De-
laying the resolution of nondeterminism reduces the
number of states to be stored significantly and helps avoid
the state explosion problem. In order to prevent state ex-
plosion, [mc]square also supports static analyses. These
can be used to figure out useful information about the
testee, for example which memory locations are irrelevant
and do not need to be stored.

Even though the approach used in [mc]square facili-
tates model checking from the developer’s point of view,
it has a severe disadvantage, namely the hardware de-
pendency. For each platform to be supported, the tool
requires a simulator. Experience values indicate that it
takes about six months to implement such a simulator
for a new microcontroller or programmable logic con-
troller. In order to reduce this effort, we conduct research
on architecture description languages (ADLs) [5]. Such
languages are normally used in design space exploration.
Our goal is to use an ADL for algorithmically synthesizing

Figure 4 Separating hardware-independent from hardware-dependent
constituents of model checking.

both simulators and appropriate static analyses. Figure 4
illustrates the process. The parts of the diagram above the
dotted line indicate the hardware-dependent part of the
model checking process in [mc]square, whereas the parts
below the line are the hardware-independent part. The
long term goal of our research is a retargetable assembly
code model checker.

4.4 Controller Synthesis for Discrete Event Systems
Using Petri Nets (Kai Bollue)

As a benchmark for our approach to controller synthe-
sis, the model plant installed at the Aachen Institute of
Automatic Control is used. While the plant’s hardware is
bench-scale, the control technology including PLCs (Pro-
grammable Logic Controllers), programming software
etc. complies to current industry standards. As a typical
scenario of industrial production, the plant demonstrates
the processing of a liquid as well as its bottling and thus
the handling of bottles and caps. Hence it includes both
continuous dynamics and parts driven by discrete con-
trollers. The first segment of the plant (model station,
see Fig. 5) forms a typical example of a discrete event
system. Its purpose is to supply the subsequent station
with caps in the correct orientation. The station uses two
separators, an orientation sensor and a pneumatic grip-
per (with three degrees of freedom: up or down, open
or closed, and turned left or right) to determine and –
where neccessary – alter the caps’ orientation.

Our goal is to develop a method to automatically gen-
erate discrete controllers for certain parts of the plant
out of a model of the uncontrolled plant and “goal

227



Aktuelle Forschungsschwerpunkte

Figure 5 Petri net model of
two separators, orientation sen-
sor, and gripper.

specification” (i. e., descriptions of the system’s desired
behaviour) as well as safety constraints. The resulting
controllers can then be translated into code which can
directly be used for the PLCs.

In our approach we use Petri nets with certain aug-
mentations for modelling the plant and as a basis to
define safety and goal specifications. These augmenta-
tions include additional arc types (like event arcs) as well
as methods to model the possibilities of the controller to
influence the system (controllability) and gain informa-
tion about it (observability).

First the uncontrolled plant is modelled, i. e., all pos-
sible behaviours of the system are considered – not only
the desired ones. Here the mentioned augmentations
to classical Petri nets provide the possibility to create
a modular and intuitive model (see also [6]). Transitions
in the model are declared to be either controllable (i. e.,
the controller can block or enforce the transition) or
uncontrollable, while places are declared as either observ-
able (i. e., the controller is able to determine the current
marking of the place) or unobservable. Additionally, goal
and – if needed – safety specifications are given by linear
constraints on the marking of the Petri net.

To generate a control algorithm, first the model to-
gether with the specifications is converted into a set of so

called unified transitions, each of which consists of a set
of linear marking constraints as preconditions and a set
of marking changes as firing effect. As the safety and goal
specifications are also given by linear marking constraints,
they seamlessly fit into this framework. Now, beginning
at the start marking, possible paths through the marking
space are searched for by recursively defining the precon-
ditions of helpful unified transitions as temporary goals
and applying the algorithm to these. The selection of con-
sidered transitions is made based on the marking changes
of the transitions with respect to the constraints currently
to be fulfilled. Hence a guided search is implemented,
enabling the algorithm to deal with the potentially ex-
ponentially large search space and thus also work for
non-academic examples. For further details see [7].

4.5 Model-Based Synthesis of Product Flow Path
Management Systems (Gustavo Quirós)

A basic and essential operation performed by processing
plants is the movement of material, i. e., products, be-
tween plant elements. This movement may occur along
routes which are given by the structure of the plant.
We denote these routes product flow paths. In modern
plants, process control systems usually fulfill the task of
ensuring and monitoring the correct and safe transport

228



DFG Research Training Group AlgoSyn ���

Figure 6 Simple plant and corresponding abstract model.

of material. However, the development of these plant-
specific solutions is usually based on informal knowledge,
is time-consuming and error-prone, and must be re-
peated as soon as the plant itself changes. Furthermore,
no model for the explicit description of product flow
paths is currently known. This motivates the develop-
ment of automated model-based approaches that may
partly or completely replace this engineering work, en-
suring its correctness at the same time. With this goal,
we have developed a formal and abstract plant model,
based on the RIVA model [8] which defines a simpli-
fied plant representation that considers the possibility of
flow through its components, and is generic enough to
represent practically any type of plant and plant device.
This model serves then as a base for defining a formal
model of product flow paths which may be used to specify
and automatically construct related control functionality,
which we collectively denote as product flow path man-
agement.

Using our abstract plant model, the structure of a plant
is formally represented based on sets of elements and
product connectors. A mapping associates connectors to
elements, and a binary relation represents the intercon-
nection of element connectors as is found in the physical
plant. Figure 6 shows a simple plant and its corresponding
abstract model, in graphical form.

Our model describes the possibility of physical flow of
material into and out of every plant connector by means
of a flow allowance setting, as well as the allowance of flow
among neighboring plant elements by means of a binary
flow allowance relation for a given flow allowance setting.
A product flow path is defined as a sequence of neigh-
boring plant elements which follows the flow allowance
relation, and which may therefore be used by a product
to flow from an initial element to a final element.

Systems for product flow path management which
operate in a decentralized fashion may be specified
using our modeling approach, and may be automati-
cally constructed for a plant given a machine-readable
representation of a corresponding abstract plant model
and flow allowance model. We follow a decentralized
component-based scheme as presented in [9; 10] where
every plant element is assigned a component of the sys-
tem which controls and monitors the element exclusively,
and which has connection ports for every corresponding
connector. These ports are interconnected through bidi-
rectional communication links in accordance with the
connection relation of the abstract plant model. Thus,
the structure of the decentralized system is an analogy
of the plant layout. Each component interacts with each
of its neighboring components by sending and receiv-
ing messages, and the components work cooperatively
in order to achieve the system’s goals. A realization of
this decentralization scheme may be accomplished using
industry-standard function blocks for the components.
Using this approach, such a system may be automatically
constructed from a model of the plant by instantiating,
parametrising and linking component blocks, all of which
are common operations in process control systems. This
offers a simple and effective technique for synthesizing
flow path management systems.

5 Conclusion
The reader will find more information, including the run-
ning seminar program and all relevant references, on the
AlgoSyn website www.algosyn.rwth-aachen.de.

Acknowledgements

The present exposition of AlgoSyn would not have
been possible without the unfailing, efficient, and expert
help of Marianne Kuckertz, secretary of Lehrstuhl Infor-
matik 7, and Helen Bolke-Hermanns, the administrative
assistant of AlgoSyn.

References

[1] A. Carayol and M. Slaats. Positional strategies for higher-order
pushdown parity games. In: MFCS 2008, vol. 5162 of LNCS,
p. 217–228, Springer, 2008.

[2] P. Hänsch, M. Slaats, and W. Thomas. Parameterized infinite
games and higher-order pushdown strategies. AutoMathA Conf.
2009, Lìege, Belgium, 2009 (to appear).

229

www.algosyn.rwth-aachen.de


Aktuelle Forschungsschwerpunkte

[3] M. Ummels. The complexity of Nash equilibria in infinite mul-
tiplayer games. In: Proc. of the 11th Int’l Conf. on Foundations
of Software Science and Computation Structures, FOSSACS 2008,
vol. 4962 of LNCS, p. 20–34. Springer, 2008.

[4] M. Ummels and D. Wojtczak. The complexity of Nash equilibria
in simple stochastic multiplayer games. In: Proc. of the 36th Int’l
Colloquium on Automata, Languages and Programming, ICALP
2009. Springer, 2009. (to appear).

[5] D. Gückel, Retargeting a hardware-dependent model checker by
using architecture description languages. In: Proc. of the 4th Int’l
Workshop on Systems Software Verification (SSV 09), Doctoral
Symposium, Aachener Informatik-Berichte 2009 (to appear).

[6] H.-M. Hanisch, A. Lüder, and J. Thieme. A modular plant model-
ing technique and related controller synthesis problems. In: 1998
IEEE Int’l Conference on Systems, Man, and Cybernetics, 1998,
vol. 1, p. 686–691.

[7] K. Bollue, D. Abel, and W. Thomas. Synthesis of behavioural
controllers for discrete event systems with NCES-like Petri net
models. In: European Control Conf. 2009 (to appear).

[8] R. Jorewitz, U. Epple, A. Münnemann, R. Böckler, W. Wille, and
R. Schmitz. Automation of performance monitoring in an indus-
trial environment. In: PCIC Europe 2005, 2nd European Conf.
on Electrical and Instrumentation Applications in the Petroleum
and Chemical Industry, p. 116–120, Basel, Switzerland, Oct 26–28
2005.

[9] G. Quirós, M. Mertens, and U. Epple. Function blocks for decen-
tralised analysis of product flow paths. In: ETFA 2008, 13th IEEE
Int’l Conf. on Emerging Technologies and Factory Automation,
Hamburg, Germany, Sep 15–18 2008.

[10] G. Quirós, R. Jorewitz, and U. Epple. Model-based safety moni-
toring of product flow paths. In: Breitenecker F., Troch I. (eds):

MATHMOD 2009: 6th Vienna Conf. on Mathematical Modelling,
Vienna, Austria, Feb 11–13, 2009. AGRESIM Report Nr. 35.
ARGESIM/ASIM.

Received: May 8, 2009

Wolfgang Thomas holds the chair of logic and theory of discrete sys-
tems at RWTH Aachen. His main interests are automata theory and
logic in computer science, with an emphasis on generalized models of
automata, infinite games, and applications in verification and synthe-
sis. He is Doctor honoris causa of École Normale Supérieure de Cachan
(France) and member of Academia Europaea.

Address: RWTH Aachen, Lehrstuhl für Informatik 7, 52056 Aachen,
Tel.: +49 (241) 80 21700, Fax: +49 (241) 80 22 215,
e-mail: thomas@informatik.rwth-aachen.de

Dipl.-Math. Kai Bollue, Institut für Regelungstechnik (Prof. Dr.-Ing.
D. Abel), RWTH Aachen.

Dipl.-Inform. Dominique Gückel, Lehrstuhl Informatik 11 – Software
für eingebettete Systeme (Prof. Dr.-Ing. S. Kowalewski), RWTH Aachen.

Gustavo Quiros, M.Sc., Lehrstuhl für Prozessleittechnik (Prof. Dr.-Ing.
U. Epple), RWTH Aachen.

Dipl.-Inform. Michaela Slaats, Lehrstuhl Informatik 7 – Logik und
Theorie diskreter Systeme (Prof. Dr. W. Thomas), RWTH Aachen.

Dipl.-Inform. Michael Ummels, Lehr- und Forschungsgebiet Math-
ematische Grundlagen der Informatik (Prof. Dr. E. Grädel), RWTH
Aachen.

230

mailto:thomas@informatik.rwth-aachen.de

	1 Introduction 
	2 The Structure of AlgoSyn
	3 Research Program 
	3.1 Research Area 1: Algorithmics for Agent Based, Probabilistic, and Hybrid Systems
	3.2 Research Area 2: Formal Models and Game-Theoretic Methods
	3.3 Research Area 3: Software Engineering and Modelling Languages
	3.4 Research Area 4: Applications and Demonstrators
	Design Tools for Multiprocessor Systems
	Process Control Engineering 
	Automatic Control
	Railway Engineering


	4 Five Example Projects
	4.1 Synthesis of Controllers with Nested Pushdown Store (Michaela Slaats)
	4.2 Synthesis of Nash Equilibria in Infinite Games (Michael Ummels)
	4.3 Synthesis of Tools for Software Model Checking (Dominique Gückel)
	4.4 Controller Synthesis for Discrete Event Systems Using Petri Nets (Kai Bollue)
	4.5 Model-Based Synthesis of Product Flow Path Management Systems (Gustavo Quirós)

	5 Conclusion 
	Acknowledgements
	References

