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Background: Physiological signal-based research has been a hot topic in affective computing. Previous works mainly
focus on some strong, short-lived emotions (e.g., joy, anger), while the attention, which is a weak and long-lasting
emotion, receives less attraction. In this paper, we present a study of attention recognition based on
electrocardiogram (ECG) signals, which contain a wealth of information related to emotions.

Methods: The ECG dataset is derived from 10 subjects and specialized for attention detection. To relieve the impact
of noise of baseline wondering and power-line interference, we apply wavelet threshold denoising as preprocessing
and extract rich features by pan-tompkins and wavelet decomposition algorithms. To improve the generalized ability,
we tested the performance of a variety of combinations of different feature selection algorithms and classifiers.
Results: Experiments show that the combination of generic algorithm and random forest achieve the highest correct

classification rate (CCR) of 86.3%.

Conclusion: This study indicates the feasibility and bright future of ECG-based attention research.

Keywords: affective computing; attention recognition; ECG signals

Author summary: Our work aims to discover the connection between ECG signals and attentive emotion, and proves

the feasibility of applying ECG signal in attention recognition.

INTRODUCTION

Affective computing is a comprehensive research area,
which involves knowledge from multi-disciplines such
as medicine, biology and computer science. Since the
concept of affective computing was firstly introduced by
Picard [1], a large number of efforts have been made to
construct emotion model to access the human’s
psychological perception. In 1971, Ekman and Friesen
[2] found that there are six basic emotions (happiness,
surprise, anger, fear, sadness, disgust) that can be
generally recognized among people with different ages
and cultural backgrounds. Ekman’s model has been
widely used to recognize emotions from facial
expressions [3,4], and even from text material [5]. In
1980, Plutchik et al. [6] proposed a wheel model
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including a total of 8 basic emotions: surprise, joy, trust,
anticipation, sadness, fear, anger and disgust. More
complex emotions, such as contempt, optimism, love,
can be mixed from these basic emotions. In 1995, Lang
[7] investigated that emotions can be categorized in a
2D space by valence and arousal. In this theory, valence
ranges from unpleasant (negative) to pleasant (positive),
and arousal ranges from passive (low) to active (high),
which indicates how strongly human feels.

Currently, most of the affective computing studies
target at clearly distinguishable emotions, such as anger,
sadness, happiness and neutral. Many efforts have made
in emotion analysis [8,9]. Especially, Liu et al. achieved
a series of advancements in using multichannel EEG
signals for emotion recognition [10-13]. However,
some uncommon emotion, like approval, prohibition,
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attention, antipathy, receives few attentions in research.
As a micro-emotion, attention is substantial to human’s
observation, memory and imagination. In literature,
attention is closely related to human’s learning process
[14] and would affect how people process visual infor-
mation [15]. Some works have even found that attention
has priority in controlling affective stimuli [16].

In order to analyze the attention process, the EEG
signal has been mostly used in the previous works.
Susan et al. [17] detected user’s attention level by EEG
in an auditory oddball task. Liu et al. [18] accessed
whether students are attentively learning or not by
observing their EEG signals. Hamadicharef et al. [19]
proposed to improve accuracy of attention detection by
learning spectral-spatial pattern from EEG. Alchalabi
[20] used EEG signals to recognize ADHD patients’
attention level to improve the effect of treatment. These
experiments are conducted on specialized application
(e.g., online learning, gameplay) and the best
classification accuracy of their work ranges from 76% to
89%. Since the channel of electrodes chosen for
classification does have great impact on accuracy, heavy
experiment steps must be taken to find best placement of
electrodes. Though EEG signal can classify emotions, it
is limited to clinical environment because of its noise
sensibility and time-consuming setting (require wearing
head-mounted equipment).

Recently, the use of physiological signals such as
ECG, EMG (electromyography), HF (heart rate) [21],
has become a promising research topic in emotion
recognition. The physiological signals are different from
voice or posture which can be controlled subjectively.
Their changes are controlled by nervous and endocrine
system of human body and reflect by the emotional state
more accurately. Though some of physiological signals
like EMG, EDA (electrodermal activity) only measure
in one dimension (valence or arousal), ECG allows
measure independently in both valence and arousal
dimensions and usually results in high accuracy in
emotion classification [22]. ECG has been proved to be
effective for a wide range of emotion detection. As one
of the most common physiological signals, ECG signal
reflects the potential difference produced by heart
beating. There are also mature acquisition facilities in
the industry for ECG signal like smart watch/clothes,
which make ECG to be one of the most convenient
physiological signals to access and to be a good emotion
indicator.

In this paper, we apply ECG signals for attention
recognition, which is still a novel area awaiting to
explore. Based on the basic procedure of affective
research, we propose an ECG-based attention recogni-
tion method, including data acquisition, denoising,
feature extraction, and classification. Our contributions
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can be summarized as follows:

(1) We propose a method of attention recognition
based on the ECG signals, and shows that there is strong
correlation between ECG signals and attentional
emotion.

(2) We demonstrate signal processing workflow for
the raw ECG signals, which removes a variety of noise
interference by wavelet denoising and extracts rich
features for attention detection.

(3) We evaluate the performance of different feature
selection methods and classifiers, and find that the
combination of GA and random forest obtains the best
accuracy in attention recognition task.

EXPERIMENTAL RESULTS
Comparison between different feature dimensions

Different feature selection algorithms (FSA) may
probably generate optimal features with different
dimensions. In order to evaluate the impact of feature
selection algorithms on the accuracy of attention
recognition, we need to obtain a group of features which
perform well between classifiers for each FSA.

The generic algorithm (GA) is a global optimum
searching algorithm. To find the optimal dimensions for
classification, we can repeatedly perform GA to search
the last surviving individual (i.e., the optimal feature
sequence) and records the features dimension generated
by GA. In our experiment, we set the amount of
population to 50, the crossover probability to be 50%
and the mutation probability to be 20%. The roulette
mechanism is used to choose surviving individuals
causing uncertainty to the generated features. Figure 1
shows the histogram of number of features generated by
GA after repeating sufficient amount of times (7000
times in this case). It can be clearly seen that the number
of generated features range in [23] share the highest
proportion. We randomly choose one of the features
group in this range to evaluate correct classification rate
(CCR).

For the PCA and relief algorithms, we compare the
performance of KNN classifier between different
dimensions as shown in Fig. 2. For the PCA algorithm,
with the number of target features increasing, the
classifier also performs better. When this number reach
to about 30, CCR tends not to increase any more. For
the relief algorithm, the number of generated features
and CCR present a valley-like relationship. The highest
CCR is reached in the range of [24,25]. If the number
exceeds this range, the performance of classifier would
not improve anymore and even start to decline. The
redundant features may increase the difficulty of
attention recognition.
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Figure 2. Performance of KNN classifier between
different features dimensions.

The best number of generated features differ for
different FSA which may indicate that it is hard to find a
group of features fitting all classifiers. In the following
experiment, “'we randomly choose the features group in
the above range to compare the performance of
classifiers.

Comparison between different FAS

Table 1 gives the average CCR between different feature

Table 1 Average CCR between different FSA and classifiers

selection algorithms (FSA) and classifiers with 5-fold
validation. And Fig. 3 compares the performance of
FSA based on Table 1.

In Fig. 3, we find that some classifiers like SVM,
KNN can obtain high average CCR with the raw
features. PCA has little improvement in the average
CCR among classifiers compared to using raw features.
For the random forest classifier, the average CCR even
witness a serious decline. This indicates that PCA may
be not the best for attention recognition. The relief
algorithm run fast and does improve the performance
among some classifiers like SVM, KNN, while the
amount of increment is relatively low. Finally, with the
help of GA, most classifiers obtain performance boost,
andthemagnitudeofimprovementisobviously. Thispheno-
menon shows the power of GA in searching global opti-
mal solutions. However, the convergence speed of GA is
slow and unstable, which results in long searching time.

Comparison between different classifiers

Figure 4 compares the performance of classifiers based
on Table 1. In Fig. 4, we found that KNN, random forest
classifier can achieve an average CCR over 80%. In
particular, the combination of GA+ random forest obtain
the highest accuracy of 86.28%+3.81%, which may be
due to the strong ability of random forest to fit high-
dimensional and nonlinear dataset. Although MLP is a
powerful tool, it suffers from the dilemma of over-
fitting. The Naive Bayes classifier performs worst and
only obtains an accuracy of about 60%. The reason may
be the fact that Naive Bayes assumes all features are
independent of each other, which is not in line with
reality.

The receiver operating characteristic (ROC) curves
are plotted in Fig. 5 to compare the classification ability
between binary classifiers. The ROC curve closer to
upper left corner means that the classifier performs
better. From Fig. 5, we can observe the same trending as
CCR. The random forest and KNN classifiers both work
great, but the random forest mostly receives higher true
positive (TP) rate than KNN, which makes it outperform
KNN under the AUC (area under the ROC curve) metric.

Method Raw (%) PCA (%) GA (%) Relief (%)
SVM 76.33+4.75 76.80+4.28 77.48+5.40 77.74£5.15
MLP 67.68+4.39 64.19+1.58 70.05+2.93 62.73+6.64
KNN 81.14+4.45 75.68+4.50 82.30+5.09 84.58+4.61
CART 68.28+5.49 57.19+5.87 68.91+£6.77 69.72+5.96
RandomForest 81.90+4.59 67.64+5.34 82.27+5.11 82.254+5.14
Naivebayes 61.92+3.85 58.45+4.64 60.28+5.48 61.24+3.63
278 © The Author(s) 2021. Published by Higher Education Press
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CNN-based evaluation

Besides the traditional classifiers, we also evaluate the
performance of CNN-based classification. Since each
ECG sample after denoising contains a length of 61,440
points (a minute long of heartbeat), this length is too
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long as input of general neural network and it is hard to
improve accuracy with this input length. Therefore, we
further split each sample into 10 segments and each
segment contain 6144 points (about 3 heartbeats). And
we also group all ECG samples into training, validation
and test sets with the ratio of 0.5, 0.2, 0.3, respectively.
The training process use 5-fold cross validation for fine
tuning. Figure 6 shows the changes of accuracy and loss
with the increase of training epochs. We can observe
that with the training epochs increase up to about 100,
the network approximately reaches the highest
validation accuracy. After 100 epochs, the model starts
to overfit the training set and does not bring
improvement to validation accuracy. So, in our case we
use the model at 100 epochs as the best trained network
and evaluate the its performance at test set with an
accuracy of 80.2% and loss of 0.497.

DISCUSSION

In all the experiments of ECG signals for attention
recognition above, we observe that the better
classification performance can be achieved by using
traditional classification algorithms. It is feasible to
apply feature selection methods to optimize features,
however, their effect may have a large difference. In our
experiment, using GA to optimize features can improve
the performance for most of classifiers, while the
projected features generated by PCA increase the
difficulty of recognition task. The final average CCR is
greatly affected by the type of classifier, indicating the
non-linearity and high complexity of this task. When
applying random forest combined with GA for features
optimization to build the recognition model, we can
achieve the best average CCR of 86.28%+3.81% (as
shown in Table 2). That indicates the strong correlation
between ECG signals and subject’s attention.
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Figure 6. Accuracy trend of CNN-based classifi-
cation with different training epochs.
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Table2 Average CCR of different classifiers combined with GA

Classifier SVM KNN RandomForest

CART MLP Naivebayes CNN

CCR 80.24% 84.72% 86.28%

70.70% 70.05% 61.92% 80.2%

MATERIALS AND METHODS

Our work aims to identify the attention status of subjects
by processing on the ECG data. Given the ECG signals
collected from subject as input, our system can
recognize the corresponding attentive state. This
pipeline is shown in Fig. 7, which includes ECG signal
acquisition, preprocessing, attention recognition and
performance estimation.

Compared to other physical signals (facial expression,
gesture, speech, etc.) collected from camera or
perceptual sensors, ECG data acquisition requires
stricter experimental environment. Currently, there is
still no standard internationally approved ECG database
available for attention recognition. Thus, in our study we
design an ECG signals acquisition experiment, which is
designed especially for attention detection and collects
data samples from 10 subjects to obtain raw ECG
signals. Since the ECG signals are prone to be suffering
from different kinds of noise, we use discrete wavelet
transform algorithm to remove noise, including baseline
wandering and power-line interference. Then we split
the signals into multiple segments as samples and obtain
feature points by pan-tompkins algorithm. Morphologi-
cal and statistics features are then extracted from the
feature points of each sample. After that, we adapt
several feature selection methods including PCA, relief
and generic algorithm, to optimize the extracted
features. These features are finally sent to a group of
classifiers including SVM, KNN, random forest, for
attention recognition. For comprehensive comparison,
we also introduce a CNN model to classify the serialized

ECG signals. The classification performances between
different features selection methods and classifiers are
further evaluated.

ECG signals denoising

ECG whose amplitude is typically between 10 pV and
5 mV is a relative weak signal and is featured as a
continuous waveform including P-wave, QRS complex
and T-wave, as shown in Fig. 8. The QRS complex is
the dominant component of ECG signal. It can further
be decomposed into Q, R and S-wave, with a tendency
of falling, rising and falling respectively. In general, it is
more convenient to recognize R-wave, since the R-wave
contains the largest amplitude. During the detection of
ECQG, the interference mainly comes from three kinds of
noise sources: baseline wandering, myoelectric inter-
ference and power-line interference [26,27].

Since the frequency range is extremely high, and far
beyond that of real ECG signals, it is difficult to remove
myoelectric interference. In practice, the interference it
makes is relatively low due to its low amplitude.
Therefore, in our experiment, we neglect the effect of
myoelectric interference and focus on the denoising of
baseline wandering and power-line interference.

Discrete wavelet transform

Concerning the discrete wavelet transform (DWT) can
analyze multiresolution signal with a good represen-
tation for shape and feature of local region, it is adopted
to decompose the non-stationary ECG signal. The
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Figure 7. Pipeline of our method.
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wavelet decomposition can be regard as an iterative
process to extract information from both time and
frequency domains. Two symmetric filters: high-pass
filter (HPF) and low-pass filter (LPF) are built with the
mother wavelet and scaling function. These filters
provide a set of orthonormal basis to segment the
original spectrum and generate signals with high and
low frequency respectively in each iteration. The main
procedure of DWT is described as follows:

Suppose the measured ECG signals f{k) are combined

with ground-truth signals s(k) and noise:
f(k) = stk)+n(k), k=0,1,2,...N-1 )

where n(k) is the Gaussian white noise and it typically
subjects to normal distribution with zero mean value and
unknown variance o”, N is the signal length.

We can apply discrete wavelet transform to f{(k):

W (lLk)=2" Z_f(k)‘l’(z” —k), 1=0,1,2,...L—1 (2)

k=0

where W, (l,k) is the wavelet coefficient, j is the scaling
factor, W(¢) is a chosen wavelet basis function. These
wavelet coefficients are composed of real ECG signal
and noise.

The denoising process is operated on the wavelet
coefficients. The detail of them will be discussed in the
next section. After that, we perform reconstruction
(climbing up the decomposition tree) to obtain the
denoised signals:

S, (=1, =S (LK) +h(L.k) + W, (LK)« gLk (3)

where S /(0,k) is the initial ECG signal, Z,“g' are the
conjugate function of z and g.

Figure 9 shows the DWT decomposition results in 7
level using db3 wavelet family.
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Figure 9.
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Wavelet threshold denoising

To denoise power-line interference, the wavelet
threshold denoising algorithm is used in our method.
The basic assumption of this algorithm is: considering
the continuity of ECG signals in time domain, its
amplitude of wavelet coefficients after wavelet
decomposition comes to be larger, while the power-line
interference shows relatively small amplitude and strong
randomness due to its discontinuity in time domain as
Gaussian white noise. Based on this assumption, we
perform wavelet decomposition on the measured ECG
signals in various scales to obtain the detail and
approximate coefficients of each layer. When the detail
coefficients at a certain scale is smaller than a selected
threshold A, we can consider these coefficients are
mainly produced by noise. By discarding them and
using the remaining wavelet coefficients (which are
produced by real ECG signals), we can finally
reconstruct the signal without noise interference [28].
The threshold function, which determines how to
resolve the wavelet coefficients and has a great impact
on ECG signal denoising, mainly include the hard
threshold method and the soft threshold method. When
using the hard threshold method, the continuity of
wavelet coefficients may probably be disrupted and thus
result in local jitter and oscillation in the reconstructed

signal. To obtain smoother wavelet coefficients and
reconstructed signal, we apply the soft threshold method
in our experiment.

We compare the effect of power-line interference
denoising between the raw ECG signal and
reconstructed signal (decompose with haar, sym5 and
db5 wavelet in 4 level) as shown in Fig. 10. It can be
observed that the power-line interference is removed by
all three wavelets. The haar wavelet appear to be
stepwise, while sym5 and db5 both preserves the smooth
clinical detail. We also compare the effect of power-line
interference denoising between in different decompose
levels. With the increase of decompose level, the
reconstructed signals have stronger ability to remove
power-line interference, but also increase the probability
of distortion. Thus in our method, we use 4 level
decomposition and db5 as wavelet basis in denoising
since this setting preserves the most clinical detail.

Baseline cancellation

We use wavelet baseline cancellation to remove baseline
wandering noise, since it is one of the best performing
approaches [29] among them and can be -easily
integrated into our processing workflow. According this
method, we simply set the approximation coefficients at
lowest frequency band to zero and the amplitude of all
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Figure 10. Comparison of power-line interference denoised result between different wavelet basis functions.

(A-D) Original, haar, sym5, db5.
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ECG signal cycles will be normalized into range [—1, 1]
after this algorithm. In our experiment, we tested the
reconstruction effect with different L,. As L, increases,
we can separate the low and high frequency components
of signals more easily. Figure 11 shows the effect of
baseline cancellation between the raw ECG signal and
reconstructed signal. With the decompose level
increases, the reconstructed signals are more capable to
fit the trend of original signals. When the number of
level increases to 11, the reconstructed signals fails to
keep its baseline. Thus we set L, to 9 achieves the best
trade-off. After the denoising procedure is completed,
we split the signals into segments with around 1 minute,
and regard each segment with corresponding attention
label as an ECG samples.

Features extraction

The QRS complex detection and feature extraction are
the key processes to the success of ECG signal analysis.
Since the QRS complex is the dominant component in
ECG, the detection of heartbeat depends on the
localization of the R-wave. The accuracy of QRS
recognition will affect the subsequent detection of P-
wave and T-wave.

In our method, we use Pan-Tompkins algorithm [30]
for QRS detection, since it can achieve both real-time
performance and high accuracy (99.3% accuracy for
detecting MIT/BIH arrhythmia database [31]). The Pan-
Tompkins algorithm consists of a series of filtering
processes, including a band-pass filter cascaded by low-
pass and high-pass filter to remove low frequency
interference and high frequency artifacts. Then, the
moving-window integration is used to acquire more

information about waveform feature. Finally, the
locations of QRS complex is marked by applying an
adaptive threshold method to the output stream.
Whenever a R-wave is recognized, the algorithm
recalculates the mean value of RR-interval, which is a
dynamic estimation of ECG cycle. The location of other
peaks (i.e., Q, R, S, T-peak) can be derived by searching
the local maxima or minima from the both side of R-
peak in an RR-interval. Figure 12 shows the result of
feature point detection of an ECG sample.

After all the waveforms are successfully recognized,
we can extract morphological and statistics features
from each ECG sample. The morphological features
contain the average, median, standard deviation,
minimum, maximum and fluctuation of all detected
peaks in each ECG sample, and could be extracted from
P, Q, R, S, T wave, and PQ-, QS- and ST-intervals. The
statistics features could be extracted by wavelet
decomposition, including the average, median, standard
deviation, minimum and maximum features. Table 3
summarizes the extracted features.

Wavelet decomposition can effectively separate the
low and high frequency components from signals. From
the view of energy, the low frequency component (i.e.,
the approximate coefficient) is almost the same with
original signal, meaning that it preserves abundant
information of original signal. In contrast, the high-
frequency component is more vulnerable to various
interferences (e.g., muscle noise) and has little
contribution to subsequent affect recognition. Therefore,
we only consider features extracted from low frequency
component and discard high frequency counterpart.

Based on this idea above, we apply the wavelet
transform to decompose the signal into 5 levels. The
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Figure 11.

Comparison of baseline wandering denoised result between original and reconstructed ECG signal in

multiple decomposed level. (A-D) Level 5, level 7, level 9, level 11.

© The Author(s) 2021. Published by Higher Education Press

283



Aihua Mao et al.

approximate coefficients of i-th level is denoted by S,
while § is the original signal sequence. Then the first
and second order differences are performed on S,
indicating the trending of ECG sample:

AW = (A%s;]i=0,---,4), “4)

where A’s; is the first order difference of §,. Finally, we
extract features from S; by a vector:

Fsi = (Si.avg7 Si.med7 Si,sd7 Si.mim Si,max)a (5)

where S, g, Simed> Sisd> Simins Simax are the average, median,
standard deviation, minimum and maximum of S,
respectively. We flatten features of all levels and result
in a feature vector with 90 dimensions.

Attention classification

In the task of attention recognition, given the samples of
ECG signal as input, our goal is to construct a model
which can output the corresponding label (attentive or
non-attentive) for each sample. In Section “Wavelet
threshold denoising”, we extract features with 138-
dimensions for each ECG sample by combining
morphological and statistics features. These features are
normalized before classification. In the task of attention
recognition, a certain degree of redundancy may
probably exist between these features which may limit
the ability of generalization. Thus, several feature
selection algorithms are used to the optimize the
features. We further compare their performances on
different classification algorithms.

In our experiment, three typical feature selection
algorithms are selected: PCA, relief and generic
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Figure 12. Result of feature point detection of an
ECG sample.

algorithm (GA). We choose 7 classifiers to build the
attention recognition model: support vector machine
(SVM), Multi-Layer perception (MLP), K-Nearest
neighbor (KNN) [32], classification and regression tree
(CART), random forest (RF), Naive Bayes. Besides, as
neural network become one of the most powerful tools
in physiological processing, we also propose an end-to-
end CNN for attention classification. The CNN network
takes the time-series denoised ECG samples as input and
outputs the label of the corresponding signals.

As shown in Fig.13, the proposed CNN consists of
two stages. The first stage encodes the signals into low
dimensional features by convolution operations, while
the second stage tries to incorporate the extracted
features to classify heartbeats into target labels. To be
specific, the first stage of CNN takes the original signals
with size of 6144x1 as input and follows a convolutional
process with a convolution and average pooling layer
(with pool size of 1x2). This process continues for 3
times each with the kernel sizes of 1x201, 1x141 and
1x141 respectively. Then the feature maps of all filters
are cascaded into a full connected layer (FC) of 980
neurons as input of the second stage. Finally, another FC
layer follows containing 128 neurons and the network
output one neuron indicating the attention category. The
dropout layers added between FC layers help to avoid
overfitting.

EXPERIMENT PROCEDURE

To collect enough data for attention recognition, 10
male subjects are participated in the experiment. All
subjects were healthy, aged from 20 to 25 and had no
history of mental and heart disease. Their mean age was
22 years (std=1.81years). Compared with other
emotion-stimulated materials such as pictures, audio,
video clips can attract one’s attention from both vision
and hearing. In our sampling experiment, we use video
clips to elicit attention state. Considering that attention
is more sensitive than other emotion (e.g., happy,
angry), we carefully design the sampling procedure to
capture the ECG signal in attentive or non-attentive state
during video watching. The subjects were free to choose
the video clips that they were most interested and non-
interested.

The ECG collecting kit produced by Shimmer
Company [33] was used for ECG sampling. The
sampling procedure was conduct in a quiet and closed
room. Before the experiment begun, the subjects were

Table3 Morphological and statistics features extracted from ECG signals

Morphological features

Statistics features Low frequency of signals

P, Q,R, S, T wave, and PQ-, QS- and ST-intervals Average, median, standard deviation, minimum, maximum and

fluctuation

Average, median, standard deviation, minimum and maximum
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asked to rest for 10 minutes to restore normal emotional
state. Then each subject started to watch a video clip in
10 minutes with the data collecting launched
simultaneously. The next session would start in the next
10 minutes giving the subject enough time to relax
himself. The experimental procedure is shown in Fig.14.
Inspired by self-assessment manikin (SAM) [34], when
each session was done, the subject was asked to fill out a
self-assessment questionnaire to evaluate their emotion
during experiment with labels of low, media and high
level of concentration. It helps to avoid collecting
signals of false label. Combining the results of
questionnaire and the integrity of corresponding
waveforms, a total of 200-minutes samples was
collected for attentive and non-attentive state
respectively. Finally, an ECG dataset with 360 samples
were finally collected. Half of them are attentive states,
and the remaining are non-attentive states. We send all
the samples to the preprocessing pipeline and obtain
feature vectors in 138-dimensions for each ECG sample.

We adopt stratified strategy to split the training set
and test set, with 70% of samples for training, 30% for
testing. To obtain more accurate and stable result, we
use the average classification rate (CCR) as metric to
evaluate the performance for classifiers in 5-fold cross
validation.
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