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Background: Images of anatomical regions and neuron type distribution, as well as their related literature are
valuable assets for neuroscience research. They are vital evidence and vehicles in discovering new phenomena and
knowledge refinement through image and text big data. The knowledge acquired from image data generally echoes
with the literature accumulated over the years. The knowledge within the literature can provide a comprehensive
context for a deeper understanding of the image data. However, it is quite a challenge to manually identify the related
literature and summarize the neuroscience knowledge in the large-scale corpus. Thus, neuroscientists are in dire need
of an automated method to extract neuroscience knowledge from large-scale literature.

Methods: A proposed deep learning model named BioBERT-CRF extracts brain region entities from the WhiteText
dataset. This model takes advantage of BioBERT and CREF to predict entity labels while training.

Results: The proposed deep learning model demonstrated comparable performance against or even outperforms the
previous models on the WhiteText dataset. The BioBERT-CRF model has achieved the best average precision, recall,
and F1 score of 81.3%, 84.0%, and 82.6%, respectively. We used the BioBERT-CRF model to predict brain region
entities in a large-scale PubMed abstract dataset and used a rule-based method to normalize all brain region entities
to three neuroscience dictionaries.

Conclusions: Our work shows that the BioBERT-CRF model can be well-suited for brain region entity extraction.
The rankings of different brain region entities by their appearance in the large-scale corpus indicate the anatomical
regions that researchers are most concerned about.

Keywords: brain region; entity extraction; literature mining; WhiteText; deep learning

Author summary: In this study, the BioBERT-CRF model was used to extract brain region entities from a large-scale
PubMed abstract dataset and a normalization pipeline was created for normalizing all the labeled brain region entities
extracted to three neuroscience dictionaries. Prior to entity prediction, the performance of the BioBERT-CRF model was
evaluated using the WhiteText dataset. Compared to other deep learning models, the BioBERT-CRF model achieved the
best average precision, recall, and F1 score of 81.3%, 84.0%, and 82.6%, respectively. Our work demonstrates how the
BioBERT-CRF model can be well-suited for neuroscience brain region entity extraction. The rankings of different brain
region entities by their appearance in the large-scale corpus reflect the anatomical regions that researchers are most
concerned with.
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INTRODUCTION

In neuroscience, researchers are fascinated with spatial
anatomy, neural distribution, neuroanatomical connec-
tivity [1], and will often use image data to understand
and further explore these fields. However, image data
usually has a specific focus in each experiment, such as
a certain type of neuron or region of the brain, thus is
not entirely comprehensive. In addition, it is very
difficult to continuously carry out experimental research
at the mesoscopic level across the entire brain.
Therefore, more comprehensive literature knowledge is
required to accurately design a sophisticated experiment,
which will not only reduce image data collection and
processing, but also alleviate the problem from the
source. However, it is quite a challenge to manually
search for neuroscience-related knowledge from large-
scale literature sources, creating an urgent need for an
automated knowledge extraction method. In recent
years, named entity recognition technology has been one
of the most discussed topics since it can automatically
extract name mentions from literature sources [2]. This
technology can be well qualified for the automatic
recognition and labeling of brain region entities in large-
scale literature.

Named entity recognition is an information extraction
technique that has been widely used to extract a variety
of entities from literature, such as genes, proteins [3—6],
diseases [4,5,7-9], chemicals [4,6,8—10], mutations
[11,12], species [13], and cell types [3,5,14] in the
biomedical field. Leaman er al. proposed the semi-
Markov model [10], which relied on lexical features
such as Token, Part-of-Speech (POS), and N-grams to
extract two types of entities, diseases, or chemicals.
Wang et al. proposed the MTM-CW model [3], which
allowed for combining different types of biomedical
training datasets, such as genes, diseases, and chemicals.
The single model error was reduced by learning relevant
knowledge in the field, thereby improving recall. Giorgi
et al. proposed a transfer learning method based on Bi-
LSTM-CRF [15], which utilized many silver standard
datasets for training the model. By fine-tuning the
parameters on the gold standard datasets, the model
expanded its data and produced better results. Lee et al.
added abstracts in PubMed and full texts in PMC for the
BERT model [16] for pre-training [17]. They also fine-
tuned the parameters of multiple types of entity datasets
and obtained multiple SOTA’s BioBERT models in the
biomedical field. However, WhiteText is the only
available gold standard dataset in the neuroscience field
[18] as far as we know, which can annotate brain region
entities. This project was first proposed by French et al.
in 2009. They invited several neuroscientists to
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manually annotate 1,377 literature pieces in Journal of
Comparative Neurology (JCN) and 18,242 brain entities
were labeled. Therefore, the WhiteText dataset was used
to extract brain region entities in the neuroscience
literature. French et al. used dictionary-based and CRF-
based methods [19] to evaluate the WhiteText dataset
and achieved an F1 score of 44% and 79%. Richardet et
al. [20] added species information and other features to
the CRF-based method to reduce false-positive error and
achieved 84.6% precision, 78.8% recall, and 81.6% F1
score. Shardlow et al. [21] used the Bi-LSTM-CRF deep
learning model to obtain the best evaluation result of
81.8% F1 score on the Whitetext dataset.

In this study, we first compared the results of a
modified deep learning-based named entity recognition
model with other deep learning models on the
WhiteText dataset. The modified BioBERT-CRF model
achieved an F1 score of 82.6%, the best result among
these models. Next, we used the BioBERT-CRF model
to extract brain region entities from a large-scale
PubMed abstract dataset and normalized all extracted
brain region entities to three neuroscience dictionaries to
solve the problems of synonyms and different naming
systems. Finally, we counted the number of different
brain region entities that appeared in the large-scale
abstracts and selected the top 30 brain region entities.
Our study found a suitable deep learning-based method
to extract brain region entities from abstracts, reflecting
which anatomical regions researchers are most
concerned about.

RESULTS

We used a modified named entity recognition model, the
BioBERT-CRF model, as well as four benchmark
named entity recognition models, the Bi-LSTM-CREF,
MTM-CW, BERT, and BioBERT, to extract brain
region entities from the WhiteText dataset. Then, we
used the BioBERT-CRF model to extract brain region
entities from a large-scale neuroscience literature dataset
and normalized all extracted brain region entities to
three neuroscience dictionaries.

The WhiteText dataset is a brain region entity gold
standard dataset constructed by French et al. in 2009
from 1,377 randomly selected abstracts from JCN
journals. Several neuroscientists were invited to
manually label the brain region entities on the dataset
based on the literature content, neuroscience knowledge,
reference brain atlases, and dictionaries. Finally, a total
of 18,242 brain region entities were labeled. For the
labeled brain region entities, the agreement rate of the
annotators was 90.7%. We divided part of the
WhiteText dataset into a train set, a validation set, and a
test set according to 1,000, 150, and 227 abstracts. We
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randomly divided them into train set, validation set, and
test set five times.

Comparison of the accuracy of different deep
learning-based models for predicting brain region
entities

We compared the results of five different named entity
recognition models on the WhiteText dataset. Out of the
1,377 abstracts, we randomly selected 1,000 as the train
set, 150 as the validation set, and the remaining 227 as
the test set. We then performed five cross-validations
using the precision, recall, and F1 score as evaluation
indicators to show the model prediction results.
Evaluation data can be found in the appendix. The box
diagrams of the five models are shown in Fig.1.

In addition, we examined specific sentences with
predicted labels to compare the recognition results of
different deep learning models, as shown in Table 1.
The true labels and predicted labels of each model are
underlined. In this case, the Bi-LSMT-CRF and MTM-
CW model failed to recognize all brain region entities
accurately. These two models all recognized adjective
words in front. On the contrary, the BERT, BioBERT,
and BioBERT-CRF model recognized all entities
accurately.

The first model is Bi-LSTM-CRF. With the exception
of the third experiment, the precision, recall, and F1

score of Bi-LSTM-CRF on the validation set were
higher than 81% and generally higher than the test set
results, as shown in Table 2. Its results in the first and
fifth experiments were much higher than the test set.
This suggests that the model may have a certain degree
of overfitting due to its limited dataset size. The overall
F1 score of the model on the test set fluctuated around
81%, indicating that the model is robust.

The following model is MTM-CW. The results of this
model in Table 3 were consistent with that of the Bi-
LSTM-CRF model in Table 2. On the validation and test
sets, the model’s precision decreased by about 0.65%,
recall increased by about 0.6%, and the F1 score
remained unchanged. Since the MTM-CW model shared
training parameters, it was logical that the precision
would decrease, recall would increase, and overall F1
score would remain unaffected compared to the
benchmark Bi-LSTM-CRF model. The improvement of
the generalization ability can make the model more
competent for the extraction of multiple entity datasets.
However, the overall training time of the model was
much longer than that of the single entity dataset model.

The third model is BERT, pre-trained on Wikipedia,
BooksCorpus, and fine-tuned on the WhiteText dataset.
The performance of this model was comparable to the
previous models on the validation set and test set.
Compared to the results of the MTM-CW model in
Table 3, the BERT model’s recall increased by about
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Figure 1. Box diagrams of the five deep learning-based models. The box diagrams show the centering, spread, and

distribution of the validation set and test set. The mean of (E) is higher than (A), (B), (C), and (D)
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Table 1 Cases of the prediction entities from different models

Models Brain regions
Correct prediction ~ BERT Connections...in primary somatosensory cortex (area 3b) and adjoining cortex were revealed in owl...
BioBERT Connections...in primary somatosensory cortex (area 3b) and adjoining cortex were revealed in owl...
BioBERT-CRF Connections...in primary somatosensory cortex (area 3b) and adjoining cortex were revealed in owl...
Wrong prediction Bi-LSTM-CRF Connections...in primary somatosensory cortex (area 3b) and adjoining cortex were revealed in owl...
MTM-CW Connections...in primary somatosensory cortex (area 3b) and adjoining cortex were revealed in owl...
True label Connections...in primary somatosensory cortex (area 3b) and adjoining cortex were revealed in owl...

The true labels and the predicted labels of each model are underlined in the sentence.

Table 2 Entity extraction results based on Bi-LSTM-CRF model

Number Dev-P(%) Dev-R(%) Dev-F1(%) Test-P(%) Test-R(%) Test-F1(%)
1 86.32 85.36 85.84 77.89 81.54 79.67

2 84.01 81.06 82.51 81.46 81.17 81.32

3 78.63 76.52 77.56 84.29 78.11 81.08

4 81.33 81.92 81.62 79.39 83.79 81.53

5 85.84 84.31 85.07 82.76 80.76 81.75
Average 83.24 81.83 82.52 81.16 81.07 81.07
Table 3 Entity extraction results based on MTM-CW model

Number Dev-P(%) Dev-R(%) Dev-F1(%) Test-P(%) Test-R(%) Test-F1(%)
1 84.40 86.48 85.43 77.65 81.75 79.65

2 83.81 79.70 81.70 80.93 80.22 80.57

3 78.02 78.14 78.08 82.31 80.64 81.47

4 82.04 82.22 82.13 79.16 83.98 81.50

5 84.46 85.11 84.78 82.55 82.23 82.39
Average 82.55 82.33 82.42 80.52 81.76 81.12

0.6% and 0.91%, while the F1 score increased by about
0.1% and 0.65% on the validation set and test set
(Table 4), respectively. The higher recall suggests that
the BERT model can effectively reduce false-negative
examples.

The fourth model is BioBERT. The average precision,
average recall, and average F1 score of BioBERT on the
validation set were 1.31%, 0.27%, and 0.84% higher
than the test set, as shown in Table 5. The same scores
of the Bi-LSTM-CRF benchmark model and MTM-CW
model were about 2%, 1%, and 1.5% higher. Through
comparison, it can be seen that BioBERT had a smaller
overfitting degree. In addition, the various indicators of
BioBERT showed less variance, with results between
80%—85%. Compared to BERT, the average precision,
average recall, and average F1 score of BioBERT on the
test set improved by 0.13%, 0.48%, and 0.3%,
respectively, indicating better overall performance.

The final model is BioBERT-CRF, a modified
BioBERT model. Compared to the previous four
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models, the BioBERT-CRF model achieved the best F1
score on both the validation and test set, likely due to the
changes in its model structure, such as the change in
self-attention heads and the addition of the CRF layer.
The average precision of BioBERT-CRF is also
identical to that of BioBERT. In contrast, its average
recall and F1 score increased by 0.81% and 0.49% on
the test set, respectively, as shown in Table 6.

Despite the effectiveness of the BioBERT-CRF
model, there are still some error cases in the prediction
entities, as shown in Table 7. In case 1, the true brain
region entity is the “ventral lateral geniculate nucleus”.
The BioBERT-CRF model failed to recognize the
correct left boundary, probably because of the direc-
tional phrases in front. In case 2, the word “rectum” is
not a true brain region entity, but the BioBERT-CRF
model recognized it as an entity. The reason may be that
the model has learned that entity words often follow
species words. In case 3, “ependyma” and “choroid
plexus” are all true brain region entities, but the
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Table 4 Entity extraction results based on BERT model

Number Dev-P(%) Dev-R(%) Dev-F1(%) Test-P(%) Test-R(%) Test-F1(%)
1 84.88 86.10 85.49 77.93 84.29 80.98
2 84.31 80.48 82.35 80.91 81.13 81.02
3 75.53 81.14 78.23 82.74 80.46 81.58
4 82.70 81.66 82.18 80.97 83.71 82.32
5 83.60 85.29 84.44 82.18 83.75 82.96
Average 82.20 82.93 82.54 80.95 82.67 81.77
Table 5 Entity extraction results based on BioBERT model
Number Dev-P(%) Dev-R(%) Dev-F1(%) Test-P(%) Test-R(%) Test-F1(%)
1 83.32 85.21 84.25 76.20 84.97 80.35
2 80.79 82.28 81.53 81.38 81.61 81.49
3 81.05 80.94 80.99 83.97 81.80 82.87
4 83.74 84.12 83.93 81.69 84.46 83.05
5 83.05 84.55 83.79 82.18 82.92 82.55
Average 82.39 83.42 82.90 81.08 83.15 82.06
Table 6 Entity extraction results based on BioBERT-CRF model
Number Dev-P(%) Dev-R(%) Dev-F1(%) Test-P(%) Test-R(%) Test-F1(%)
1 86.30 87.23 86.76 78.00 85.70 81.67
2 84.17 82.36 83.25 81.20 82.67 81.93
3 75.49 83.21 79.16 83.50 82.06 82.78
4 82.79 83.44 83.11 80.91 85.09 82.94
5 82.93 84.25 83.59 82.62 84.26 83.43
Average 82.34 84.10 83.17 81.25 83.96 82.55
Table 7 Cases of the prediction entities from the BioBERT-CRF model
Brain regions Error type
Casel True label Notable diencephalic afferents ... of the internal division Left boundary error: fail to detect the correct left
of the yentral lateral geniculate nucleus boundary of the true entity due to some direction
BioBERT-CRF Notable diencephalic afferents ... of the internal division words in front
of the ventral lateral geniculate nucleus
Case2 True label Neurochemical characterization of extrinsic innervation Single vocabulary recognition error: recognize
of the guinea pig rectum entity error due to species word in front
BioBERT-CRF Neurochemical characterization of extrinsic innervation
of the guinea pig rectum
Case3 True label In addition, ... (Hsp27 IR) were detected in the Multiple vocabulary recognition error: fail to
ependyma and choroid plexus recognize multiple parallel entities
BioBERT-CRF In addition, ... (Hsp27 IR) were detected in the

ependyma and choroid plexus

The true labels and the predicted labels of the BioBERT-CRF model are underlined in the sentence. A brief summary of the error type is also

included at the end of each example.

BioBERT-CRF model did not recognize them. This
result may be because the model had not learned these
entities in the train set.

In summary, the BioBERT-CRF model demonstrated
good performance in extracting brain region entities, but
not without its limitations. When recognizing a single

© The Authors (2022). Published by Higher Education Press

brain region entity or multiple parallel brain region
entities, it can easily fail to recognize or recognize the
wrong entity. In addition, the model cannot detect
boundaries correctly when directional words proceed
entities.

We compared the results of five different named

257



Xiaokang Chai et al.

entity recognition models with those reported in the
WhiteText dataset literature. The comparison results are
shown in Table 8.

The best model reported in literature is the Bi-LSTM-
CRF model of Shardlow et al., which achieved an F1
score of 81.8%. This result is equivalent to that of the
benchmark Bi-LSTM-CRF model in this article. The
higher precision may be due to better pre-processing and
model parameters. In contrast, the MTM-CW model
achieved higher recall due to its generalization ability,
while the BERT and BioBERT model achieved higher
precision and recall. Among the four benchmark
models, the BioBERT model demonstrated state-of-the-
art performance. The average recall in 5 repeated
experiments was as high as 83.2%, which is 4.4% higher
than the traditional CRF model by Richardet et al. and
1.7% higher than the Bi-LSTM-CRF model by
Shardlow et al. However, the average precision is lower
than Richardet et al., likely because Richardet et al.
combined several neuroanatomical lexica feature and
species feature with linear chain CRF, allowing for
higher precision and lower recall. The overall F1 score
of the BioBERT model had a certain improvement
effect. The BioBERT* model training with special skills
further improved the precision rate, resulting in an F1
score of 82.6%. Compared to previous models, the
BioBERT-CRF model achieved the highest F1 score,
which can be contributed to its beneficial changes, such
as the change in self-attention heads and the addition of
the CRF layer.

Brain region entity extraction in a large-scale
PubMed abstract dataset

After comparing the accuracy of different deep learning-
based models to predict brain region entities, our results

showed that the BioBERT-CRF model demonstrated the
best performance in brain region entity extraction.
Therefore, the trained BioBERT-CRF model was chosen
to extract brain region entities from a large-scale
PubMed abstract dataset. A total of 27,436 abstracts
were downloaded from PubMed using 399 brain regions
from the Allen Brain Atlas (ABA) ontology [22]. To
ensure the brain regions can be found in neuroscience-
related literature, certain highly specific brain regions
were removed from the ABA ontology, leaving 399
brain regions. Then, a maximum of 200 abstracts were
randomly selected for each brain region and the trained
BioBERT-CRF model was used to predict brain region
entities in a database containing 27,436 PubMed
abstracts. The abstracts were pre-processed into the
CoNLL-U format [2] and inputted into the BioBERT-
CRF model. The results contained a total of 153,069
predicted brain region entities from the abstracts, which
were all normalized according to three neuroscience
dictionaries, specifically ABA ontology, BAMS
ontology [23], and NeuroNames lexicon [24]. This step
can solve the problems posed by synonym use and
different naming systems. For example, the term
“midbrain” has various abbreviations. In ABA and
BAMS, “midbrain” is abbreviated as “MB”, but in
NeuroNames it is abbreviated as “MBr”. Since the
different abbreviations correspond to the same
anatomical region, a rule-based method was used to
match the brain region entities to their corresponding
terms in the three neuroscience dictionaries. A total of
85.2% of the brain region entities were matched. For the
remaining unmatched entities, all directional terms were
removed and rematched. Finally, the number of different
brain region entities appeared in all 27,436 abstracts was
counted. Different colors were used to represent the
different brain regions, gradients were used to represent

Table 8 Comparison of five different entity extraction models and literature report models

Literature Model Test-P(%) Test-R(%) Test-F1(%)

French et al. [18] CRF 0.813 0.761 0.786

Richardet et al. [20] CRF 0.846 0.788 0.816

Shardlow et al. [21] Bi-LSTM-CRF 0.821 0.815 0.818

Wang et al. [3] Bi-LSTM-CRF 0.812 0.811 0.811
MTM-CW 0.805 0.818 0.811

Devlin et al. [16] BERT 0.810 0.827 0.818

Lee et al. [17] BioBERT 0.811 0.832 0.821
BioBERT" 0.823 0.830 0.826

Our models BioBERT-CRF 0.813 0.840 0.826

Precision (P), Recall (R), and F1 scores (F1) on each model are reported. Best scores are in bold texts. The BioBERT* model was trained with

special skills.
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the

to represent the total number of brain region entities that

different levels of each brain region in the cerebral cortex and brainstem, which highly reflect the
mammalian sagittal plane, and different sizes were used reality of neuroscience research.

appeared in the literature, as shown in Fig. 2. The results abstracts are shown in Table 9. Results show

suggest that researchers are more interested in the
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Figure 2. The number of different brain region entities in the mammalian sagittal plane. The different colors represent
different brain regions in the mammalian sagittal plane. The different sizes represent the number of brain region entities that
appeared in the literature.

Table 9 The top 30 of the brain region entities in the literature

The top 30 brain region entities from the 27,436

the

cerebrum as the anatomical region researchers are most

Number Brain region Frequency Number Brain region Frequency
1 Cerebrum 103,149 16 Striatum 9,340
2 Cerebral cortex 87,722 17 Primary motor area 9,319
3 Cortical plate 85,701 18 Secondary motor area 8,588
4 Brain stem 51,640 19 MY -mot 8,376
5 Somatomotor areas 25,374 20 Somatosensory areas 7,799
6 Hindbrain 21,996 21 Hypothalamus 7,710
7 Interbrain 20,109 22 CULS 7,700
8 Olfactory areas 17,318 23 V3 7,688
9 Medulla 15,869 24 Accessory olfactory bulb 7,537
10 Cerebral nuclei 15,427 25 MY-sen 7,493
11 VS 14,713 26 Midbrain 7,399
12 fiber tracts 13,694 27 Fasciculus proprius 7,349
13 Thalamus 12,399 28 Parasolitary nucleus 7,212
14 Cerebellum 10,736 29 Pons 6,127
15 Cerebellar cortex 9,570 30 Pallidum 6,087
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concerned about, appearing a total of 103,149 times. We
can also see that, within the cerebrum, the cerebral
cortex is researched more often than the cerebral nuclei.
In addition, researchers are also interested in the
brainstem, somatomotor areas, and hindbrain, among
other anatomical regions.

CONCLUSIONS

This study used a modified and four benchmark deep
learning models, specifically the BioBERT-CRF, Bi-
LSTM-CRF, MTM-CW, BERT, and BioBERT model,
to extract brain region entities on the WhiteText dataset.
The benchmark model, Bi-LSTM-CRF, achieved an
81.1% F1 score using the semantic information of the
text to predict the brain region entity. The MTM-CW
model demonstrated improvement in neuroscience brain
region entity recognition due to its multiple added
training datasets in the biomedical field, resulting in an
81% recall of the recognition task. The BERT,
BioBERT, and BioBERT-CRF models were trained in
two steps: pre-training and fine-tuning. Unlike BERT,
the BioBERT model pre-trained with the PubMed
abstracts and PMC full texts, which resulted in a better
recall of 83.2% and a better F1 score of 82.1%. On this
basis, we added a CRF layer and changed the self-
attention heads in the BioBERT model. The modified
BioBERT-CRF model achieved the best recall and F1
score of 84.0% and 82.6%. The pre-training using
biomedical literature data helped the model learn the
semantics of the field. The fine-tuning using the
WhiteText dataset helped the model learn the semantics
of the brain region entity. The transition matrix of the
CRF layer helped reduce error examples. This combina-
tion achieved the best prediction results. However, there
are still limitations with the BioBERT-CRF model.
When recognizing a single vocabulary brain entity or
multiple parallel vocabulary brain entities, it can easily
fail to recognize or recognize incorrectly. There are also
cases of inaccurate boundary detection when directional
phrases proceed the entity. The error examples are
shown in the results section. The entity recognition
boundary issues and single entity non-recognition issues
should be addressed and improved in future work.

We used the trained BioBERT-CRF model to predict
brain region entities in the 27,436 PubMed abstract
dataset and obtained a total of 153,069 entities. We then
used a rule-based method to normalize all brain region
entities according to three neuroscience dictionaries,
specifically ABA ontology, BAMS ontology, and
NeuroNames lexicon. A total of 85.2% of the brain
region entities were matched to the terms found in these
dictionaries. Although the normalization pipeline solved
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the problems of synonyms and different naming
systems, the accuracy of standardization required further
improvement by introducing additional annotated terms
into the dictionary. The brain region entity recognition
model and rule-based normalization pipeline can then
extract brain regions from a large set of neuroscience
literature, such as the PubMed abstract dataset, and
construct a brain region-to-abstract map in a context-
sensitive approach to serve as the basis for a
neuroscience oriented search engine. In addition, the
brain region entities were sorted in order of their
frequency in the corpus, reflecting the anatomical
regions researchers are most concerned about. In the
future, we will extract the relationship between different
brain region entities recognized by the BioBERT-CRF
model described in this work. The relation extraction
will allow us to obtain further information from the
literature. Searching for two or more brain entities will
provide us with a more accurate literature list, while
extracting information on the relationship between
different brain entities will help us learn about the
neuroanatomical connectivity among brain structures
from a bird’s eye view.

MATERIALS AND METHODS
Dataset

We used the White Text dataset to evaluate our
proposed framework. The WhiteText dataset was a brain
region entity gold standard dataset collected by French
et al. in 2009. The dataset first selected 1,377 abstracts
from a multitude of JCN journals with brain connections
through keyword search. Then, it used an abbreviation
amplification algorithm to replace the brain abbrevia-
tions mentioned in the abstracts with their corresponding
full names. Next, they invited several neuroscientists to
manually label brain region entities based on
neuroscience knowledge, reference brain atlases, and
dictionaries [18]. The 1,377 articles contained 18,242
labeled brain entities, and the agreement rate among
labelers was 90.7%. We converted the XML format of
the WhiteText dataset to the most commonly used
CoNLL-U format [2] and acquired 17,585 brain region
entities. The segmented text and corresponding tags
were represented line by line, with tab intervals, and
sentences were separated with blank lines. The begin-
ning of the document was marked with “~-DOCSTART-
-X- -X- -X- O”. The label can select either the BIO or
BIOES format, where “B” represents the beginning of
the entity, “I” represents the middle of the entity, “E”
represents the end of the entity, “O” represents a non-
entity, and “S” represents a single entity.

© The Authors (2022). Published by Higher Education Press
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Word embeddings

In the Bi-LSTM-CRF and MTM-CW model, we
initialized the word embedding matrix with pre-trained
word vectors from word2vec, obtained by Pyysalo et al.
[25], using Wikipedia corpus, PubMed abstracts, and
PMC full-text training. These word embeddings were
trained using a skip-gram model, as described by
Mikolov et al. [26]. In the BERT and BioBERT model,
word2vec was not used to initialize the word embedding
matrix since they learned the WordPiece embeddings
[27] from scratch during pre-training. The WordPiece
tokenization divided each word into a limited set of
standard sub-word units and learned all the sub-word
unit’s vectors. The pre-training step was also carried out
using the Wikipedia corpus, PubMed abstracts, and
PMC full-text. The embedding dictionary saved its
vectors for each word.

Evaluation

In NER, the predicted results can be true positive (TP),
false positive (FP), true negative (TN), or false negative
(FN), based on the true label. For the prediction results,
the most common evaluation indicators are precision,
recall, and F1 score. The precision represents the
number of entities that the model predicts correctly to
the total number of entities whose predictions are
positive, as defined:

TP
P=—
TP+FP

Recall refers to the ratio of the number of entities that
the model correctly predicts to the number of real
entities marked on the dataset, as defined:

TP
R=——
TP+FN

The F1 score compromises the precision and recall,
thus being more representative. It is defined as follows:

_ 2PR

Fl=——
P+R

Model

BioBERT-CREF: in natural language processing, transfer
learning has been used to pre-train neural network
language models with a large amount of unstructured
text data and subsequently fine-tune the target task to
solve the missing gold standard in the target domain.
BERT is a representative result of the pre-training model
[16]. The BERT model can achieve better performance
by pre-training on the corpus and fine-tuning on the

© The Authors (2022). Published by Higher Education Press

specific dataset. As a pre-training model in the
biomedical field, BioBERT has achieved better results
than the Bi-LSTM-CRF model and BERT model in
many natural language processing tasks [17]. Therefore,
we applied the BioBERT model to entity extraction in
the neuroscience field, fine-tuned it, and evaluated the
results of the neuroscience dataset extraction. In
addition, we added a CRF layer to the BioBERT model’s
output to calculate label probability.

The BioBERT-CRF model first obtains the feature
vector of the input text through three embedding
features, specifically WordPiece embedding [27], posi-
tion embedding, and segmentation embedding. Word-
Piece tokenization divides the word into a limited set of
standard sub-word units. Position embedding encodes
the position information of the word into a feature
vector. Segmentation embedding distinguishes between
two sentences. For sentence pairs, segmentation embed-
ding sets the feature value of the first sentence to 0 and
second sentence to 1. Then, the feature vector is inputted
into the bidirectional transformers. The transformer’s
encoder is composed of multi-head attention and a full
connection is used to convert the input corpus into a
feature vector. The transformer’s decoder inputs the
output of the encoder and predicts the result. The
decoder is composed of masked multi-head attention,
multi-head attention, and a full connection, which are
used to output the conditional probability of the final
result. Then, the model receives the predicted label
sequence through the linear classifier. Next, the
predicted label sequence is inputted into the CRF layer,
which will multiply the output of the BioBERT layer
with the parameter matrix to obtain the state transition
matrix A, where A;; represents the transition probability
from the i label position to the j* label position. The
label output at different positions of the sequence is
calculated by the sum of the output p; of the BioBERT
layer and the transition matrix A of the CRF layer. The
probability value is normalized by the softmax
activation function. The maximum likelihood function
will calculate the loss and the gradient descent algorithm
is used to calculate the model parameters. Finally, the
model parameters are updated layer by layer through the
backpropagation algorithm and the neural network is
fine-tuned. The architecture of the model is shown in
Fig. 3.

The parameters of the BioBERT-CRF model are: the
initial learning rate is 5 x 107, the epoch is 10, the batch
size is 32, the dropout size of the attention layer and
hidden layer is set to 0.1, the optimization algorithm is
Adam, the self-attention heads are 24, and the remaining
parameters are the default BioBERT model settings.
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[SEP]

Figure 3. The architecture of BioBERT-CRF model.
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