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Background: Synthetic microbial communities, with different strains brought together by balancing their nutrition
and promoting their interactions, demonstrate great advantages for exploring complex performance of communities
and for further biotechnology applications. The potential of such microbial communities has not been explored, due
to our limited knowledge of the extremely complex microbial interactions that are involved in designing and
controlling effective and stable communities.

Results: Genome-scale metabolic models (GEM) have been demonstrated as an effective tool for predicting and
guiding the investigation and design of microbial communities, since they can explicitly and efficiently predict the
phenotype of organisms from their genotypic data and can be used to explore the molecular mechanisms of microbe-
habitats and microbe-microbe interactions. In this work, we reviewed two main categories of GEM-based approaches
and three uses related to design of synthetic microbial communities: predicting multi-species interactions, exploring
environmental impacts on microbial phenotypes, and optimizing community-level performance.

Conclusions: Although at the infancy stage, GEM-based approaches exhibit an increasing scope of applications in
designing synthetic microbial communities. Compared to other methods, especially the use of laboratory cultures,
GEM-based approaches can greatly decrease the trial-and-error cost of various procedures for designing synthetic
communities and improving their functionality, such as identifying community members, determining media
composition, evaluating microbial interaction potential or selecting the best community configuration. Future efforts
should be made to overcome the limitations of the approaches, ranging from quality control of GEM reconstructions
to community-level modeling algorithms, so that more applications of GEMs in studying phenotypes of microbial
communities can be expected.

Keywords: genome-scale metabolic modeling; microbial community design; interspecies interaction; environmental
impact; community-level performance

Author summary: The applications of computational tools have been demonstrated to increase the development of
synthetic microbial communities which is an emerging field and can be used in various biotechnology applications. As
one effective tool, genome-scale metabolic modeling helps to reconstruct testable metabolic networks from genomic
information and can quantitatively simulate entire metabolic fluxes of communities in considering microbe-microbe and
microbe-habitat interactions. In-depth study of underlying mechanisms of microbial interactions using metabolic models
and of coupling the models with multi-omics data or machine learning can further extend applications in designing
synthetic communities.
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INTRODUCTION

Synthetic microbial communities are the basis of an
emerging research field in synthetic biology that aims at
the in-detail study of the properties and functions of
microbial communities and development of application
of these functions in biotechnology. A synthetic
microbial community is artificially built by co-culturing
two or more species under controlled conditions [1]. The
natural life mode of microorganisms in microbial
communities inspires the idea of constructing synthetic
communities. Microbes in multi-species consortia can
form “metabolic modules” and accomplish complex
metabolic processes via cooperation [2,3]. It may be
challenging to observe such a phenomenon with a single
strain. For example, when a single engineered
Escherichia coli strain is used to generate the whole
glutarate pathway, the accumulation of the intermediate
5-AMV limits the glutarate production. While applying
a synthetic consortium composed of two engineered
E. coli strains, which each contribute a part of the
glutarate pathway, the inhibition can be totally removed,
leading to a 19.2% of improvement in glutarate
production [3]. Moreover, the diversity of metabolic
capabilities possessed by the multiple species and the
inter-species interactions enhance the stability and
robustness of the community against environmental
stresses and ecological invasion [4—6]. Multi-species
consortia can use more kinds of substrates and reduce
the inhibition of intermediate products by regulating the
populations. Some experiments have also indicated that
during the process of biofuel production, assemblages of
algae are better than monocultures at resisting
contaminations [7]. In recent years, synthetic microbial
communities have revealed strong capabilities in various
industrial and biotechnological applications, such as
environmental remediation [8], chemical production [9],
biofuel production [10,11], drug discovery [12],
probiotic-mediated therapies [13,14].

The vast potential of microbial communities is far
from harnessed, due to our limited knowledge and
ability in rapid design of effective, stable, and robust
microbial communities [15]. Among the important
challenges for such design are the elusive microbial
interactions within the communities [16,17]. Intercel-
lular interactions are one of the key factors for shaping
and maintaining community structure [18,19]. Many
interactions occur simultaneously to the microbes,
including competition for resources and the exchange of
metabolites. The tradeoffs led by the interactions make
the community composition tend to be stable. In
addition, the dynamic variability in interaction patterns
can also lead to high metabolic diversity of the
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communities and hence make the communities more
resistant and responsive to environmental perturbations.
However, the microbial interactions are extremely
complex and difficult to identify. This is due to the high
species diversity and hence metabolic diversity of
microbes, due to the enormous species of metabolites to
be exchanged, due to the multiple promiscuous
interactions among microbes, and due to the dynamic
changes in interaction patterns in response to
environmental conditions.

In this context, the genome-scale metabolic models
(GEMs), which can simulate the metabolic flux
distributions of organisms based on their genomic data,
offer an effective tool for studying microbial metabolic
interactions. Compared to other methods, especially the
use of laboratory cultures, GEM-based approaches can
explicitly and efficiently predict and study the
underlying molecular mechanisms of the multi-species
interactions as well as the performance of the whole
microbial community and their metabolic network
[20-22]. Moreover, the reactions of microbes to
different environmental conditions can also be explored,
using condition-specific GEMs. With these prediction
capacities, the applications of GEM-based approaches
can greatly decrease the trial-and-error cost in various
procedures for designing synthetic communities and
improving their functionality, overcoming challenges
such as identifying community members, determining
media composition, evaluating microbial interaction
potential or selecting the best community configuration.
They should thus be considered indispensable for
research on synthetic communities. In the following
sections, we first present the fundamentals and the
reconstruction process of GEMs. Next, several applica-
tions of the GEM-based approaches for exploring the
microbe-microbe, microbe-habitat interactions, and the
community-level performance are presented. Finally, the
uncertainties of GEM-based approaches and the future
challenges of their applications in the research of
synthetic microbial communities are discussed.

GENOME-SCALE METABOLIC-BASED
APPROACHES

What are genome-scale metabolic models?

A GEM is a mathematical representation of the
metabolic network of an organism, which quantitatively
predicts its genotype-phenotype relationship. Using
GEMs, a whole optimized set of directional metabolic
reactions of a cell can be determined from its genomic
data in simulating its entire metabolic flux under preset
environmental conditions.

In the process of GEM reconstruction, the first step is
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the annotation of the genome sequences using metabolic
knowledge bases (Fig.1A), such as the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [23], the
MetaCyc [24] or the Biochemical, Genetic and Genomic
(BiGG) [25] knowledge bases. The annotated genes are
associated with their corresponding reactions with a
reaction score calculated through gene-protein-reaction
(GPR) rules. It determines if an adequate collection of
proteins is present for catalyzing the reactions (Fig. 1A).
By deciding the set of biochemical reactions that the
organism of interest can carry out, its draft metabolic
network can be reconstructed. This draft construction
may contain gaps or inaccuracy due to missing or
inaccurate gene annotations, which hence should be
further revised.

For the model refinement, a biomass reaction [26] is
added to this metabolic network to support the cell
growth and to connect with the reactions that synthesize
precursors for biomass formation (Fig. 1B). The
biomass reaction involves major compounds that are

A Metabolic network

Sequences Databases Annotated genome

essential for growth of an organism. Ideally, the biomass
formulation of a specific organism, such as E. coli [27]
and Methanosarcina barkeri [28], should be directly
determined by experimental measurements. Where there
is lack of experimental data, then the biomass
composition of template models should be used, such as
use of E. coli for Gram-negative bacteria or use of
Bacillus  subtilis for Gram-positive bacteria [29].
Various GEM construction tools have also built
template models for archaea, algae, fungi, plants and
human cells [30-32]. In addition to the biomass
formulation, a set of exchange reactions is defined to
describe the flux of substrates uptake and end-products
discharge. The new version of the metabolic network
can be further converted into a stoichiometric matrix
which compiles the stoichiometry information of all the
reactions for mathematically linking the metabolites
with their related reactions (Fig. 1C). The stoichiometric
matrix offers analysis of the most important constraints
on reaction flux to ensure mass and electron
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Figure 1.

Basic process of GEM reconstructions. (A) Metabolic reactions of the organism of interest are derived from the

annotated genome depending on the GPR associations. The metabolic network of this organism (schematic representation) is
integrated from the set of metabolic reactions. (B) A biomass reaction is added to the metabolic network, and the boundary of
the modeling system and the exchange fluxes with the environment are defined for subsequent model construction. (C) The
model deals with an optimization problem with an appropriate objective function and several constraints on the reaction fluxes.
The stoichiometric matrix converted from the metabolic network delineates the relation between the reactions and their related
metabolites and is used to define the key constraint to ensure the steady state of the organism. (D) Consistency check of the
metabolic network. (E) One or multiple possible flux distributions can be found by solving the optimization problem.
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conservation. In addition, other constraints can be set
according to thermodynamic feasibility [33] or other
experimental results [34]. An objective function (e.g.,
the growth rate, or the production rate of a specific
metabolite) can be maximized or minimized using
mathematical optimization techniques, such as flux
balance analysis (FBA) [35], under these constraints.
Subsequently, network evaluation is executed to check
the consistency of the network, including the check of
mass and charge balance, the check of blocked
reactions, and the search of candidate reactions for gap
filling (Fig. 1D). After the network evaluation, the
generic GEM can be reconstructed, and the optimal
solutions can be quantified to provide possible flux
distributions for the metabolic network (Fig. 1E). The
exchange fluxes describe the uptake and secretion rates
of the organism. Generally, the more complex the
constraints are, the more precise the reconstructions will
be. The environmental conditions, whether as input or as
constraints, also greatly affect the flux distributions of
reactions in GEMs.

Genome-scale metabolic modeling tools

Since the first GEM of Haemophilus influenzae Rd was
constructed in 1999 [36], genome-scale metabolic
modeling has rapidly developed. Thousands of GEMs
have been built for many kinds of cells, such as bacteria
[37,38], archaea [39], yeasts [40], plants [41] and even
human cells [42]. As the manual process for GEM
construction is complex and laborious [26], many
computational tools have been developed to make the
procedures automatic or semi-automatic, such as the
online tools, ModelSEED [31] and Kbase [43], the
canonical modeling toolboxes like the COBRA toolbox
[44], and other approaches such as Pathway Tools [45],
CarveMe [30], AGORA [46], AGREDA [47], RAVEN
[48] or Merlin [49]. These tools greatly accelerate the
GEM construction process, leading to generation of an
increasing number of GEMs [29]. Moreover, some tools
can improve the phenotypic predictions of microbes by
incorporating specific constraints, such as enzymatic
constraints in GECKO [50] or thermodynamic cons-
traints in PSAMM [51]. In addition, the condition-
specific (e.g., growth environment, life cycle or specific
tissue) metabolisms of organisms can be also simulated
based on the generic GEMs and on the experimental
observations under specific conditions. These models
can help to predict how the microbes allocate nutrients
to maximize their growth rate, or their production rate of
target chemicals, which further expands the application
scope of the GEMs [52-55].
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Community-level genome-scale metabolic
modeling tools

Community-level GEM-based approaches have been
developed by integrating multiple GEMs into one model
framework and thereby solving a community-level
optimization problem. One category of the approaches is
the static modeling approach that connects species via
exchange reactions and assumes a steady state for the
whole community. This category can be classified into
the lumped network-based approaches [56,57] that
combine the metabolisms of all community members
into one network (Fig. 2A), and the compartment-based
approaches like OptCom [58], cFBA [59], SteadyCom
[21], DOLMN [60], BioLEGO 2 [61] or SMETANA
[62] in which each organism is modeled as a distinct
compartment and metabolites exchange between these
compartments are explicitly modeled (Fig. 2B). The
compartment-based approaches can either solve a single
objective for the community performance or integrate
the species suboptimization simulations into the
community-level optimization. In addition to studying
the community-level performance via the interactions
among organisms, the multi-level optimization can also
describe the trade-offs between individual and
community-level fitness criteria.

Alternatively, dynamic approaches like DMMM [63]
or dOptCom [64] can explicitly model the temporal
variability of microbial communities. This category
couples the static compartment-based approaches with
the differential equations that capture the dynamic
variability of modeling components like biomass or
metabolite concentrations. By adding the spatial fea-
tures, some dynamic approaches, including COMETS
[65], BacArena [20], IndiMeSH [66], CODY [67] etc.,
can also predict the spatial heterogeneity of microbial
communities (Fig. 2C). They hence meet the require-
ments of the spatio-temporal control of engineered
communities in a structured environment, which cannot
be done by static methods.

APPLICATIONS OF GEM-BASED
APPROACHES IN DESIGNING
MICROBIAL COMMUNITIES

GEMs have been developed to study, predict and help to
engineer the metabolisms of individual microbes and
microbial communities, leading to various direct and
indirect applications in systems and synthetic biology
[68]. Relevant applications of GEMs guiding design of
synthetic microbial communities can be divided into
three parts (Fig.3A). Firstly, the microbe-microbe
interactions (positive, neutral, or negative types) should
be analyzed. Secondly, it is necessary to consider how
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Different categories of GEM-based modeling tools. (A) Modeling of the community as a single entity can be

achieved by lumped network-based static analysis that integrates the mixed culture into a unique metabolic network and then
converts the network into a whole stoichiometric matrix. (B) Compartment-based static analysis can model each organism as a
distinct compartment in considering the metabolites exchange among them. Multi-level optimization strategies are executed by
adding the sub-optimization problem for each compartment based on a defined community-level objective. (C) Dynamic analysis
couples the steady-state modeling with differential equations that capture the temporal variability of community performance. By
integrating the dynamic models into a lattice-based framework, the spatial organization of the community can also be simulated.
X, vector denoting the biomass concentration of all the modeled species; C, vector representing all the metabolites
concentration; v/, a subset of all the reaction fluxes of organism i; Vi, mass» Vector of biomass reaction fluxes of all the modeled

species; V,,,
modeled species; t, time.

environmental fluctuations affect microbial phenotypes
and further change microbial interaction patterns.
Thirdly, based on the two former studies, the comm-
unity-level performance can be predicted and optimized.
The GEM-based approaches mentioned in the three
aspects for designing synthetic microbial communities
are summarized in Table 1.

Studying microbe-microbe interactions

Modeling metabolic interactions among microbes is one
of the most important applications of GEMs. Using
GEM-based approaches, it has been possible to explore
underlying mechanisms and predict previously unidenti-
fied interactions. The first multispecies GEM was
constructed for studying the interaction of Desulfovibrio

© The Author (s) 2023. Published by Higher Education Press

a subset of exchange reaction fluxes of all the modeled species; r,,, a subset of substrates uptake rate of all the

vulgaris and Methanococcus maripaludis via a
compartmentalized FBA-based model in which the
objective was maximizing a weighted sum of the two-
species biomass production fluxes [69]. The model
suggested the essentiality of hydrogen transfer for
syntrophic growth and accurately predicted the relative
cell proportion of the two species during growth. Unlike
that approach [69], the FBA framework named OptCom
relied on a multi-level optimization formulation [58].
This approach considered a separate FBA problem for
each species as sub-optimization problems. It integrated
them through the constraints on metabolite exchanges
and an outer-level objective of maximizing community
biomass production fluxes. Using OptCom, the
metabolic interactions between two abundant species in
the human gut, Bifidobacterium adolescentis and
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Figure 3.

Examples of GEM applications guiding design of synthetic microbial communities. (A) Three parts of the

GEM applications in studying synthetic microbial communities: microbe-microbe interactions, environmental impacts, and
community-level performance. (B) Biomass/production optimization by microbial interactions. (C) Optimization of media
composition for inducing syntrophic interactions of microbes. (D) Prediction of the effect of oxygen content on all pairwise
interactions in a community. (E) The effects of the activity of microbes in the nodules on the biomass production rate of the host
plant. (F) Best consortium configuration selection among multiple configurations (including media composition, initial strain ratio,

environmental conditions, efc.) for a given goal by integrating a dynamic GEM-based approach with a search algorithm.

Faecalibacterium prausnitzii, were explored [70]. The
modeling results indicated that the butyrate produced by
F. prausnitzii, which is essential for colonic homeostasis
and cancer prevention, can be promoted by the acetate
supplied by B. adolescentis (Fig. 2B). In addition to
modeling the positive interactions, other interactions
(e.g., competition, parasitism, etc.) could be evaluated
using GEM-based approaches [58,62,71,72]. For
example, an approach (SteadyCom) to identifying the
competitive relation among microbes was to simulate
the relative abundances of the community members and
search for negatively correlated pairs while requiring
constant community growth rate [21]. The study used
four mutant E. coli strains for simulations and succeeded
in identifying the competitive pairs in which both the
strains relied on lysine and methionine.

In addition to analysis of interaction patterns, GEMs
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have been used to explore the underlying mechanisms
for generating interactions among species, which are
difficult to assess experimentally and can inform the
design of synthetic microbial communities. The impact
of costless metabolic secretions was evaluated by
performing over 2 million pairwise growth simulations
of 24 species in different media [73]. The costless
metabolic exchange was indicated to be a driver of
beneficial interactions contributing to the better growth
of microbes in resource-poor environments. Anoxic
conditions can provide more opportunities for costless
metabolic exchanges and more stable ecological
network motifs. Another approach named SMETANA
assessed the extent of resource competition and
metabolic exchanges among microbes via computing
the substrate overlap and the essential exchanged
metabolites [62]. The simulations for over 800
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Table 1 Summary of GEM-based approaches which can be applied in synthetic community researches

Classification Method Short description
Community-level, static, Rodriguez et al. A model to predict product formation from glucose in anaerobic mixed culture fermentation
lumped network-based 2006 [56] through maximizing a community-level biomass objective.

Pramanik ez al. A model to explore biological phosphorus removal metabolism.

1999 [57]

Community-level, static,
compartment-based

Community-level, dynamic,

temporal

Community-level, dynamic,

spatio-temporal

Individual level, integration
with macromolecular

expression

OptCom [58]

cFBA [59]

SteadyCom [21]

DOLMN [60]

BioLEGO 2 [61]

SMETANA [62]

Stolyar et al. 2007

[69]

The microbiome
modeling toolbox
[71]

MMinte [72]

Klitgord and Segre

2010 [76]
ViNE [81]

MICOM [86]
CASINO [89]
Zampieri and
Sauer 2016 [94]
DMMM [63]
dOptCom [64]
COMETS [65]

BacArena [20]

IndiMeSH [66]

CODY [67]

FLYCOP [100]

FoldME [78]

OxidizeME [79]
AcidifyME [80]

An FBA-based framework to describe trade-offs between individual and community-level fitness
criteria by optimizing multi-level objectives.

A method to analyze community parameters (maximal growth rate, relative biomass abundance,
etc.) at balanced growth.

A framework reformulated from cFBA without the limitations on the number of linear
programming iterations for predicting the variation in species abundance in response to substrate
changes.

A mixed integer linear programming (MILP) optimization approach to explore possible labor
division in communities under constraints (e.g., limited number of exchange reactions).

A Microsoft Azure Cloud-based framework which supports large-scale simulations of biomass
serial fermentation processes by two different organisms with single or multiple gene knockouts.

A tool to estimate pairwise and community-level microbial interaction potential (through
SMETANA score) and identify likely exchanged metabolites.

The first multi-species GEM to predict community-level fluxes and the ratio of cells.

A COBRA-based toolbox to study various types of pairwise microbe-microbe, microbe-host
interactions and, to analyze personalized gut microbial communities under different diets.

A methodology to assess pairwise microbial metabolic interactions ends the effect of these
interactions on the relative growth rates of microbes from 16S rRNA data.

A model to identify media that can induce putative symbiotic interactions.

An FBA-based model for analyzing the integrated metabolism of the holobiont consisting of a
host plant and its symbiotic bacterium.

A framework for predicting growth rates of diverse bacterial species in human gut and metabolic
fluxes of communities by using a heuristic optimization approach based on L2 regularization.

A toolbox for modeling diet-microbiota interactions.

A mixed-integer bi-level linear programming to infer an optimal combination of nutrients for
sustaining pairwise, synergistic growth of microbes with minimum cost of cross-fed metabolites.
The first method using dFBA at community level to optimize growth rates of each strain within
the community.

A method extended from OptCom for the dynamic metabolic modeling of microbial communities
with multi-level objectives.

A platform implementing a dFBA algorithm on a lattice to track the spatio-temporal biomass
distribution and fluxes of a multi-species community at population level.

An R package integrating dFBA with individual-based approach to generate spatial organization
and metabolic phenotype in biofilms over time.

A model combined dFBA with individual-based approach in an angular pore network for spatial
modeling of soil aggregates in considering the impact of habitat geometry and hydration
conditions.

A multi-scale framework to identify and quantify spatiotemporal-specific variations of gut
microbiome abundance profiles in the colon as impacted by host physiology.

A framework combining COMETS with a local search algorithm to automatically select the best
consortium configuration among multiple predefined/random ones for a given goal.

A metabolism and protein expression (ME) model incorporating folding and degradation kinetics
to predict the effect of temperature on microbial growth.

An ME model to describe the response of microbes to reactive oxygen species stress.

An ME model integrating folding and unfolding thermodynamics and kinetics to simulate the
response of microbes to pH variations.

communities revealed that competition among microbes
was apparent in all communities and indicated a

significant negative correlation between the competition
extent and phylogenetic relatedness of the member
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species. In addition, no prominent association of co-
occurrence with resource competition was observed. But
the metabolic interactions were recorded, leading to the
conclusion that metabolic interdependency is a major
driver of species co-occurrence. In turn, this point of
view also provided support for mutualistic system
constructions.

Evaluating microbe-habitat/host interactions

Microbial phenotypes (such as metabolic secretions,
growth rate) are significantly related to the environ-
mental conditions, which further affects the interspecies
interactions as well as the composition, the stability and
even the functions of the whole community. Thus,
understanding of the culture conditions, of the potential
environmental fluctuations, and of the interactions of
microbes with the host are essential for studying and
designing synthetic microbial communities. Apart from
the interactions among microbes described above, the
GEM-based approaches can also be employed for
modeling the phenotypic diversity of microbes — ranging
from growth rate and substrate uptake rate to gene
expression levels — and hence for predicting diverse
interspecies interaction patterns under different environ-
mental conditions [74,75].

In a study, the dynamic multispecies metabolic
modeling (DMMM) has been employed to investigate
the effect of substrate concentrations on the interactions
between Rhodoferax and Geobacter species, which are
both acetate-oxidizing Fe(IIl)-reducers found in uranium-
contaminated groundwater [63]. The model predicted
that the high acetate and low ammonium concentrations
would increase the ratio of Geobacter to Rhodoferax,
the former of which can help to reduce the uranium in
the environment (Fig.3B). This result can provide
support for designing strategies for bioremediation of
uranium-contaminated groundwater. Such effort has also
been extended to search the media compositions that
sustain a co-culture of two species but do not support the
growth of each organism on its own [76]. The results
showed that specific media compositions could induce
different types of putative symbiotic interactions
(Fig. 3C). Environmental fluctuations may be more
effective than genetic modifications for inducing
symbiotic interactions. It further highlighted the crucial
effects of environmental conditions on the generation of
symbiotic interactions.

Using a GEM-based approach, oxygen availability
was also found to be able to change microbial interac-
tion patterns. Heinken and Thiele [77] used GEMs for
11 representative gut microbes to model pairwise
interactions under anoxic and normoxic conditions
(Fig. 3D). The mutualistic behaviors of the probiotic
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organism Lactobacillus plantarum towards six other
species under anoxic conditions were found to be
entirely abolished under normoxic conditions. Further-
more, by incorporating transcription, translation, and
stress response mechanisms into GEMs, the metabolism,
the proteomic allocation, and the protein folding rates
can be modeled. This enabled modelling of cellular
behaviors in more detail and led to investigation of the
responses of microbes to other environmental perturba-
tions, such as the thermal [78], oxidative [79], and low-
pH stress [80].

The interaction between the microbe and the host is
also an important topic that can be studied using GEMs.
For example, a model called VINE integrated the host
Medicago truncatula (plant) and its symbiotic bacterium
Sinorhizobium meliloti into a three-tissue (shoot, root,
and nodule) framework to study their association
patterns [81] (Fig. 3E). The analysis revealed dimini-
shing returns in terms of plant growth when the nitrogen
fixation efficiency or the nodulation rate of the bacteria
was beyond the optimum, which may have implications
for engineering symbiotic nitrogen fixation. Another
research direction concerns the metabolic interplay
between the host and the gut microbiome, which has
been demonstrated to be clearly associated with human
health and diseases [82—84]. GEM-based approaches
were developed to study the effect of the microbiota on
the host and also the impact of diet on the gut
microbiome [85-89]. One of the common toolboxes is
CASINO, used in a diet-intervention study of 45 obese
human individuals [89]. That study estimated the
metabolic capabilities of the gut microbes and
successfully predicted a significant change in the levels
of some short-chain fatty acids and amino acids in
response to the dietary intervention. Since abundant
GEMs have been systematically constructed specifically
for study of the members of the gut microbiome [46,47]
and human cells [90-93], we believe that the study on
the metabolic exchanges between the microbes, lumen
and human cells can be further improved.

Community-level performance: design and
optimization

Apart from exploring the underlying mechanisms of
microbial interactions, several GEM-based approaches
can be employed to model the performance of the whole
microbial community and even design or optimize
synthetic microbial communities. Here, we provide
some examples of applications that use both static and
dynamic approaches.

The static approaches can be applied in designing
synthetic communities, in various ways. For instance,
OptCom can assess the level of sub-optimal growth in
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microbial communities [58]; SteadyCom focuses on
predicting the variation in species abundance in
response to substrate changes [21]; several ad-hoc
approaches can optimize medium composition to induce
microbial interactions [76,94]; SMETANA is used to
evaluate the extent of resource competition and
metabolic interaction potential of a whole community
[62]. In particular, in a study integrating SMETANA
with a network analysis method, a “social” network for a
community was constructed based on the pairwise
interaction potential of all the community members in
mangrove sediments [95]. According to the network
analysis and the transcriptomic data, several microbial
active functional modules (mAFMs) were extracted
from the network as the core modules. The microbes
possess relatively high metabolic interactions and can
actively realize certain dominant functions in element
transformations via cooperation. These mAFMs
represent the sub-consortia composed of microbes that
are highly associated through their positive interactions,
their simultaneously high-level transcriptional activity,
and their spatial clustering. They hence could provide
clues for synthetic community compositions. In
addition, DOLMN has been applied to simulate the
trade-off between metabolic self-reliance and mutua-
listic exchange and to further optimize the strategies for
metabolic division of labor in ways that would be
difficult to identify manually [60]. The simulations for
consortia combined with diverse strains of E. coli
indicated the nuanced and nonintuitive division of labor,
like splitting the tricarboxylic acid (TCA) cycle into two
separate halves.

Alternatively, dynamic approaches are more suitable
for modeling the impact of the spatial heterogeneity of
the media distribution or structured environments on
microbial communities. By implementing a dynamic
FBA algorithm [96] on a lattice, COMETS realized the
simulation of the spatial and temporal diffusion of
microbial populations and metabolites [65]. By
comparing predictions with the experimental results, this
model was verified to be able to precisely predict the
impact of a competitor on the growth of a two-species
consortium and the spatial distribution of the
metabolites’ concentrations. Approaches subsequent to
COMETS have made various changes. For example,
BacArena, which incorporated GEMs into an agent-
based approach, described the individual cells in more
details by modeling heterogeneous phenotypic behavior,
like cell movement, replication, or cellular lysis [20];
IndiMeSH adapted the model to study microbial
dispersion and nutrient diffusion in more complex
habitats such as soil, including pore spaces and aqueous
phase configurations [66]. Another approach termed
CODY [67] was constructed based on elementary flux
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mode analysis instead of dynamic FBA. CODY focused
on modeling gut microbiota and hence integrated three
multiscale modeling components, ie., species-level
microbial dynamics, microbial interactions, and colon
physiology. This framework has enabled spatiotemporal
predictions of microbial variations in response to diet
intervention. In addition, some dynamic analyses have
been used to optimize desired community-level func-
tions, such as maximizing ethanol production with S.
cerevisiae and E. coli [97,98] or to improve bioproce-
ssing of cellulose with a clostridial consortium [99].

Going further than the tools for investigating some of
the factors involved in constructing synthetic commu-
nities, a framework termed FLYCOP was developed to
directly engineer microbial communities [100]. This
framework combined COMETS with a local search
algorithm, rather than tuning each control point for
designing synthetic communities one by one, automati-
cally selected the best consortium configuration among
multiple predefined or random alternatives for a given
goal (Fig.3F). FLYCOP could realize various
applications, like detecting limiting nutrients, optimizing
cross-feeding relationships, optimizing strain ratios and
pathway fragmentation, identifying aerobic-anaerobic
switching time. One example was to optimize a
Synechococcus elongatus-Pseudomonas putida consor-
tium to produce the maximum amount of bioplastic. The
simulations proposed the best configuration parameters
related to initial low NH, concentration and high S.
elongatus biomass ratio.

PERSPECTIVE AND FUTURE
DIRECTIONS

Since the 1990s, the GEMs and the GEM-based
modeling approaches have achieved rapid progress and
have been applied in various fields [29,101]. Notably,
GEM-based approaches have been demonstrated to be
indispensable for studying systems and synthetic
biology, due to their capacity to predict the genotype-
phenotype relationships of organisms [102]. Enginee-
ring individual strains, like targets prediction for gene
manipulation, has achieved great successes in various
applications with the aid of GEM-based approaches
[103—106]. Compared with individual cell studies,
although in the infancy stage, a growing number of
GEM-based approaches belonging to two categories, the
community-level steady-state analysis and dynamic
framework for spatio-temporal predictions, have been
developed to explore the emergent properties of
microbial communities. These GEM-based frameworks
can contribute to giving mechanistic insights into
community-level complexity as well as to improving the
design of synthetic microbial communities that are

23



Huan Du et al.

laborious and even impossible to study by way of
laboratory experiments. Such beneficial uses include
exploring the core modules of a complex community
[95] or optimizing the media composition by testing a
large number of component combinations [76].

However, the uncertain precision of GEMs and the
limited capacity for community-level simulations with
high-species diversity of current GEM-based approaches
hinder the scope and precision of their applications in
the field of synthetic microbial communities (Fig. 4B).
Basically, the genome sequences, the gene annotations,
the biomass formulation and the constraints on
metabolic fluxes, which can be obtained from
experiments and/or databases, are essential for the
construction of GEMs and GEM-based community-level
models (Fig. 4A). The uncertainties that emerge from
these data, during the different steps of the GEM
reconstruction process [107], such as incorrect/missing
gene annotations, lack of specific biomass formulation,
unknown media uptake rates, or biased flux simulation,
fundamentally limit the precision of the GEM
reconstructions and hence affect the community-level
predictions. For example, after swapping biomass
formulations between five different bacterial GEMs,
considerable changes (up to 32.8%) have been observed
in essentiality predictions of reactions, indicating the
great impact of the biomass formulation selection on the
prediction capacity of GEMs [108]. The precision of
GEMs is one of the reasons why the application
examples of the most GEM-based approaches have been
executed with communities formed by precisely curated
GEMs such as those reconstructed for E. coli strains.
Thus, the first important task for modeling microbial
communities is to certify the quality of GEMs. Recent
research has proposed a tool termed MEMOTE for
benchmarking GEMs from annotation and basic tests for
model components like GPR rules, biomass reaction,
and stoichiometry, which significantly contribute to
standardized quality control of GEMs [109].

In addition, future efforts should be made to reduce
the uncertainties in the GEM reconstruction process and
improve GEM precision directly (Fig. 4C). It is firstly
essential to utilize efficient methods for providing high-
quality genomes to provide the basis for high-quality
GEM reconstructions, such as long-read sequencing
technologies [110] or droplet-based microfluidics
methods [111]. The quality of the assembled genomes
can greatly affect the accuracy of the corresponding
GEM reconstruction, especially while modeling
complex communities as in the gut or soil microbiome.
The biomass formulation of a given organism should be
estimated more accurately, for instance by lab-culture
measurement or by using the software BOFdat [112].
Moreover, some other experimental observations, such
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as chemical composition of the microbial habitats,
substrate uptake/product secretion rate, multi-level
(individual/community) growth rate, species abundance
ratio or gene knock-out essays, can either be directly
integrated as flux constraints of the related reactions in
GEM reconstructions or be used to validate the GEMs
[37,113,114]. Integrating multi-omics data, like transcrip-
tome, proteome, or metabolome, into GEMs can also
propose more constraints via setting thresholds related
to gene/protein expression level or enzymatic activities,
to reduce the flux variabilities. Nevertheless, the lack of
kinetic information and the high computational demands
of this framework result in the challenge for their
applications, especially for multi-species modeling. In
this context, recent studies have combined machine
learning (ML) methods with GEMs to improve the
prediction precision of the genotype-phenotype relation-
ship with low computational costs. The ML methods
can, on the one hand, be applied to decrease the
uncertainties in GEM reconstruction processes. For
example, the ML systems can be trained to improve
gene annotation precision with the gold standard dataset
covering more than 1 million protein sequences and
their EC numbers [115]. The important reactions for
further manual curation can also be identified by an ML
system trained with an ensemble of GEMs generated
from a draft GEM by iterative gap-filling [116]. An ML
system trained with experimental data consisting of the
phenotypic outcomes from single knockout mutants can
accurately predict the essentiality of reactions [117]. On
the other hand, ML systems can integrate the fluxomic
data, generated using GEMs under different growth
conditions, with other omics data to reversely improve
the prediction power of GEMs, such as in the
assessment/improvement of microbial growth and bio-
production [118-120], in the exploration of antibiotic
efficacy [121], or in the prediction of drug targets [122].

Even if the quality of each single-strain GEM can be
accurately reconstructed, particular challenges will still
hamper progress in community-level metabolic model-
ing. Current modeling tools, except the lumped network-
based approaches, have not been used to simulate
complex communities with high species diversity due to
the combinatorial complexity of the multi-level
optimizations. For this task, an ML random forest
method combined with a dynamic GEM-based approach
has classified the interactions and globally predicted the
highly interaction-related metabolites for a 100-species
gut microbiome [123] (Fig. 4C). Another study trained
support vector machine models with over 2 million
GEM-generated pairwise simulations to quantify the
impact of several conditional variables, such as oxygen
availability, species identity and carbon source types, on
the secretion of costless metabolites which may promote
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Figure 4. Limitations (B) hindering the application of GEM-based approaches in synthetic community design (A) and
the potential improvement strategies (C). (A) An outline summary describing the necessary input data to the corresponding
model construction processes (with correspondence represented in the pie chart by the same color), the possible simulated
results and the potential applications of GEM-based approaches in synthetic community design. (B) The bottlenecks are mainly
caused by the uncertainties generated during GEM constructions and the challenge of community-level simulation with high-
species diversity. (C) The potential strategies for improving GEM precision (a, b) and for enabling high-species simulations (c).
a. The data obtained from wet lab-experiments, machine learning (ML) systems and other methods/technologies can be directly
integrated into different processes of GEM construction (with correspondence of the improvement, based on data, to the model
construction processes being represented in the pie chart by the same color); b. The GEMs can be validated by comparing the
simulated results to the wet lab-experimental observations; c. Some ML systems trained with the simulated results of GEM-
based approaches may explore the underlying interaction mechanisms of the community with high-species diversity for synthetic

community design. ML, machine learning; ms., measurement.

inter-microbial interactions [73]. Nevertheless, these
frameworks focused on the performance of microbial
interactions but cannot directly model the growth and
metabolites secretions of a whole community. More
work is needed in the future for direct community-level
metabolic modeling for large communities. In addition,
it would also be interesting to extend the application of
GEM-based tools to the large space-scale or even the
three-dimensional organization of microbial communi-
ties for modeling microbial aggregations like biofilms
for chemical production, granules for wastewater
treatment, or other microbial growth in structured
environments. Ultimately, this paper shows that tools
that can systematically engineer microbial communities

© The Author (s) 2023. Published by Higher Education Press

are still scarce. Different strategies have distinct focuses
regarding environment specification [67], implementa-
tion conditions, and outcome results [124]. Thus, while
performing synthetic consortia modeling, attention
should be paid to selecting an appropriate GEM-based
tool depending on the modeling purpose, the assumption
consistency, and the available data.

Overall, the GEM-based approaches can guide the
design of synthetic microbial communities in various
ways, including by optimizing community composition,
media composition, culture conditions, microbial
interactions, and community-level perturbations under
host/habitat condition change. With the advance of
omics-data techniques and the emergent strength of
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integrating multiple computational methods like GEMs
with machine learning, GEM-based approaches exhibit
an extending scope of applications. However, future
efforts should be made to overcome the limitations so
that more applications of GEMs in studying microbial
interactions can be expected.
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