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Background: Single-cell multi-omics technologies allow a profound system-level biology understanding of cells and
tissues. However, an integrative and possibly systems-based analysis capturing the different modalities is challenging.
In response, bioinformatics and machine learning methodologies are being developed for multi-omics single-cell
analysis. It is unclear whether current tools can address the dual aspect of modality integration and prediction across
modalities without requiring extensive parameter fine-tuning.

Methods: We designed LIBRA, a neural network based framework, to learn translation between paired multi-omics
profiles so that a shared latent space is constructed. Additionally, we implemented a variation, aLIBRA, that allows
automatic fine-tuning by identifying parameter combinations that optimize both the integrative and predictive tasks.
All model parameters and evaluation metrics are made available to users with minimal user iteration. Furthermore,
aLIBRA allows experienced users to implement custom configurations. The LIBRA toolbox is freely available as R
and Python libraries at GitHub (TranslationalBioinformaticsUnit/LIBRA).

Results: LIBRA was evaluated in eight multi-omic single-cell data-sets, including three combinations of omics. We
observed that LIBRA is a state-of-the-art tool when evaluating the ability to increase cell-type (clustering) resolution
in the integrated latent space. Furthermore, when assessing the predictive power across data modalities, such as
predictive chromatin accessibility from gene expression, LIBRA outperforms existing tools. As expected, adaptive
parameter optimization (aLIBRA) significantly boosted the performance of learning predictive models from paired
data-sets.

Conclusion: LIBRA is a versatile tool that performs competitively in both “integration” and “prediction” tasks based
on single-cell multi-omics data. LIBRA is a data-driven robust platform that includes an adaptive learning scheme.

Keywords: single-cell; multi-omic; Autoencoder; auto-finetuning

Author summary: There is a need for tools that integrate single-cell multi-omic data while addressing several
integrative challenges simultaneously. To this end, we designed a deep-learning based tool LIBRA that performs
competitively in both “integration” and “prediction” tasks based on single-cell multi-omics data. Furthermore, when
assessing the predictive power across data modalities, LIBRA outperforms existing tools. LIBRA and its adaptive scheme
aLIBRA, allow automatic fine-tuning for users with limited effort. Additionally, aLIBRA allows experienced users to
implement custom configurations. The LIBRA toolbox is freely available as R and Python libraries.
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INTRODUCTION

Single-cell genomics technologies set the stage for
unraveling the intrinsic complex organization at single-
cell resolution by simultaneously profiling several layers
of transcriptional regulation [1-3]. Recent multi-omics
single-cell technologies enable profiling of joint
“chromatin accessibility & mRNA profiles” (e.g.,
SNARE-seq [1], sci-CAR [2], SHARE-seq [3], Paired-
seq [4], 10X Genomics [5]), “mRNA profiles & protein
antibody-derived tags” (CITE-seq [6]), and even more
than two omics such as “chromatin accessibility, DNA
methylation, and transcriptome profiling” in the
scNMT-seq [7] protocol. As a result of such novel
technologies, it has become necessary to develop
methods to integrate multi-omic profiles at single-cell
level [8] (Fig.1A). The rationale is that current state-of-
the-art bulk methodologies [9-12] and frameworks [13]

A Multiomic single-cell overview

cannot analyze single-cell data optimally [14,15,16].
Initially, methodologies such as Seurat3 [5] allowed
single-cell multiome integrative analysis; however,
Seurat3 [5] does not use the information derived from
the paired nature of the data (that is, several omic
profiles obtained from the same cell). More recently,
methodologies using the paired information have been
developed [8]. For example, machine learning tools such
as MOFA+ [17] and Seurat4 [18] allow the identifica-
tion of an integrated space that can be used for improved
cell clustering. However, such tools have two potentially
limiting factors: scalability and robustness. Furthermore,
they do not generate models that allow the estimation of
an omic profile from a second omic profile. Deep
learning-based methodologies have been developed to
overcome such limitations. The first one was BABEL
[19] which was aimed at generating predictive models
that “translate” between data types. Other methodologies
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LIBRA overview. (A) The upper panel provides a visual representation of the task to be solved. From left to right:

the initial samples and their omic profiles are represented. Then the multi-omic single-cell information is captured. Next, each
omic is separately preprocessed. Finally, we propose LIBRA for the integrative analysis. (B) The conceptual idea used to
develop LIBRA is represented in the lower panel. Through an encoding-decoding process, a latent space that contains the
information from two omics is generated. Several measurements are carried out for quality and performance.
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followed this idea, such as KPNNs [20], GAT [21], or
scNym [22]. Increasingly complex models have been
employed to solve specific tasks based on single-cell
data. These include models based on “machine language
translation” like long short-term memory (LSTM) for
prediction [23] and the incoming transformers like
scBERT [24] for annotation.

Recently, a Multi-modal Single-cell Data Integration
Competition [25] organized by Neural Information
Processing Systems (NeurIPS) was conducted. The
NeurIPS challenge addressed several tasks, such as
(i) predicting one modality from another (prediction),
(i) matching cells between modalities, and (iii) jointly
learning representations of cellular identity (representa-
tion). In general, neural networks were the most popular
and provided—in most cases—the best results.
However, while the best methodologies used architec-
tures of limited complexity, it became apparent during
the competition that the methodologies required
extensive fine-tuning of hyperparameters for each task
and dataset regardless of the specific architecture.
Furthermore, by observing that no method could win in
more than one task, it was concluded that “no free
lunch” [26] (no method works best for all) applies to the
multi-omic analysis.

Therefore, we propose LIBRA (Fig.1B), an encoder-
decoder architecture using AutoEncoders (AE) that can
competitively perform two of the three tasks addressed
in the NeurIPS challenge (prediction and representa-
tion). LIBRA is inspired by the ideas from neural
machine translation [27]; however, the implementation
selected is an AE-based framework. Similar to BABEL
[19], LIBRA integrates single-cell multi-omics data by
leveraging paired single-cell omics data. In the first part
of the LIBRA development, we fine-tuned the LIBRA
using a step-wise optimization strategy considering AE-
associated quality measures and a new metric, the
Preserved Pairwise Jaccard Index (PPJI). PPJI characte-
rizes and quantifies whether the integrated space allows
for finer granularity in detecting cellular subtypes.
Interestingly, we observed that PPJI is a valuable metric
for quantifying the added value of a multi-omic joint
representation. Next, we compared LIBRA with the
current state-of-the-art tools for several datasets, data
modality combinations, and different tasks. LIBRA
compared competitively in all cases. It is relevant to
notice that LIBRA was among the top 10 in two
NeurIPS sub-challenges (jointly learning and predicting
modality) according to the NeurIPS challenge’s metrics.
Finally, to address the no-free-lunch observation, we
combined LIBRA with an automatic fine-tuning
paradigm [28] that allows LIBRA parameter optimiza-
tion “on the run”; we denoted this version aLIBRA. It
not only improves the results significantly and
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outperforms available methodologies but, most impor-
tantly, it provides instantiations of LIBRA that are
competitive at both integration and prediction with
reduced computational times. LIBRA is freely available
in both R and Python (including tutorials) for multi-
modal single-cell analysis.

RESULTS AND DISCUSSION
LIBRA framework

LIBRA “translates” [12] between omics. Implemented
using Autoencoders, LIBRA encodes one omics and
decodes the other omic to and from a reduced space.
Here the decoder minimizes the distance to a second and
paired data type (joined translation and projection).
Briefly, LIBRA consists of two neural networks (NN)
(Fig. 2A); the first NN (NN1) is designed similarly to an
Autoencoder, but the difference is that input (dtl) and
output (dt2) data correspond to two modalities of a
paired multi-modal dataset (Fig. S1A).

Considering only one hidden layer, the encoder part of
NNI1 will aim to encode the input omic expression
matrix denoted as x e R to the latent variables h
following this formula:

h=o(Wx+b) (1)

where o is the element-wise activation function, W is
the weight matrix, and b is the bias vector. In the
LIBRA implementation activation function used is
leaky-relu [29]; this decision was taken due to a high
rate of dead node generation using standard relu that
produced lower performance and uncertainty on
outcomes delivery. The activation function is then,
instead of being 0 when z<0, a small non-zero,
constant gradient @ where the function is as follows

R(z) = { ojz zz><00}, and its derivative is R(z)=

{1 i O}. This selection excludes LIBRA training to
a z<0

introduce death nodes due to the sparsity nature of the
single-cell data. Weights and biases are initialized using
distributed criteria Xavier uniform initializer and zeros.
In the decoding part of the autoencoder, the output omic
expression matrix is used to force the minimization of
the loss based on the profiles of the second omic
molecules instead of the original profiles. This process
can be repeated during training using backpropagation
for weight updating. The loss function employed is the
mean squared error (MSE). An early stopping rule was
added to save time when the evaluation function cannot
retrieve better scores for MSE with a fixed patience
value. In addition, a learning rate plateau callback was
added to benefit from reducing the learning rate when
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Figure 2. LIBRA design and challenge resolution. (A) Visual description of the LIBRA framework. LIBRA consists of two
neural networks (NN); the first NN (NN1) is designed similarly to an Autoencoder, but with the difference that input (dt1) and
output (dt2) data correspond to two modalities of a paired single-cell multi-modal dataset. The idea is to learn a shared latent
space that contains the information of the two data-types, as shown in panel A. The second NN maps dt2 to the shared latent
space to ensure that the projected space correctly embeds the dt2 information. See Fig. S2A, B for post-fine-tuning additional
implementation details. (B) Summary overview of the evaluation functions used in the analysis and optimization of LIBRA. See
Material and Methods for complete details. (C) Visual description of the PPJI. Left panel: visual description of the Jaccard
Similarity Index. Middle panel: visual description of the Pairwise Jaccard Similarity Index. Right panel: visual description of the
Preserved Pairwise Jaccard Index (PPJI); as shown in the figure PPJI investigates if the clusters derived from a single-omic
data-analysis (dt1) are properly and robustly separated into the same or larger number of clusters. To this end, for each cluster i
derived from dt1, the sum of JSI(i,x) for all clusters x in the integrated space is computed. And then, the average for all clusters
from dt1 is computed as the final summary. A value of 1 denotes that dt1 clusters are perfectly identified in the integrated space;
however, an added value (fine granularity at cell-type identification) requires large values of PPJI but also a larger number of
clusters identified in the integrated space. An extended description of PPJI computation is provided in the methods section. (D)
Example of the integrative challenge using dataset DS1. The integrated space was identified using LIBRA. Example of
clustering resolution in the integrated space. Two left upper panels denote the UMAP projection and clustering for RNA and
ATAC, respectively. The right panel shows the UMAP projection and clustering of cells in the integrated space (e.g., the LIBRA
optimized model). Finally, the two left bottom panels project the clustering information derived from the integrated space in the
UMAP projections for RNA and ATAC, respectively.
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no improvements are obtained on loss function during
application of a fixed patience value. See Supplementary
Materials and Methods for values and hyperparameters
employed.

Thanks to this processing, a shared latent space (SLS)
for two data types can be learned effectively (Fig. 2A).
While NNI1 identifies the SLS, we considered it
necessary to implement a second NN(NN2) that maps
dt2 to the generated SLS to ensure and quantify that the
projected space correctly embeds the dt2 cells’
information with a high quality (Fig.2D). This NN2
(Fig. S1B) will use the same encoding strategy but with
dt2 as input and will contain generated SLS as output.
See Supplementary Materials and Methods for the
complete formula.

Evaluation functions

To assess the performance of the LIBRA integration, we
designed several quality metrics (Fig. 2B, C). The first
set of metrics, Q1 and Q2 (Fig. 2B, upper part), is
associated with the training of the neural network; the
mean square error (MSE) and Euclidean distance are
used to evaluate the training of NNI1 and NN2,
respectively. The second set of metrics (Fig. 2B, lower
part) is implemented to evaluate the following LIBRA
applications: (i) added value of integration, and
(i) predictive power between omic profiles. The
following sub-sections describe each of the evaluation
functions; for further technical details, see Supplemen-
tary Information.
Q1 has been computed as the MSE formula for NN1:

n - 2
MSEyy = Z (dtr; —dty;) 2

i=1

where dt denotes the estimated value, and dt denotes the
original value. n is the total number of cells for the given
pair of single-cell data modalities.

Q2 has been computed as the Euclidean distances
between generated SLS:

Since NN2 is trained using MSE as a loss function,
the Euclidean distance Q2 between the SLSs generated
in NNI1, and the predicted output values of NN2 could
casily be calculated as the square root of the MSE
obtained in NN2 when calculated for all cells as:

Q2= V: MSEyw, (3)

In the case of NN2 and based on the observed bimodal
distribution (Fig. S1C), we evaluated separately the cells
used in the training or validation in NN1.

Preserved Pairwise Jaccard Index

The Preserved Pairwise Jaccard Index (PPJI) is designed
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to quantify the added value of the paired integrative
analysis to identify cell subtypes (better granularity) by
providing a summary value over the Pairwise Jaccard
Index (PJI) matrix (Fig. 2C). Briefly, PPJI provides a
number between 0 and 1 that quantifies: “does the
integrated space provide a finer cell-type definition than
the cell-type definitions generated from a single-omics
(e.g., dt1)?”. For a given cluster in dtl, the sum over the
associated PJI matrix will be “1” if the cluster holds or
separates perfectly into sub-clusters (Fig. 1C). Thus,
PPJI calculates the average of the sums as a summary.
PPJI computation will be as follows (See Supplementary
Materials and Methods for a more detailed explanation):

PPIJ = ZZ(ZBZ; @)

where for each pair of clusters, i € A and j € B, g; and b,
denote the set of cells in cluster i and j, respectlvely,
when investigating how cluster a projects onto the
reference cluster b (see Fig. 2D). Therefore, values
closer to 1 denote that the clusters in dtl are conserved
or split into sub-clusters. It is important to note that the
evaluation function PPJI must be combined with the
“comparison between the number of clusters in dtl and
in the integrated space”.

Synergy model performance ranking

To obtain a summary score of integration performance,
a weighted average of the three metrics was calculated
(See Supplementary Materials and Methods), where
each metric is scaled and weighted equally. To do this,
each time a set of combinations is compared, the results
of training the AE 10 times for each combination are
pooled. Then Q1, Q2, and PPJI are scaled and averaged
equally to generate a final score that numerically
represents overall performance.

Prediction-specific evaluation metrics

To evaluate the predictive power of LIBRA, the pred
metric is used. The Pearson correlation and AUC-ROC
curves were used for scRNA-seq and scATAC-seq,
respectively. For ROC calculation, scATAC-seq
predicted matrix was first binarized using a value of
0.25 as the cut-off point (based on the data distribution):
values greater than 0.25 are considered 1, and values
below or equal to 0.25 are considered 0. For more
details on the implementation of this metric, see
Supplementary Materials and Methods.

CITE-seq specific integration measurement

The last metric implemented is a CITE-seq [6] specific

© The Author(s) 2023. Published by Higher Education Press
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for measuring integration performance. For this metric,
a set of 25 reference expression proteins is used to
measure how different the Spearman and Pearson
correlation scores for the k-nearest neighboring cells
(k = 20), in the entire feature space of the reference
protein dataset, are for each of these proteins with
respect to the expression of the k-nearest neighboring
cells obtained in the SLS for the different methods used
(LIBRA, Seurat4 [18], MOFA+ [17], totalVI [30] and
BABEL [19]) for each the 25 reference proteins.

LIBRA step-wise optimization

To identify default-tuned LIBRA’s hyperparameters, we
combined three quality measurements (Q1, Q2, PPJI)
when conducting the analysis of the SNARE-seq [1]
adult brain mouse dataset (DS1). Iteratively, we
considered the optimization of the following parameters:
(1) Autoencoder-type configuration = AE-based frame-
work, (ii) number of dimensions of the projected space =
10, (iii)) peak derived information for ATAC-seq,
(iv) the ordering (dtl = ATAC-seq and dt2 = RNA-seq),
(v) using the most variable features only, and (vi) the
number of hidden layers = 2. Table S1 includes the
values for each evaluation metric. In all cases, a
weighted score combining Q1, Q2, and PPJI was
computed to determine the overall performance. Table
S2 shows the final weighted score computed for each
iteration in each combination. The best configuration
was chosen based on overrepresentation, relative to
other configurations, within the 10 highest values on
each parameter selection step. (See additional details in
Supplementary Materials and Methods).

Comparing LIBRA with existing tools

Next, we compared step-wise fine-tuned LIBRA using
DS1 against existing tools Seurat3 [5], Seurat4 [18],
MOFA+ [17], totalVI [30] and BABEL [19]. For that
comparison, we used the PPJI measure (Fig. 2C, D),
which quantifies the added value of multi-omic
integration when identifying cell sub-types (Fig. 3A).
We observed that only Seurat4 [18] outperforms default-
tuned LIBRA, and it does so minimally. However,
inspecting the clusters reveals an overwhelming
similarity, as shown in Fig. S1D, E. Interestingly,
LIBRA outperforms the other deep learning frame-
works, including a concatenation of both data-type
matrices in an Autoencoder to identify the shared latent
space (unpaired AE). We investigated the cluster-
specific markers from Seurat4 [18] and LIBRA to
interrogate biological relevance. First, when taking
Seurat4 [18] as a reference, the top markers identified at

© The Author(s) 2023. Published by Higher Education Press

Seurat4 [18] are also recognized by LIBRA (Fig. S2A,
B). LIBRA also identifies other markers (Fig. S2A, B).
We conclude that both methodologies can recover a
similar level of resolution for clusters, cell subtypes, and
their associated biomarkers.

Sensitivity analysis

Next, we evaluated the robustness of both Seurat4 [18]
and LIBRA by reducing the number of cells. To do so,
we randomly selected and removed a certain percentage
of cells while calculating the PPJI in each case. As
expected, reducing the number of cells decreased the
performance of Seurat4 [18] and LIBRA (Fig. 3B).
Interestingly, when reducing the number of cells,
LIBRA performs significantly better than Seurat4 [18].
Further robustness analysis shows that LIBRA can
maintain high accuracy against randomization of
matching information, dropout, and overtraining (see
Table S3).

Generalization of the results

To assess the generalizability of LIBRA, we compared
LIBRA with other methodologies using a wide range of
datasets. We considered the following datasets: CITE-
seq (Human Bone Marrow, DS2 [6]), PAIRED-seq
(Mouse Adult Cerebral Cortex, DS3 [4]) and SHARE-
seq (Mouse Skin, DS4 [3]), 10X (PBMC, DS5 [5]),
10XMultiome (Human Bone Marrow, DS6 [25]), CITE-
seq (Human Bone Marrow, DS7 [25]) and scNMT-seq
(Mouse Embryonic Stem Cells, DS8 [7]). Further details
are provided in Fig. 3C and Table S4. PPJI based-
comparison was not feasible in DS8 because of the
limited number of cells and, as a result, the very limited
number of clusters that were identified. A general
observation (Fig.3C) is that fine-tuned Seurat4 [18]
surpasses all other methodologies in most cases.
However, the differences between Seuratd [18],
MOFA+ [17], and LIBRA are limited, and depend on
the dataset. BABEL [19] provides the worst results
except for DS3 when compared against ATAC-seq as
DSI1. Interestingly, we found that DS3 ATAC-seq
provides limited information on clusters, which is
observed both in clusters based on Seurat4 integration
[18] and LIBRA. However, BABEL [19] appears to
prioritize the information from ATAC-seq in the
integration as shown in Fig. S3. It is relevant to note that
BABEL [19] development was aimed toward the
prediction challenge, not cell-type identification. We
also observed that the normalization procedure (e.g.,
using or not SCT) has a limited effect on the PPJI
analysis (see Table S5). In the case of DSS5, being the set
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Figure 3. LIBRA step-wise tuning and comparison with existing methodologies. (A) PPJI evaluation in DS1 for each of

the methodologies considered in the analysis. * Indicates that the number of clusters in the integrated space is larger than is the
case for the uni-omic analysis. (B) PPJI values derived from LIBRA and Seurat4 analysis, both using paired information when
the total number of cells used to create the model is a percentage from the original total number (6735 cells). (C) PPJI-based
comparison between the different methodologies in several datasets. (*) Not conducted in BABEL. (**) DS5 was analyzed using
all genes instead of mvg. BABEL framework exceeded the limiting time of 1 week for running on a GPU infrastructure. (***) DS6
was analyzed using up to 2TB ram, but greater resources were required. (D) Analysis outcome in the CITE-seq dataset.
Spearman protein expression correlation scores obtained on k-nearest neighboring (k = 20) integrated latent spaces for all

integration methods and original reference CITE-seq dataset k-nearest neighboring (k = 20).

with the largest number of cells (at the time this analysis
was conducted), we observed that using “all features"
instead of “most-variables features” provided slightly
better integration results (< 0.02 PPJI difference);
consequently, we analyzed all methods using the “all
features™ option. It was not possible to run BABEL [19]
within a reasonable time frame with the entire set of
features on DSS5.

As an extension to the current work, we compared
LIBRA against the winning framework in the NeurIPS
challenge (concatenated AE) on dataset DS6. Concate-
nated AE obtained a resolution of 23 clusters with a
PPJI score of 0.72 and 0.64 for scRNA and scATAC,
respectively. Considering the performance of LIBRA
with default hyperparameters, we obtained resolution
scores for 28 clusters and PPJI scores of 0.79 and 0.67,
respectively. We conclude that LIBRA outperforms the
concatenated AE in the resolution and preservation of
biological information in SLS.

To evaluate LIBRA in other combinations of data
modalities, we investigated the prediction in CITE-seq.
To that end, we estimated the expression of 25 protein
values in CITE-seq DS2 dataset [5] using the profiles
from the neighboring cells as conducted in Seurat4 [18]
analysis [17] and using previously explained metric
computed for each of the SLS components. Seurat4 [18],
LIBRA, totalVI [30], and MOFA+ [17] returned the best
results for 14, 11, 1, and 1 of the 25 antibodies,
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respectively as shown in Fig. 3D. Overall, Seurat4 [18]
provides the most stable results, followed by LIBRA.

Predictive power of LIBRA

While LIBRA is comparable with Seurat4 [18] using
PPJI, the added value of the LIBRA framework is its use
as a predictive model. The generation of a LIBRA
model for a paired dataset allows the prediction of
unknown biomolecule profiles from single-omic single-
cell data of the same biological system. Given the dtl =
ATAC and dt2 = RNA, we quantified the predictive
power for RNA profiles, predRNA, as the Pearson
correlation between known and predicted profiles, as
used in BABEL [19]. We acknowledge that predRNA
can also be considered as an evaluation measure for
NNI1. We compared predRNA value between BABEL
[19] and LIBRA on all datasets for which that was
possible (Table S6); we observed that LIBRA
outperforms BABEL [19] in all cases. We also observed
that the prediction values estimation is valid for all
clusters, and the correlation per cluster is not associated
with the number of cells in the cluster (Tables S7, 8).
Again, we observed that LIBRA outperforms BABEL
[19] when using RNA to predict ATAC-seq profiles
(0.87 vs. 0.85 predATAC, see Supplementary Materials
and Methods).
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Comparing running times

When comparing the computational cost (Table 1),
Seurat4 [18] is the fastest. However, given that LIBRA
training must be performed once or, at most, a few times
in any single-cell multi-omics analysis, we consider the
observed CPU time cost to be functional (Table 1). In
particular, although BABEL [19] and LIBRA are both
AE-inspired methodologies, the more complex architec-
ture of BABEL [19] makes it much more time-
consuming.

Adaptative LIBRA: automatic dataset specific
auto-finetuning for LIBRA

From an observation derived from the NeuRIPS
challenge, fine-tuning seems to be a necessary step to
find optimal performance for all neural network
architectures. To further investigate this hypothesis, we
calculated LIBRA evaluation scores for different
combinations of parameters, fixing the other parameters
at a given value, using the largest dataset DS6. As
shown in Fig. 4A, B, the different evaluation metrics
used may show different associations to neural network
parameters. Therefore, it is necessary to characterize the
fitness landscape shown in Fig. 4C. In the example,
aimed at optimizing the “integrative scores” we have
compared 423 models (each model associated with a
different parameter setting for LIBRA) using a grid of
vectors for the different hyperparameters (Table S9;
Materials and Methods).

A first observation is that, as shown in see Fig. 4D,
fine-tuned LIBRA (aLIBRA) increased the PPJI scores
for RNA (from 0.79 to 0.82) and ATAC (from 0.67 to
0.81). In the context of ATAC outperforming Seurat4
[18]. See also the extended clustering definition in
Fig. 4E, F.

Table 1 Computational costs of each of the methodologies

A second observation is that we can use the fine-
tuning to investigate further the association between the
parameters space and the tasks of prediction and
integration. In the example shown in Fig. 4A, we
observed that frameworks with lower nodes yield better
predictions; see the section on Methods for the details of
the two different parameter sets. We investigated
whether there were combinations—of the overlapping
parameter space—that returned good evaluations on both
criteria (see Fig. 4G). We observed that there are Pareto
optimals: competitive frameworks in both tasks.

Based on all those observations, we conclude that a
predefined or even a step-wise model concept can be
further improved if complemented by a fine-tuning
strategy that fits the data (as is the case for aLIBRA).

LIBRA as a resource

LIBRA has been implemented as a Python package
called sc-libra. It provides state-of-the-art performance
while maintaining a competitive runtime (when
compared with other Deep Learning based methods that
require more CPU time to perform similar training
processes). In addition, LIBRA, in the aLIBRA variant,
includes the possibility to train hundreds of models in
parallel for data-driven parameter fine-tuning.

LIBRA is a modular toolbox and, in our experience, is
easy to use. All function outputs and the directory tree
are generated “behind the scenes,” and the required user
interaction is very limited Fig. SA.

Limitations, future developments and
considerations about the evaluation functions

In our evaluation of LIBRA, two limitations are of
relevance: (i) the current version of LIBRA is limited to
two data types, and (ii) the evaluation functions used,

Training time Per epoch TotalVI  Seuratd
MOFA+
DataSet 1D LIBRA BABEL BABELGPU2 LIBRA  BABEL BABELGPU2 (cpyyy (CPU) (CPU)
(CPU)(min) (GPU) (min) CPU (h) (CPU) (s) (GPU)(s) CPU (s) (h) (min)
DSI GSE126074 12 10 6 3 12 360 6.5 15 <3
DS2 GSE128639 10 (*) 1 (*) 3.7 12 <3
DS3 GSE130399 10 5 3 5 8 240 0.9 45 <3
DS4 GSE140203 33 23 11.5 10 17 128 2.4 11.5 <3
DS5 10X Genom 25(*) (*%) 3 (*%) 3.5 13 <3
Out of mem
*
DS6 GSE194122 42 * 10 17 128 (2 TB ram) 24 <3
DS7 GSE194122 10 *) 3 *) 55 19 <3
DS8 GSE109262 1 (%) 1 (*#%) - - <3

Computational times required to generate the integrated spaces for each of the tested models.

systems were computed based on Nvidia supplier specifications.

© The Author(s) 2023. Published by Higher Education Press
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such as PPJI, are not a complete evaluation criterion of
the integrative outcome. We observed that LIBRA is
competitive when compared to existing methodologies
of more than two omics (multigrate [31] and multiVI
[32]), such an observation encourages the development
of “> 2 omic data types” versions of LIBRA (see Fig.
S4A). However, while performing the analysis, we also
observed that measurements derived from challenges
(e.g., NeuRIPS’ single-cell integration benchmark,
(scib) [33]) provide different results from those derived
from PPJI (which aims to quantify the added granularity
derived from multiomics). When using PPJI we expect
optimal multi-omic models to provide a higher
granularity (more clusters), as shown in Fig. S4B, C.
However, in the case of optimal scib-derived models, we
observed an association with fewer clusters (see Fig. S4
D, E)—in some cases fewer than in the case of clusters
derived from uni-omic analysis. Furthermore, the
biological utility of the clusters identified by each one of
the methods (and evaluation functions used) differ (see
Fig. S5). While the design and nature of PPJI and scib
are different, the observed results reflect the need for
further investigation of the evaluation criteria and the
biological value added.

CONCLUSIONS

To analyze single-cell multi-omics profiles [34], the
research community needs powerful multi-omics data
analysis software tools [8] capable of handling different
combinations of omics. Moreover, these tools need to be
adapted to different data modalities, to several
challenges (multi-objective optimization) and to the
specific characteristics of each dataset. To respond to
this demand, we present LIBRA.

LIBRA is a tool that leverages paired-single-cell
information using an AE framework to address two
fundamental challenges in analyzing multi-modal
single-cell data. Namely, to identify the joined space,
thus facilitating cell-type resolution, and allowing
prediction between different omics modalities. We
observed that LIBRA competes with state-of-the-art
tools in both tasks and is robust when the number of
cells is reduced. Moreover, LIBRA’s architecture and
learning scheme are generalizable to any pair of omics.
This allows LIBRA to be used in any biological context
regardless of the nature of the biomolecule profiles used.

The limited CPU time demand of the model allows
LIBRA to be easily fine-tuned to the characteristics of
the different datasets (with its considerable effect on
performance improvement), something that would be
impossible with tools requiring higher CPU times such
as totalVI [30], MOFA+ [17] or BABEL [19].
Furthermore, the simplicity of the LIBRA model, its
limited CPU time requirements and its scalability allow
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LIBRA to be combined with a fine-tuning strategy.
aLIBRA significantly refines and improves the model
output and, consequently, outperforms other methodo-
logies. Furthermore, aLIBRA allows the identification
of frameworks during fine-tuning that are competitive in
both prediction and integration, as shown in Fig. 4G.

LIBRA’s limited computational time requirements
make it a candidate for the analysis of large datasets
such as the Human Cell Atlas [35], where the integration
of this type of data involves additional technical
complications (batch effects depending on technologies,
laboratories, etc.).

In summary, LIBRA and aLIBRA are state-of-the-art
tools for single-cell multi-modal prediction and
projection analysis, whose implementations are avai-
lable as OpenSource in R and Python (Fig. 5), with
tutorials available. LIBRA is implemented as a Python
package (under PyPI repository) called sc-libra,
allowing users to efficiently perform all proposed
analyses and metrics on any pair of paired single-cell
omics. Online documentation for sc-libra is provided as
a user’s guide through this package.

MATERIALS AND METHODS
Preprocessing of scRNA-seq data

Following Seurat guidelines, several cell and feature
quality filtering were applied. Cells with higher than
90% or lower than 10% for the “number of features” or
“counts per cell” were filtered out. Cells with counts in
less than 201 genes were filtered out. Genes with counts
in less than 5 cells were filtered out. Cells with more
than 5% reads mapping to mitochondrial genes were
filtered out. When most variable genes (mvg) were used,
the 2000 most variables genes were selected. Within
each cell, the number of reads per gene was divided by
the total number of reads in the cell and multiplied by a
scale factor (10,000); then, a log-transformation was
applied. Feature subspaces were obtained from most
variable genes using principal component analysis
(PCA) based on the top 15 principal components.
Clustering was computed using the Louvain algorithm
over principal components subspace. Bootstrap subsamp-
ling snakemake workflow was used to identify the
optimal number of nearest neighbors and the resulting
resolution. The ranges of the values for these parameters
were 8—16 and 0.6—1.4, respectively. We used a
subsampling rate of 0.8 for 20 subsamples, which
generated a total of 500 samples for analysis. The
clustering was repeated 1000 times with the final
settings to discard spurious clusters. More details are
available in the Supplementary Materials and Methods
section.

© The Author(s) 2023. Published by Higher Education Press
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Figure 4. Additional evaluation. (A) Fine-tuned LIBRA using Q1. Orange represents the performance of model over training
set (80% of cells in DS6) and blue the performance obtained over the test set (20% of cells in DS6). Score denotes the values
associated to the training of NN1 (Q1). (B) Fine-tuned of LIBRA using PPJI. RNA preserved information score as red and ATAC
preserved information score as blue. (C) aLIBRA results over DS6 (10XMultiome). The 3D representation provides the
differences in performance because of hyperparameter differences. A version adapted to surpass fixed configurations limitations
provides substantial performance improvements compared to that of fixed configuration. The model that has shown a higher
performance over the other combinations of hyperparameters is highlighted by a red circle. Each dimension is denoted as; x-
axis (RNA-seq PPJI), y-axis (ATAC-seq PPJI), z-axis (# of layers), size (%dropout, 0.1-smaller and 0.2-bigger), colors (#of
nodes of first layer, 256-red, 512-yellow, 1024-green and 2048-black) and shape (#of nodes in middle layer, 10-comma, 50-
cross and 70-circle). (D) Ranking of the parameter combinations from lower to higher values for the combinations investigated in
the integrative analysis. Lines denote the values obtained by different methodologies. (E) Original RNA and ATAC clustering
information is shown within UMAP representation. (F) As (E) but information provided corresponds to LIBRA fine-tuned model
clustering outcomes. (G) Identification of Pareto optimals.
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LIBRA and aLIBRA: sc-libra Python package graphical pipeline. Working from top to bottom, this provides a

conceptual guide to using the LIBRA pipeline. Expected outputs and metrics are shown.

As a result, a robust latent space and clustering results
were obtained for scRNA-seq, which can be used when
comparing integrated-based approaches. The normalized
and log-transformed scRNA-seq matrix will be the input
to the LIBRA model.

Preprocessing of scATAC-seq data

scATAC-seq data was preprocessed similarly to ScCRNA-
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seq except when as described below. In scATAC-seq, a
combined Seurat and Signac guideline was used.
Because of the greater sparsity of scATAC-seq, peaks
were filtered out if they were profiled in less than 4
cells. Data matrix was normalized using the frequency-
inverse document frequency (TF-IDF) method. In
scATAC-seq, we used the entire feature space. Reduced
feature subspaces were computed over all peaks feature
space using singular value decomposition (SVD),

© The Author(s) 2023. Published by Higher Education Press



LIBRA: an adaptative integrative tool for paired single-cell multi-omics data

providing latent semantic indexing (LSI) as latent space
with 50 components. The values and functions
employed are detailed in the Supplementary Materials
and Methods section.

The Signac activity estimation approach was used to
conduct Seurat integrative analysis. An upstream from
the Transcription Starting Site of 2.000 base pairs was
used for “peak to gene relation” estimation. GRCH38
and mm10 reference genomes were used for human and
mouse, respectively. See Supplementary Materials and
Methods for Seurat integration parameter.

scATAC-seq reduced latent space and clustering
results are used when evaluating the integrative analysis.
A normalized scATAC-seq matrix will serve as input to
the LIBRA model.

Preprocessing of CITE-seq data

The initial pipeline for the analysis of CITE-seq raw
data was similar to previous data modalities. Differences
are detailed below.

The entire protein space was used instead of selecting
for most variable proteins sub-space. In addition, the
protein expression measurements for each cell were
normalized using centered log-ratio transformation
(CLR). Values and functions employed are available in
the Supplementary Materials and Methods section. The
reduced latent space and clustering results obtained are
used as antibody-derived tags (sc-ADT) reference for
later performance metrics computation. A normalized
scADT matrix will serve as input to the LIBRA
framework.

Adaptative fine-tuning, aLIBRA

The first version of the LIBRA framework was
instantiated using a step-wise optimization procedure
over a single dataset; as a result, a set of parameters
were selected, and such a framework was applied to all
datasets. This step-wise optimization is detailed in the
Results section. However, such parameter combinations
may perform sub-optimally for different datasets or
combinations of data modalities. Based on that
assumption, we combine LIBRA with an automatic grid-
based fine-tuning strategy to identify the optimal set of
parameters for any given dataset; we denote the
implementation as adaptive LIBRA (aLIBRA).

In aLIBRA, the optimal combinations of the number
of layers, number of nodes, alpha, dropout, and mid-
layers size for each of NN1 and NN2 are identified. A
non-linear shrinkage was used for the following hidden
layer size rule Layersize,_inputlayersize/2+ N for both
encoding and inverse boosting in the decoding part of

© The Author(s) 2023. Published by Higher Education Press

the autoencoder; N denotes the position a layer has in a
neural network. This consideration prevents LIBRA
from generating layers smaller than the “middle layer”
size for very large NN (which may be necessary for very
large datasets).

Fine-tuning is executed twice for each of the tasks:
integration and prediction. For integration, aLIBRA
considered the following values: number of layers
(1,2,3,4,5,6), number of nodes (256,512,1024,2048),
alpha (0.1,0.3,0.5), dropout (0.1,0.2,0.3,0.4) and mid
layers size (10,50,70). For prediction, aLIBRA
considered the following values: number of layers (1,2),
number of nodes (128,256,512), alpha (0.05,0.1,0.3),
dropout (0.1,0.2), batch size (32,64,128) and mid layers
size (10,30,50,70). These options are customizable in
the Python implementation.

The fine-tuning of aLIBRA has been implemented
with a parallelization strategy to decrease the computa-
tion time requirements. For further details, see
Supplementary Materials and Methods.

AVAILABILITY AND REQUIREMENTS

Project name: LIBRA.

Project home page: “GitHub website (TranslationalBioinformaticsUnit/
LIBRA)”.

Operating system(s): platform independent. Tested on LINUX.
Programming language(s): sc-libra (LIBRA package implementation at
PyPI), Python, Jupyter notebook, R and RMarkDown.

License: GPL-3.0 license.

Any restrictions to use by non-academics: none.

AVAILABILITY OF DATA AND MATERIALS

The datasets re-analyzed during the current study are available in the
NCBI GEO repository via accession numbers GSE126074, GSE128639,
GSE130399, GSE140203, GSE194122, GSE109262 and 10X Genomics
website repository. The developed package and its online documentation
and the code used for the re-analysis, are available at: sc-libra package:
Pypi (sc-libra); sc-libra online docs: Read the docs (sc-libra); GitHub
repository: GitHub website (TranslationalBioinformaticsUnit/LIBRA);
Cone of GitHub repository plus data repository: Figshare (LIBRA).

ABBREVIATIONS

NN Neural networks

GEO Gene Expression Omnibus
SLS Shared latent space

PJI Pairwise Jaccard Index
DS Data set

predRNA Predicted RNA
predATAC  Predicted ATAC

MSE Mean squared error
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SNARE-seq Droplet based technology to profile chromatin accessibility
and gene expression from the same cells

CITE-seq Qualitative information over gene expression and surface

proteins with available antibodies on a single cell level

Paired-seq Combinatorial indexing strategy to simultaneously tag both

the open chromatin fragments generated by the Tn5

transposases and the cDNA molecules generated from

reverse transcription

SHARE-seq Strategy that uses three rounds of barcodes by ligating

barcoded adaptors to both RNA (gene expression) and

tagmented DNA (chromatin accessibility) to achieve the

multi-omic profiling from the same single cells

10X 10X Genomics single-cell multiomics solutions

CITE-seq Method for performing RNA sequencing along with

gaining quantitative and qualitative information on surface

proteins with available antibodies on a single cell level

sctNMT-seq Method to look at methylation (CpG) and chromatin

accessibility (GpC)
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The supplementary materials can be found online with this article at
https://doi.org/10.15302/J-QB-022-0318.
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