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Background: Computational approaches for accurate prediction of drug interactions, such as drug-drug interactions
(DDIs) and drug-target interactions (DTIs), are highly demanded for biochemical researchers. Despite the fact that
many methods have been proposed and developed to predict DDIs and DTIs respectively, their success is still limited
due to a lack of systematic evaluation of the intrinsic properties embedded in the corresponding chemical structure.
Methods: In this paper, we develop DeepDrug, a deep learning framework for overcoming the above limitation by
using residual graph convolutional networks (Res-GCNs) and convolutional networks (CNNs) to learn the
comprehensive structure- and sequence-based representations of drugs and proteins.

Results: DeepDrug outperforms state-of-the-art methods in a series of systematic experiments, including binary-class
DDIs, multi-class/multi-label DDIs, binary-class DTIs classification and DTIs regression tasks. Furthermore, we
visualize the structural features learned by DeepDrug Res-GCN module, which displays compatible and accordant
patterns in chemical properties and drug categories, providing additional evidence to support the strong predictive
power of DeepDrug. Ultimately, we apply DeepDrug to perform drug repositioning on the whole DrugBank database
to discover the potential drug candidates against SARS-CoV-2, where 7 out of 10 top-ranked drugs are reported to be
repurposed to potentially treat coronavirus disease 2019 (COVID-19).

Conclusions: To sum up, we believe that DeepDrug is an efficient tool in accurate prediction of DDIs and DTIs and
provides a promising insight in understanding the underlying mechanism of these biochemical relations.

Keywords: drug-drug interaction; drug-target interaction; graph neural network; deep learning

Brief summary: Computational methods for DDIs and DTIs prediction are essential for accelerating the drug discovery
process. We proposed a novel deep learning method DeepDrug, to tackle these two problems within a unified framework.
DeepDrug is capable of extracting comprehensive features of both drug and target protein, thus demonstrating a superior
prediction performance in a series of experiments. The downstream applications show that DeepDrug is useful in
facilitating drug repositioning and discovering the potential drug against specific disease.

INTRODUCTION chemical compounds (drugs, molecules) and protein

targets is of great significance for drug discovery [1]. It

The exploration for biomedical interactions between is believed that drugs interact with biological systems by

260

© The Author(s) 2023. Published by Higher Education Press


https://doi.org/10.15302/J-QB-022-0320

A general deep learning framework for DDI and DTI prediction

binding to protein targets and affecting their down-
stream activity. Prediction of drug-target interactions
(DTlIs) is thus important for identification of therapeutic
targets or characteristics of drug targets. The abundant
knowledge of DTIs also provides valuable insight
towards understanding and uncovering higher-level
information such as therapeutic mechanisms in drug
repurposing [2]. For instance, Sildenafil was initially
developed to treat pulmonary hypertension, but identifica-
tion of its side effects allowed it to be repositioned for
treating erectile dysfunction [3]. In addition, since most
human diseases are complex biological processes that
are resistant to the activity of a single drug [4,5],
polypharmacy has become a promising strategy among
pharmacists. Prediction and validation of drug-drug
interactions (DDIs) can sometimes reveal potential
synergies in drug combinations to improve the
therapeutic efficacy of individual drugs [6]. More
importantly, negative DDIs are major causes of adverse
drug reactions (ADRs) [7], especially among the elderly
who are more likely to take multiple medications [8].
The severe ADRs from critical DDIs may lead to the
withdrawal of drugs from market, such as withdrawal of
mibefradil and cerivastatin from the US market [9,10].
Hence, accurate interactions prediction between drugs
can not only ensure drug safety, but also can shed a light
for drug repositioning or drug repurposing, which
potentially can lower the overall drug development costs
and enhance the drug development efficiency.

Over the past decade, the emergence of various bioche-
mical databases, such as DrugBank [11], TwoSides [12],
RCSB Protein Data Bank [13] and PubChem [14], has
provided a rich resource for studying DTIs and DDIs for
health professionals. However, prediction of novel or
unseen biochemical interactions still remains a challen-
ging task. In vitro experimental techniques are reliable
but expensive and time-consuming. /n silico computa-
tional approaches have received far more attention due
to their cost-effectiveness and increasing accuracy in
various drug-related prediction tasks [15—19]. The state-
of-the-art computational methods for interactions
prediction rely on machine learning algorithms that
incorporate large-scale biochemical data. Most of these
efforts are based on the principle that similar drugs tend
to share similar target proteins and vice versa [20].
Hence, the most popular frameworks formulate the
prediction of DTIs and DDIs as classification tasks and
use different forms of similarity functions as inputs [21].
Another common types of approach are to construct
heterogeneous networks in the chemogenomics space to
predict potential interactions using random walks [22].
The rise of machine learning methods, especially deep
learning methods have promoted drug-related research
tremendously in the last two decades, including the tasks
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for predicting DTIs and DDIs [23,24]. For example,
DeepDDI [16] first generated a feature vector called
structural similarity profile (SSP) for each drug, then
calculated a combined SSPs of a pair of drugs by
dimension reduction, i.e., PCA, from concatenation of
two SSP of drugs. The combined SSPs were used for
training DeepDDI model to perform DDI prediction.
Similar to DeepDDI, NDD [15] first calculated high-
level features of drug by multiple drug similarities based
on drug substructure, target, side effect, pathway and
etc. Then it used a multi-layer perceptron for the interac-
tion prediction based on curated features. DeepPurpose
[25] is a deep learning framework for DTI and DDI
prediction tasks by integrating different types of neural
network structure only using sequence-based inputs.
DeepDTA [26] used two convolutional neural networks
to learn from compound SMILES and protein sequences
to predict interactions. GraphDTA [27] used graph
neural networks and convolutional neural network to
learn the high dimension features of drugs and targets
separately and makes interaction prediction via fully
connected layers. DDIMDL [28] built a multimodal
deep learning framework with multiple drugs features to
predict DDIs. SkipGNN [29] is a graph neural network
approach for predicting molecular interactions by
aggregating information from direct and second-order
interactions.

In spite of these advances, there is still room for
improvement in several aspects. First of all, the accurate
prediction of unseen drug interactions depends heavily
on the feature extraction technique or similarity kernel
used. Since different forms of feature extraction or
similarity kernel introduce varying amount of human-
engineered bias, they often display different levels of
predictive performance depending on the relevant
settings and no single kernel outperforms others
universally [30]. Similarity-based methods also have
difficulty applied on large-scale datasets due to the
significant computational complexity of measuring
similarity matrices [31]. Network-based methods built
upon topological properties of the multipartite graph
suffer from the same problem depending on the
complexity of the graph [32]. Deep learning-based
methods utilized either sequence-based or structural
information only, none of them combined both informa-
tion for specific drug and protein to comprehensively
model the biological entities. Moreover, none of existing
methods consider solving DDIs and DTIs tasks using a
unified framework.

In recent years, deep learning frameworks based on
various of graph neural networks such as graph convolu-
tional network (GCNs) [33], graph attention networks
(GATs) [34], gated graph neural networks (GGNNs)
[35] and residual gated graph convolutional network
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[36] have demonstrated ground-breaking performance
on social science, natural science, knowledge graphs and
many other research areas [37-39]. In particular, GCNs
have been applied to various biochemical problems such
as molecular properties prediction [40], molecular
generation, protein function prediction [41]. As pharma-
cological similarities are mainly originated and
computed from not only sequence but also structural
properties, graph representations of biochemical entities
have shown capability of capturing the structural
features of Euclidean ones without requiring feature
engineering [42,43].

Based on these observations, we propose DeepDrug, a
graph-based deep learning framework, to learn drug
interactions such as pairwise DDIs or DTIs. A key
insight of our framework is that biochemical interactions
are primarily determined by both the sequence and
structure of the participating entities and both drugs and
proteins can be naturally represented as graphs.
Therefore, it is crucial for the predictive model to
incorporate both sequence-based and structural informa-
tion and employ a graph-based architecture for
DeepDrug. The proposed model mainly differs from
previous methods in the following three aspects: (i)
Unlike previous methods that only use sequence or
structure information. DeepDrug takes both traditional
sequence representation and structure-based graph
representations as inputs to learn a more comprehensive
representation for drugs or proteins; (ii) We introduced a
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Figure 1.

novel Res-GCN module to better capture the intrinsic
structural information among atoms of a compound and
residues of a protein; (iii) To the best of our knowledge,
DeepDrug is the first work to solve both DDIs and DTIs
tasks within a unified framework. A series of systematic
experiments show that DeepDrug outperforms other
state-of-the-art models and demonstrates high robust-
ness under different experimental settings. We summa-
rized that DeepDrug, as an effective tool for predicting
DDIs and DTIs, could shed light on the understanding
of biochemical interactions.

RESULTS
Overview of DeepDrug

We developed a deep learning framework, DeepDrug, to
predict drug interactions (e.g., DDIs and DTIs) by
combining sequence profile and structural profile. For
each input (drug or protein), we used sequence data as
well as the partially available structural data as separate
input branch to the DeepDrug model (Fig. 1). The input
sequence of drug and protein was converted into a
representation using one-hot encoding and fed to
convolution layers. The drug chemical structure was
encoded as a graph, where node represents atom and
edge denotes chemical bond. Similarly, the protein
structure was encoded also as a graph with nodes and
edges denoting amino acids and the interaction between

Interaction classification

0,0 Affinity regression

Prediction

Potential drug prediction

®: Concatenation

GCN and CNN layers

Model diagram of DeepDrug. DeepDrug is a general interaction prediction platform for DDIs and DTls prediction.

For each drug, the atom features and edge features are extracted from the SMILE sequence. For each protein in the DTI task,
the node features and edge features are extracted from the corresponding PDB file (see Methods). A residual graph neural
network module (Res-GCN) and a convolutional neural network (CNN) module are used for extracting features for drug and
protein separately in the DTI task. For the DDI task, the weights in deep graph neural network are shared for a pair of drugs.
The features extracted are concatenated and finally fed to a prediction module for various tasks, including interaction
classification, affinity regression, drug embedding and drug repositioning.
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them. Then the graph representation was fed to several
residual graph convolution layers (Res-GCNs). The
hidden features extracted from the sequence branches
and structural branches were subsequently merged by
concatenation. Finally, a fully connected layer with
Sigmoid/Softmax/None activation functions were used
to get different types of output for binary classification,
multi-class/multi-label classification, and regression,
respectively. Detailed hyperparameters were illustrated
in Supplementary Fig. S1.

DeepDrug enables superior drug-drug interactions
prediction

DDIs prediction falls into two categories: (i) binary
classification where each pair of drugs in the database
was annotated as positive example or negative
examples. Negative samples were selected by either
random pairing or stringent blind test. (ii)) multi-
class/multi-label classification where the multi-labels
were obtained from annotations based on the different
types of interactions defined in DrugBank and TwoSides
(see Methods). We first evaluated the performance of
DeepDrug for DDIs prediction in a binary classification
setting. We benchmarked DeepDrug against eight
baseline methods, including random forest classification
(RF) and logistic regression (LR), DeepDDI [16],
DeepPurpose [25], NDD [15], AttentionDDI [44],
DDIMDL [28] and SkipGNN [29]. Five datasets were
used for evaluation, including DDInter [45], DrugBank,
TwoSides and two datasets from NDD paper [15]. Our
analysis showed that deep learning methods outperform
similarity-based methods and traditional machine
learning methods, such as RF and LR, across different
datasets by a large margin. Among all the competing
methods, DeepDrug consistently outperformed all other
methods by achieving the highest F1 score of
0.916-0.955, highest area under precision-recall curve
(auPRC) score of 0.964-0.987 and highest area under
receiver operation curve (auROC) score of 0.971-0.988
with balanced setting (Supplementary Table S1).
Comparing to the second-best baseline method Deep-
Purpose, DeepDrug achieved averaged 2.1% higher F1
score, 1.3% higher auPRC score and 1.1% higher
auROC score.

However, Due to the rarity of occurrence of DDIs
[46], the number of known DDIs among a typical drug
database is usually very low. Hence, to be more realistic
and practical, we also evaluated robustness of DeepDrug
with imbalanced datasets by altering the ratio between
positive samples and negative samples to 1:2, 1:4, 1:8
and 1:16 based on the number of drugs in different
datasets (Fig. 2A, B). Note that the results of NDD and
AttentionDDI were directly collected from the original
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paper. In our case, although the auPRC scores of all
comparing methods dropped, DeepDrug still outper-
forms other comparison methods across all datasets with
different positive-to-negative ratio by achieving the
highest F1 and auPRC scores (Fig. 2E, F, Supplemen-
tary Fig. S2). Specifically, DeepDrug is more robust and
achieves a significantly higher performance than the
best baselines DeepPurpose and DeepDDI when the
dataset is extremely unbalanced (Fig.2C, D). For
example, the superiority demonstrated by DeepDrug
over DeepPurpose in terms of F1 score increased from
1.7% to 9.6% when the positive-to-negative sample ratio
changed from 1:1 to 1:16 for DDInter dataset. The
auPRC score of DeepDrug over DeepPurpose increased
from 1.40% to 8.50% when the positive-to-negative
sample ratio changed from 1:1 to 1:16 for DDInter
dataset. To sum up, the performance of DeepDrug in
terms of F1 and auPRC scores over other prediction
methods demonstrated the superior ability of DeepDrug
in predicting DDIs, especially with unbalanced dataset.

Next, we compare DeepDrug with other methods with
multi-class/multi-label classification settings where only
DeepDDI and DeepPurpose are applicable. We conduc-
ted the classification experiments using DrugBank and
TwoSides databases based on the 86 and 1317
interaction types, respectively. All of the DDI methods
were evaluated using standard metrics including macro
F1 score and auPRC score. In multi-class classification,
DeepDrug achieved the best performance by obtaining
4.3%-5.8% higher F1 score and 4.9%-6.7% higher
auPRC than the best baseline method (Supplementary
Table S2). The outperformance by DeepDrug indicated
the advantage of using structural representation and
sequence-based representation of drug in DDI predic-
tions. The same trend was observed in multi-label
classification results where the introduction of 1317
types of interactions in dataset lowers F1 scores of all
methods, DeepDrug demonstrated much higher F1 as
0.292 and auPRC score as 0.265 than the second-best
method DeepPurpose (F1 score 0.227 and auPRC score
0.191, Supplementary Table S2, Fig. S3).

To evaluate the performance of DeepDrug under a
more stringent setting, we used blind test for binary
classification where five-fold cross-validation was used
to ensure that one drug or both drugs in test set were not
used in training set. DeepDrug again outperforms the
best baseline DeepPurpose by achieving an average
4.45% higher F1 score and 1.8% higher auPRC with
double-blind testing across four datasets (Supplementary
Table S3). To sum up, DeepDrug was shown to be
superior and robust in both binary and multi-class/multi-
label classification of DDIs. Therefore, unlike DeepPur-
pose that only used the SMILES sequence information,
DeepDrug exploited both structural information from a
novel graph representation and sequence information
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auPRC of baselines

Benchmark results for DeepDrug on the binary DDI tasks. DeepDrug are benchmarked with 8 baselines on the

11 datasets in terms of F1 (A) and auPRC (B). Note that the performance scores of NDD and AttentionDDI are from the original

paper and “—”

indicates not applicable. The performance of DeepDrug, DeepPurpose and DeepDDI on the unbalanced

datasets are shown in (C) and (D). The x axis indicates the odds of positive to negative sample and the y axis indicates the F1
(C) and auPRC (D). Compared with DeepPurpose, DeepDrug is better to overcome the impact of unbalanced dataset.
(E) DeepDrug is compared with 8 baselines on 3 datasets in terms of F1 (E) and auPRC (F) under unbalanced setting (positive-
to-negative ratio=1:4). The x axis and the y axis of each dot indicate the performance of a certain baseline (indicated by dot

color) and DeepDrug on a certain dataset (indicated by the dot shape).

from SMILES string, which is potentially capable of
learning the underlying structural properties to gain
better performance.

DeepDrug accurately identifies drug-target
interactions

Although proteins generally have more intricate
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structures than chemical drugs due to their three-
dimensional arrangement of sequence residuals, they
can still be effectively represented by 3D graphs. We
first classified the DTI dataset with binary labels and
benchmarked DeepDrug against six baseline methods,
including RF and LR, DeepPurpose [47], CPI [48],
MolTrans [49] and TransformerCPI [50]. Three
benchmark datasets were introduced, including
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BindingDB, DAVIS and KIBA. The benchmark
experimental results also showed the same trend as
DDIs tasks that deep learning methods dominated the
DTIs prediction tasks. DeepDrug again obtained the best
performance across all deep learning methods by
achieving an average auPRC of 0.811 in the above three
datasets, compared to 0.788 of the second-best baseline
DeepPurpose (Fig. 3A, C, Supplementary Table S4).
Noticeably, DeepDrug and DeepPurpose were the only
two deep learning methods that were applicable in the
largest BindingDB dataset while the transformer-based
method TransformerCPI failed due to the low
computational efficiency. The superior performance of
DeepDrug in DTIs prediction tasks indicated that the
graph-based representation of drug can be regarded as a
general framework for boosting prediction performance
in various drug-related tasks.

Next, we compared DeepDrug to four baseline
methods, including GraphDTA [27], DeepDTA [26],
DeepPurpose [47] and RF, in DTIs regression settings
where we directly predict the continuous binding
affinity, which is measured by K, value (see Methods).
We conducted the regression experiments in the same
three datasets (BindingDB, DAVIS and KIBA [51])
based on the K, value (kinase dissociation constant). All
of the comparing methods were evaluated using
standard metrics including concordance score, Pearson r
score and R? score. Again, DeepDrug achieved the best
performance in terms of the three evaluation measure-
ments compared to baseline methods (Fig. 3D-F,
Supplementary Table S5). Specifically, DeepDrug achie-
ved the highest concordance score of 0.836 in
BindingDB, which is 1.2% and 2.3% higher than
DeepPurpose and a graph neural network-based method
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Figure 3.

Datasets

Datasets

Datasets

Benchmark results for DeepDrug on the DTIs classification and regression tasks. DeepDrug is benchmarked

with 6 baselines on three datasets in terms of F1 (A), auROC (B) and auPRC (C) in the DTI binary classification tasks.
TransformerCPI, LR, MolTrans, and CPI are not applicable to BindingDB dataset due to low computing efficiency (within 48
hours). DeepDrug is benchmarked with four baselines on the three datasets in terms of concordance index (D), Pearson

correlation (E) and R? (F) in the DTIs regression tasks.
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GraphDTA, respectively. The superiority of DeepDrug
was consistently observed in DAVIS and KIBA
datasets. Different from GraphDTA that only updated
node features in the graph convolutional layers,
DeepDrug considered both node features and edge
features and updated them iteratively, thus leading to a
more comprehensive representation of a drug and
resulting in an incremental predictive power in the DTIs
tasks. The superiority of DeepDrug indicated the benefit
of combining a comprehensive structural representation
and sequence representation for both drugs and proteins
in DTI prediction tasks.

To further explore the ability of DeepDrug in drug
repositioning, similar to DDI blind test, we stringently
separated the drugs and proteins into training and test
sets using five-fold cross-validation, thus curating a
blind test set where the drugs or/and proteins were
unseen in training set. This task became much more
challenging as both the drugs and proteins were unseen
during the training process. DeepDrug demonstrated an
average concordance score of 0.677 and Pearson r of
0.468 in DAVIS dataset, which outperformed DeepPur-
pose (concordance score of 0.605, Pearson r of 0.392)
by a noticeable margin (Supplementary Table S6).
Therefore, by exploiting useful structural information
from graph representation of drugs and proteins,
DeepDrug was shown to be consistently superior over
baseline methods in both classification and regression of
DTIs. We then summarized that DeepDrug provided a
powerful representation of both drugs and proteins by
considering both the comprehensive structural informa-
tion as well as the sequence information. The superior
performance of DeepDrug across various settings in
DDIs and DTIs prediction tasks implicated a strong
generalization ability of DeepDrug in wide drug-related
applications.

Model ablation analysis

To further support the results shown in the above
sections, we conducted comprehensive model ablation
analysis to measure the contribution of different
modules used in DeepDrug architecture (Methods).
First, we analyzed the performance of DeepDrug with
respect to the following model ablation setting: presence
of Res-GCN module and presence of CNN module. Res-
GCN module and CNN module are used in the
DeepDrug to leverage structural and sequence informa-
tion, respectively. We used the binary classification task
of DDIs in multiple positive-to-negative sample ratios
and DTIs regression for ablation studies. It was
observed that using Res-GCN module alone led to a
decreased performance with 0.5%—2.6% lower F1 score
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while using only CNN module resulted in a decline of
0.2%-1.6% in F1 score (Supplementary Table S7).
Similar decrease trends were noticed in terms of R* and
concordance score in DTI regression tasks. DeepDrug
with structure information removed reduces 1.1% and
1.8% on the R? metric and 0.6% and 1.4% on the
Pearson r in the KIBA and DAVIS datasets, respec-
tively. DeepDrug with fused structural and sequence
features performs optimally, indicating the benefits of
integrating structural information with sequence
information in the DTI tasks. Next, we removed the
edge features that were ignored by existing works but
used in Res-GCN modules, the F1 score decreases about
2.4% to 3.2% (Supplementary Table S8). To summarize,
Res-GCN module and CNN module are complementing
each other to further improve the predictive perform-
ance, indicating the wusefulness of our designed
DeepDrug architecture.

We also analyzed the robustness of DeepDrug with
respect to the following hyperparameter setting: choice
of feature aggregation, number of hidden units in each
GCN layer, the total number of GCN layers. The
performance of DeepDrug using SoftMax aggregation
function demonstrated better performance than other
aggregation functions such as Mean and Sum
(Supplementary Table S9). As the number of hidden
units increased significantly (e.g., 32 and higher) in Res-
GCN layer, both evaluation metrics started to saturate.
As the number of GCN layers increased, the model
became insensitive to the number of Res-GCN and CNN
layers as well (Supplementary Table S9). To sum up,
DeepDrug was insensitive to most parameter choices,
illustrating the robustness of the framework.

DeepDrug embeddings reflect drug types and drug
functions

To demonstrate that DeepDrug effectively captured the
variability of structural information in the embeddings
learned from Res-GCN module, we visualized the
structural embeddings of drugs from benchmark
DrugBank dataset using t-distributed stochastic neighbor
embedding (tSNE). We found that the DeepDrug
embeddings exhibited clear patterns that corresponded
to the underlying drug types and drug functions
(Fig. 4A, Supplementary Fig. S4). We assumed that
drugs that were closer in the embedding space (e.g.,
within the same cluster) implied the presence of certain
form of higher similarity or closer relationship. To
verify this, we then quantified the effectiveness of the
embeddings by various evaluation settings and found
that DeepDrug embeddings consistently outperformed
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drug embeddings are extracted from the graph neural network module of DeepDrug. Drug embedding are then reduced
dimension by t-SNE and clustered by Louvain algorithm. The enrichment of clusters with drug category are shown in (B).
“Score” indicates the silhouette score of each cluster and “F1” indicates the F1 score of the cluster with best matching drug
category (see Supplementary Note 1). (C) Venn plot indicates the enriched drug categories of DeepDrug in each cross-
validation fold are highly overlapped. Clusters are ordered by silhouette scores. The chemical structures of drugs in the cluster 4
are demonstrated in (D), indicating drug embeddings extracted by DeepDrug are topological informative (see Supplementary

Table S12).

DeepPurpose by achieving a higher averaged Drug
Category Enrichment Score (0.690 vs 0.621, see DCES
in Supplementary Note 1) and higher silhouette score
(0.568 vs 0.543, see Fig. 4B and Supplementary Table
S10). Extensive evaluations under various folds showed
that the DeepDrug embeddings consistently achieved the
best performance (Fig. 4C). Furthermore, to evaluate the
performance of DeepDrug applied to unseen drugs, we
further collected 4886 unseen drugs from DrugBank
website that were not used in benchmark studies and the
mean DCES was again better than the DeepPurpose
(0.575 vs 0.514, Supplementary Table S11).

Next, we isolated 28 drugs in the cluster 4 (enriched
as opioids) and compared their chemical structures as
well as their functionalities with other randomly
sampled drugs in the dataset that were far away from the
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cluster. A subset of our sampled drugs is presented in
Fig. 4D. The striking observation was that drugs in the
cluster shared very similar structural compositions. In
terms of functionality, the cluster of drugs identified by
DeepDrug embeddings were highly similar among
themselves as well (Fig. 4D). Out of the 28 drugs in the
cluster 4, all of them were meant for pain relief
(Supplementary Table S12). Taken together, these
results demonstrated that the DeepDrug structural
embeddings effectively captured the structural informa-
tion which might determine the functionality of the input
entities to reflect the underlying drug function. Such
structural embedding capability is considered to be the
main driving force to the superior performance of
DeepDrug.
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DeepDrug provides potential therapeutic
opportunities against SARS-CoV-2

SARS-CoV-2 is a newly enveloped positive-strand
RNA virus, which has probably the largest genome
(approximately 30 kb) among all RNA viruses. The
nucleocapsid (N) protein, which is mainly responsible
for recognizing and wrapping viral RNA into helically
symmetric structures, has been reported to boost the
efficiency of transcription and replication of viral RNA,
implying its vital and multifunctional roles in the life
cycle of coronavirus [52].

We then investigated whether DeepDrug was able to
correctly identify the interactions of SARS-CoV-2
proteins. We constructed two drug-target positive
datasets (i.e., one is expert-confirmed and one is
literature-based) for SARS-CoV-2 from a recent study
[53] (Supplementary Note 2). In our benchmark
BindingDB dataset, there were 68 SARS-CoV-2
interacting drugs and 124 proteins which were similar
with these SARS-CoV-2 proteins. To obtain a stringent
rule for constructing dataset, we removed those SARS-
CoV-2 interacting drugs and analogous drugs from the
training set that shared similar SMILE sequences
(defined as drugs sequence similarities > 60%, see
Methods, Supplementary Fig S5A, B), and removed
proteins similar to SARS-CoV-2 with protein sequence
similarities > 30%. After removing these records, we re-
trained the DeepDrug model and combined the SARS-
CoV-2 interacting drugs to construct an independent test
set. The DeepDrug prediction scores for interacting pairs
and non-interacting pairs were shown in Fig. 5A, and we
noticed that DeepDrug assigned higher prediction scores
for those interacting pairs. The results showed that
DeepDrug was able to distinguish expert-confirmed
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positive pairs from negative pairs in both of mean and
maximum strategies (p-values equal to 5.06 x 10" and
8.06 x 107 respectively, one-side paired t-test). Results
predicted on the similar templates for RCSB database,
rather than the simulation structures, also show similar
significant discrimination between expert-confirmed
positive pairs and negative pairs (Supplementary Fig.
S6). In addition, the results of DeepDrug training on the
original BindingDB dataset also showed similar
performance (Supplementary Fig. S7). We observed that
there were some outliers with very high affinity in the
predictions of the negative pairs, which could be
potential valid potential drugs. Among the top-ranked
drug-protein pairs, 2 out of top-3 drugs, 7 out of top-10
drugs were already reported by literatures (Supplemen-
tary Table S13). In these molecules, prinomastat (the 2"
top-ranked molecule), a matrix metalloprotease inhi-
bitor, was reported to have selective activity against
SARS-CoV-2 but not against SARS-CoV [54]. Besides,
pioneering research [55] have shown that TNF, ILIB,
IL6, ILS, NFKBI, NFKB2 and RELB genes are
significant upregulated, leading to strongly activation of
TNF and NF«B-signaling pathways in the SARS-CoV-2
patients. These pathologic features are similar to those
of chronic obstructive pulmonary disease (COPD).
Tiotropium (the 4™ top-ranked molecule), which is
observed to alleviate airway inflammation and improve
pulmonary function, is a well-known therapeutic drug
for COPD patients. Therefore, tiotropium is a potential
effective drug for the treatment of SARS-CoV-2. In
addition, a therapeutic treatment on an array of 11
SARS-CoV-2 patients have demonstrated that danopre-
vir (the 7™ top-ranked molecule) treatment effectively
inhibited viral replication and improved patient health
status [56]. Hence, the repurposing of danoprevir, a

L

I pos.expert
pos.literature
neg.drugbank

Cv1 Cv2 Cv3

Figure 5.

cva CcV5

Mean Maximum

Drug repositioning for SARS-CoV-2. The performance of DeepDrug to discriminate the potential drug- SARS-

CoV-2 pairs (positive dataset, i.e., “pos.expert” and “pos.literature”) and random pairs of the same drugs and SARS-CoV-2
proteins (negative dataset, i.e., “neg.drugbank”). “pos.expert” and “pos.literature” indicate two potential drug- SARS-CoV-2 pairs
examined by expert checking and literature discovering individually and “neg.drugbank” indicates random drug-protein pairs.
The performance of DeepDrug in each cross-validation fold is shown. “Mean” indicates the final affinity scores is averaged from
the 5-fold predicted affinity scores and “Maximum” indicates the final affinity scores is the maximum affinity score across all the
folds. For SARS-CoV-2 proteins, simulated three-dimension structures are used.
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powerful hepatitis C virus (HCV) protease inhibitor, for
SARS-CoV-2 is a promising therapeutic treatment
option. Such results further demonstrated the strong
predictive power of DeepDrug and DeepDrug may
provide therapeutic opportunities against newly found
proteins such as SARS-CoV-2.

DISCUSSION

In this study, we proposed DeepDrug as a novel end-to-
end deep learning framework for DDIs and DTIs
predictions. DeepDrug takes both topological structure
information and sequence information of either drug-
drug pair or drug-protein pair as inputs and utilizes Res-
GCNs and CNNs to learn the graph representation and
high-level sequence embeddings, respectively. Multi-
source features are fused together to complement each
other in order to achieve a superior prediction level with
high accuracy. To the best of our knowledge, DeepDrug
is the first work to apply both graph convolutions and
sequence convolutions to molecular representation. In
addition, we demonstrated that the combination of
intrinsic  graph-based representation and high-level
sequence embeddings are appealing for a comprehensive
assessment for predicting DDIs and DTIs. Unlike the
AdvProp method [57] that uses ensemble learning
strategies to combine the outputs of different sub-
models that take structural and sequence information
separately as inputs, DeepDrug is more capable of
integrating structural and sequence information benefi-
ting from the design of a single model architecture. Our
extensive experiments highlighted the predictive power
of DeepDrug and its potential translational value in drug
repositioning.

We also provide three possible future directions for
improving our DeepDrug model. First, the rich multi-
omics data, including genomic, transcriptomic, epigeno-
mics and proteomic data, which are proven to be
informative [58-63], could help DeepDrug further
improve the predictive power. We will try to incorporate
these abundant data into our DeepDrug model. Second,
the current interaction predictions (e.g., DTIs) do not
consider the causal interaction where one drug is
involved in a biological or biochemical process to
directly or indirectly affect a protein. Identifying such
direct interactions and indirect interactions by causal
inference method [64] could help us better understand
the related biological or chemical pathways or
mechanisms. Furthermore, based on complex gene-
protein-drug-disease heterogeneous networks construc-
ted from multiple genomics databases [65-67],
combining sequence and structural features of proteins/
targets with association features in complex graphs
through heterogeneous graph convolution networks

© The Author(s) 2023. Published by Higher Education Press

would be a direction that could be improved.

To sum up, we introduced DeepDrug which can be
served as a framework for systematically exploring the
DDIs and DTIs prediction tasks with a unified model
architecture. With DeepDrug, researchers could perform
drug repositioning with specific target proteins. Then,
one can simultaneously learn the interaction mechanism
and annotate the interaction potential for every possible
drug. Using large-scale public data, one could train an
accurate and interpretable model to predict the interac-
tions associated with human diseases (e.g., SARS-CoV-
2). We hope our approach could help unveil the drug
interaction mechanism and facilitate the further bioche-
mical research.

METHODS
Drug and protein feature representation

We used DeepChem [68] for converting drug SMILES
strings into graph representations in the form of feature
matrices (i.e., node/edge feature matrices) and adjacency
matrices. We used PAIRPred [69] software for
extracting the protein PDB data into similar graph
representations, including feature matrices and adja-
cency matrices. Specifically, each drug is constructed
with 11-dimension edge features and 93-dimension node
features, of which 91 features were calculated using
DeepChem and the remaining two are the in-degree and
out-degree of each node. The cutoff for drug sequence
length is set to 200. As for graph feature of proteins, we
firstly collected the PDB files of all proteins on the
RCSB database. For each protein, we selected the
longest crystal structure, i.e., the longest chain in the
PDB file, as the 3D structure of the protein. Each protein
is constructed with 80-dimensional node features,
including amino acid features, and 2-dimension edge
features (the distance of amino acids, and the angle of
amino acids [41]. Among the node features, 78 of them
are calculated by PAIRPred software and the remaining
two are the in-degree and out-degree of amino acids.
Note that we did not take into account the conforma-
tional plasticity of proteins to different drugs due to the
lack of sufficient available data. The cutoff for protein
sequence length is set to 1000. We removed proteins
without 3D structure and the corresponding DTI pairs
for DTI datasets

Residual graph convolutional network
The residual graph convolutional network (Res-GCN)
module was capable of learning both node embeddings

and edge embeddings simultaneously by graph convolu-
tions while other GCN-based methods in this field only
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consider node embeddings. The Res-GCN module
converted original node features (93 and 80 features for
drug and protein respectively) to the 128-dimension
features and also converted the original edge features
(11 features for drug and 2 features for protein) to 128-
dimension features. Borrowed from the success of deep
residual network [70], we applied convolutional residual
blocks in the Res-GCN module, which contained 22
residual blocks for drug branch (DDIs and DTIs tasks)
and 6 residual blocks for protein branch (DTIs tasks).

We carefully designed a strategy for iteratively
updating the edge features and node features in each
convolutional residual block as follows. Taking the /™
graph convolutional residual block for an example, we
denote the input node features and edge features as
H" e R¥) and E® € R¥<P! respectively, where N, and
N, denote the number of nodes and edges, D) and D?
represent the node feature dimension and edge feature
dimension. For initialization, we set D" = 93 for drug or
D =80 for protein, D© = 11 for drug and D® =2 for
protein. Both node features H® and edge features E®
were first passed through a layer-normalization layer
[71], a ReLu nonlinear layer and a dropout layer
(ratio=0.1), which are represented as

H® = Dropout (ReLu(LayerNorm (H")))
E® = Dropout (ReLu(LayerNorm (E®)))

We next illustrate how to get the node features H*V
and edge E+" based on the processed feature matrices
H" and E® through an iterative strategy. We use k" and
€, for denoting the i' " hode features (e g., i" row of H?)
and edge features between i and ;™ nodes. Taking the
™ hode for an instance, we first calculated the residual
features of edge between the /™ node and /™ node based
on the current edge features Z'f’j and the node features h.”

and h(/.’), which is represented as

~(l) FCN(I) 1) h(l) h;l))

zj’

where FCN" is two-layer perceptron with 256 and 128
nodes with ReLu activation function by taking the
concatenation of node features and the corresponding
edge features as input. Next, we calculated the residual
features of the i™ node based on the current i node
feature h\" and all edge features connected to node i,
which is formulated as

exp(f2)

70 _ <z)"</>
h” = Woh;" + S o ()
ENG) ZkeN(z)exp( )

(1) (1) . .
where W® e R%>P" is the learnable parameter in the

I™ graph convolutional residual block and the second
term is a SoftMax aggregation function [70] for
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aggregating the information of edges between node i and
all neighboring nodes. Note that the SoftMax
aggregation function is parametrized by 8 which is also
learnable in the training process. After getting the
residual features of all nodes and edges, which form the
residual node feature matrix H and the residual edge
feature matrix E the node feature H*™" and edge
feature E(*) in (l+ 1)-th graph convolutional residual
block were updated through the following propagation
rule:

H*Y = fO + gO

E D = O 4 EO
To ensure the compatibility of adding the features H®
and E® for shortcuts when / = 0, we additionally used a

linear layer with 128 nodes and a layer normalization to
transform the input dimension by

H" « LayerNorm (Linear (H))
E© « LayerNorm (Linear (E©))

Note that the two Res-GCN or CNN modules had
shared weights during DDI tasks and are independent
for DTI tasks. In the DDI tasks, the interactions of two
drugs in the DDIs are not reciprocal to each other, and
thus, although DeepDrug’s feature extraction modules
are shared for each drug, the input positions of the two
drugs cannot be switched (i.e., the A-B drug pair input is
not equivalent to the B-A drug pair input for DeepDrug).

Data preparation

We collected 5 DDI benchmark datasets for evaluation.
DrugBank benchmark dataset consists of 1706 drugs
with 191,808 drug pairs among 86 types of drug
interactions based on the drug function. TwoSides
dataset consists of 645 drugs with 63,473 drug pairs
among 1317 kinds of interactions based on the side
effects, such as “abscess”, “adenoma” and ‘“‘agnosia”.
Different from the exclusive interactions of Drugbank
dataset, side effects in TwoSides dataset are not
exclusive, indicating that side effect prediction is a
multi-label classification task. We further filtered out
classes with less than 500 samples and construct
TwoSides (963), the Twosides dataset with 963 types of
interaction. Two datasets from NDD [15] are collected.
The first one, termed NDD_DS1, is composed of 548
drugs with 300,304 drug pairs, in which 97,168 pairs are
positive and the rest are negative. The second one,
termed NDD_DS2, consists of 707 drugs with 499,849
drug pairs, in which 34,412 pairs are positive. DDInter
[45] dataset consists of 1493 drugs with 117,608 drug
pairs.

To generate a series of binary datasets from DrugBank
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with different positive-to-negative ratio, we considered
all the pairs in the DrugBank dataset as positive
samples. As for negative samples, we randomly selected
drug pairs in the dataset and eliminated drug pairs that
overlapped with positive samples and duplicated drug
pairs. In this way, we constructed a series of binary
classification datasets with positive-to-negative ratio of
1:1, 1:2, 1:4, 1:8 and 1:16.

We collected 3 DTA benchmark datasets for
evaluation, including DAVIS, KIBA and BindingDB
[72] dataset. After discarding proteins without 3D
structure in RSCB database, DAVIS dataset consists of
68 drugs and 316 proteins, which constructs 21,488
drug-protein pairs. KIBA dataset consists of 2111 drugs
and 185 proteins, which constructs 390,535 drug-protein
pairs. As for BindingDB dataset, it consists of 417,893
drugs and 2076 proteins, which constructs 751,808
drug-protein pairs. We applied thresholds of 100, 12.1
and 400 to the raw affinity scores in the DAVIS, KIBA
and BindingDB datasets, respectively, to construct the
corresponding binary datasets, according to pioneer
study [26].

For the DAVIS and BindingDB datasets, the binding
affinity is measured by K, value (kinase dissociation
constant), of which the range is too large. K, is log-
transformed, i.e., pK ,, using the formula as follows [26]:

K,
pKi= —10glo(1—09)

Baseline methods

To evaluate the performance of DeepDrug, we bench-
marked DeepDrug on multiple datasets with a 5-fold
cross-validation strategy for DDI tasks and DTI tasks.
For classification task, we benchmarked DeepDrug with
multiple baseline methods, including DeepPurpose [47],
DeepDDI [16], NDD [15], AttentionDDI [44],
DDIMDL [28], SkipGNN [29], logical regression (LR)
and random forest (RF). We have modified DeepDDI
slightly to make it suitable for binary classification.
Note that NDD and AttentionDDI are based on multiple
similarity matrices, which is not able to calculate on
others dataset since the source code is not released, we
directly collected the results on NDD DS1 and
NDD_DS2 from the original paper. DeepPurpose is a
deep learning framework for DTI prediction. We used
default setting (CNN embedding for drugs and targets)
of DeepPurpose for benchmarking. We have also
modified DeepPurpose slightly to make it suitable for
DDI prediction. For drug-target interaction task, we
benchmarked DeepDrug with RF, LR, MolTrans [49],
CPI [48], TransformerCPI [50] and DeepPurpose. Note
that we did not evaluate MolTrans, LR, TransformerCPI
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on BindingDB dataset due to time limitation (within 48
hours). For drug-target affinity regression tasks, we
benchmarked DeepDrug with DeepDTA [26], Graph
DTA [27] and DeepPurpose.

Model training and evaluation

The final prediction layer was a linear layer with an
activation function, which was dependent on the tasks.
Specifically, the Sigmoid activation function were used
for binary classification task and multi-label classifica-
tion task. The multi-label information was collected
from TwoSides and Drugbank databases, which contain
1317 and 86 -categories for the interaction types,
respectively. The Softmax activation function was
selected for multi-class classification task and none of
activation function was used for regression task. Cross
entropy (CE) loss is in classification settings and mean
square error (MSE) loss was used in regression settings.
We used Adam optimizer with initial settings of a
learning rate of 0.01, and a weight decay of 10™*. The
dropout ratio was set to 0.1. The DeepDrug was
implemented with PyTorch framework [73]. We used
Ray-project [74] for hyper-parameters searching
(Supplementary Note 3).

F1 score, auROC and auPRC are used for measuring
the performance in classification task. Due to the
unbalance of the datasets, macro F1 score and auPRC
are the more suitable metrics. For multi-label and multi-
class classification, we regarded the problems as
multiple binary classification tasks and calculated
auROC and auPRC individually and then averaged them
as the final auROC and auPRC score. As for metrics of
regression task, we used serval metrics to evaluate the
performance of affinity prediction, including R
Pearson correlation, and concordance index.

AVAILABILITY AND IMPLEMENTATION

DeepDrug can be freely downloaded from GitHub website

(wanwenzeng/deepdrug).
SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at
https://doi.org/10.15302/J-QB-022-0320.
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