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Abstract. Normalization and aggregation are two most important issues in multi-criteria analysis.
Although various multi-criteria decision-making (MCDM) methods have been developed over the
past several decades, few of them integrate multiple normalization techniques and mixed aggre-
gation approaches at the same time to reduce the deviations of evaluation values and enhance the
reliability of the final decision result. This study is dedicated to introducing a new MCDM method
called Mixed Aggregation by COmprehensive Normalization Technique (MACONT) to tackle com-
plicate MCDM problems. This method introduces a comprehensive normalization technique based
on criterion types, and then uses two mixed aggregation operators to aggregate the distance values
between each alternative and the reference alternative on different criteria from the perspectives of
compensation and non-compensation. An illustrative example is given to show the applicability of
the proposed method, and the advantages of the proposed method are highlighted through sensitivity
analyses and comparative analyses.
Key words: multiple criteria analysis; comprehensive normalization, mixed aggregation, virtual
reference alternative, MACONT.

1. Introduction

Decision making is a frequent activity in management. It is a process of analysis and
judgment in which an optimal alternative is selected from several alternatives to achieve
a certain target. For a decision-making problem, alternatives and criteria used to evaluate
the performance of alternatives are two essential elements. However, in many practical
decision-making problems, it is difficult or unrealistic for decision-makers to establish a
criterion to cover all aspects of the problem and capture the best alternative by evaluating
alternatives under the criterion. It is common to portray the performance of alternatives in
complex environments by multiple criteria with different dimensions and potentially con-
flicting to rank alternatives and then select the optimal alternative. This enables various
multi-criteria decision-making (MCDM) methods being developed to solve complicated
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decision-making problems (Alinezhad and Khalili, 2019; Liao et al., 2020, 2018; Zavad-
skas et al., 2014). For example, Kou et al. (2012) employed the TOPSIS, ELECTRE,
GRA, VIKOR, and PROMETHEE methods (the explanations of all abbreviations used in
this paper can be found in Table A.1 in Appendix A) for classification algorithm selec-
tion; Liao et al. (2019) integrated the BWM and ARAS methods for digital supply chain
finance supplier selection; Kou et al. (2020) applied the TOPSIS, VIKOR, GRA, WSM,
and PROMETHEE methods to evaluate feature selection methods for text classification
with small datasets.

From the perspective of obtaining the final ranking of alternatives, the existing MCDM
methods can be divided into two categories: one is based on the pairwise compar-
isons between alternatives, such as the AHP, ANP, TODIM, PROMETHEE, EXPROM,
ELECTRE, and GLDS methods (Wu and Liao, 2019); the other is based on the utility
values of alternatives, such as the TOPSIS, VIKOR, ARAS, WASPAS, MULTIMOORA
methods (Wu and Liao, 2019). For the latter category of MCDM methods, the following
stages are included: 1) establishing a decision matrix, 2) normalizing the decision matrix,
3) aggregating the performance of alternatives under all criteria, and 4) determining the
ranking of alternatives and the optimal alternative. In this sense, the main reason why
different methods may produce different decision-making results lies in the differences of
normalization techniques and aggregation functions used in these methods.

Generally, the performance of alternatives under different criteria are measured by
different units, and all elements in a decision matrix must be dimensionless to make an
effective comparison. Linear normalization, as a normalization technique widely used in
MCDM methods, has three main forms, i.e. the linear sum-based normalization, linear
ratio-based normalization, and linear max-min normalization (Jahan and Edwards, 2015).
Each of these normalization techniques has its own emphasis: the linear sum-based nor-
malization technique emphasizes the proportion of the performance of an alternative in
the sum of the performance of all alternatives under a criterion; the linear ratio-based nor-
malization technique emphasizes the ratio between the performance of an alternative and
the best one under a criterion; the linear max-min normalization technique emphasizes the
ratio of the difference between the performance of an alternative and the worst one and the
difference between the best alternative and the worst alternative under a criterion. As we
can see, most MCDM methods only use a single normalization technique, which easily
makes faulty results because it cannot fully reflect the original information. In this regard,
this study presents a comprehensive normalization technique which combines the afore-
mentioned three normalization techniques to make the normalized data reflect the original
data synthetically. It is worth noting that the hybrid/mixed normalization approaches used
in many MCDM methods emphasize the single normalization technique of different types
of criteria, while the comprehensive normalization technique proposed in this study em-
phasizes the integration of multiple normalization techniques of the same type of criteria.
To some extent, the comprehensive normalization technique can reduce the error caused
by single normalization technique to the collective results (it is illustrated by the example
in Section 3). In addition, to fuse the normalized data derived by the three normalization
techniques, we introduce two parameters to represent the weights of different normalized
date according to the preferences of experts.
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Almost all MCDM problems depend on the aggregation functions to aggregate the
performance of alternatives under different criteria, and the selection of aggregation func-
tion may directly affect the decision-making results (Aggarwal, 2017). The arithmetic
weighted aggregation operator and geometric weighted aggregation operator has been
universally applied in many MCDM methods, such as the VIKOR, WASPAS, ARAS, and
MULTIMOORA. The arithmetic weighted aggregation operator has also been used to ag-
gregate the group opinions of decision-making problems (Zhang et al., 2019). However,
these two aggregation operators lead to compensation effects among criteria. An alterna-
tive that performs well under few criteria with high weights and performs poorly under
most criteria may be selected as the optimal alternative because of the compensation ef-
fect among these criteria, but due to the poor performance of this alternative under most
criteria, it is not the optimal alternative expected. In response to this problem, this study
fuses the performance of alternatives under different criteria by two mixed aggregation
operators from the perspectives of compensation and non-compensation among criteria.

In addition, setting a reference alternative in the decision-making process can reduce
the impact of the loss-aversion bias (Lahtinen et al., 2020). The reference alternative in
many methods, such as the TOPSIS, VIKOR and ARAS, consists of the best performance
of alternatives under each criterion, and the optimal alternative is determined according
to the principle of the closest distance from the reference alternative (the TOPSIS method
not only sets this reference alternative, but also sets the worst reference alternative which
consists of the worst performance of alternatives under each criterion, and the optimal
alternative is determined according to the principle of farthest distance from the reference
alternative). However, there are few methods using the average performance of alternatives
under each criterion as the reference alternative, which determines the optimal alternative
according to the principle of the longest positive distance from the reference alternative
and the shortest negative distance from the reference alternative. Inspired by this idea,
before the aggregation process, we set a virtual reference alternative which consists of the
average performance of alternatives under each criterion. Such a reference alternative can
comprehensively consider the good performance and bad performance of an alternative
compared with other alternatives.

To sum up, this study is devoted to the following innovations:

1. Present a comprehensive normalization method which combines three linear normal-
ization techniques based on the criterion types to reduce the deviations produced in the
normalization process.

2. Set a virtual reference alternative which consists of the average performance of alter-
natives on each criterion to simultaneously consider the good performance and bad
performance of an alternative compared with other alternatives.

3. Introduce two mixed aggregation operators from the perspectives of compensation and
non-compensation among criteria to aggregate the distance value between each alter-
native and the reference alternative under each criterion, which can obtain multi-aspect
and reliable ranking results of alternatives.

4. Propose the detailed operational procedure of the MACONT method, and apply
this method to solve a selection problem of sustainable third-party reverse logistics
providers.
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The framework of this study is divided into the following parts: Section 2 reviews
the normalization techniques and aggregation functions used in various MCDM meth-
ods. Section 3 proposes the mixed aggregation by comprehensive normalization technique
(MACONT) method. Section 4 gives an illustrative example to demonstrate the applicabil-
ity of the proposed method. Section 5 provides some sensitivity analyses and comparative
analyses to highlight the advantages of the proposed method. The conclusion is drawn in
Section 6.

2. Literature Review

In the section, we review the normalization techniques and aggregation approaches used
in various MCDM methods.

2.1. Review of Normalization Techniques

In many MCDM problems, different criteria usually differ in dimension and magnitude
(Chen, 2019). To compare alternatives effectively, the original data under different eval-
uation criteria need to be transformed into dimensionless form by various normalization
techniques (Jahan and Edwards, 2015). The vector normalization technique and linear nor-
malization technique are two commonly used normalization techniques in many MCDM
methods.

The MCDM methods using the vector normalization technique include TOPSIS
(Hwang and Yoon, 1981), MOORA (Brauers and Zavadskas, 2009), MULTIMOORA
(Brauers and Zavadskas, 2010) and ELECTRE (Roy, 1991; Govindan and Jepsen, 2016).
Opricovic and Tzeng (2004) pointed out that the normalized data computed by the vec-
tor normalization technique relies on the evaluation unit of a criterion, and the normal-
ized data of different evaluation units for a criterion may be different. Regarding the
MCDM methods using the linear normalization technique, the COPRAS (Zolfani and
Bahrami, 2014), ARAS (Zavadskas and Turskis, 2010), ANP (Jharkharia and Shankar,
2007), IDOCRIW (Zavadskas and Podvezko, 2016) and TODIM (Gomes, 2009) methods
apply the linear sum-based normalization technique, the WASPAS (Zavadskas et al., 2012)
and EDAS (Keshavarz Ghorabaee et al., 2015) methods exploit the linear ratio-based nor-
malization technique, and the VIKOR (Opricovic and Tzeng, 2007), MABAC (Pamucar
and Cirovic, 2015), MACBETH (Bana e Costa and Chagas, 2004), MAUT (Emovon et
al., 2016), CRITIC (Diakoulaki et al., 1995), KEMIRA (Krylovas et al., 2014) and Co-
CoSo (Yazdani et al., 2019) methods employ the linear max-min normalization technique.
However, these methods only use a single normalization technique, which easily leads to
deviations between the normalized data and original data. To ameliorate this problem,
Liao and Wu (2020) present the DNMA method which is an MCDM method combin-
ing the target-based vector normalization technique and target-based linear normalization
technique. Nevertheless, such a double normalization technique does not normalize the
original data in accordance with the different types of criteria. Hence, this study proposes
a comprehensive normalization technique based on the criterion types to reduce the devi-
ations produced in the normalization process.
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Table 1
The normalization technique and aggregation operator in various MCDM methods.

MCDM method Normalization technique Aggregation operator
Vector Linear

sum-based
Linear
ratio-based

Linear
max-min

Arithmetic
weighted

Geometric
weighted

Weighted
maximum

Weighted
minimum

TOPSIS ✓ ✓

ARAS ✓ ✓

COPRAS ✓ ✓

MACBETH ✓ ✓

MAUT ✓ ✓

EDAS ✓ ✓

VIKOR ✓ ✓ ✓

MULTIMOORA ✓ ✓ ✓ ✓

WASPAS ✓ ✓ ✓

CoCoSo ✓ ✓ ✓

The proposed method ✓ ✓ ✓ ✓ ✓ ✓ ✓

2.2. Review of Aggregation Functions

Aggregation operators are the basis of information fusion, which are used to combine
multiple values into a collective one (Blanco-Mesa et al., 2019; Mi et al., 2020). In many
MCDM methods, the arithmetic weighted aggregation operator has been frequently used.
The TOPSIS method (Hwang and Yoon, 1981) uses the arithmetic weighted aggrega-
tion operator to calculate the distances of alternatives from the positive ideal solution and
negative ideal solution. The ARAS method (Zavadskas and Turskis, 2010) attains the op-
timality function value by the arithmetic weighted aggregation operator. In the COPRAS
method (Zolfani and Bahrami, 2014), the arithmetic weighted aggregation operator is used
to obtain the maximizing and minimizing indexes separately according to different types
of criteria. The MACBETH method (Bana e Costa and Chagas, 2004) employs the arith-
metic weighted aggregation operator to calculate the overall score. The MAUT method
(Emovon et al., 2016) applies the arithmetic weighted aggregation operator to compute
the final utility score. The EDAS method (Keshavarz Ghorabaee et al., 2015) exploits
the arithmetic weighted aggregation operator to respectively aggregate the positive dis-
tances from average and negative distances from average. The VIKOR method (Opricovic
and Tzeng, 2007) fuses the arithmetic weighted aggregation operator and weighted max-
imum formula to derive a “group utility” value and an “individual regret” value. Based
on different criterion types, the MULTIMOORA method (Brauers and Zavadskas, 2010)
synthesizes the arithmetic weighted aggregation operator, weighted maximum formula
and geometric weighted aggregation operator to get three subordinate utility values. The
WASPAS method (Zavadskas et al., 2012) combines the arithmetic weighted aggregation
operator and geometric weighted aggregation operator to deduce the joint generalized
criterion value. The CoCoSo method (Yazdani et al., 2019) performs the aggregation pro-
cess according to the attitudes of additive and multiplicative aggregations in the WASPAS
method.

From Table 1, we can find that many of the above methods aggregate the performance
values of alternatives, but few of them aggregate the distance values between each alter-
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native and the reference alternative by multiple aggregation operators. Hence, this study
introduces two mixed aggregation operators to aggregate the distance value between each
alternative and the reference alternative under each criterion.

3. The Mixed Aggregation by Comprehensive Normalization Technique
(MACONT) Method

In this section, a new MCDM method called the Mixed Aggregation by COmprehensive
Normalization Technique (MACONT) is presented. The main idea of this method is as
follows: 1) normalize the performance values of alternatives over criteria by three normal-
ization techniques; 2) synthesize the three normalized performance values; 3) set a virtual
reference alternative; 4) combining the weights of criteria, use two mixed aggregation op-
erators to integrate the distances between each alternative and the reference alternative;
5) based on integration of the subordinate comprehensive scores derived by two mixed
aggregation operators, calculate the final comprehensive scores of alternatives, and then
rank the alternatives according to the final comprehensive scores.

The specific implementation minds of this method in solving MCDM problems are as
follows:

Firstly, for an MCDM problem, it is essential to establish a series of alternatives
(a1, a2, . . . , ai, . . . , am) and criteria (c1, c2, . . . , cj , . . . , cn) in advance. One or more ex-
perts are invited to provide the evaluation information for the performance of the alter-
natives over the criteria. According to the evaluation information, a decision matrix can
be formed (if multiple experts are invited, the evaluation information provided by each
expert can be integrated into a decision matrix by combining the weights of experts) as
follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 · · · x1j · · · x1n

x21 x22 · · · x2j · · · x2n

...
...

. . .
...

. . .
...

xi1 xi2 · · · xij · · · xin

...
...

. . .
...

. . .
...

xm1 xm2 · · · xmj · · · xmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where xij represents the performance value of the ith alternative under the j th criterion,
and i = 1, 2, . . . , m, j = 1, 2, . . . , n.

Then, normalize the decision matrix respectively by three normalization techniques.
The first normalization technique is the linear sum-based normalization technique, as
shown in Eq. (1), and the normalized value is represented by x̂1

ij . The second norma-
lization technique is the linear ratio-based normalization technique, as shown in Eq. (2),
and the normalized value is represented by x̂2

ij . The third normalization technique is the
linear max-min normalization technique, as shown in Eq. (3), and the normalized value is
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represented by x̂3
ij . From the first normalization technique to the third normalization tech-

nique, the gap among the normalized performance values of alternatives under criteria is
growing.{

x̂1
ij = xij

/ ∑m
i=1 xij , for benefit criteria,

x̂1
ij = 1

xij

/ ∑m
i=1

1
xij

, for cost criteria, (1)

{
x̂2
ij = xij / maxi xij , for benefit criteria,

x̂2
ij = mini xij /xij , for cost criteria,

(2)

{
x̂3
ij = (xij − mini xij )/(maxi xij − mini xij ), for benefit criteria,

x̂3
ij = (xij − maxi xij )/(mini xij − maxi xij ), for cost criteria.

(3)

After the three kinds of normalized performance values of alternatives over criteria are
obtained, to make the decision-making process flexible, two balance parameters, λ and
μ, are introduced to integrate these normalized performance values, and the integration
equation is as follows:

x̂ij = λx̂1
ij + μx̂2

ij + (1 − λ − μ)x̂3
ij , (4)

where 0 � λ, μ � 1, and the values of these two balance parameters are determined
by experts. If the experts pay more attention to the performance of an alternative in all
alternatives, then λ is assigned a larger value; if the experts want to highlight the best
performance of alternatives, then μ is assigned a larger value; if the experts emphasize a
large gap between alternatives, that is, they highlight the best performance of alternatives
but do not ignore the worst performance of alternatives, then λ and μ are assigned smaller
values.

To illustrate the function of the comprehensive normalization technique in reducing
deviations, we give an example here.

Example 1. Suppose that there are three alternatives (a1, a2, a3) and three criteria (c1,
c2, c3). c1 and c2 are benefit criteria and c3 is a cost criterion. The decision matrix is given
as: ⎡

⎣ 1 3.5 8
3 4 37
5 2.5 46

⎤
⎦ .

By Eqs. (1)–(3), we can get three normalized matrices as:
⎡
⎣ 0.111 0.35 0.719

0.333 0.4 0.155
0.556 0.25 0.125

⎤
⎦ ,

⎡
⎣ 0.2 0.875 1

0.6 1 0.216
1 0.625 0.174

⎤
⎦ ,

⎡
⎣ 0 0.667 1

0.5 1 0.237
1 0 0

⎤
⎦ .

If the weights of all criteria are the same, then, based on the arithmetic weighted ag-
gregation operator, we can obtain the ranking results of the alternatives derived from the
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above three decision matrices as a1 > a3 > a2, a1 > a2 > a3 and a2 > a1 > a3, re-
spectively. The results of the three rankings are different, which implies that using a single
normalization technique is easy to deviate from the original data and lead to unreliable
results. Comparatively, by Eq. (4), we can obtain a comprehensive normalized matrix as:

⎡
⎣ 1 3.5 8

3 4 37
5 2.5 46

⎤
⎦ .

Let λ = μ = 1/3, the ranking results can be obtained as a1 > a2 > a3, which deduces
the deviation from the original data and synthesizes the ranking results of the alternatives
derived from the above three decision matrices to make the results reliable.

After obtaining a normalized decision matrix, we calculate the average performance
values x̄j (j = 1, 2, . . . , n) of alternatives on each criterion to form a virtual reference
alternative. Then, based on the distance between each alternative and the reference alter-
native, two subordinate comprehensive scores of each alternative, S1(ai) and S2(ai), are
derived by the following two mixed aggregation operators:

S1(ai) = δ
ρi√∑m

i=1(ρi)2
+ (1 − δ)

Qi√∑m
i=1(Qi)2

, i = 1, 2, . . . , m, (5)

S2(ai) = ϑ max
j

(
wj(x̂ij − x̄j )

) + (1 − ϑ) min
j

(
wj(x̂ij − x̄j )

)
, i = 1, 2, . . . , m,

(6)

where ρi = ∑n
j=1 wj(x̂ij − x̄j ), Qi = ∏n

γ=1(x̄j − x̂ij )
wj /

∏n
η=1(x̂ij − x̄j )

wj , for i =
1, 2, . . . , m. wj (j = 1, 2, . . . , n) represent the weights of criteria determined by experts,
and

∑n
j=1 wj = 1. γ (γ = 1, 2, . . . , n) represent the part of criteria that satisfy x̂ij < x̄j ,

and η (η = 1, 2, . . . , n) represent the part of criteria that satisfy x̂ij � x̄j . In addition,
δ and ϑ (0 � δ, ϑ � 1) are preference parameters. If the experts pay more attention to the
comprehensive performance of alternatives, the high value of δ is given; if the experts pay
more attention to the individual performance of alternatives, the small value of δ is given.
If the experts pay more attention to the best performance of alternatives, the high value of
ϑ is given; if the experts pay more attention to the worst performance of alternatives, the
small value of ϑ is given.

In Eq. (5), ρi and Qi , respectively, employ the idea of arithmetic weighted aggregation
operator and geometric weighted aggregation operator to aggregate the distances between
each alternative and the virtual reference alternative under all criteria from the perspec-
tive of compensation effect among criteria. Moreover, inspired by the MULTIMOORA
method, Eq. (6) is a combination of the best performance and the worst performance of
alternatives under all criteria, which considers the non-compensation effect among crite-
ria.

Afterwards, the final comprehensive score S(ai) of each alternative is computed by
Eq. (7), and the final ranking of alternatives can be obtained according to the compre-
hensive scores in descending orders. The alternative with the highest final comprehensive
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score is determined as the optimal alternative

S(ai) = 1

2

(
S1(ai) + S2(ai)√∑m

i=1(S2(ai))2

)
, i = 1, 2, . . . , m. (7)

It is noted that, for the accuracy and reliability of results, we need to use a normal-
ization technique to ensure that the dimensions of the values of S1(ai) and S2(ai) are the
same. But because the values of S1(ai) and S2(ai) may be negative, we adopt the vector
normalization technique in Eq. (7).

In summary, the procedure of the proposed MACONT method can be summarized as
below:

Step 1. Give the evaluation information of alternatives and the criteria weights, and form
a decision matrix based on the evaluation information.

Step 2. Normalize the decision matrix by Eqs. (1)–(3), and use Eq. (4) to integrate the
three normalized decision matrices.

Step 3. Set a virtual reference alternative by the average performance values of alternatives
on each criterion, and calculate the subordinate comprehensive scores of alternatives by
Eqs. (5) and (6).

Step 4. Obtain the final comprehensive scores of alternatives by Eq. (7), and determine
the ranking of alternatives and the optimal alternative.

4. An Illustration Example: Sustainable Third-Party Reverse Logistics Provider
Selection

Recently, the selection problem of sustainable third-party reverse logistics provider has
become a hot research topic (Govindan et al., 2018; Bai and Sarkis, 2019; Zarbakhsh-
nia et al., 2018, 2019). Company R is a multi-national professional paint manufacturing
enterprise. To reduce the cost of recycling logistics and enhance the sustainable develop-
ment, company R needs to choose a suitable supplier. First of all, company R selected 8
providers (P1, P2, P3, P4, P5, P6, P7, P8) from 26 related suppliers as candidate suppli-
ers, and invited 6 experts with rich professional knowledge and experience to participate
in the decision-making process. A series of evaluation criteria are established from three
dimensions of sustainability, including:

• Economic dimension, such as quality, lead time, cost, delivery and services, relation-
ship, and innovativeness;

• Environment dimension, such as pollution controls, resource consumption, remanufac-
ture and reuse, green technology capability, and environmental management system;

• Social dimension, such as health and safety, employment stability, customer satisfac-
tion, reputation, respect for the policy, and contractual stakeholders influence.
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Table 2
The evaluation criteria of sustainable third-party reverse logistics providers.

Dimensions Criteria Type References

Economic c1: Quality Benefit Govindan et al. (2018), Bai and Sarkis
(2019), Zarbakhshnia et al. (2018, 2019)

c2: Lead time Cost Bai and Sarkis (2019); Zarbakhshnia et al.
(2018, 2019)

c3: Cost Cost Govindan et al. (2018), Bai and Sarkis
(2019), Zarbakhshnia et al. (2018, 2019)

c4: Delivery and services Benefit Zarbakhshnia et al. (2018, 2019)
c5: Relationship Benefit Govindan et al. (2018)
c6: Innovativeness Benefit Bai and Sarkis (2019)

Environment c7: Pollution controls Benefit Bai and Sarkis (2019)
c8: Resource consumption Cost Bai and Sarkis (2019)
c9: Remanufacture and reuse Benefit Zarbakhshnia et al. (2018, 2019)
c10: Green technology capability Benefit Zarbakhshnia et al. (2018)
c11: Environmental management system Benefit Govindan et al. (2018)

Social c12: Health and safety Benefit Bai and Sarkis (2019), Zarbakhshnia et al.
(2018, 2019)

c13: Employment stability Benefit Zarbakhshnia et al. (2018)
c14: Customer satisfaction Benefit Govindan et al. (2018), Zarbakhshnia et al.

(2018, 2019)
c15: Reputation Benefit Zarbakhshnia et al. (2019)
c16: Respect for the policy Benefit Zarbakhshnia et al. (2019)
c17: Contractual stakeholders influence Benefit Bai and Sarkis (2019)

The details of the evaluation criteria are shown in Table 2. The weights of these criteria
are determined by the experts as (0.048, 0.067, 0.085, 0.026, 0.017, 0.034, 0.098, 0.087,
0.065, 0.113, 0.046, 0.079, 0.047, 0.025, 0.072, 0.080, 0.011).

Below we use the proposed MACONT method to solve this problem.

Step 1. The experts evaluated the providers’ performance under each criterion and estab-
lished a decision matrix:

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17

P1

P2

P3

P4

P5

P6

P7

P8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

22% 22 850 34% 3.5 13% 17% 11039 46% 6 7 27% 3.8 78% 5 57% 3.4

34% 38 1450 67% 7.9 6% 4% 14326 37% 3 2 63% 5.9 89% 6 66% 6.8

27% 30 1068 29% 5.0 21% 11% 12765 41% 5 4 64% 7.3 80% 4 74% 4.3

19% 41 729 37% 4.3 26% 9% 10343 16% 7 5 82% 4.1 67% 3 85% 3.7

15% 76 697 45% 2.8 8% 13% 6390 32% 4 3 45% 6.3 56% 4 90% 3.2

32% 25 1371 74% 6.7 5% 8% 15789 24% 2 4 38% 5.2 92% 7 69% 7.5

28% 68 1190 63% 5.4 23% 14% 13270 62% 8 2 50% 6.4 82% 5 73% 4.6

17% 64 798 42% 3.1 19% 16% 8356 58% 6 3 57% 4.7 34% 8 92% 3.9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Step 2. We utilize Eqs. (1)–(3) to calculate three normalized decision matrices:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.113 0.213 0.140 0.087 0.090 0.107 0.185 0.121 0.146 0.146 0.233 0.063 0.087 0.135 0.119 0.094 0.091
0.175 0.124 0.082 0.171 0.204 0.050 0.043 0.093 0.117 0.073 0.067 0.148 0.135 0.154 0.143 0.109 0.182
0.139 0.157 0.111 0.074 0.129 0.174 0.120 0.104 0.130 0.122 0.133 0.150 0.167 0.138 0.095 0.122 0.115
0.098 0.115 0.163 0.095 0.111 0.215 0.098 0.129 0.051 0.171 0.167 0.192 0.094 0.116 0.071 0.140 0.099
0.077 0.062 0.170 0.115 0.072 0.066 0.141 0.209 0.101 0.098 0.100 0.106 0.144 0.097 0.095 0.149 0.086
0.165 0.188 0.087 0.189 0.173 0.041 0.087 0.084 0.076 0.049 0.133 0.089 0.119 0.159 0.167 0.114 0.201
0.144 0.069 0.100 0.161 0.140 0.190 0.152 0.100 0.196 0.195 0.067 0.117 0.146 0.142 0.119 0.120 0.123
0.088 0.073 0.149 0.107 0.080 0.157 0.174 0.160 0.184 0.146 0.100 0.134 0.108 0.059 0.190 0.152 0.104

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.647 1.000 0.820 0.459 0.443 0.500 1.000 0.579 0.742 0.750 1.000 0.329 0.521 0.848 0.625 0.620 0.453
1.000 0.579 0.481 0.905 1.000 0.231 0.235 0.446 0.597 0.375 0.286 0.768 0.808 0.967 0.750 0.717 0.907
0.794 0.733 0.653 0.392 0.633 0.808 0.647 0.501 0.661 0.625 0.571 0.780 1.000 0.870 0.500 0.804 0.573
0.559 0.537 0.956 0.500 0.544 1.000 0.529 0.618 0.258 0.875 0.714 1.000 0.562 0.728 0.375 0.924 0.493
0.441 0.289 1.000 0.608 0.354 0.308 0.765 1.000 0.516 0.500 0.429 0.549 0.863 0.609 0.500 0.978 0.427
0.941 0.880 0.508 1.000 0.848 0.192 0.471 0.405 0.387 0.250 0.571 0.463 0.712 1.000 0.875 0.750 1.000
0.824 0.324 0.586 0.851 0.684 0.885 0.824 0.482 1.000 1.000 0.286 0.610 0.877 0.891 0.625 0.793 0.613
0.500 0.344 0.873 0.568 0.392 0.731 0.941 0.765 0.935 0.750 0.429 0.695 0.644 0.370 1.000 1.000 0.520

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.368 1.000 0.797 0.111 0.137 0.381 1.000 0.505 0.652 0.667 1.000 0.000 0.000 0.759 0.400 0.000 0.047
1.000 0.704 0.000 0.844 1.000 0.048 0.000 0.156 0.457 0.167 0.000 0.655 0.600 0.948 0.600 0.257 0.837
0.632 0.852 0.507 0.000 0.431 0.762 0.538 0.322 0.543 0.500 0.400 0.673 1.000 0.793 0.200 0.486 0.256
0.211 0.648 0.958 0.178 0.294 1.000 0.385 0.579 0.000 0.833 0.600 1.000 0.086 0.569 0.000 0.800 0.116
0.000 0.000 1.000 0.356 0.000 0.143 0.692 1.000 0.348 0.333 0.200 0.327 0.714 0.379 0.200 0.943 0.000
0.895 0.944 0.105 1.000 0.765 0.000 0.308 0.000 0.174 0.000 0.400 0.200 0.400 1.000 0.800 0.343 1.000
0.684 0.148 0.345 0.756 0.510 0.857 0.769 0.268 1.000 1.000 0.000 0.418 0.743 0.828 0.400 0.457 0.326
0.105 0.222 0.866 0.289 0.059 0.667 0.923 0.791 0.913 0.667 0.200 0.545 0.257 0.000 1.000 1.000 0.163

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Integrate the above three normalized decision matrices by Eq. (4) to obtain a compre-
hensive decision matrix (here the two balance parameters are set as λ = 0.4 and μ = 0.3):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.350 0.685 0.541 0.206 0.210 0.307 0.674 0.374 0.476 0.484 0.693 0.124 0.191 0.536 0.355 0.223 0.186
0.670 0.434 0.177 0.593 0.682 0.103 0.088 0.218 0.363 0.192 0.112 0.486 0.476 0.636 0.462 0.336 0.596
0.483 0.538 0.392 0.147 0.371 0.540 0.403 0.288 0.413 0.386 0.345 0.496 0.667 0.554 0.248 0.436 0.295
0.270 0.401 0.639 0.241 0.296 0.686 0.313 0.411 0.098 0.581 0.461 0.677 0.232 0.436 0.141 0.573 0.222
0.163 0.112 0.668 0.335 0.135 0.162 0.494 0.683 0.300 0.289 0.229 0.305 0.531 0.335 0.248 0.636 0.162
0.617 0.622 0.219 0.676 0.553 0.074 0.268 0.155 0.199 0.095 0.345 0.235 0.381 0.664 0.569 0.373 0.680
0.510 0.169 0.319 0.547 0.414 0.599 0.539 0.265 0.678 0.678 0.112 0.355 0.544 0.572 0.355 0.423 0.331
0.217 0.199 0.581 0.300 0.167 0.482 0.629 0.530 0.628 0.484 0.229 0.426 0.313 0.134 0.676 0.661 0.247

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Step 3. Compute the average performance values of the providers on each criterion to
form a virtual reference provider P0, which can be identified as (0.410, 0.395, 0.442,
0.381, 0.354, 0.369, 0.426, 0.366, 0.394, 0.398 0.316, 0.388, 0.417, 0.483, 0.382, 0.458,
0.340). Calculate the subordinate comprehensive values of the providers by Eqs. (5) and
(6). Without loss of generality, we let the preference parameters δ = 0.5 and ϑ = 0.5.
The results are displayed in Table 3.

Step 4. Calculate the final comprehensive values of providers by Eq. (7), and rank the
providers according to the descending order of the final comprehensive values. The rank-
ing results of the providers are listed in Table 3. We can determine that the optimal provider
is P8.

5. Sensitivity Analyses and Comparative Analyses

In this section, based on the data in Section 4, sensitivity analyses of the parameters set in
the proposed method are carried out to explore the impact of the changes of parameters and
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Table 3
The ranking results of the providers derived by the proposed method.

Providers ρi Qi S1(Pi ) S2(Pi ) S(Pi ) Rank

P1 0.0207 1.6741 0.3074 0.0017 0.2029 4
P2 −0.0729 0.8401 −0.1595 0.0103 −0.3740 8
P3 0.0114 0.4684 0.1071 0.0011 0.0836 6
P4 0.0210 1.7719 0.3222 0.0018 0.2116 3
P5 −0.0141 0.6037 0.0297 0.0043 0.1382 5
P6 −0.0711 0.5186 −0.1968 0.0096 −0.3708 7
P7 0.0362 0.5762 0.2154 0.0082 0.3422 2
P8 0.0688 2.3379 0.5797 0.0040 0.4047 1

Table 4
The ranking results derived by different values of the parameters λ and μ.

λ μ S(Pi), i = 1, 2, 3, 4, 5, 6, 7, 8 Ranks

Value 0 0 (0.1241, −0.3347, 0.1257, 0.2271, 0.1175, −0.2730, 0.3393, 0.4267) (5, 7, 4, 3, 6, 8, 2, 1)
0 0.5 (0.2000, −0.3591, 0.0942, 0.2124, 0.1422, −0.3632, 0.3468, 0.3988) (4, 7, 6, 3, 5, 8, 2, 1)
0 1 (0.1880, −0.4004, 0.0632, 0.1578, 0.1810, −0.3333, 0.3630, 0.4150) (3, 8, 6, 5, 4, 7, 2, 1)
0.2 0.2 (0.1760, −0.3537, 0.1064, 0.2179, 0.1284, −0.3728, 0.3419, 0.4188) (4, 7, 6, 3, 5, 8, 2, 1)
0.2 0.6 (0.1584, −0.3608, 0.0798, 0.1608, 0.1638, −0.3497, 0.3579, 0.4231) (5, 8, 6, 4, 3, 7, 2, 1)
0.5 0 (0.1552, −0.3583, 0.1048, 0.2210, 0.1162, −0.3839, 0.3354, 0.4356) (4, 7, 6, 3, 5, 8, 2, 1)
0.5 0.5 (0.1805, −0.4138, 0.0526, 0.1475, 0.1702, −0.3453, 0.3544, 0.4283) (3, 8, 6, 5, 4, 7, 2, 1)
0.6 0.2 (0.2032, −0.3861, 0.0739, 0.2191, 0.1358, −0.3749, 0.3379, 0.4008) (4, 8, 6, 3, 5, 7, 2, 1)
1 0 (0.1687, −0.4387, 0.0327, 0.1214, 0.1552, −0.3570, 0.3309, 0.4253) (3, 8, 6, 5, 4, 7, 2, 1)

criterion weights on the final ranking results of the alternatives. Moreover, other MCDM
methods are applied to derive the ranking results of the alternatives, and the advantages of
the proposed method are highlighted by comparing these results with that of the proposed
method.

5.1. Sensitivity Analyses

(1) Sensitivity analyses on the balance parameters λ and μ.
In the process of integrating three normalized matrices, the two balance parameters λ

and μ are introduced. It can be seen from Table 4 that the rankings of providers derived by
different parameter values are different, which shows that experts need to determine pa-
rameter values according to actual conditions to ensure the accuracy of the results. More-
over, in the proposed method, if only one of the three normalization techniques is used,
i.e. λ = 1 and μ = 0 or λ = 0 and μ = 1 or λ = 0 and μ = 0, we can find from
Table 4 that the ranking result deduced by the first two normalization techniques (Eqs. (1)
and (2)) is (3, 8, 6, 5, 4, 7, 2, 1), while the ranking result deduced by the third normaliza-
tion technique (Eq. (3)) is (5, 7, 4, 3, 6, 8, 2, 1). Compared with the ranking result (3, 8,
6, 5, 4, 7, 2, 1) deduced by the comprehensive normalization technique in the proposed
method, the comprehensive normalization technique effectively integrates three kinds of
normalization techniques, and obtains a compromise ranking result.
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Table 5
The ranking results derived by different values of the preference parameter δ.

δ S(Pi), i = 1, 2, 3, 4, 5, 6, 7, 8 Ranks

Value 0 (0.2787, −0.1790, 0.0943, 0.2935, 0.2061, −0.2013, 0.3135, 0.4354) (4, 7, 6, 3, 5, 8, 2, 1)
0.1 (0.2635, −0.2180, 0.0922, 0.2771, 0.1925, −0.2352, 0.3192, 0.4292) (4, 7, 6, 3, 5, 8, 2, 1)
0.2 (0.2484, −0.2570, 0.0900, 0.2607, 0.1789, −0.2691, 0.3250, 0.4231) (4, 7, 6, 3, 5, 8, 2, 1)
0.3 (0.2332, −0.2960, 0.0879, 0.2443, 0.1653, −0.3030, 0.3307, 0.4170) (4, 7, 6, 3, 5, 8, 2, 1)
0.4 (0.2180, −0.3350, 0.0857, 0.2280, 0.1517, −0.3369, 0.3364, 0.4108) (4, 7, 6, 3, 5, 8, 2, 1)
0.5 (0.2029, −0.3740, 0.0836, 0.2116, 0.1382, −0.3708, 0.3422, 0.4047) (4, 8, 6, 3, 5, 7, 2, 1)
0.6 (0.1877, −0.4129, 0.0815, 0.1952, 0.1246, −0.4047, 0.3479, 0.3986) (4, 8, 6, 3, 5, 7, 2, 1)
0.7 (0.1725, −0.4519, 0.0793, 0.1789, 0.1110, −0.4386, 0.3537, 0.3924) (4, 8, 6, 3, 5, 7, 2, 1)
0.8 (0.1574, −0.4909, 0.0772, 0.1625, 0.0974, −0.4725, 0.3594, 0.3863) (4, 8, 6, 3, 5, 7, 2, 1)
0.9 (0.1422, −0.5299, 0.0751, 0.1461, 0.0838, −0.5064, 0.3652, 0.3801) (4, 8, 6, 3, 5, 7, 2, 1)
1 (0.1271, −0.5689, 0.0729, 0.1298, 0.0702, −0.5403, 0.3709, 0.3740) (4, 8, 6, 3, 5, 7, 2, 1)

Table 6
The ranking results derived by different values of the preference parameter ϑ .

ϑ S(Pi), i = 1, 2, 3, 4, 5, 6, 7, 8 Ranks

Value 0 (−0.0123, −0.3437, −0.0232, 0.0074, −0.1365, −0.3720, −0.0129, 0.1852) (3, 7, 5, 2, 6, 8, 4, 1)
0.1 (−0.0052, −0.3578, −0.0194, 0.0144, −0.1247, −0.3844, 0.0058, 0.1954) (4, 7, 5, 2, 6, 8, 3, 1)
0.2 (0.0072, −0.3774, −0.0129, 0.0264, −0.1051, −0.4013, 0.0358, 0.2121) (4, 7, 5, 3, 6, 8, 2, 1)
0.3 (0.1156, −0.4247, 0.0416, 0.1297, 0.0401, −0.4312, 0.2319, 0.3299) (4, 7, 5, 3, 6, 8, 2, 1)
0.4 (0.0887, −0.4266, 0.0283, 0.1042, 0.0069, −0.4367, 0.1905, 0.3038) (4, 7, 5, 3, 6, 8, 2, 1)
0.5 (0.2029, −0.3740, 0.0836, 0.2116, 0.1382, −0.3708, 0.3422, 0.4047) (4, 8, 6, 3, 5, 7, 2, 1)
0.6 (0.3020, −0.2167, 0.1294, 0.3034, 0.2287, −0.2078, 0.4145, 0.4673) (4, 8, 6, 3, 5, 7, 2, 1)
0.7 (0.3367, −0.1002, 0.1442, 0.3346, 0.2472, −0.0923, 0.4067, 0.4752) (3, 8, 6, 4, 5, 7, 2, 1)
0.8 (0.3462, −0.0374, 0.1477, 0.3428, 0.2459, −0.0314, 0.3883, 0.4705) (3, 8, 6, 4, 5, 7, 2, 1)
0.9 (0.3489, −0.0016, 0.1483, 0.3448, 0.2417, 0.0030, 0.3734, 0.4651) (3, 8, 6, 4, 5, 7, 2, 1)
1 (0.3495, 0.0209, 0.1482, 0.3451, 0.2377, 0.0243, 0.3624, 0.4606) (3, 8, 6, 4, 5, 7, 2, 1)

(2) Sensitivity analysis of the preference parameter δ.
In the first mixed aggregation operator of the proposed method (i.e. Eq. (5)), the pref-

erence parameter δ is set to reasonably aggregate the comprehensive performance and in-
dividual performance of alternatives. From Table 5, it can be found that the change of this
preference parameter value has little effect on the final ranking result. With the increase of
the parameter value, the rank of P2 rises, while the rank of P6 falls, which shows that the
comprehensive performance of P2 is better than that of P6, and the individual performance
of P6 is better than that of P2.
(3) Sensitivity analysis of the preference parameter ϑ .

In the second mixed aggregation operator of the proposed method, the preference pa-
rameter ϑ is set to reasonably aggregate the best performance and the worst performance
of alternatives. From Table 6, we can find that the change of this preference parameter
value has a significant influence on the final ranking result. With the increase of the pa-
rameter value, the ranks of P5, P6, P7 rise, while the ranks of P2, P3, P4 fall, which shows
that the best performance of P5, P6, P7 is better than that of P2, P3, P4, and the worst
performance of P2, P3, P4 is better than that of P5, P6, P7.
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5.2. Comparative Analyses

In this subsection, we compare the proposed method with various MCDM methods, in-
cluding the TOPSIS, VIKOR, WASPAS, ARAS, and MULTIMOORA. The reason for
comparison with the TOPSIS method is that both methods use the idea of reference points.
The reason for comparison with the VIKOR method is that both methods use the linear
max-min normalization. The reason for comparison with the WASPAS method is that
both methods use the linear ratio-based normalization technique and the combination of
arithmetic weighted aggregation operator and geometric weighted aggregation operator.
The reason for comparison with the ARAS method is that both methods use the sum-
based normalization technique and arithmetic weighted aggregation operator. The reason
for comparison with the MULTIMOORA method is that both methods take into account
the compensation and non-compensation effects among criteria.

5.2.1. Comparative Analysis Between the Proposed Method and the TOPSIS Method
TOPSIS method, introduced by Hwang and Yoon in 1981, deduces the optimal alternative
with the shortest distance from the positive ideal solution and the farthest distance from
the negative ideal solution (Opricovic and Tzeng, 2004). The procedure of the TOPSIS
method is as follows. First, normalize the decision matrix by the vector normalization
technique (Eq. (8)). Second, determine two ideal solutions P + and P − by Eqs. (9) and
(10), respectively, and calculate the separation degrees of alternatives from two ideal so-
lutions, D+

i and D−
i , by Eqs. (11) and (12), respectively. Finally, calculate the relative

closeness degrees of alternatives by Eq. (13) to attain the ranking of alternatives. The re-
sults obtained by the TOPSIS method based on the data in Section 4 are shown in Table 7.

x̃ij = xij√∑m
i=1(xij )2

, (8)

P + =
{(

max
i

(wj x̃ij )
∣∣j ∈ g

)
,
(

min
i

(wj x̃ij )
∣∣j ∈ g′) ∣∣∣ i = 1, 2, . . . , m

}
= {

x̃+
1 , x̃+

2 , . . . , x̃+
j

}
, (9)

P − =
{(

min
i

(wj x̃ij )
∣∣j ∈ g

)
,
(

max
i

(wj x̃ij )
∣∣j ∈ g′) ∣∣∣ i = 1, 2, . . . , m

}
= {

x̃−
1 , x̃−

2 , . . . , x̃−
j

}
, (10)

D+
i =

√√√√ n∑
j=1

(
wj x̃ij − x̃+

j

)2
, i = 1, 2, . . . , m, (11)

D−
i =

√√√√ n∑
j=1

(
wj x̃ij − x̃−

j

)2
, i = 1, 2, . . . , m, (12)

RCi = D−
i

/(
D−

i + D+
i

)
, i = 1, 2, . . . , m, (13)
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Table 7
The results obtained by the TOPSIS method.

Providers D+
i

D−
i

RCi Ranks

P1 0.0439 0.0645 0.5951 2
P2 0.0686 0.0374 0.3526 8
P3 0.0451 0.0503 0.5274 5
P4 0.0476 0.0608 0.5609 4
P5 0.0574 0.0483 0.4571 6
P6 0.0704 0.0388 0.3550 7
P7 0.0449 0.0641 0.5877 3
P8 0.0376 0.0659 0.6368 1

where x̃ij represents the normalized performance value of the ith alternative under the
j th criterion. In Eqs. (9) and (10), g is associated with the benefit criteria while g′ is
associated with the cost criteria.

Comparing the ranking result of the proposed MACONT method and that of the TOP-
SIS method, except for P2, P6 and P8, the ranks of other providers are different. Both
methods set up a reference alternative to measure the distance between each alternative
and the reference alternative. The main reason for the different results may be that the two
methods adopt different normalization techniques, and the TOPSIS method needs to set
up the best and worst reference alternatives to measure the distances between alternatives
and the two reference alternatives, while the MACONT method only needs to set up one
reference alternative to measure the good and bad performance of alternatives.

5.2.2. Comparative Analysis Between the Proposed Method and the VIKOR Method
VIKOR method, proposed by Opricovic in 1998, aims to find a compromise solution be-
tween maximum “group utility” of the “majority” and minimum “individual regret” of
the “opponent” (Opricovic and Tzeng, 2007). The VIKOR method firstly normalizes each
element in the decision matrix by Eq. (14), and then computes the group utility value Ki

and the individual regret value Ri by Eqs. (15) and (16), respectively. Next, the method
calculates the compromise value Ci by Eq. (17). Finally, according to the ranks on Ki , Ri

and Ci , three ranking lists are obtained. The results deduced by the VIKOR method based
on the data in Section 4 are shown in Table 8.

{
x̂∗
ij = (maxi xij − xij )/(maxi xij − mini xij ), for benefit criteria,

x̂∗
ij = (mini xij − xij )/(mini xij − maxi xij ), for cost criteria, (14)

Ki =
n∑

j=1

(
wj x̂

∗
ij

)
, i = 1, 2, . . . , m, (15)

Ri = max
j

(
wj x̂

∗
ij

)
, i = 1, 2, . . . , m, (16)

Ci = α
max Ki − Ki

max Ki − min Ki

+ (1 − α)
max Ri − Ri

max Ri − min Ri

, i = 1, 2, . . . , m, (17)
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Table 8
The results obtained by the VIKOR method.

Providers Ki Rank Ri Rank Ci Ranks

P1 0.4754 5 0.0800 6 0.4391 5
P2 0.6256 7 0.0980 7 0.8680 7
P3 0.4692 4 0.0590 2 0.2551 3
P4 0.4491 3 0.0720 4 0.3240 4
P5 0.5178 6 0.0753 5 0.4801 6
P6 0.6304 8 0.1130 8 1.0000 8
P7 0.4361 2 0.0637 3 0.2316 2
P8 0.3632 1 0.0521 1 0.0000 1

where x̂∗
ij represents the normalized performance value of the ith alternative under the j th

criterion, and α is a parameter whose value is determined by experts according to their
preferences. Without loss of generality, we set α = 0.5.

Comparing the ranking result deduced by the proposed MACONT method and that
obtained by the VIKOR method, except for P7 and P8, the ranks of other providers are
different. The reasons for this phenomenon may be as follows. In terms of normalization
technique, the third normalization technique used in the MACONT method (Eq. (3)) is
similar to the normalization technique used in the VIKOR method (Eq. (8)), but the larger
the normalized value of an alternative in the proposed method is and the smaller the nor-
malized value of an alternative is in the VIKOR method, the better the final rank of the
alternative will be. Furthermore, the VIKOR method only uses one normalization tech-
nique, while the proposed method synthesizes three normalization techniques. In terms
of aggregation operator, the VIKOR method applies the arithmetic weighted aggregation
operator and considers the worst performance of alternatives over all criteria, while the
MACONT method applies the combination of arithmetic weighted aggregation operator
and arithmetic weighted aggregation operator; that is to say, the MACONT method con-
siders the good and bad performance of alternatives on all criteria simultaneously.

5.2.3. Comparative Analysis Between the Proposed Method and the WASPAS Method
WASPAS method, introduced by Zavadskas et al. (2012), firstly normalizes each element
in the decision matrix by the linear ratio-based normalization technique (Eq. (2)), and
then the normalized performance values of alternatives on all criteria are aggregated by
the arithmetic weighted aggregation operator (Eq. (18)) and the geometric weighted ag-
gregation operator (Eq. (19)). Afterwards, a parameter β (here β = 0.5) is introduced
to combine the values deduced by Eqs. (18) and (19). Finally, the comprehensive score
of each alternative can be obtained by Eq. (20) to determine the ranking of alternatives.
The results deduced by the WASPAS method based on the data in Section 4 are shown in
Table 9.

G1
i =

n∑
j=1

(
wj x̂

2
ij

)
, i = 1, 2, . . . , m, (18)
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Table 9
The results obtained by the WASPAS method.

Providers G1
i

G2
i

Gi Ranks

P1 0.7028 0.6715 0.6871 3
P2 0.5764 0.5245 0.5504 8
P3 0.6750 0.6619 0.6685 4
P4 0.6844 0.6412 0.6628 5
P5 0.6477 0.6021 0.6249 6
P6 0.5844 0.5306 0.5575 7
P7 0.7155 0.6762 0.6958 2
P8 0.7437 0.7088 0.7262 1

G2
i =

n∏
j=1

(
x̂2
ij

)wj , i = 1, 2, . . . , m, (19)

Gi = βG1
i + (1 − β)G2

i , i = 1, 2, . . . , m. (20)

Comparing the ranking result of the proposed MACONT method and that of the
WASPAS method, the ranks of P1, P3, P4 and P5 are different. Although both methods use
the linear ratio-based normalization technique and the combination of arithmetic weighted
aggregation operator and geometric weighted aggregation operator, the WASPAS method
only considers one kind of normalization technique and the aggregation operator is aimed
at aggregating the performance values of alternatives, while the MACONT method syn-
thesizes three kinds of normalization techniques and the aggregation operator is aimed at
aggregating the distances between each alternative and the virtual reference alternative.

5.2.4. Comparative Analysis Between the Proposed Method and the ARAS Method
ARAS method, presented by Zavadskas and Turskis (2010), firstly sets the optimal alterna-
tive P ′

0(x01, x02, . . . , x0n) as the reference alternative by Eq. (21), and then normalizes the
decision matrix by the linear sum-based normalization technique (Eq. (1)). Next, the nor-
malized performance values of alternatives on all criteria are aggregated by the arithmetic
weighted aggregation operator (Eq. (22)). Afterwards, the utility degrees of alternatives
can be calculated by Eq. (23) to determine the ranking of alternatives in descending order.
The results deduced by the ARAS method based on the data in Section 4 are shown in
Table 10.{

x0j = maxi xij , for benefit criteria,
x0j = mini xij , for cost criteria, j = 1, 2, . . . , n, (21)

Zi =
n∑

j=1

(
wj x̂

1
ij

)
, i = 0, 1, 2, . . . , m, (22)

UDi = Zi/Z0, i = 0, 1, 2, . . . , m. (23)

Comparing the ranking result of the proposed MACONT method and that of the
ARAS method, the ranks of P1, P3, P4 and P5 are different. Both methods use the linear
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Table 10
The results obtained by the ARAS method.

Providers Zi UDi Ranks

P ′
0 0.1593 1.0000 –

P1 0.1123 0.7054 3
P2 0.0904 0.5678 8
P3 0.1066 0.6694 5
P4 0.1083 0.6798 4
P5 0.1012 0.6356 6
P6 0.0921 0.5781 7
P7 0.1126 0.7070 2
P8 0.1172 0.7358 1

sum-based normalization technique, but the MACONT method also integrates the other
two normalization techniques. In terms of the aggregation methods, only the arithmetic
weighted aggregation operator is used in the ARAS method, while the geometric weighted
average operator is also used in the MACONT method. Furthermore, in the setting of the
reference alternative, the ARAS method sets the best performance of alternatives on all
criteria as the reference alternative and determines the alternative ranking according to the
ratio of utility degrees of alternatives and the reference alternative, while the MACONT
method sets the average performance of alternatives on all criteria as the reference alterna-
tive and determines the alternative ranking based on the distance between each alternative
and the reference alternative.

5.2.5. Comparative Analysis Between the Proposed Method and the MULTIMOORA
Method

MULTIMOORA method, proposed by Brauers and Zavadskas (2010), exploits three sub-
ordinate ranking methods to obtain three ranking lists based on the decision matrix which
is normalized by the vector normalization technique (Eq. (8)). The first subordinate rank-
ing method is the Ratio System, and the utility values of alternatives can be calculated by
Eq. (24). The second subordinate ranking method is the Reference Point Approach, and
the utility values of alternatives can be calculated by Eq. (25). The third subordinate rank-
ing method is the Full Multiplicative Form, and the utility values of alternatives can be
calculated by Eq. (26). Afterwards, this method aggregates the three subordinate ranking
results based on the dominance theory (Brauers and Zavadskas, 2011) to determine the
final ranking of alternatives. The results derived by the MULTIMOORA method based
on the data in Section 4 are shown in Table 11.

Y 1
i =

g∑
j=1

(wj x̃ij ) −
g′∑

j=1

(wj x̃ij ), i = 1, 2, . . . , m, (24)

{
Y 2

i = maxj [wj(maxi x̃ij − x̃ij )], for benefit criteria,
Y 2

i = maxj [wj(x̃ij − mini x̃ij )], for cost criteria,
i = 1, 2, . . . , m, (25)

Y 3
i =

g∏
j=1

(x̃ij )
wj

/ g′∏
j=1

(x̃ij )
wj , i = 1, 2, . . . , m. (26)
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Table 11
The results obtained by the MULTIMOORA method.

Providers Y 1
i

Ranks Y 2
i

Ranks Y 3
i

Ranks Final ranks

P1 0.1973 3 0.0276 5 0.5883 3 4
P2 0.1309 7 0.0369 7 0.4595 8 7
P3 0.1853 5 0.0219 1 0.5799 4 3
P4 0.1909 4 0.0232 3 0.5617 5 5
P5 0.1524 6 0.0292 6 0.5275 6 6
P6 0.1303 8 0.0439 8 0.4648 7 8
P7 0.1999 2 0.0251 4 0.5924 2 2
P8 0.2150 1 0.0229 2 0.6210 1 1

Fig. 1. Comparison of the MACONT method and the other MCDM methods.

Comparing the ranking result of the proposed MACONT method and that of the
MULTIMOORA method, we can find that the ranks of other providers are different
except for P1, P7 and P8. Although the two methods are similar in the form of ag-
gregation method, and both of them take into account the compensation and non-
compensation effects among criteria, the two methods are quite different. On the one
hand, the MULTIMOORA method only uses the vector normalization technique, while
the MACONT method comprehensively uses three linear normalization techniques. On
the other hand, the MULTIMOORA method divides the criteria into different types in
the process of aggregation. It is easy to see that the MULTIMOORA method can only
be applied to solve the MCDM problems with both cost and benefit criteria, while the
MACONT method first divides the criteria types in the process of normalization, which
reduces the amount of calculation to a certain extent and has a wider scope of application
than the MULTIMOORA method.

The ranks of providers obtained by the proposed MACONT method and the afore-
mentioned methods are displayed in Fig. 1. From this figure, we can find that the ranking
results derived by each MCDM method are different, and the ranks result of the providers
derived by the proposed MACONT method is a comprehensive solution.
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6. Conclusion

This study mainly proposed an MACONT method which involves a comprehensive nor-
malization technique based on criterion types and two mixed aggregation operators to
aggregate the distance values between each alternative and the reference alternative on
different criteria from the perspectives of compensation and non-compensation. To testify
the applicability of the proposed method, an illustration example regarding the selection
of sustainable third-party reverse logistics providers was given. Through the sensitivity
analyses and comparative analyses, we highlight that the proposed MACONT method has
the following advantages:
1) It integrates three linear normalization techniques with respect to criterion types to

make the normalized values reflect the original values synthetically, which is beneficial
to reduce the deviations produced by single normalization techniques;

2) It measures the good performance and bad performance of one alternative compared
with other alternatives by only one reference alternative. It is easy to operate and makes
the results convincing;

3) It applies two mix aggregation operators to get a multi-aspect and reliable result from
the perspectives of compensation and non-compensation among criteria;

4) It sets some parameters, enhances the application scope of the method, and enables
experts to assign values to the parameters according to actual situations of decision-
making problems, and thus the results are reasonable and reliable.
In this study, there is a deficiency that we did not analyse the impact of the change of

criterion weights on the final result derived by the proposed method, because the number
of criteria in the illustration example is large, and it is not easy to grasp the influence of
the change of criterion weights on the ranking results. In the future, we will analyse this
problem. In addition, we will consider to combine the proposed method with the fuzzy
set theory, extending the proposed method to intuitionistic fuzzy environment, hesitant
fuzzy linguistic environment and probabilistic linguistic environment to solve complex
decision-making problems in various fields.

A. Appendix

Table A.1
Full names of abbreviations about MCDM methods.

Abbreviation Explanation

TOPSIS Technique for Order Preference by Similarity to Ideal Solution
ELECTRE ELimination Et Choix Traduisant la REalite, in French, ELimination and

Choice Expressing the Reality
GRA Grey relational analysis
VIKOR VlseKriterijumska Optimizacija I Kompromisno Resenje
PROMETHEE Preference Ranking Organization METHod for Enrichment of Evaluations
DEA Data Envelopment Analysis

(continued on next page)
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Table A.1
(continued)

Abbreviation Explanation

BWM Best Worst Method
ARAS Additive Ratio ASsessment
WSM Weighted Sum Method
AHP Analytical Hierarchy Process
ANP Analytic Network Process
TODIM an acronym in Portuguese of interactive and multicriteria decision making
EXPROM EXtension of the PROMethee
MULTIMOORA Multi-Objective Optimization on the basis of a Ratio Analysis plus the full

MULTIplicative form
MOORA Multi-Objective Optimization Ratio Analysis
COPRAS COmplex PRoportional ASsessment
IDOCRIW Integrated Determination of Objective CRIteria Weights
EDAS Evaluation based on Distance from Average Solution
MABAC Multi-Attributive Border Approximation area Comparison
MACBETH Measuring Attractiveness by a Categorical Based Evaluation THchnique
MAUT Multi-Attribute Utility Theory
CRITIC CRiteria Importance Through Intercriteria Correlation
KEMIRA KEmeny Median Indicator Ranks Accordance
CoCoSo Combined Compromise Solution
DNMA Double Normalization-based Multiple Aggregation
WASPAS Weighted Aggregated Sum Product ASsessment
GLDS Gained and Lost Dominance Score
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Zavadskas, E.K., Turskis, Z., Kildienė, S. (2014). State of art surveys of overviews on MCDM/MADM
methods. Technological and Economic Development of Economy, 20(1), 165–179. https://doi.org/10.3846/
20294913.2014.892037.

Zhang, H., Kou, G., Peng, Y. (2019). Soft consensus cost models for group decision making and economic
interpretations. European Journal of Operational Research, 277, 964–980. https://doi.org/10.1016/j.ejor.
2019.03.009.

Zolfani, S.H., Bahrami, M. (2014). Investment prioritizing in high tech industries based on SWARA-
COPRAS approach. Technological and Economic Development of Economy, 20(3), 534–533. https://doi.org/
10.3846/20294913.2014.881435.

Z. Wen is a postgraduate majoring in logistics engineering from the Business School,
Sichuan University, Chengdu, China. She has published several papers in high-quality in-
ternational journals such as Technological and Economic Development of Economy, Jour-
nal of Civil Engineering and Management, and Economic Research-Ekonomska Istrazi-
vanja. At present, her main research direction is multi criteria decision-making method
under uncertainty environment and logistic engineering.

https://doi.org/10.1007/s10700-019-09309-5
https://doi.org/10.1002/int.22216
https://doi.org/10.1016/S0377-2217(03)00020-1
https://doi.org/10.1016/S0377-2217(03)00020-1
https://doi.org/10.1016/j.ejor.2006.01.020
https://doi.org/10.1016/j.eswa.2014.11.057
https://doi.org/10.1007/bf00134132
https://doi.org/10.1016/j.ejor.2018.07.044
https://doi.org/10.1016/j.ejor.2018.07.044
https://doi.org/10.1108/MD-05-2017-0458
https://doi.org/10.1108/MD-05-2017-0458
https://doi.org/10.1016/j.asoc.2018.01.023
https://doi.org/10.1016/j.jclepro.2019.118461
https://doi.org/10.3846/tede.2010.10
https://doi.org/10.3846/tede.2010.10
https://doi.org/10.1142/s0219622016500036
https://doi.org/10.1142/s0219622016500036
https://doi.org/10.5755/j01.eee.122.6.1810
https://doi.org/10.5755/j01.eee.122.6.1810
https://doi.org/10.3846/20294913.2014.892037
https://doi.org/10.3846/20294913.2014.892037
https://doi.org/10.1016/j.ejor.2019.03.009
https://doi.org/10.1016/j.ejor.2019.03.009
https://doi.org/10.3846/20294913.2014.881435
https://doi.org/10.3846/20294913.2014.881435


880 Z. Wen et al.

H. Liao is a research fellow at the Business School, Sichuan University, Chengdu, China.
He received his PhD degree in management science and engineering from the Shang-
hai Jiao Tong University, Shanghai, China, in 2015. He has published 3 monographs,
1 chapter, and more than 200 peer-reviewed papers, many in high-quality international
journals including European Journal of Operational Research, Omega, IEEE Transac-
tions on Fuzzy Systems, IEEE Transaction on Cybernetics, Information Sciences, Infor-
mation Fusion, Knowledge-Based Systems, Fuzzy Sets and Systems, Expert Systems with
Applications, International Journal of Production Economics, etc. He is a highly cited
researcher since 2019. His current research interests include multiple criteria decision
analysis under uncertainty, business intelligence and data science, cognitive computing,
fuzzy set and systems, healthcare management, evidential reasoning theory with applica-
tions in big data analytics, etc. Prof. Liao is the senior member of IEEE since 2017. He
is the editor-in-chief, associate editor, guest editor or editorial board member for 30 in-
ternational journals, including Information Fusion (SCI), Applied Soft Computing (SCI),
Technological and Economic Development of Economy (SSCI), International Journal of
Strategic Property Management (SSCI), Computers and Industrial Engineering (SCI),
International Journal of Fuzzy Systems (SCI), Journal of Intelligent and Fuzzy Systems
(SCI) and Mathematical Problems in Engineering (SCI). Prof. Liao has received numer-
ous honours and awards, including the thousand talents plan for young professionals in
Sichuan Province, the candidate of academic and technical leaders in Sichuan Province,
the outstanding scientific research achievement award in higher institutions (first class in
Natural Science in 2017; second class in Natural Science in 2019), the outstanding sci-
entific science research achievement award in Sichuan Province (second class in Social
Science in 2019), and the 2015 endeavour research fellowship award granted by the Aus-
tralia Government.

E.K. Zavadskas, PhD, DSc, D.h.c. multi. prof., professor of Department of Construction
Management and Real Estate, director of Institute of Sustainable Construction, Faculty
of Civil Engineering, Vilnius Gediminas Technical University, Lithuania. Chief research
fellow at Laboratory of Operational Research. PhD in building structures (1973). Dr Sc.
(1987) in building technology and management. A member of Lithuanian and several
foreign Academies of Sciences. Doctore Honoris Causa from Poznan, Saint-Petersburg
and Kiev universities. The honourary international chair professor in the National Taipei
University of Technology. A member of international organizations; a member of steering
and programme committees at many international conferences; a member of the editorial
boards of several research journals; the author and co-author of more than 400 papers
and a number of monographs in Lithuanian, English, German and Russian. Founding
editor of journals Technological and Economic Development of Economy and Journal of
Civil Engineering and Management. Research interests: multi-criteria decision making;
civil engineering, energy, sustainable development, fuzzy sets theory, fuzzy multi-criteria
decision making, sustainability.


