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Abstract. Picture fuzzy sets (PFSs) utilize the positive, neutral, negative and refusal membership
degrees to describe the behaviours of decision-makers in more detail. In this article, we expound the
application of extended TODIM based on cumulative prospect theory under picture fuzzy multiple
attribute group decision making (MAGDM). In addition, we adopt Information Entropy, which is
used to ascertain the weighting vector of attributes to improve the availability of the TODIM method.
At last, we exercise the improved TODIM into a numerical case for super market location and testify
the effectiveness of this new method by comparing its results with other methods’ results.
Key words: multiple attribute group decision making (MAGDM), picture fuzzy sets, TODIM,
supermarket location.

1. Introduction

Multi-attribute decision making method (MADM) and multi-attribute group decision
making method (MAGDM) are two essential research directions in the field of modern
management decision making. The practical issue of MADM or MAGDM is that deci-
sion makers are often confronted with inaccurate description. The complexity of the hu-
man brain means that even rational decision makers can be influenced by emotional factors
to make vague expressions in the decision-making process. Just as the word “beautiful” is
an imprecise expression of fuzzy things, which is prevalent in realistic society. The way to
express this reality scientifically has become an important problem for scientists. Think-
ing about this phenomenon, Zadeh (1965) proposed the concept of fuzzy sets in 1965 to
study the inexact phenomena mentioned above by using membership functions. It can be
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said without exaggeration that fuzzy set is the cornerstone for the research and develop-
ment of decision making and control. Since then, many researchers have dedicated them-
selves to the study of fuzziness and uncertainty, greatly developing the fuzzy sets. In 1986,
Atanassov (1986) put forward Intuitionistic Fuzzy Sets (IFSs), in which subordinate and
non-subordinate functions are integrated to describe uncertain things. In addition, Cuong
(2014) introduced degree of neutral subordinate on the basis of IFSs and proposed the
concept of picture fuzzy sets (PFSs) in 2014. In addition, many other sets for describ-
ing uncertain problems have been proposed and extensively studied (Liu Y. et al., 2019;
Zhang et al., 2017; Zhang Z. et al., 2019). However, picture fuzzy set is still irreplace-
able and unique in investigating the issues of MADM and MAGDM. Specifically, PFSs
have four expressions of membership degree including the positive subordinate degree,
neutral subordinate degree, negative subordinate degree and refusal subordinate degree,
which is a very detailed breakdown of decision makers’ attitudes, corresponding to four
descriptions (affirmative, adiaphorous, averse and refusal) when decision makers make a
decision (Liang et al., 2018). Because of its excellent characteristics, many scholars use
picture fuzzy sets to study decision problems. Ma et al. (2019) gave complex fuzzy sets
and extended the range of membership function values. Obviously, compared with other
kinds of fuzzy sets, PFSs can delineate the conduct of decision-makers in more detail and
are closer to human thinking and cognition of fuzzy things. Therefore, it has more advan-
tages in solving multi-attribute decision making (MADM). Liang et al. (2018) evaluated
the cleaner production for gold mines with picture fuzzy information. Meksavang et al.
(2019) researched for the selection of sustainable suppliers. Wang et al. (2018) studied the
risk evaluation of construction project with PFSs. Khan et al. (2019) invented logarith-
mic aggregation operators of Picture Fuzzy Numbers to solve MADM problems. Ju et al.
(2019) used extended GRP method to study the location of charging stations for electric
vehicles under picture fuzzy environment. Sindhu et al. (2019) developed a linear pro-
gramming model with PFSs. Liu and Zhang (2018) put forward picture fuzzy linguistic set
and some aggregation operator based on picture fuzzy information, such as, A-PFLWAA.
Wei (2017) also gave some picture fuzzy aggregation operators.

As mentioned above, many great scholars put forward all kinds of methods to study
MADM problems, such as MABAC (the distance between the alternatives and the bound-
ary approximation area was defined and introduced by Pamucar and Cirovic (2015) in
2015), VIKOR (a compromising method which was introduced by Opricovic and Tzeng
(2004) in 1998), MOORA (proposed by Brauers and Zavadskas (2006) in 1986), TODIM
(brought forward by Gomes and Lima (1992) in 1992), EDAS (it was used for calcu-
lating the distance of each alternative from the optimal one and presented by Keshavarz
Ghorabaee et al. (2015) in 2015) and so on. Among them, the TODIM method is distinc-
tive, which makes use of piecewise function to denote the distance between two schemes.
What’s more, it is more authentic to take the different attitudes of decision makers towards
gains and losses on decision making into consideration by introducing parameter in the
process of evaluation. Liang et al. (2020) utilized TODIM to introduce the risk appetite on
three-way decisions. Wu Y.N. et al. (2019) investigated the investment selection of meet-
ing the requirements of rooftop distributed photovoltaic projects for industrial and com-
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mercial households with TODIM. Biswas and Sarkar (2019) put forward a kind of method-
ology based on TODIM. Liang et al. (2019) proposed a mixture TODIM method to assess
the risk level of the targets. Zhang Y.X. et al. (2019) explored water safety evaluation on
the strength of the TODIM method. Zhang Y.X. et al. (2019) integrated maximizing de-
viation, FANP and TODIM method. Renet al. (2017) studied TODIM under probabilistic
dual hesitant fuzzy environment. Zhu et al. (2019) used grey relational analysis to count
the dominance degree. Yuan et al. (2019) got through the ranking of risk level of CFPP
investment with TODIM. Liu et al. (2019) generalized TODIM and TOPSIS methods to
distance measure. Wu and Zhang (2019) used TODIM under intuitionistic fuzzy environ-
ment to obtain the results of product ranking. Wei (2018) accomplished the TODIM in
picture fuzzy environment. Mishra and Rani (2018) designed TODIM technique to solve
problems in interval-valued IFSs. Zhang et al. (2019) utilized sentiment analysis as well as
classical TODIM to evaluate and rank products online in an intuitionistic fuzzy environ-
ment. Yu et al. (2017) combined the classical TODIM method with unbalanced hesitant
fuzzy linguistic term sets to analyse multi-criteria group decision making. Liang Y.Y. et al.
(2019) ameliorated the conventional TODIM with a weight determination method which
was based on incomplete weight information. Wang et al. (2019) applied a novel function
to TODIM. Liu and Teng (2019) acquired weights by means of probabilistic linguistic in-
formation, which extend the TODIM. Tian et al. (2019) developed the traditional TODIM
by using Cumulative Prospect Theory (CPT).

The TODIM method based on CPT combines the advantages of traditional TODIM
and CPT, providing a more reliable method for studying uncertain decision-making, and
makes up for the shortcomings of traditional TODIM method. Unfortunately, we hardly
find the use of improved TODIM method based on Cumulative Prospect Theory to study
the multi-attribute group decision making (MAGDM) problem in picture fuzzy environ-
ment. Hence, the heart of this article is to build a more practical model to resolve the
problem of picture fuzzy MAGDM. For achieving this goal, this article pays attention to
the psychology of decision makers through a more realistic way to analyse and brings in
the entropy weight method to obtain the original weighting vector of attributes, eliminat-
ing the subjectivity of the information of attribute weight directly given by the decision
maker.

The primary research ideas of this paper are as follows: Section 2 recommends and
sorts out the basic knowledge to be used in this paper briefly. In the Section 3, the improved
TODIM method is applied to work out the problem of picture fuzzy MAGDM. Section 4
demonstrates the application of the new method and compares it with other approaches
to guarantee the availability. Finally, we draw the corresponding conclusions based on the
research in this paper, which are shown in Section 5.

2. Preliminary Knowledge

In this topic, we review a number of fundamental concepts and methods in regard to picture
fuzzy sets as well as extend TODIM based on CPT (Cumulative Prospect Theory).
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2.1. Picture Fuzzy Sets and Picture Fuzzy Numbers

Definition 1 (See Garg, 2017). For a non-empty set O, Picture Fuzzy Set (PFS) is defined
by

L(o) = {〈
o, αL(o), βL(o), ϕL(o)

〉 ∣∣ o ∈ O
}
, (1)

where αL(o) ∈ [0, 1] is well-known as degree of positive membership of L, ϕL(o) ∈ [0, 1]
is well-known as degree of negative membership of L, βL(o) ∈ [0, 1] is well-known as
degree of neutral membership of L. In the meantime, αL(o), βL(o) and ϕL(o) satisfy the
relation of “0 � αL(o) + βL(o) + ϕL(o) � 1, ∀o ∈ O”. Then the refusal membership
of o in L can be calculated by Eq. (2)

zL(o) = 1 − αL(o) − βL(o) − ϕL(o), for o ∈ O. (2)

For convenience, we define the corresponding Picture Fuzzy Number (PFN) L =
(αL, βL, ϕL). And now, let’s introduce some algorithms.

Definition 2 (See Meksavang et al., 2019). Let δ = (αδ, βδ, ϕδ) and ε = (αε, βε, ϕε)

represent two PFNs, respectively, then

(1) δ ⊕ ε = (αδ + αε − αδαε, βδβε, ϕδϕε);
(2) δ ⊗ ε = (αδαε, βδ + βε − βδβε, ϕδ + ϕε − ϕδϕε);
(3) ω · δ = (1 − (1 − αδ)

ω, (βδ)
ω, (ϕδ)

ω), ω > 0;
(4) δω = ((αδ)

ω, 1 − (1 − βδ)
ω, 1 − (1 − ϕδ)

ω), ω > 0;
(5) δ = (ϕδ, βδ, αδ).

Definition 3 (See Wei, 2018). If L = (αL, βL, ϕL) is a PFN, there will be the score
function cL and accuracy function pL, which can be computed by Eqs. (3) and (4).

cL = 1 + αL − ϕL

2
, cL ∈ [0, 1], (3)

pL = αL + βL + ϕL, pL ∈ [0, 1]. (4)

Definition 4 (See Liang et al., 2018). If δ = (αδ, βδ, ϕδ) and ε = (αε, βε, ϕε) are two
PFNs, respectively, their relationships of size are as follows:

(1) When cδ > cε, then δ > ε.
(2) When cδ = cε, if pδ > pε, then δ > ε; if pδ = pε, then δ = ε.

Definition 5 (See Meksavang et al., 2019). Let δ = (αδ, βδ, ϕδ) and ε = (αε, βε, ϕε)

represent two PFNs, respectively, then their distance is counted by:

d(δ, ε) = 1

4
(|αδ − αε| + |βδ − βε| + |ϕδ − ϕε| + |zδ − zε|)

+ 1

2
max(|αδ − αε| + |βδ − βε| + |ϕδ − ϕε| + |zδ − zε|). (5)
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2.2. Extended TODIM Method Based on Cumulative Prospect Theory

The original TODIM, which was proposed by Gomes and Lima (1992), utilizes the domi-
nance degree of each alternative over the other alternatives to select the optimal project. At
present, this method has extensive use in Multiple Attribute Decision Making (MADM)
and other areas. Nonetheless, this method is unable to acquire the weight of attributes,
using the weighting function. So, XU, TIAN, and GU improved classical TODIM and
demonstrated extended TODIM on the Basis of Cumulative Prospect Theory. Meanwhile,
they show the application of extended TODIM in real-valued MADM. In what follows,
we introduce this extended TODIM method.

In the following decision matrix N , the alternatives and attributes are displayed in
accordance with decision maker’s view.

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n11 n12 · · · n1r · · · n1g

n21 n22 · · · n2r · · · n2g

...
...

. . .
...

. . .
...

ns1 ns2 · · · nsr · · · nsg

...
...

. . .
...

. . .
...

nf 1 nf 2 · · · nf r · · · nfg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (nsr )f ×g,

λ = (λ1, λ2, . . . , λg) represents the weighting vector of attributes, which satisfies∑g

r=1 λr = 1.

Step 1. The converted probability of the alternative Vi to Vk will be computed according
to (6) or (7), where i, k ∈ f and i �= k.

When nir − nkr � 0, the converted probability weight is calculated by (6):

η+
ikr (λr) = λζ

r /
(
λζ

r + (1 − λr)
ζ
) 1

ζ . (6)

Otherwise, the converted probability weight is calculated by (7):

η−
ikr (λr) = λξ

r /
(
λξ

r + (1 − λr)
ξ
) 1

ξ , (7)

where ζ and ξ are the parameters describing the curvature of the weighting function.

Step 2. Eq. (8) is used to determine the relative weight η∗
ikr (λr) of the alternative Vi to Vk .

η∗
ikr (λr) = ηikr (λr )

/
max

{
ηikr (λp)

∣∣ p ∈ g
}
, r ∈ g, ∀(i, k), (8)

where ηikr (λr) represents the converted probability weight of the rth attribute for the
alternative Vi , which is equal to η+

ikr (λr) when nir � nkr , or equal to η−
ikr (λr) according

to (7).
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Step 3. Figure out the relative prospect dominance of alternative Vi to Vk underneath the
attribute r with (9):

ϑr(Vi, Vk) =
⎧⎨
⎩

η∗
ikr (λr) · (nir − nkr)

β/
∑g

r=1 η∗
ikr (λr), if nir > nkr ,

0, if nir = nkr ,

−θ(
∑g

r=1 η∗
ikr (λr)) · (nkr − nir )

α/η∗
ikr (λr), if nir < nkr ,

(9)

where α, β and θ are the parameters.

Step 4. Determine the dominance degree of the alternative Vi over the others, which is
calculated as Eq. (10).

π(Vi) =
f∑

k=1

g∑
r=1

ϑr(Vi, Vk), i = 1, 2, . . . , f. (10)

Step 5. Acquire the overall dominance degree of the alternative Vi from Eq. (11).

ψ(Vi) = π(Vi) − mini{π(Vi)}
maxi{π(Vi)} − mini{π(Vi)} , i = 1, 2, . . . , f. (11)

Step 6. Rank the overall dominance degree ψ(Vi), i ∈ f . The alternative with the bigger
ψ(Vi) value is considered the better choice.

3. Extended TODIM for Picture Fuzzy MAGDM Based on Cumulative Prospect
Theory

Let V = {V1, V2, . . . , Vf } and D = {D1,D2, . . . , Dg} be the sets of alternatives
and attributes, respectively, and the information about the attribute weights is unknown.
Now, there are n decision makers, integrated into the set of decision makers M =
{M1,M2, . . . ,Mn}, whose weight vector is χ = (χ1, χ2, . . . , χn), χt � 0, (t = 1, 2,

. . . , n),
∑n

t=1 χt = 1.
Nt = (nt

sr )f ×g = (αt
sr , β

t
sr , ϕ

t
sr )f ×g is the decision matrix under picture fuzzy envi-

ronment of the t th decider, where αt
sr indicates the positive subordinate degree of the t th

decision maker, βt
sr expresses the neutral subordinate degree of the t th decision maker, ϕt

sr

expresses the negative subordinate degree of the t th decision maker, αt
sr , β

t
sr , ϕ

t
sr ∈ [0, 1]

and 0 � αt
sr + βt

sr + ϕt
sr � 1, s = 1, 2, . . . , f , r = 1, 2, . . . , g, t = 1, 2, . . . , n.

In the following, we introduce Picture Fuzzy MAGDM using extended TODIM. The
framework is shown in Fig. 1.

Step 1. Transform the cost attributes into the benefit attributes by using Eq. (12).

Ut = (
ut

sr

)
f ×g

, s = 1, 2, . . . , f, r = 1, 2, . . . , g, t = 1, 2, . . . , n,

ut
sr = (

μt
sr , ν

t
sr , ρ

t
sr

) =
{

nt
sr = (αt

sr , β
t
sr , ϕ

t
sr ), Dr is a benefit attribute,

nt
sr = (ϕt

sr , β
t
sr , α

t
sr ), Dr is a cost attribute. (12)
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Fig. 1. The flow chart of extended TODIM for picture fuzzy MAGDM based on cumulative prospect theory.

Step 2. Calculate score matrix Ct = (ct
sr )f ×g for each normalized decision maker using

Eq. (13), and integrate these score matrices for different decision maker into one group
score matrix Y = (ysr )f ×g using Eq. (14).

ct
sr = (1 + μt

sr − ρt
sr )

2
, s = 1, 2, . . . , f, r = 1, 2, . . . , g, t = 1, 2, . . . , n, (13)

ysr =
n∑

t=1

χtc
t
sr , s = 1, 2, . . . , f, r = 1, 2, . . . , g. (14)

Step 3. Use Eq. (15) to normalize the group score matrix and obtain the normalized matrix
X = (xsr )f ×g .

xsr = ysr∑f

s=1 ysr

, r = 1, 2, . . . , g. (15)

Step 4. Utilize the Entropy Weight Method to obtain the original weight attributes λ =
(λ1, λ2, . . . , λn), λr � 0, which is calculated as (16) and (17):
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Er = − 1

ln f

f∑
s=1

(xsr ln xsr ), r = 1, 2, . . . , g, 0 � Er � 1, (16)

λr = 1 − Er∑g

r=1(1 − Er)
, r = 1, 2, . . . , g. (17)

Step 5. The converted probability of the alternative Vi to Vk will be computed according
to (18) or (19), where i, k ∈ f and i �= k.

When xir − xkr � 0, the converted probability weight is calculated by (18):

η+
ikr (λr) = λζ

r

/(
λζ

r + (1 − λr)
ζ
) 1

ζ . (18)

Otherwise, the converted probability weight is calculated by (19):

η−
ikr (λr) = λξ

r

/(
λξ

r + (1 − λr)
ξ
) 1

ξ , (19)

where ζ and ξ are the parameters describing the curvature of the weighting function.

Step 6. Eq. (20) is used to determine the relative weight η∗
ikr (λr ) of the alternative Vi

to Vk .

η∗
ikr (λr) = ηikr (λr)

/
max

{
ηikr (λp)

∣∣p ∈ g
}
, r ∈ g, ∀(i, k), (20)

where ηikr (λr) represents the converted probability weight of the rth attribute for the
alternative Vi , which is equal to η+

ikr (λr ) when xir � xkr , or equal to η−
ikr (λr) according

to Eq. (19).

Step 7. Determine the dominance degree of the alternative Vi over the others, which is
calculated as Eq. (21):

π(Vi) =
f∑

k=1

g∑
r=1

ϑr(Vi, Vk), i = 1, 2, . . . , f, (21)

where

ϑr(Vi, Vk) =
⎧⎨
⎩

η∗
ikr (λr) · (xir − xkr )

β/
∑g

r=1 η∗
ikr (λr), if xir > xkr ,

0, if xir = xkr ,

−θ(
∑g

r=1 η∗
ikr (λr)) · (xkr − xir )

α/η∗
ikr (λr), if xir < xkr .

(22)

The ϑr(Vi, Vk) indicates the relative prospect dominance of alternative Vi to Vk under
the attribute r , and α, β and θ are the parameters.

Step 8. Acquire the overall dominance degree of the alternative Vi from Eq. (23).

ψ(Vi) = π(Vi) − mini{π(Vi)}
maxi{π(Vi)} − mini{π(Vi)} , i = 1, 2, . . . , f. (23)
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Table 1
Decision matrix N1 given by the first expert.

D1 D2 D3 D4 D5

V1 (0.28, 0.06, 0.54) (0.86, 0.03, 0.11) (0.55, 0.13, 0.26) (0.24, 0.08, 0.63) (0.56, 0.18, 0.22)

V2 (0.26, 0.19, 0.48) (0.53, 0.12, 0.03) (0.52, 0.18, 0.21) (0.21, 0.16, 0.53) (0.75, 0.05, 0.12)

V3 (0.15, 0.02, 0.72) (0.74, 0.06, 0.05) (0.70, 0.04, 0.13) (0.17, 0.04, 0.74) (0.61, 0.21, 0.08)

V4 (0.22, 0.13, 0.58) (0.69, 0.21, 0.08) (0.64, 0.16, 0.08) (0.16, 0.24, 0.59) (0.46, 0.31, 0.13)

Step 9. Rank the overall dominance degree ψ(Vi), i ∈ f . The alternative with the bigger
ψ(Vi) value is considered a better choice.

4. Numerical Instance

4.1. Numerical Example for Picture Fuzzy MAGDM

China’s accession to the world trade organization has continued for ten years, the retail
circulation market has gradually opened to foreign investment, so that China’s local re-
tail enterprises are facing the challenge of international retail giants. In the past period of
time, with the continuous improvement of China’s urbanization level, community busi-
ness has been developing vigorously. As a new type of business organization, community
supermarket has become the focus of many retail manufacturers. However, many super-
markets are blind in site selection and lack scientific site selection research, which leads
to high cost input and low benefit level, and eventually they are eliminated by the market.
How to scientifically study and draw the relationship between the factors influencing the
reasonable location of the supermarket, related to the future development of retail enter-
prises imminent problem. With the spring of Internet economy, the competition of real
economy is more and more fierce. The supermarket location selection could be regarded
as a MAGDM problem (Gao et al., 2020; Lu et al., 2019; Wang P. et al., 2019; Wei et al.,
2019a). Therefore, it is crucial for a supermarket to select the best location that may result
in prodigious effectiveness. Now, for the management of a supermarket, there are four site
locations Vi (i = 1, 2, 3, 4) from which to choose. And the management adopts five at-
tributes to assess these four alternatives: (1) D1 is the shop rent, (2) D2 is the population
density, (3) D3 is the consumption level, (4) D4 is the intensity of competitive rivalry,
(5) D5 is the transportation convenience. Among them, D1 and D4 are cost attributes, and
the others are benefit attributes. The four store location plans are going to be evaluated by
three experts (whose weighting vector is χ = (χ1, χ2, χ3)

T = (0.43, 0.22, 0.35)T ) using
PFNs under five attributes. Then, the picture fuzzy decision matrices which are given by
the three experts are shown below (see Tables 1–3).

In the rest of the paper, we introduce using the suggested approach in this article ob-
taining the optimal location.

Step 1. Use Eq. (12) to transform cost into benefit. The result is shown in Tables 4 to 6.

Step 2. Calculate score matrix Ct = (ct
sr )4×5 for each normalized decision maker using

Eq. (13), and it is shown in Table 7 to Table 9. Then, integrate these score matrices for
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Table 2
Decision matrix N2 given by the second expert.

D1 D2 D3 D4 D5

V1 (0.28, 0.06, 0.62) (0.87, 0.03, 0.09) (0.71, 0.05, 0.20) (0.33, 0.14, 0.49) (0.58, 0.14, 0.16)

V2 (0.22, 0.16, 0.52) (0.47, 0.14, 0.26) (0.62, 0.13, 0.25) (0.12, 0.22, 0.48) (0.65, 0.13, 0.15)

V3 (0.19, 0.11, 0.67) (0.69, 0.05, 0.21) (0.84, 0.02, 0.13) (0.09, 0.23, 0.62) (0.63, 0.05, 0.25)

V4 (0.02, 0.08, 0.74) (0.62, 0.12, 0.04) (0.58, 0.26, 0.14) (0.24, 0.02, 0.71) (0.52, 0.17, 0.24)

Table 3
Decision matrix N3 given by the third expert.

D1 D2 D3 D4 D5

V1 (0.14, 0.28, 0.52) (0.68, 0.02, 0.16) (0.67, 0.06, 0.23) (0.21, 0.09, 0.66) (0.47, 0.11, 0.26)

V2 (0.13, 0.15, 0.68) (0.58, 0.24, 0.16) (0.43, 0.38, 0.12) (0.15, 0.26, 0.48) (0.65, 0.08, 0.16)

V3 (0.11, 0.03, 0.77) (0.73, 0.09, 0.13) (0.65, 0.12, 0.22) (0.16, 0.08, 0.72) (0.59, 0.04, 0.35)

V4 (0.21, 0.09, 0.66) (0.56, 0.07, 0.26) (0.49, 0.21, 0.26) (0.28, 0.03, 0.54) (0.53, 0.22, 0.23)

Table 4
Normalized decision matrix U1 given by the first expert.

D1 D2 D3 D4 D5

V1 (0.54, 0.06, 0.28) (0.86, 0.03, 0.11) (0.55, 0.13, 0.26) (0.63, 0.08, 0.24) (0.56, 0.18, 0.22)

V2 (0.48, 0.19, 0.26) (0.53, 0.12, 0.03) (0.52, 0.18, 0.21) (0.53, 0.16, 0.21) (0.75, 0.05, 0.12)

V3 (0.72, 0.02, 0.15) (0.74, 0.06, 0.05) (0.70, 0.04, 0.13) (0.74, 0.04, 0.17) (0.61, 0.21, 0.08)

V4 (0.58, 0.13, 0.22) (0.69, 0.21, 0.08) (0.64, 0.16, 0.08) (0.59, 0.24, 0.16) (0.46, 0.31, 0.13)

Table 5
Normalized decision matrix U2 given by the second expert.

D1 D2 D3 D4 D5

V1 (0.62, 0.06, 0.28) (0.87, 0.03, 0.09) (0.71, 0.05, 0.20) (0.49, 0.14, 0.33) (0.58, 0.14, 0.16)

V2 (0.52, 0.16, 0.22) (0.47, 0.14, 0.26) (0.62, 0.13, 0.25) (0.48, 0.22, 0.12) (0.65, 0.13, 0.15)

V3 (0.67, 0.11, 0.19) (0.69, 0.05, 0.21) (0.84, 0.02, 0.13) (0.62, 0.23, 0.09) (0.63, 0.05, 0.25)

V4 (0.74, 0.08, 0.02) (0.62, 0.12, 0.04) (0.58, 0.26, 0.14) (0.71, 0.02, 0.24) (0.52, 0.17, 0.24)

Table 6
Normalized decision matrix U3 given by the third expert.

D1 D2 D3 D4 D5

V1 (0.52, 0.28, 0.14) (0.68, 0.02, 0.16) (0.67, 0.06, 0.23) (0.66, 0.09, 0.21) (0.47, 0.11, 0.26)

V2 (0.68, 0.15, 0.13) (0.58, 0.24, 0.16) (0.43, 0.38, 0.12) (0.48, 0.26, 0.15) (0.65, 0.08, 0.16)

V3 (0.77, 0.03, 0.11) (0.73, 0.09, 0.13) (0.65, 0.12, 0.22) (0.72, 0.08, 0.16) (0.59, 0.04, 0.35)

V4 (0.66, 0.09, 0.21) (0.56, 0.07, 0.26) (0.49, 0.21, 0.26) (0.54, 0.03, 0.28) (0.53, 0.22, 0.23)

different decision maker into one group score matrix Y = (ysr )4×5 using Eq. (14). The
result is shown in Table 10.

Step 3. Use Eq. (15) to normalize the group score matrix and obtain the normalized matrix
X = (xsr )4×5 shown in Table 11.
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Table 7
Score matrix C1 given by the first expert.

D1 D2 D3 D4 D5

V1 0.6300 0.8750 0.6450 0.6950 0.6700
V2 0.6100 0.7500 0.6550 0.6600 0.8150
V3 0.7850 0.8450 0.7850 0.7850 0.7650
V4 0.6800 0.8050 0.7800 0.7150 0.6650

Table 8
Score matrix C2 given by the second expert.

D1 D2 D3 D4 D5

V1 0.6700 0.8900 0.7550 0.5800 0.7100
V2 0.6500 0.6050 0.6850 0.6800 0.7500
V3 0.7400 0.7400 0.8550 0.7650 0.6900
V4 0.8600 0.7900 0.7200 0.7350 0.6400

Table 9
Score matrix C3 given by the third expert.

D1 D2 D3 D4 D5

V1 0.6900 0.7600 0.7200 0.7250 0.6050
V2 0.7750 0.7100 0.6550 0.6650 0.7450
V3 0.8300 0.8000 0.7150 0.7800 0.6200
V4 0.7250 0.6500 0.6150 0.6300 0.6500

Table 10
Group score matrix Y .

D1 D2 D3 D4 D5

V1 0.6598 0.8381 0.6955 0.6802 0.6561
V2 0.6766 0.7041 0.6616 0.6662 0.7762
V3 0.7909 0.8062 0.7759 0.7789 0.6978
V4 0.7354 0.7475 0.7091 0.6897 0.6543

Table 11
Normalized Group score matrix X.

D1 D2 D3 D4 D5

V1 0.2305 0.2707 0.2447 0.2416 0.2356
V2 0.2363 0.2274 0.2328 0.2367 0.2788
V3 0.2763 0.2604 0.2730 0.2767 0.2506
V4 0.2569 0.2414 0.2495 0.2450 0.2350

Step 4. Utilize Eq. (16) and (17) to obtain the original weighting vector of attributes λ =
(0.2368, 0.2054, 0.1546, 0.1765, 0.2266).

Step 5. Compute the converted probability of the alternative Vi to Vk according to (18) or
(19). The result is shown in Tables 12 to 15 (ζ = 0.61, ξ = 0.69, which derive from the
experiment of Kahneman, 1992).
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Table 12
The converted probability of the alternative V1 to others.

D1 D2 D3 D4 D5

η12 0.2842 0.2642 0.2303 0.2455 0.2768
η13 0.2842 0.2642 0.2207 0.2387 0.2768
η14 0.2842 0.2642 0.2207 0.2387 0.2771

Table 13
The converted probability of the alternative V2 to others.

D1 D2 D3 D4 D5

η21 0.2831 0.2611 0.2207 0.2387 0.2771
η23 0.2842 0.2611 0.2207 0.2387 0.2771
η24 0.2842 0.2611 0.2207 0.2387 0.2771

Table 14
The converted probability of the alternative V3 to others.

D1 D2 D3 D4 D5

η31 0.2831 0.2611 0.2303 0.2455 0.2771
η32 0.2831 0.2642 0.2303 0.2455 0.2768
η34 0.2831 0.2642 0.2303 0.2455 0.2771

Table 15
The converted probability of the alternative V4 to others.

D1 D2 D3 D4 D5

η41 0.2831 0.2611 0.2303 0.2455 0.2768
η42 0.2831 0.2642 0.2303 0.2455 0.2768
η43 0.2842 0.2611 0.2207 0.2387 0.2768

Table 16
The relative weight of the alternative V1 to others.

D1 D2 D3 D4 D5

η∗
12

1.0000 0.9296 0.8103 0.8639 0.9742

η∗
13

1.0000 0.9296 0.7765 0.8400 0.9742

η∗
14

1.0000 0.9296 0.7765 0.8400 0.9751

Step 6. Determine the relative weight η∗
ikr (λr) of the alternative Vi to Vk by using Eq. (20).

The result is shown in Tables 16 to 19.

Step 7. Determine the relative prospect dominance ϑr(Vi, Vk) and the dominance degree
of the alternative Vi (i = 1, 2, 3, 4) over the others, which are calculated as in Eq. (22) and
(21), respectively. The result is shown in Tables 20 to 23. (α = 0.88, β = 0.88, θ = 2.25,
which derive from the experiment of Kahneman, 1992).
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Table 17
The relative weight of the alternative V2 to others.

D1 D2 D3 D4 D5

η∗
21

1.0000 0.9223 0.7794 0.8431 0.9788

η∗
23

1.0000 0.9189 0.7765 0.8400 0.9751

η∗
24

1.0000 0.9189 0.7765 0.8400 0.9751

Table 18
The relative weight of the alternative V3 to others.

D1 D2 D3 D4 D5

η∗
31

1.0000 0.9223 0.8133 0.8671 0.9788

η∗
32

1.0000 0.9330 0.8133 0.8671 0.9779

η∗
34

1.0000 0.9330 0.8133 0.8671 0.9788

Table 19
The relative weight of the alternative V4 to others.

D1 D2 D3 D4 D5

η∗
41

1.0000 0.9223 0.8133 0.8671 0.9779

η∗
42

1.0000 0.9330 0.8133 0.8671 0.9779

η∗
43

1.0000 0.9189 0.7765 0.8400 0.9742

Table 20
The relative prospect dominance of the alternative V1 to others.

D1 D2 D3 D4 D5

ϑ12 −0.1117 0.0128 0.0036 0.0018 −0.6653
ϑ13 −0.6741 0.0037 −0.5687 −0.6344 −0.2589
ϑ14 −0.4153 0.0092 −0.1190 −0.0805 0.0003

Table 21
The relative prospect dominance of the alternative V2 to others.

D1 D2 D3 D4 D5

ϑ21 0.0024 −0.6960 −0.2647 −0.1138 0.0136
ϑ23 −0.5964 −0.5483 −0.7729 −0.7117 0.0093
ϑ24 −0.3323 −0.2581 −0.3566 −0.1791 0.0138

Step 8. Acquire the overall dominance degree of the alternative Vi (i = 1, 2, 3, 4) from
Eq. (23).

ψ(V1) = 0.3045, ψ(V2) = 0, ψ(V3) = 1, ψ(V4) = 0.3883.
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Table 22
The relative prospect dominance of the alternative V3 to others.

D1 D2 D3 D4 D5

ϑ31 0.0145 −0.1994 0.0077 0.0099 0.0053
ϑ32 0.0128 0.0101 0.0105 0.0111 −0.4568
ϑ34 0.0068 0.0062 0.0065 0.0091 0.0055

Table 23
The relative prospect dominance of the alternative V4 to others.

D1 D2 D3 D4 D5

ϑ41 0.0089 −0.4996 0.0016 0.0013 −0.0164
ϑ42 0.0071 0.0047 0.0048 0.0028 −0.6735
ϑ43 −0.3158 −0.3370 −0.4820 −0.5792 −0.2680

Step 9. Rank the overall dominance degree ψ(Vi), i = 1, 2, 3, 4.

ψ(V3) > ψ(V4) > ψ(V1) > ψ(V2).

So, the alternative V3 is the best one.

4.2. Comparative Analysis

In the following, we take into account the classical TODIM method (Wei, 2018), the
VIKOR method (Meksavang et al., 2019), the picture fuzzy weighted cross-entropy
method (Wei, 2016), the projection model (Wei et al., 2018), the MULTIMOORA method
(Lin et al., 2020) and the EDAS method (Li et al., 2019) to test the efficiency of the im-
proved TODIM, respectively.

4.2.1. Comparison with the Classical TODIM
Firstly, we take into account the classical TODIM (Wei, 2018) to verify the usability of
the improved TODIM method proposed in this article. The final results of these two meth-
ods have a certain similarity that V3 is confirmed to be the optimal alternative. However,
there are some pivotal differences between the new improved TODIM method and the
classical TODIM method. The new method provides a more detailed description of the
mental processes of decision makers. In addition, beyond all questions, the introduction
of weight calculation method further deepens the scientificity of the new method. The
relevant process and results are shown as follows.

Step 1. We can use the same method to process data, like Section 4.1 from step 1 to step 4,
obtaining the weighting vector of attributes λ = (0.2368, 0.2054, 0.1546, 0.1765, 0.2266)

and normalized Group score matrix X shown in Table 11.
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Table 24
The dominance degree of the alternative V1 to others.

D1 D2 D3 D4 D5

ϑ12 −0.7268 0.0459 0.0209 0.0144 −2.0175
ϑ13 −2.0330 0.0224 −1.9784 −2.0601 −1.1886
ϑ14 −1.5436 0.0377 −0.8134 −0.6376 0.0059

Table 25
The dominance degree of the alternative V2 to others.

D1 D2 D3 D4 D5

ϑ21 0.0181 −2.1221 −1.2833 −0.7775 0.0481
ϑ23 −1.8986 −1.8523 −2.3581 −2.2019 0.0389
ϑ24 −1.3618 −1.2072 −1.5194 −1.0055 0.0485

Table 26
The dominance degree of the alternative V3 to others.

D1 D2 D3 D4 D5

ϑ31 0.0507 −1.0356 0.0322 0.0383 0.0284
ϑ32 0.0473 0.0400 0.0384 0.0409 −1.6303
ϑ34 0.0330 0.0304 0.0293 0.0364 0.0290

Table 27
The dominance degree of the alternative V4 to others.

D1 D2 D3 D4 D5

ϑ41 0.0385 −1.7453 0.0132 0.0118 −0.2469
ϑ42 0.0339 0.0261 0.0247 0.0187 −2.0326
ϑ43 −1.3230 −1.4048 −1.8034 −1.9590 −1.2140

Step 2. Determine the dominance degree using Eq. (24). And the result is shown in Ta-
bles 24 to 27.

ϑr(Vi, Vk) =

⎧⎪⎪⎨
⎪⎪⎩

√
λr · (xir − xkr )/

∑g

r=1 λr, if xir > xkr ,

0, if xir = xkr ,

−θ

√
(
∑g

r=1 λr) · (xkr − xir )/λr , if xir < xkr .

(24)

Step 3. Acquire the overall dominance degree of the alternative Vi (i = 1, 2, 3, 4) from
Eq. (23).

ψ(V1) = 0.3006, ψ(V2) = 0, ψ(V3) = 1, ψ(V4) = 0.3852.
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Table 28
The collective picture fuzzy evaluation matrix U .

D1 D2 D3 D4 D5

V1
(0.5523, 0.1029, 0.2197) (0.8160, 0.0260, 0.1200) (0.6335, 0.0804, 0.2351) (0.6145, 0.0943, 0.2457) (0.5352, 0.1434, 0.2175)

V2
(0.5689, 0.1684, 0.1966) (0.5360, 0.1582, 0.0867) (0.5158, 0.2177, 0.1794) (0.5021, 0.2034, 0.1650) (0.6971, 0.0727, 0.1394)

V3
(0.7290, 0.0335, 0.1418) (0.7261, 0.0664, 0.0958) (0.7243, 0.0504, 0.1563) (0.7099, 0.0749, 0.1447) (0.6077, 0.0857, 0.1723)

V4
(0.6490, 0.1027, 0.1277) (0.6335, 0.1264, 0.1038) (0.5793, 0.1958, 0.1367) (0.6045, 0.0671, 0.2128) (0.4988, 0.2409, 0.1817)

Table 29
The distance from each scheme to the perfect point.

D1 D2 D3 D4 D5

V1 0.2650 0.0000 0.1631 0.1805 0.2430
V2 0.2846 0.4700 0.3127 0.3117 0.0000
V3 0.0000 0.1712 0.0000 0.0000 0.1342
V4 0.1411 0.2981 0.2468 0.1699 0.3157

Step 4. Rank the overall dominance degree ψ(Vi), i = 1, 2, 3, 4.

ψ(V3) > ψ(V4) > ψ(V1) > ψ(V2),

V3 > V4 > V1 > V2.

So, the alternative V3 is the best one.

4.2.2. Comparison with the VIKOR Method
In the VIKOR (Meksavang et al., 2019) method, the collective picture fuzzy evalua-
tion matrix is shown in Table 28. The positive ideal in different attributes is as fol-
lows: u+

1 = (0.7290, 0.0335, 0.1418), u+
2 = (0.8160, 0.0260, 0.1200), u+

3 = (0.7243,

0.0504, 0.1563), u+
4 = (0.7099, 0.0749, 0.1447), u+

5 = (0.6971, 0.0727, 0.1394) and
the negative is: u−

1 = (0.5523, 0.1029, 0.2197), u−
2 = (0.5360, 0.1582, 0.0867), u−

3 =
(0.5158, 0.2177, 0.1794), u−

4 = (0.5021, 0.2034, 0.1650), u−
5 = (0.4988, 0.2409,

0.1817). The distance from each scheme to the perfect point is shown in Table 29. And the
values Si (i = 1, 2, 3, 4) and Ri (i = 1, 2, 3, 4) are as follows: S1 = 0.6600, S2 = 1.0086,
S3 = 0.2474, S4 = 0.8842; R1 = 0.2368, R2 = 0.3642, R3 = 0.1326, R4 = 0.2699. The
Qi (i = 1, 2, 3, 4) index is as follows: Q1 = 0.4959, Q2 = 1, Q3 = 0, Q4 = 0.7147,
Q3 < Q1 < Q4 < Q2. Therefore, there is V3 > V1 > V4 > V2. The alternative V3 is the
optimal one.

4.2.3. Comparison with the Picture Fuzzy Weighted Cross-Entropy Method
In this part, we list the vital process of picture fuzzy weighted cross-entropy method (Wei,
2016). According to the principle of maximum positive membership degree and minimum
negative as well as neutral membership degree, we can get the information of the ideal
alternative

V + =
(

(0.7290, 0.0335, 0.1277), (0.8160, 0.0260, 0.0867), (0.7243, 0.0504, 0.1367),

(0.7099, 0.0671, 0.1447), (0.6971, 0.0727, 0.1394)

)
.
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Meanwhile, the picture fuzzy weighted cross-entropy between Vi (i = 1, 2, 3, 4) and V +
is as following: C(V1, V

+) = 0.0179, C(V2, V
+) = 0.0373, C(V3, V

+) = 0.0034,
C(V4, V

+) = 0.0271. The smallest picture fuzzy weighted cross-entropy C(V3, V
+) cor-

responds with the best alternative V3.

4.2.4. Comparison with the Projection Model
The following describes the key information about the projection model (Wei et al., 2018).
In accordance to the identical principle with picture fuzzy weighted cross-entropy method,

V + =
(

(0.7290, 0.0335, 0.1277), (0.8160, 0.0260, 0.0867), (0.7243, 0.0504, 0.1367),

(0.7099, 0.0671, 0.1447), (0.6971, 0.0727, 0.1394)

)

is considered as the ideal alternative. The projection Vi (i = 1, 2, 3, 4) on V + can easily
be obtained. The results are shown as follows: PrjV +(V1) = 0.3000, PrjV +(V2) = 0.2758,
PrjV +(V3) = 0.3253, PrjV +(V4) = 0.2846. The alternative V3 with biggest PrjV +(V3) is
the best one.

4.2.5. Comparison with the MULTIMOORA Method
The main idea of the MULTIMOORA method (Lin et al., 2020) is to dispose of the funda-
mental information in different way. Finally, ranking value matrix and the corresponding
ranking order matrix come into being. The ranking value matrix is

T =

T1 T2 T3

V1

V2

V3

V4

⎛
⎜⎜⎝

0.4200 0.2368 1.2911
0.4174 0.2557 1.2778
0.5545 0.0750 1.4190
0.4408 0.2266 1.2999

⎞
⎟⎟⎠

and the ranking order matrix is

G =

G1 G2 G3

V1

V2

V3

V4

⎛
⎜⎜⎝

3 3 3
4 4 4
1 1 1
2 2 2

⎞
⎟⎟⎠ .

Based on these two matrices, we can figure out the final ranking score of alternative Vi

(i = 1, 2, 3, 4): B(V1) = 0.0204, B(V2) = −0.1486, B(V3) = 0.4369, B(V4) = 0.1833.
Therefore, the ranking result is V3 > V4 > V1 > V2 and the alternative V3 is first-rank.

4.2.6. Comparison with the EDAS Method
The Table 30 shows the main results of EDAS method (Li et al., 2019). And it is obvious
that the alternative V3 is the optimal which keeps in line with the new TODIM method
proposed in this paper.
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Table 30
The outcome about EDAS method.

V1 V2 V3 V4

SP 0.0212 0.0094 0.0449 0.0075
SN 0.0317 0.0430 0.0008 0.0295
NSP 0.4721 0.2094 1 0.1668
NSN 0.2626 0 0.9805 0.3138
AS 0.3674 0.1047 0.9903 0.2403
The ordering V3 > V1 > V4 > V2

Table 31
The comparison.

Method The ranking result

Classical TODIM V3 > V4 > V1 > V2
VIKOR V3 > V1 > V4 > V2
Picture fuzzy weighted cross-entropy V3 > V1 > V4 > V2
Projection model V3 > V1 > V4 > V2
MULTIMOORA V3 > V4 > V1 > V2
EDAS V3 > V1 > V4 > V2
Improved TODIM V3 > V4 > V1 > V2

4.2.7. Contrastive Analysis
We put all the results from different methods together in Table 31. Either way, the alter-
native V3 is always the best one, which fully proves the reliability of the new proposed
method. Furthermore, the improved picture fuzzy TODIM method, which has unparal-
leled superiority in meticulously describing the decision maker’s psychological states, is
proposed in this paper for further improvement of TODIM method based on CPT. In ad-
dition, the improved picture fuzzy TODIM method gives logical method to obtain the
attribute weights, eliminating the subjectivity of the information of attribute weight di-
rectly given by the decision maker. Therefore, it is more widely applicable in handling the
MAGDM issues.

5. Conclusions

The TODIM method just focuses on MADM in real number, and doesn’t distinguish pos-
itive and negative attributes. Moreover, it supposes that the initial attributes weight vector
is directly afforded by the expert. In this article, we expound the application of extended
TODIM based on Cumulative Prospect Theory under picture fuzzy multiple attribute
group decision making. First of all, we briefly sort out the basic knowledge (e.g. PFSs
and PFNs) and introduce the extended TODIM. In addition, we adopt information en-
tropy, which is used to identify the attributes weighting vector, to improve the availability
of the TODIM method. At last, we exercise the improved TODIM into a numerical case
and testify the effectiveness of this new method by means of comparing its results with
other methods’ results. In years to come, the improved TODIM method should saturate
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numerous other fields and uncertainty environments (Deng and Gao, 2019; Gao et al.,
2019; He et al., 2019; Li and Lu, 2019; Lu and Wei, 2019; Wang J. et al., 2019; Wang,
2019; Wei et al., 2019b; Wu et al., 2019a, 2019b). And we will also continue to explore
the application of this proposed TODIM method in other fields (Lu et al., 2020; Wang et
al., 2020; Wei Y. et al., 2020) and seek more scientific methods to solve the multi-attribute
group decision problems (Liu and Liu, 2019; Liu and Wang, 2014; Liu et al., 2018).
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