
INFORMATICA, 2022, Vol. 33, No. 3, 623–633 623
© 2022 Vilnius University
DOI: https://doi.org/10.15388/22-INFOR477

Efficient Speed-Up of the Smallest Enclosing Circle
Algorithm

Michal SMOLIK∗, Vaclav SKALA
Plzen, Faculty of Applied Sciences, University of West Bohemia, Czech Republic
e-mail: smolik@kiv.zcu.cz, skala@kiv.zcu.cz

Received: February 2021; accepted: February 2022

Abstract. The smallest enclosing circle is a well-known problem. In this paper, we propose modifi-
cations to speed-up the existing Weltzl’s algorithm. We perform the preprocessing to reduce as many
input points as possible. The reduction step has lower computational complexity than the Weltzl’s al-
gorithm and thus speed-ups its computation. Next, we propose some changes to Weltzl’s algorithm.
In the end are summarized results, that show the speed-up for 106 input points up to 100 times com-
pared to the original Weltzl’s algorithm. Even more, the proposed algorithm is capable to process
significantly larger data sets than the standard Weltzl’s algorithm.
Key words: smallest enclosing circle, space subdivision, convex hull, speed-up, Weltzl’s
algorithm.

1. Introduction

The smallest enclosing circle problem is defined as follows. Given a set of 2D points, find
a circle with the smallest radius such that all the given points are contained in either inside
of this circle or its circumference. The smallest enclosing circle meets all the following
requirements:

• The maximal distance of all points to the center is minimal for the center of the smallest
enclosing circle.

• Given any three points, we can uniquely define a circle, with at least two points of these
points on the circumference.

• The smallest enclosing circle is unique for any set of 2D points.
• Given N � 2 points in the plane, the smallest circle that encloses them contains at least

two of the points within its circumference.

The brutal force algorithm has the time complexity O(N4). The algorithm tests all
possible circles, i.e. all combinations of two points O(N2) and all combinations of three
points O(N4). To test if one circle is the smallest enclosing circle takes O(N). This whole
brutal force algorithm runs in O(N4) time.

∗Corresponding author.

https://doi.org/10.15388/22-INFOR477


624 M. Smolik, V. Skala

There are two best known algorithms, i.e. the Welzl’s algorithm, which has expected
Oexpected(N) running time (Welzl, 1991), and the Megiddo’s algorithm, which has ex-
pected Oexpected(N) running time (Megiddo, 1983). The technique prune and search is
used in Megiddo’s algorithm (Megiddo, 1983) to reduce the problem size by removing
approximately N/16 unnecessary points. The algorithm is rather complicated which re-
sulted to a very high multiplicative constant. The reduction needs to solve twice the similar
problem where the centre of the enclosing circle is located using the construction of bisec-
tors of points. The randomized incremental construction is used in the Welzl’s algorithm
(Welzl, 1991). The algorithm iterates over all points. In case, the point is not inside the ac-
tual smallest enclosing circle, the point must be part of the new smallest enclosing circle in
the next step. Using this basic knowledge the final minimal enclosing circle is recursively
constructed.

The Skyum algorithm (Skyum, 1991) presents a simple iterative O(N log N) algo-
rithm for computing the smallest enclosing circle. This is not optimal but its simplicity
makes it a better alternative for medium-sized problems than both previous algorithms.
The Gau algorithm (Gao and Wang, 2018) computes the minimal enclosing disk in an
iterative manner and needs to define some distance parameter delta value that is used in
the algorithm.

Other alternative algorithms (Har-Peled and Mazumdar, 2003, 2005) compute the
smallest enclosing circle not for all input points but for at least k points. It can also com-
pute an approximation of this circle, which can be useful in some applications as well.
The algorithm of the smallest enclosing circle of at least k points is described in Efrat et
al. (1993, 1994), too. The paper (Xu et al., 2003) summarizes four different approaches
for the location of a minimal enclosing circle for a set of fixed circles.

One of the first sophisticated geometry algorithms developed with many variations of
it is the convex hull algorithm. The convex hull is the minimal set of points, that form
a boundary for all other points, i.e. all other points are located inside. There are numer-
ous applications for convex hulls: collision avoidance, maximum distance using convex
hull diameter for large data sets (Skala, 2013; Skala and Majdisova, 2015), hidden object
determination, shape analysis, point inside polygon (Skala and Smolik, 2015).

In this paper, an adapted convex hull algorithm from Skala et al. (2016b), based
on Skala (2013), is used to speed-up the computation of the smallest enclosing circle.
This convex hull algorithm uses the space subdivision to achieve time complexity of
O(N + s log h), where s is number of suspicious points to be on convex hull and h is
number of points on convex hull. It is expected that O(s log h) � O(N), thus the ex-
pected time complexity of the convex hull algorithm is Oexpected(N) (Skala et al., 2016b).

2. Proposed Approach

The smallest enclosing circle contains within its circumference only points from the con-
vex hull. To speed-up the processing time, two step algorithm was developed. The first
step is a removal of all points that cannot form the smallest enclosing circle. While the



Efficient Speed-Up of the Smallest Enclosing Circle Algorithm 625

second one is a computation of the smallest enclosing circle using the Weltzl’s algorithm
(Welzl, 1991) as it is fast and easy to implement.

In order to obtain a significant speed-up of the input points reduction, the convex hull
construction needs to have a lower computational cost than the Weltzl’s algorithm. The
convex hull algorithm (Skala et al., 2016b) uses space subdivision technique to speed-up
the computation with Oexpected(N) time complexity.

The proposed algorithm for the smallest enclosing circle is summarized in Algorithm 1
and will be described in more detail in the following sub-sections.

Algorithm 1 Smallest enclosing circle.
1: input: Input 2D points P .
2: output: Smallest enclosing circle of P .
3: procedure Smallest_Circle(P )
4: points C := Convex_Hull(P ) � Convex hull from (Skala et al., 2016b)
5: random shuffle C

6: {C1, C2} := find two points with max distance in C

7: � Max distance from Skala and Majdisova (2015)
8: C3 := find point with max distance to center of C1 and C2

9: C4 := find point with max distance to C3

10: move [C4, C3, C2, C1] to the end of C

11: return Welzl(C, {∅})
12: end
13:
14: input: Finite sets P and R of 2D points (‖R‖ � 3).
15: output: Smallest enclosing circle of P with R on the boundary.
16: procedure Welzl(P , R) � Welzl’s algorithm without randomization
17: � based on Welzl (1991)
18: if P is empty or ‖R‖ = 3 then
19: return smallest circle of R

20: point p := last from P

21: circle D := Welzl(P − {p}, R)

22: if p is in D then
23: return D

24: return Welzl(P − {p}, R ∪ {p})
25: end

2.1. Convex Hull Construction

The convex hull algorithm (Skala et al., 2016b) significantly speeds-up the construction
of the convex hull by reducing the input points to only a few ones that are suspicious of



626 M. Smolik, V. Skala

Fig. 1. Convex hull construction. Blue lines represent the convex hull.

forming the convex hull. The detailed algorithm is described in Skala et al. (2016b). We
summarize only the important steps without details.

The first step is to find an estimation of the axis-aligned bounding box (AABB) if not
known. This is done by searching only 10% of input points. A convex polygon is estimated
from those points defining the estimated AABB. All points that are inside of this polygon
cannot form the convex hull and thus are discarded (the gray part in Fig. 1).

The next step is to create a star shape division of the remaining points. In each cell,
we determine points with the maximal distance from the centre, that can form the convex
hull (there can be more points in each cell). All other points are discarded. The remaining
points (connected with red lines in Fig. 1) are the result of the reduction. Now, the actual
algorithm for convex hull construction using only the suspicious points is used.

2.2. Smallest Enclosing Circle Computation

The Welzl’s algorithm for the smallest enclosing circle is recursive. Originally, the algo-
rithm is randomized. However, in this approach, it is used without randomization as the
input points are already sorted in the required order enabling speed-up of the computation
significantly.

One limitation of the Weltzl’s algorithm is the recursion as it allows to process only
limited number of input points, due to the depth of recursion. We overcome this limitation
by reducing the input points to only points on the convex hull. Now, the amount of points
to be processed is limited only by available RAM memory.

The original algorithm selects points totally in a random manner. However, if the first
selected points form a circle, which is big enough to contain almost all the points, then the
algorithm will speed-up. In the first step, we locate the two points {C1, C2} with maximum
distance from each other using the algorithm (Skala and Majdisova, 2015). Next, we locate
the point C3, which has the maximal distance from the center of previously located two
points {C1, C2}. Last, we locate one more point C4, which has the maximal distance from



Efficient Speed-Up of the Smallest Enclosing Circle Algorithm 627

point C3. All of those four points are moved to the end of input points for modified Weltzl’s
algorithm and the rest of the points are randomly shuffled. In the case, when the smallest
enclosing circle is defined only by two points, then these two points are exactly {C1, C2}
and the points {C3, C4} are the same as {C1, C2}.

The input for the Weltzl’s algorithm is a set of points P . In each step, the algorithm
selects the last one point p from P , and recursively finds the smallest circle containing
P − {p}, i.e. all of the other points in P except of point p. If the point p is also included
in the returned circle, then it is the smallest enclosing circle for the whole set of points P .

Otherwise, if the point p lies outside the circle, it must lie on the boundary of the
resulting circle. In the next step, it recurses with p as an additional point in R (points
known to be on the boundary for already tested points from P ).

The recursion terminates when P is empty, and a solution can be found from the points
in R. In case of 0 or 1 points, the circle is only none or one point. The smallest enclosing
circle for 2 points is defined, that has its centre in the middle of the two points and radius
half of the distance between the two points. The last case are 3 points, where the smallest
enclosing circle is the circumcircle of the triangle described by the points.

When R contains 3 points, the recursion terminates, as all points in P are already
inside of the circle formed by R.

3. Experimental Results

In this chapter, we summarize the obtained results of the proposed algorithm for the small-
est enclosing circle of points in 2D. The proposed approach is capable to compute the
smallest enclosing circle for both synthetic and real data sets as well. The synthetic data
sets were used to measure the performance of the proposed algorithm. The result of the
proposed approach on real data sets is visualized in Fig. 2. The 3 points that define the
smallest enclosing circle for bunny were actually selected between the first 4 points that
are processed at the beginning of the Weltzl’s algorithm. For the dragon data set were 2
out of 3 points that define the smallest enclosing circle selected to be in the first 4 points
that are processed by Weltzl’s algorithm.

To test the proposed approach, we used several data sets with different types of point
distribution in 2D. Some of the distributions are well known, randomly distributed uni-
form points inside a unit square or inside a unit circle and points with Gaussian distribu-
tion. Then we also used Halton points and Gauss Ring points. The last two distributions
are described in Skala et al. (2016b). The visualization of all tested distributions of points
together with their convex hulls is presented in Fig. 3.

The main purpose of the proposed approach is the speed-up of the Weltzl’s algorithm.
The running time of the algorithm for the smallest enclosing circle depends on the dis-
tribution of points and of course on the number of input points. We performed 103 tests
for each points distribution from Fig. 3 and for each different number of input points.
The running time of the algorithm for one input data set was measured as running time
of 102 − 103 repetitions divided by the number of repetitions. The random generator



628 M. Smolik, V. Skala

Fig. 2. The smallest enclosing circle for real data sets. The 2D input points are created by projection of all 3D

points into xy plane. The models are from the Stanford 3D scanning repository (http://www.graphics.stanford.
edu/data/3Dscanrep/).

Fig. 3. Distributions of points used for testing. The blue line represents the convex hull of the data set, i.e. the
initial points for Weltzl’s algorithm.

http://www.graphics.stanford.edu/data/3Dscanrep/
http://www.graphics.stanford.edu/data/3Dscanrep/


Efficient Speed-Up of the Smallest Enclosing Circle Algorithm 629

Fig. 4. Definition of symbol used in graphs with running times.

Fig. 5. Running times in [μs] (vertical axis) for different number of uniform points in circle (horizontal axis).

Fig. 6. Running times in [μs] (vertical axis) for different number of Gauss Ring points (horizontal axis).

was initialized with the same seed number for each of those repetitions. The times were
measured for the original Weltzl’s algorithm and in the first phase also for the proposed
approach without the selection of four best candidates {C1, C2, C3, C4}. As the algorithm
is randomized, the running time depends on the randomization and thus we computed the
minimal and maximal running time for each configuration as well as the 33th% fastest
and 33th% slowest time. The visualization of these four running times is described in
Fig. 4. The resulting running times are visualized in Figs. 5–9. It should be noted, that
there is a logarithmic scaling on both axes. The horizontal axis on graphs with proposed
approach presents higher maximal number of input points compared to graphs with stan-
dard Weltzl’s algorithm.

It can be seen that for the original Weltzl’s algorithm there is a difference between the
fastest and the slowest running time for one distribution and one number of points almost



630 M. Smolik, V. Skala

Fig. 7. Running times in [μs] (vertical axis) for different number of Gauss points (horizontal axis).

Fig. 8. Running times in [μs] (vertical axis) for different number of Halton points (horizontal axis).

Fig. 9. Running times in [μs] (vertical axis) for different number of uniform points in square (horizontal axis).

every time at least 10 times different. This is a huge difference in the algorithm behaviour.
The proposed approach without the selection of four best candidates {C1, C2, C3, C4} has
the difference between slowest and fastest time mostly around 3.2 times, i.e. much better
ratio resulting to stability of algorithm behaviour.

It can be also seen that we measured the running times of Weltzl’s algorithm for a
lower maximal number of input points. The reason for this is that this was the maximal
size of the input data set, as there is a significant limitation due to the maximal depth of
recursion.



Efficient Speed-Up of the Smallest Enclosing Circle Algorithm 631

Fig. 10. Speed-up of average running times of the proposed method compared to the standard Weltzl’s algorithm.

In the second set of tests, we measured the running times with the same distributions
and the same number of points for our proposed approach (with all steps of the algorithm,
i.e. also with the selection of four best candidates {C1, C2, C3, C4}). The fastest times are
the same as in Figs. 5b–9b but the slowest times are lower. The slowest times are now
only about 1.9 times slower than the fastest times. This is a great improvement from the
previous 3.2 times difference.

We also computed the speed-up of our algorithm to the Weltzl’s algorithm. We used
the average running times to compute the speed-up (see Fig. 10). It can be seen that with
an increasing number of input points, the speed-up increases as well. This proves, that
our proposed approach is not only faster, but it has also better time complexity than the
original Weltzl’s algorithm.

4. Conclusion

We proposed a simple and efficient speed-up of the Weltzl’s algorithm for computation of
the smallest enclosing circle of 2D points. The proposed approach is easy to implement.
It reduces the randomness of the algorithm and speeds-up the computation, too. The pro-
posed algorithm also improves the computational complexity, which is beneficial for a
higher number of processed input points. Also, the maximal number of points, that can
be processed, is significantly increased, as the required depth of recursion is dramatically
decreased.

The proposed algorithm for computation of the smallest enclosing circle of 2D points
can be adapted for the computation of the smallest enclosing sphere of 3D points using
convex hull computation in 3D (Skala et al., 2016a). Another possible improvement could
be usage of the smallest enclosing circle/sphere of the points forming axis-aligned bound-
ing box as the initial step because all points inside cannot form the smallest enclosing
circle/sphere.



632 M. Smolik, V. Skala

Acknowledgements

The authors would like to thank their colleagues at the University of West Bohemia, Plzen,
for their discussions and suggestions.

Funding

The research was supported by the University of West Bohemia – Institutional research
support No. 1311, and by SGS 2019-016.

References

Efrat, A., Sharir, M., Ziv, A. (1993). Computing the smallest k-enclosing circle and related problems. In: Work-
shop on Algorithms and Data Structures. Springer, pp. 325–336.

Efrat, A., Sharir, M., Ziv, A. (1994). Computing the smallest k-enclosing circle and related problems. Compu-
tational Geometry, 4(3), 119–136.

Gao, S., Wang, C. (2018). A new algorithm for the smallest enclosing circle. In: 2018 8th International Confer-
ence on Management, Education and Information (MEICI 2018), Atlantis Press.

Har-Peled, S., Mazumdar, S. (2003). Fast algorithms for computing the smallest k-enclosing disc. In: European
Symposium on Algorithms. Springer, pp. 278–288.

Har-Peled, S., Mazumdar, S. (2005). Fast algorithms for computing the smallest k-enclosing circle. Algorithmica,
41(3), 147–157.

Megiddo, N. (1983). Linear-time algorithms for linear programming in R3 and related problems. SIAM Journal
on Computing, 12(4), 759–776.

Skala, V. (2013). Fast Oexpected (N) algorithm for finding exact maximum distance in E2 instead of O(N2) or
O(N log N). In: AIP Conference Proceedings, Vol. 1558. American Institute of Physics, pp. 2496–2499.

Skala, V., Majdisova, Z. (2015). Fast algorithm for finding maximum distance with space subdivision in E2. In:
International Conference on Image and Graphics. Springer, pp. 261–274.

Skala, V., Smolik, M. (2015). A point in non-convex polygon location problem using the polar space subdivision
in E2. In: International Conference on Image and Graphics. Springer, pp. 394–404.

Skala, V., Majdisova, Z., Smolik, M. (2016a). Space subdivision to speed-up convex hull construction in E3.
Advances in Engineering Software, 91, 12–22.

Skala, V., Smolik, M., Majdisova, Z. (2016b). Reducing the number of points on the convex hull calculation
using the polar space subdivision in E2. In: 2016 29th SIBGRAPI Conference on Graphics, Patterns and
Images (SIBGRAPI). IEEE, pp. 40–47.

Skyum, S. (1991). A simple algorithm for computing the smallest enclosing circle. Information Processing
Letters, 37(3), 121–125.

Welzl, E. (1991). Smallest enclosing disks (balls and ellipsoids). In: Maurer, H. (Ed.), New Results and New
Trends in Computer Science, Lecture Notes in Computer Science, Vol. 555. Springer, Berlin, Heidelberg.

Xu, S., Freund, R.M., Sun, J. (2003). Solution methodologies for the smallest enclosing circle problem. Com-
putational Optimization and Applications, 25(1–3), 283–292.



Efficient Speed-Up of the Smallest Enclosing Circle Algorithm 633

M. Smolik received the PhD degree in software engineering from the University of West
Bohemia, Czech Republic, in 2020. He currently holds the position of researcher at the
Department of Computer Graphics at the University of West Bohemia. His research areas
are meshless methods for approximation and interpolation, specifically Radial basis func-
tions. He works in the area of vector fields and develops basic algorithms connected with
computer graphics.

V. Skala is a full professor of computer science at the University of West Bohemia, Plzen,
Czech Republic. He received his ING. (equivalent of MSc) degree in 1975 from the Insti-
tute of Technology in Plzen and CSc. (equivalent of PhD) degree from the Czech Technical
University in Prague, in 1981. In 1996, he became a full professor in computer science. His
current research interests are computer graphics and visualization, applied mathematics,
especially geometrical algebra, algorithms, and data structures.


	Introduction
	Proposed Approach
	Convex Hull Construction
	Smallest Enclosing Circle Computation

	Experimental Results
	Conclusion

