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Abstract—Over the last years websites have evolved rapidly
incorporating new content types and becoming more and more
dynamic. Users today are able to access a wide variety of content
and services through their web browsers. As a consequence, web
traffic has become increasingly complex and, from a network
perspective it can be difficult to ascertain which websites are
being visited by a user, let alone which part of the user’s traffic
each of them is responsible for.

Although there is an extensive literature on the new charac-
teristics of web traffic, few works have focused on a connection
level perspective even if this kind of data is easily available for
network administrators. In this paper we offer a characteriza-
tion of webpage download using connection level metrics. This
description is a first step in developing techniques able to identify
individual webpage downloads in real traffic.

We have captured an extensive dataset of more than 20,000
webpage downloads that we study in order to provide different
connection level based metrics. We study how these metrics
vary between different webpages of different popularity and
complexity. In the end, we attempt to provide a general modelling
of a normal webpage download.

I. INTRODUCTION

THE web is probably the classic Internet application that

has grown and evolved the most during the past two

decades. The simple and mostly static webpages of the 1990s

have given way to much more complex sites. This complexity

is represented, in the first place, by adding a wide variety

of content types (like videos, scripts or interactive media)

to the text and images that classic webpages traditionally

hosted. Nevertheless, modern websites not only offer these

new content types, but they do so in a dynamic way, keeping

their content current and tailoring their offer to each specific

visitor. The network requirements introduced by all this and

the ever-increasing popularity of the web have also pushed for

improvements in the web application protocols and the devel-

opment of new techniques, like content distribution networks

(CDNs) or analytics services, that help in its operation. As a

consequence, the web application has achieved a remarkable

flexibility that allows it to provide a huge range of different

services aside from traditional web browsing.

All these changes have obviously affected the profile of web

traffic. Recent studies [1]–[3] show that its characteristics have

greatly changed from the (simpler) ones described thoroughly

in the 1990s [4]. This is partially the result of the introduction

of HTTP 1.1: persistent connections and pipelining have made

obsolete the notion that every connection comprises a single

request/response pair. But, the truth is that the profile of web

traffic has been specially affected by the new contents and

services provided by the application. Nowadays, from a net-

work perspective, accessing a webpage may imply establishing

multiple connections to different servers while the elements of

the webpage (often coming from third parties) are downloaded

and, in some cases, user information is collected. The result is

a set of a variable number of connections of different durations

and sizes to multiple server IP addresses. Moreover, as a

sizeable amount of the content is dynamic, these connections

may change if the webpage is accessed at a different time or

by a different user.

In this paper we present a study of those sets of connections

established by clients during the download of webpages. Al-

though there is extensive work in web traffic characterization

the approach has usually been very different to ours. Many

proposals center their study on server operation, modelling

the behaviour and habits of the users that access the server in

order to provide them the best possible service [5], [6]. Others

have taken a more user-centric perspective but have focused

on application-level operation [7], [8] or the characteristics of

the downloaded content [9], [10]. Finally, other works have

characterized specific types of web applications, usually with

the intention of being able to classify their traffic [11], [12].

In our case, we consider our research from the client’s point

of view in the sense that we study the connections between the

client and multiple servers through Internet and we do not have

any information about the relationships between those servers

or the content they host. However, even if we work from

a client-side perspective, we only consider data that can be

captured directly from the network rather than being “inside”

the client monitoring its operation. All in all what we offer

is a thorough characterization of the set of connections (and

by connections we are referring to bidirectional TCP flows)

initiated by the client during the download of a webpage.

This TCP-level characterization is interesting because

NetFlow-type records [13] are easy to collect and, specially

when compared to full packet-level traces, store and process

in any network. Having a good description of the connections

involved in the download of a webpage can be very useful for

multiple purposes. On one hand current users access multiple

webpages in short periods of time, often concurrently thanks

to tab-based browsers, so it is far from trivial to guess which

webpages (or even how many different ones) a user visits.

This characterization may allow the development of techniques

that help identify each individual webpage download, offering
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insight into the user’s behaviour. On the other hand, nowadays

multiple applications mask their traffic in order to pass it off

as HTTP and avoid certain restrictions that network adminis-

trators may want to enforce. Characterizing normal webpage

downloads could help in designing anomaly-based detection

systems able to identify that kind of applications.

The study we present in this paper is focused on website

landing pages (i.e. the page served when the user inputs the

domain name of the website). The characteristics of landing

pages can be very different to those of internal pages (i.e

accesed via links from the landing page) of the same websites.

However, we are studying a wide variety of landing pages

from 1,000 websites of different popularity. We believe that

this is a sample with enough diversity to be representative of

the characteristics of most webpages.

The remaining of this paper is structured as follows: section

II explains the methodology used to capture experimental data

and gives an overview of said data; section III discusses the

general characteristics of a webpage download from a TCP

connection point of view; section IV presents some time-based

metrics that describe when the connections that participate in

the download are opened and closed; section V focuses on

the accessed servers; and, finally, section VI concludes and

presents future lines of work.

II. DATA COLLECTION

In this section we describe the data set we are going to use

for our analysis in the rest of the paper. The traffic captures

that integrate it were made during the months from August to

October 2013.

A. Website selection and measurement setup

In order to collect a representative sample of webpage loads,

we have selected 1,000 sites from the top 100,000 websites

of the Alexa global ranking [14]. We have chosen the 100

most popular websites, 300 websites selected randomly from

the 100-1,000 most popular ones, another 300 from the 1,000-

10,000 range and the last 300 from the 10,000-100,000 range.

With this, we ensure that the most popular (and interesting)

sites, like Google, Facebook, or Amazon are well represented

in the sample while also collecting data from a wide variety

of less popular sites from all around the world.

We have gathered our measures from a computer in the

Public University of Navarra (Spain) network. This PC has

a public IP address and runs Ubuntu Linux (version 13.04).

We felt unnecessary to set more than one vantage point as

the authors in [7] found few differences when collecting the

traffic of the same websites from different locations around the

world. In this PC we run an automated script which follows

these steps for each webpage under study:

• Launch a network sniffer: Tcpdump [15].

• Open a web browser to the selected website. We have

collected measurements for both Mozilla Firefox (version

22.0) and Google Chrome (version 29.0.1547) which are

the most popular browsers for Linux systems and together

are responsible for a big percentage of the global web

traffic [16], [17]. Plug-ins such as Adobe Flash player

were installed in order to ensure that websites render

properly but, aside from that, we use clean installations

of both browsers with no ad or pop-up blockers.

• Wait for two minutes. Although webpages usually load in

a few seconds [3], we capture traffic while the browser is

idle for longer in order to study data transfers that happen

even after the webpage has been fully rendered (when,

for example, refreshing dynamic content).

• Close the web browser and close Tcpdump (we leave a

small guard interval before closing Tcpdump in order to

capture the ending of the pending connections).

We have repeated this procedure gathering twenty captures

of each webpage download in pcap format (ten for each

browser). We also captured one additional 10 minute long load

for each page and browser in order to study flow end times

as we will explain in section IV.

B. Preprocessing

In order to obtain connection records from these packet

traces, we use Argus [18]. Argus is an open-source audit tool

that is able to generate connection reports with the same fea-

tures (and more) than NetFlow/IPFIX. In particular, aside from

the classic TCP/IP 5-tuple (IP addresses, ports and protocol)

we consider: timestamps (start and end), total packets, total

bytes, application-level bytes (upload and download) and TCP

state at the end of the capture. As we said previously, we

always consider bidirectional TCP connections. Additionally,

we store the first 1,000 bytes of the upstream application data

of every connection from which we will extract some HTTP

header fields. As we are only interested in web traffic we select

connections originated in our PC and with destination ports

80 and 443 (HTTP and HTTPS protocols). However, we also

extract DNS information from the pcap traces: we consider all

the different server IP addresses accessed during the load of the

webpage and, by studying the DNS query responses captured,

we obtain a list of related domain names and authoritative

nameservers for each IP address. This DNS information will

allow us to better understand the part each connection plays

in the load of the webpage.

We parse the HTTP data captured for each connection so

we are able to extract the name of the accessed server, the

URI of the first element requested and the HTTP method.

With this information we identify the root connection of the

webpage load. The root connection uses the GET method and

requests the server root (“/”) of a host with the same name

as the website name. We then label connections according to

their origin: those connections whose server name is related

to (i.e. contains) the site name are classified as shared name

connections and, from the rest of connections, we distinguish

between same origin and other origin connections by checking

if the domain name of the related server comes from the

same authoritative nameserver as the root connection’s or not.

If the root connection carries HTTPS traffic it is impossible

to identify it by checking user data. In this case, the root
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Fig. 1: CCDF of total downloaded bytes in a webpage load

connection will be the first flow opened to an IP address whose

related domain name is the name of the website.

If we are unable to identify a root connection (i.e. there is no

connection opened to an IP address related to the domain name

of the website) or if we are able to identify it but it carries no

application data we discard the capture as a failed webpage

load. For the sake of simplicity in processing the data, we only

consider websites that loaded successfully at every captured

attempt. With this we reduce the list of considered websites

from 1,000 to 912 resulting in a total of 18,240 flow records.

When comparing the total downloaded bytes for the same

websites we observed discrepancies between the two web

browsers. In particular, around 100KB of additional content

were downloaded by Google Chrome in each capture. We

discovered that this browser opens some HTTPS connections

to Google servers for different purposes. Some of these

connections are related to the webpage (for example, services

like google translate or adsense) but others are automatic

connections that are part of the browser operation and happen

at fixed intervals from the start of the process. We decided to

not consider these connections because, as we said previously,

they are related to the browser behaviour and not to the

particular websites. We also did not consider some connections

opened by Firefox to Mozilla servers.

Now, figure 1 shows the empirical complementary cumu-

lative distribution function (CCDF) for the total bytes of

downloaded application data in every one of the captures of

120 seconds. This represents the total size of the different

elements of each webpage. The distributions are very similar

for both browsers as the effect of the browser in the elements

downloaded from the webpage should be minimum.

III. GENERAL CHARACTERIZATION

We start by providing some general connection-based met-

rics of webpage download. As it happened with figure 1 we

have aggregated data from all our captures in order to plot the

different graphs in this section. Because of this, each of the

samples we use to calculate the empirical CCDFs corresponds

to a different traffic capture (multiple downloads of the same

webpages are present but there are the same number of them

for every webpage so they are evenly represented).

Figure 2a shows the empirical complementary cumulative

distribution function of the number of TCP connections ini-

tiated by the client during each webpage download. The

distributions are, again quite similar: for both browsers the

median is close to 40 connections while the 10 percentile

sits around 10 connections (which means that for 90% of

the studied webpages, at least 10 connections were used in

the download). However, the tails of both distributions are

long and, as we consider downloads with more connections,

Firefox starts opening more of them (the 90 percentile is at

104 connections for Google Chrome and 125 for Firefox). As

the total bytes downloaded by both browsers are very similar

(fig. 1) this means that on average, Chrome connections are

slightly bigger and more elements of the webpage are grouped

in each of them. In any case, in figure 2b we can see that the

difference in average connection size is small.

However, if we look at the individual connections (and,

specially, the smallest ones) we do find some differences

between the browsers’ behaviour. In figure 2c we show the per-

centages of HTTPS and empty connections. These percentages

have been calculated by aggregating all flows from all traffic

captures of each web browser. As we can see, the percentage of

normal HTTP connections is similar for both browsers how-

ever, the rest of connections are divided differently. Google

Chrome has a higher percentage of HTTPS connections. By

studying the servers this connections were established with, we

realized that a lot of them were small connections related to

services Google provides through Chrome to help the naviga-

tion process like, for example, Google Translate. However, the

number of HTTPS connections initiated by Chrome to Twitter

or Facebook servers is also higher.

The other kind of connections we consider are empty con-

nections. Empty connections are those that, having successfully

completed their initial TCP three-way handshake, carry no ap-

plication data. Most of this connections (around 95%) are also

properly terminated although we also consider connections

ended with a reset message or still open at the end of the

capture. HTTPS empty connections are a very rare occurrence

for both browsers but HTTP empty connections are a quite

common occurrence specially for Firefox in whose traffic

they represent around 20% of all connections. In most cases

empty connections are a consequence of strategies employed

by browsers with the objective of reducing webpage load times

and, because of that, their number depends on the particular

implementation of the program. Browsers may open multiple

connections to a particular server before knowing how much

content is going to be downloaded from it because it is faster

to have connections prepared in case they can be used to

download multiple elements simultaneously. This means that,

in some cases, this connections are left unused. Additionally,

browsers usually try to open a new connection if the server

does not respond to a previous SYN packet within a time limit.

This limit is low, again in order to reduce download times.

In figure 3 we focus on the different servers accessed

during a webpage download. The differences between both

browsers are minimal in this case as browser implementation

cannot affect where the elements of a webpage are stored.

Figure 3a shows the distribution for the number of different IP
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Fig. 2: CCDF of the (a) number and (b) average size of connections. (c) Percentages of empty and HTTPS connections.
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Fig. 3: CCDF of the (a) number of servers, (b) authoritative nameservers, and (c) percentage of connections by origin.

addresses accessed during each download. The distributions,

with medians at 14 IP addresses but long tails, corroborate that

modern websites download elements from multiple different

servers. As we explained in section II-B we use authoritative

nameservers in order to distinguish between different origins

for web content. Figure 3b shows the distributions of the

number of different authoritative nameservers seen on the

DNS responses of the server names associated with each

webpage download. Two authoritative nameservers are con-

sidered different if they have a different second-level domain

name (third-level for some second-level domains like “co”,

e.g. “google.co.uk”). As we can see most webpages download

content from servers of different origins (medians are 9

different origins).

Finally, in figure 3c we show the percentages of connections

and bytes according to their origins. As in figure 2c we

have considered every individual connection from the different

traffic captures. The figure shows that, on average, more than

60% of the connections made during a webpage download

are directed to third-party (other origin) servers. The most

popular of them include, among others: analytics, social net-

working, image hosting, content distribution networks or video

streaming. However, when considering downloaded bytes we

can see that first-party content (root-connection, shared-name

and same-origin servers) represents more than 50% of the total

download suggesting that connections to first-party servers are

bigger on average.

In table I we offer a summary of the different per-download

metrics presented in this section (number of connections, mean

connection size, number of accessed IP addresses, number of

authoritative nameservers) providing the median and 10th and

90th percentiles for each of them.

TABLE I: General characterization metrics

Firefox Chrome

Metric P10 Median P90 P10 Median P90

N. conn. 6 43 125 10 36 104
C. size (KB) 8.7 23.0 72.6 8.1 24.4 74.4

N. IPs 4 14 39 4 14 37
N. A.NS. 3 9 22 3 9 24

IV. TIME METRICS

In this section we are going to discuss metrics related to the

start and ending timestamps of the flows in the download of

a webpage. Again, we consider the aggregated data of every

download of every webpage as we want to characterize the

behaviour of an average load rather than explore the differ-

ences between webpages. However, in this case, we are going

to represent some parameters that are related to the individual

connections rather than to the complete captures (as it was the

case, for example, in figure 3a with the number of accessed

servers per download). In all the figures in this section, the

0 seconds mark corresponds with the start timestamp of the

first connection in each webpage download and the rest of

connection timestamps in that download are calculated relative

to it.

The first parameter that we are going to consider is connec-

tion start times which appears in figure 4a. In order to calculate
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Fig. 4: CCDF of (a) connection start times, (b) last connection start time, and (c) time differences between connection starts.
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Fig. 5: CCDFs of (a) connection end times, (b) connection lengths, and (c) time differences between connection ends.

these CCDFs we have considered the start timestamps of all

the connections in every capture. As their timestamps are

calculated relative to the first connection in each capture, we

can compare them. We see that the majority of connections

are opened during the first seconds of the download of a

webpage (around 80% of connections in the first 10 seconds).

This makes sense as this is an upper threshold for the time a

webpage takes to load [3]. However, the tail of the distribution

is long and a considerable amount of connections are opened

later which suggests that even after the webpage is fully

rendered some information is still exchanged. In figure 4b

we represent the distributions of the start times of the last

connection in each capture and we can confirm that even

though most connections are opened in the first seconds,

for the sizeable number of captures the last connections are

opened much later. To shed some light about these late connec-

tions we used origins as defined in section II-B. We expected

that the late connections could be specially related to third-

party advertisment or analytics services. However, there is very

little difference in the distributions of connection start times

according to the different origins (aside from root connections

happening always early in each capture). This suggests that

the connections opened late do not only correspond to third-

party content but also to dynamic content hosted in first-party

servers.

In figure 4c we look at connection start times from a

different perspective by representing the distribution of the

time differences between consecutive connection starts. As

expected, consecutive connections of the same webpage down-

load are generally opened very close in time. Around 30%

of consecutive connections are opened with less than a tenth

of a millisecond between them (for smaller values, some

precision/rounding artifacts appear) and only around 5% have

their start times separated more than one second.

Lets now look at connection endings. Intuitively, we may

think that connections are closed as soon as the elements

they were opened to download are received by the client.

However, this is not the case for a sizeable amount of them.

Because servers and browsers implement persistent connec-

tions (all the HTTP connections observed were HTTP 1.1)

some connections are kept open for longer in case they are

needed for an additional download. As shown in figure 5a, both

browsers keep more than 20% of the connections opened for

all the duration of the capture and close them simultaneously

as the browsers are closed. Nevertheless, studying the figure

we saw that Firefox started ending some connections a few

seconds before we closed the browser. We realized that Firefox

implements a persistence timeout for HTTP connections that,

by default, has a value of 115 seconds but can be tuned by the

user via the configuration utility in about:config. The value of

this timeout for Google Chrome is not documented.

In order to properly study the effects of these timeouts we

captured one additional traffic trace of ten minutes for each

webpage and browser. In figure 5b we show the distributions

of connection length in seconds for these longer traces. For

Firefox, the 115 seconds timeout is evident because most

persistent connections have that length. The cause of the

other step in the distribution (around 60 seconds) is more
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difficult to pinpoint but should be related to a server timeout

because it also appears in the Chrome distribution. For Google

Chrome the default persistence timeout could be around 250-

300 seconds. In any case, for both browsers around 60% of

the connections are shorter than 20 seconds, either because

they are not persistent or because of timeouts in the servers

(Apache 2.0 has a default timeout of 15 seconds, for example).

Figure 5c is equivalent to 4c but this time we are repre-

senting time differences between connections that are closed

consecutively. We can see that this time differences are usually

very small. Because most connections are opened very close

in time at the beginning of the download of the webpage,

the effect of the persistence timeouts is very apparent when

comparing their ending times. This, together with the fact that

connections are ended immediately when the browsers are

closed (note that in the figure around 20% of differences are 0),

implies that the connections of the same webpage download

usually end in almost simultaneous groups.

For table II we wanted to offer per-download metrics that

describe the start and end timestamps of a webpage download.

Again, we provide the median, 10th and 90th percentiles.

The first metric we consider is the time of start of the last

connection in the download (T. Last) as seen in figure 4b.

However, this time may not, in some cases, represent the time

interval during which most of the webpage is downloaded.

In fact, if we consider the 10 and 90 percentiles we real-

ize that we are basically covering the whole length of the

capture. To give a better idea of the busiest time interval

we consider the connections that carry the first 90% of the

total data downloaded in each capture and provide the start

time of the last of these connections (T. 90%). With this we

eliminate the effect of small connections opened late in the

download and give a better approximation of how close the

connections of a webpage download are in time. For the time

differences between flow starts and ends, in figures 4c and 5c

we considered all flow pairs in every download but here we

want to provide a per-download metric. We have calculated

the median value for each capture and, in table II we show

the median and percentiles of the distribution of said medians

(T. Starts and T. Ends). As expected, the values of these two

statistics are very low for almost every webpage download.

TABLE II: Time metrics (all values in seconds)

Firefox Chrome

Metric P10 Median P90 P10 Median P90

T. Last 1.62 25.96 105.82 2.34 21.29 117.10
T. 90% 0.61 2.67 12.51 0.76 3.36 17.85
T. Starts 0.00 0.01 0.12 0.00 0.02 0.13
T. Ends 0.00 0.04 0.32 0.00 0.01 0.22

V. SERVER METRICS

Of the classic 5-element tuple that traditionally describes an

IP connection, the most interesting parameter when studying

web traffic from the client point of view is the server IP

address (protocol is always TCP, server port is 80 or 443 and

client port is ephemeral and will not give us any information).

Because of this, in this section we are going to center our

study in the different servers accessed during the download

of a webpage, considering that each of them corresponds to a

different server IP address. Due to space constraints we only

use Google Chrome data in most of the figures of this section.

The results for Firefox are very similar because, aside from

very specific browser services, the servers accessed during the

download of a webpage should not vary depending on the used

browser.

In section III we saw that multiple connections are opened

to the same servers during each download. On the other hand,

in figure 4b we realized that some of these connections happen

very late in the captures. We wonder if these late connections

are opened to servers that have already been accessed or to

new ones. Figure 6a addresses this question by representing

the CCDF of the start timestamp of the first connection to the

last server that appears in each capture. The results are similar

to the ones in figure 4b suggesting that a sizeable number

of these late connections are opened to servers that have not

been previously connected. However, as we said previously,

these connections are usually small and the servers that host

the main elements of the webpages are accessed in the first

seconds of the download.

In section III we also gave information about the total

number of different servers accessed in a download and the

different authoritative nameservers related to them. However,

it is clear that those servers play different roles in the webpage

downloads depending on the elements they host or the services

they provide so it should be interesting to study them individ-

ually. In figure 6b we show the distribution of the percentage

of first-party servers for each webpage download (that is,

the server the root connection is directed to, shared-name

servers and same origin servers). We can see that, for most

webpages, this percentage is low implying that most servers

accessed during a download are third-party servers. However,

the percentage of bytes downloaded from these first-party

servers is much higher so, even if fewer first-party servers

are accessed during a webpage download, they usually host a

bigger part of the webpage content than the third-party ones.

Another consequence of figure 6b is that, as we know, the

content of a webpage is not equally distributed in the different

servers accessed during the download. In figure 6c each CCDF

represents the percentage of content downloaded from the

”heaviest” server, the two heaviest servers and so on, of each

capture. Even if many servers are accessed to download certain

webpages, most of the content is hosted by few of them. For

example, for 90% of the webpages, more than 80% of the

downloaded content comes from only 5 different servers.

Until now, we have considered the servers in each webpage

download independently. However, the content of many web-

pages is hosted in distribution networks or multiple hosts for

load balancing purposes and because of this, connections to

the same IP addresses are not always opened when accessing

the same webpages. On the other hand, a lot of webpages use

third-party services (e.g. analytics, image hosting, advertising,

etc.) and, as a consequence, the same third party servers
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Fig. 6: CCDFs of (a) time of first connection to last server, (b) first-party percentage of servers and bytes, and (c) percentage

of bytes downloaded from heaviest servers.
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Fig. 7: CCDFs of (a) percentage of servers that appear in all or half the captures of the same webpage, (b) number of different

webpages that access each server, and (c) origins of shared servers.

are accessed when downloading different webpages. Figure

7 addresses these situations.

In figure 7a we consider all the IP addresses accessed in

the ten captures we made for each website. We represent the

CCDF of the percentage of servers that appear in every capture

and that appear in, at least, half of the captures of each website.

As we can see, both percentages are quite low. This means

that most of the content in the webpages is dynamic or hosted

dynamically and, because of that, the servers involved in the

download change rapidly over time making very difficult to

identify a particular IP address with a particular webpage.

Lets now compare all the servers accessed during the

download of different webpages. Figure 7b represents the

number of different webpages in whose downloads a particular

IP address appears. For this figure we do not consider as

different some of the webpages under study like, for example,

amazon.com and amazon.co.uk, because they probably share

an important part of their hosting infrastructure. A very high

percentage (around 40%) of all the IP addresses appear in

downloads of more than one webpage suggesting that a lot

of services are shared between them. In figure 7c we have

divided all the server IP addresses in three groups according

to how many webpages download content from them. The

servers of the first group only host content of one of the

studied webpages, the ones in the second group host content

of two to ten different webpages, and the servers in the third

group host content of more than ten different webpages. For

each group, we represent the percentage of first and third-

party servers and servers that are both first and third-party

depending on the webpage. As expected, most only first-party

servers appear in downloads of just one webpage (the few of

them that appear in 2-10 webpages are probably related to

webpages that share a hosting platform like blogs). However,

in a considerable amount of cases, servers that are considered

first-party for a webpage appear in downloads of another one

as third-party servers.

A consequence of all this is that even though IP addresses

are an interesting parameter in order to group the connections

of the same webpage download (as multiple connections are

usually opened to the same servers) they should be used very

carefully to relate different downloads of the same webpages.

On one hand, the same content may be downloaded from

different servers (or even the content itself may change in short

periods of time). On the other, many servers are accessed by

different webpages and even servers closely associated to a

webpage by their name or their authoritative nameserver may

host content for other webpages.

In table III we present some server metrics related to the

variables we described in figure 6 providing, again, median

values and percentiles. As it happened in the previous section,

the time of the first connection to the last server (T. Last

S.) is not very representative so we have calculated the time

of appearance of the last server that, together with the ones

that have already appeared is responsible for 90% of the total
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download (T. 90 S.). This interval represents how long it takes

for the servers that are responsible for the majority of the

download to be contacted by the client. We also show the

percentages of first-party servers and bytes (F.P. (S) and F.P.

(B)) and the percentage of bytes downloaded from the heaviest

1, 5 and 10 servers.

TABLE III: Server metrics

Firefox Chrome

Metric P10 Median P90 P10 Median P90

T. Last S. 1.42 10.48 95.01 1.89 7.42 101.86
T. 90 S. 0.15 2.03 7.25 0.30 2.40 10.54

% F.P. (S) 5.26 20.0 78.57 5.26 18.75 55.56
% F.P. (B) 5.02 69.79 99.62 4.08 75.18 98.34
% 1 Serv. 30.00 61.14 95.63 34.97 69.42 95.97
% 5 Serv. 75.77 96.05 100 82.92 97.28 100

% 10 Serv. 90.43 99.72 100 93.75 99.81 100

VI. CONCLUSIONS AND FUTURE LINES OF WORK

The increasing popularity of the web and the interesting

complexity of its traffic have made it a popular topic of

research for the scientific community. However, little work has

been done in order to characterize web traffic at connection

level, even though connection level data has the advantage

of being easy to store and process in real time and can be

collected even if the traffic is encrypted.

In this paper we have presented a thorough characterization

of web traffic from the perspective of TCP connections.

We have introduced various metrics that describe the set of

connections involved in a webpage download focusing on

their general characteristics, their distribution in time and the

servers they reach. For each of these metrics we have shown its

probability distribution and given some statistics to describe it.

Taking into account the very limited nature of the information

available in Netflow-type records, we have painted an accurate

picture of the average webpage download.

We intend to apply the knowledge obtained in this work

into designing a method able to identify webpage downloads

in real traffic. We believe that by applying a combination of the

metrics described in this paper we will be able to distinguish

single webpage downloads in user traffic. A system based on

this idea would be lightweight and able to process data in real

time giving interesting information to network administrators

about the behaviour of their users without accessing sensible

information.

We also would like to explore the possibility of using these

metrics in order to distinguish between websites of different

categories (like social networks, news portals, etc.) or which

offer different services (video streaming, games, etc.). As the

normal range of the metrics is quite broad, the variability in

them suggests that information about the characteristics of a

webpage (indicative of the related website category or service

provided) can be extracted from this kind of connection level

data.

Other possible applications of this work are more related

to network security as a thorough characterization as the one

provided in this work can help with the tuning of anomaly-

based detection systems. These systems that may be able to

distinguish between normal web traffic and other applications

that masquerade their traffic in order to avoid restrictions im-

posed by network administrators (or, in the case of malicious

applications, in order to blend in and avoid detection).
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