
A Comparison of Three Black-Box Optimization

Approaches for Model-Based Testing

Teemu Kanstrén

VTT, Oulu, Finland

UofT, Toronto, Canada

teemu.kanstren@vtt.fi

Marsha Chechik

University of Toronto

Toronto, Canada

chechik@cs.toronto.edu

Abstract—Model-based testing is a technique for generating

test cases from a test model. Various notations and techniques

have been used to express the test model and generate test cases

from those models. Many use customized modelling languages

and in-depth white-box static analysis for test generation. This

allows for optimizing generated tests to specific paths in the

model. Others use general-purpose programming languages and

light-weight black-box dynamic analysis. While this light-weight

approach allows for quick prototyping and easier integration

with existing tools and user skills, optimizing the resulting test

suite becomes more challenging since less information about the

possible paths is available. In this paper, we present and

compare three approaches to such black-box optimization.

Keywords—model based testing; test automation; evaluation;

test generation; optimization

I. INTRODUCTION

ODEL-BASED testing (MBT) [1] is a technique for gen-
erating test cases from a test model. As opposed to man-

ual test design, where a test expert designs test cases one by
one, in MBT the test expert designs a test model to represent
the system behavior and uses an MBT generator tool to gener-
ate a set of test cases from it.

M

As the generator can potentially create a very large number
of test cases for any non-trivial model, optimization approaches
are often applied to choose which tests to include in the gener-
ated set. Many optimization solutions [2, 3, 4, 1, 5] use a cus-
tom notation combined with a specialized runtime environment
to represent the test model, allowing for performing an in-depth
white-box static analysis, e.g., symbolic execution, of the
model. Tools such as constraint solvers can then be applied on
this information to find test cases that yield short paths to reach
given coverage targets [3, 6, 5]. Some use manually crafted
scenarios to guide the generator towards specific paths [2].

In our work, we have aimed to provide light-weight solu-
tions suitable for easy industry adoption and to support a fast
iterative testing process through rapid prototyping of test mod-
els, test generation, and test execution, while still providing
good test coverage and useful test results. We use a general-
purpose programming language (Java) to represent our test
models, allowing use of all language features, tools, libraries,
and the standard (Java) virtual machine (JVM) runtime. This
enables using existing development skills and toolsets such as
test libraries and environments, integrated development envi-

ronments, and continuous integration systems, along with any
features they provide. Our open-source test generator called
OSMO Tester [7] has been successfully applied, together with
industry partners, to test large scale real industry systems.

Our test model is as an executable program, executed in
different ways by the generator to produce test cases. We allow
use of different, evolving versions of the language platform
(virtual machine) and features to create the model and run the
generator on it. As the model can make use of third-party li-
braries and networked services, we assume no access to source
code or even all binaries for analysis. Such limitations are com-
mon in practical settings (e.g. [8]). In this context, we cannot
apply approaches based on white-box static analysis but rather
rely on dynamic analysis and information available at runtime.
We call this type of test generation model-based black-box test
generation. While there has been extensive research into opti-
mizing test generation using static analysis based approaches,
little work exists in optimizing model-based black-box test
generation.

In this paper, we describe three algorithms for optimizing
test generation in this type of an environment. All of them are
based on generating a large set of potential tests in parallel and
picking the most optimal ones based on given coverage criteria.
One is targeted at online testing where test generation and exe-
cution are interleaved. Two others are targeted at offline testing
where the test set is first generated and later executed in a sepa-
rate phase. We compare the strengths and weaknesses of the
three algorithms and make usage recommendations.

The rest of the paper is structured as follows. Section II
presents background on our modelling notation and test genera-
tor. It also defines how we assess achieved test coverage over
the test model. Section III presents our optimization algo-
rithms. In Section IV, we evaluate each algorithm individually
in terms of achieved coverage, generation time and test length.
In Section V, we compare the different approaches to each
other. In Section VI, we compare our results with related work.
We conclude in Section VII with a summary of the paper and
discussion of future research directions.

II. BACKGROUND

To provide background for the following sections, we first
briefly outline our modelling notation and model structure and
describe our notion of test coverage, including how model ele-
ments are used to calculate coverage.

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 1591–1598

DOI: 10.15439/2014F152

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 1591

A. Modelling Notation

OSMO Tester uses a generic programming language (Java)
as the modelling language. The models are executable and
capture a set of possible test steps and how they can be com-
bined to produce valid test cases. To generate test cases, the
test generator executes different paths through the model which
is often referred as a model program [9, 10]. In Figure 1, we
illustrate our notation using a simple test model for a counter
which can perform two functions: increase (the value of the
counter by one) and decrease (the value of the counter by one).
For illustration purposes, we will later use ‘+’ to represent the
increase step and ‘-‘ the decrease step.

In this model, the system under test (SUT) is represented by
the sut variable. This example illustrates an online testing ap-
proach where the test steps are concretely executed against the
SUT as they are generated. In an offline approach, the test steps
yield a script which also includes the input for the SUT and the
checks to perform against its states and output.

1: public class CounterModel {

2: @Variable //annotation to identify interesting model state to generator

3: private int value = 0;

4: private Counter sut = new Counter();

5: private Requirements req = new Requirements();

6: @BeforeTest

7: public void start() {

8: value = 0;

9: sut.reset();

10: }

11: @Guard("decrease")

12: public boolean allowDecrease() {

13: return value > 1; //when true, “decrease” is enabled

14: }

15: @TestStep("decrease") //enabled when above guard true

16: public void decreaseCounter() {

17: value--; //updates our model state

18: sut.decrease(); //execute test step on SUT

19: assertEquals(value, sut.value); //test oracle, check model vs SUT

20: req.covered(“decrease”); //user defined coverage requirement

21: }

22: @TestStep("increase") //has no guards, so is always enabled

23: public void increaseCounter() {

24: value++; //updates our model state

25: sut.increase(); //execute test step on SUT

26: assertEquals(value, sut.value); //test oracle, check model vs SUT

27: req.covered(“increase”); //user defined coverage requirement

28: }

29: @CoverageValue(public String zero() {

30: return “” + (value == 0);

31: }

Figure 1. Example counter model program.

The two basic model elements here are the methods anno-
tated with @TestStep and @Guard. The @TestStep methods
represent test steps that are executed by the test generator at
different times to produce a test case. In MBT, these are also
referred to as actions [11] and action methods [5]. Each test
step invokes a function on the SUT, updates the model state, or
checks the SUT state and output against the expected values
(the test oracle). A sequence of these steps forms a path
through the model, producing a test case.

To define the potential paths, i.e., the steps the generator
can take in a specific model state, the test generator executes
all @Guard-annotated methods (line 11 in Figure 1). These
define rules for enabling test steps. When the guards for a step

become true, the step is enabled, and the generator can choose
to take any of the enabled steps. The guards are matched to
steps based on the names given as annotation parameters. For
example, in the beginning value is 0 and thus the guard for
decrease is false, meaning the test can only start with the in-
crease step.

B. Specifying Coverage Values

In our example, the current value of the counter is stored in
the model as the value variable. The annotation @Variable
identifies this variable to be of relevant for the generator to
track for coverage. To provide a test oracle, the value variable
is constantly updated to match the expected value as result of
actions executed against the SUT (lines 17 and 24). These
actions are the test steps invoking the increase and decrease
functionality of the actual SUT (lines 18 and 25). The test
oracle compares the actual value in the SUT with the expected
value in the model (lines 19 and 26).

We also define a set of additional terms for elements of the
model when calculating our test coverage. We use the term
step-pair to refer to two steps following one another in a test
case. For example, a path of ‘++-++’ would have three unique
step-pairs: ‘++’, ‘+-‘, and ‘-+’.

Coverage requirements (lines 20 and 27) can be used to tag
specific paths of interest through the model. Methods annotated
with @CoverageValue annotation (line 29) can be defined to
produce values to record as covered for specific paths. Typical-
ly, these record specific instances or combinations of interest
for model state. In our example, it records whether the value
`zero’ is covered by a path. As such functions are typically
related to model state, we refer to them as user defined state
coverage. When two different values are observed in a se-
quence inside a test path, the term state-pair coverage is used.
State-pairs are recorded similarly to step-pairs but with the user
defined state values.

The annotations, variable names and values, and method in-
formation are accessed at runtime using the standard JVM
reflection support, maintaining the black-box quality of our
approach.

C. Coverage Calculation

In order to evaluate model coverage achieved by the gener-
ated test cases, our generator keeps track of any coverage val-
ues it has observed during test paths. Users can give weights to
the different model elements to focus coverage where interest-
ing. For example, one can set some weights to zero to ignore
them, or tune state weight lower to avoid large state-spaces
taking over all others.

The model elements used for coverage calculation and their
default weights used by our tool are given in Table 1. The
default weights are based on our experience with various test
models and related test generation.

Using E to represent a model element and W its weight, the
formula to calculate the coverage score is:

�(�� ∗ ��)
�

�	

1592 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

N Model Element Default Weight
1 Variables 10

2 Variable values 1

3 Test steps 20

4 Step pairs 30

5 Requirements 50

6 User defined states 50

7 State-pairs 40
Table 1. Coverage elements.

That is, the number of unique values observed for each
model element is multiplied by the weight for that element, and
the sum of these forms the coverage score for a test case. For
example, a test case TC1 with a path of ‘++-++’ would cover 1
variable (value), 3 variable values (1,2,3 for value), 2 steps
(‘+’,’-‘), 3 step-pairs (‘++‘, ‘+-’, ‘-+’), 2 requirements (‘in-
crease’, ‘decrease’), 1 user defined state (‘false’), and a single
state pair (‘false-false’). The score of this path is thus
10*1+1*3+ 20*2+30*3+50*2+50*1+40*1 = 333.

The coverage score for a test suite (all test cases together) is
calculated by adding up all items in all test cases and then
applying the formula. For example, suppose a test suite con-
sists of TC1 defined above and a test case TC2 covering the
path `++--+’. If TC2 was the only test case, its value would be
10*1+1*2+20*2+30*4+50*2+50*2+40*3 = 492.

However, since TC1 is already in the suite, only the new
elements added by TC2 are considered. These are a new step-
pair ‘--', a new user-defined state ‘true’ and two new state-pairs
‘false-true’ and ‘true-false’. Thus the suite score rises by 30*1
(step-pair) + 1*50 (state) + 2*40 (state-pairs) = 160. The final
coverage score for this test suite is then 333+160 = 493. In
general, our scoring function guarantees that the score of a test
suite is independent on the order of adding test cases.

A common goal for testing is covering variance over im-
portant properties of the SUT [12]. The goal of our coverage
algorithm is to provide a measure of overall model variance
coverage for the optimization algorithms, which we expect to
be designed to represent important aspects to test in the SUT.

III. OPTIMIZATION ALGORITHMS

In this section, we describe our optimization algorithms.
First we describe the online optimization algorithm (Section 3-
A), followed by the two offline algorithms (Sect. 3-B and 3-C).

A. Online Algorithm

Online testing interleaves test generation with test execu-
tion. Once the generator chooses a test step, it immediately
executes it against the SUT; once the step has finished execut-
ing, it chooses the next step, etc. For us, online testing pro-
vides immediate test results and gives fast feedback to the test
generation, modelling and evaluation process, and thus we
want online test generation to be as fast as possible.

This type of real-time online test generation prevents us
from doing optimization beforehand as we need to support
cases where changes are made to the model, the generator is
immediately invoked, and tests are generated and executed. To
support this scenario, our online optimization algorithm ex-
plores sets of potential future steps while the previously chosen
step is still executing.

The high-level algorithm is described in Figure 2. When the
generator has chosen a step to execute (using the algorithm in
Figure 2) but before it has executed it, it starts the exploration
of the next step in parallel threads (or concurrently on a net-
worked larger machine as discussed in [13]). It takes the se-
quence of steps so far executed (LS) for the current test case
and the exploration depth (D) given by the user as input. The
exploration depth defines how many steps the algorithm tries to
look into the future in parallel to current step execution.

Input: current model instance and state CM used for concrete test generation,

 list of steps LS currently taken in test case, the exploration depth D.

Output: The next step to take.

1. execute all model guards on CM to construct the set of enabled steps ES

 Set the set of potential future paths PP to empty set ∅.

2. for each step S in ES

3. create a new instance M of the model program

4. set M in exploration mode

5. execute all steps in LS on M to reach current test state for M

6. execute S on M to reach a new state NS

7. decrease D by 1

8. if D > 1, repeat from 2

9. else add this path for M to PP

10. set value for best path score B to 0, create new empty set of best paths SB

11. for each potential path P in PP

12. calculate coverage score CS for P

13. if CS > B, clear SB and set B as CS

14. if CS == B, add P to SB

15. return a random choice from SB as the next step to take

Figure 2. Algorithm for online optimization.

The starting point is the current concrete model instance
CM (and its state) used to generate test cases. To explore the
potential future paths, the algorithm starts with the set of ena-
bled steps ES, that is the set of steps in CM where no guard
returns false, as explained in Section II-A. For each step S in
ES, a new instance M of the model program is created. This is
set to exploration mode by invoking @ExplorationEnabler
annotated methods on the model. This should, for example,
replace a reference to a real SUT with a mock version that
invokes no real functionality and thus has no visible side-
effects when steps in M are invoked. The current set of steps
LS is executed on this M to achieve the current generation state
for M. This is repeated for each S, so that each S has its own
instance of M that is in the same generation state.

For each of these instances of M, the associated S is in-
voked. If the exploration has at this point reached depth D, the
coverage score for each M is calculated and that is the score
that is given to this path. If D is not yet reached, all these exe-
cuted paths for the different instances of M are taken as the
new sets of steps LS and the algorithm starts from beginning
for all these, with the value of D reduced by one.

In the end, all the final paths are taken and the highest scor-
ing ones are collected. If there are several, the one that has the
highest score fastest (in fewer steps) is taken. If several are still
equal, one is chosen at random. The next unexecuted step on
this path is given as a choice for the generator. In some cases,
the algorithm still has to wait some time for the parallel explo-
ration to finish. This can be mitigated by forming an “explora-
tion buffer”. That is, exploring several future steps at a time
when there is a chance and using that as a buffer.

TEEMU KANSTRÉN, MARSHA CHECHIK: A COMPARISON OF THREE BLACK-BOX OPTIMIZATION APPROACHES 1593

B. Offline Algorithms

Our offline optimization algorithm has two different varia-
tions. One aims to optimize for a large test set covering a high
variation of the test model elements, using the coverage formu-
la presented in Section II.B. The other one aims to optimize for
minimal test lengths to cover specific targets in the test model.

Greedy Variation Optimizer. The version targeting high
variation is a form of greedy algorithm. It is described in Fig-
ure 3. The main arguments it takes from the user are the popu-
lation size (PS) and the timeout value (TO). The number of
parallel generators (P) to run can also be configured but de-
faults to the number of processing units for the system.

The greedy algorithm runs P versions of generators G in
parallel. In Figure 3 This is represented as G1-P meaning there
are P different instances of test generators. The different ones
are referred to as Gx, where x stands for one value from 1-P, or
one instance of the generator. Each Gx is configured with the
test generator configuration (GC) provided by the user and
automatically populated with a unique randomization seed (to
produce different test cases). Each Gx generates a given num-
ber of new test cases (PS). The new generated set of tests GS
for Gx is merged with the existing test suite TS (which starts
empty). Every T in TS is then iterated and highest scoring tests
are added to the existing test suite TS for each Gx. First, the test
T that has the highest coverage score in GS is added to TS and
removed from GS. This process repeats until GS is empty or no
T gets a positive score. Same procedure is done for each Gx
generating a new GS and merging with TS.

Finally, once the overall generation timeout TO is reached
or TS has not changed throughout the entire iteration, the pro-
cess is stopped for that Gx. Once all Gx are finished, the TS for
all Gx are combined to form the final optimized test set OS
which is returned. This is done similar to creating the set for a
single generator, starting with the highest scoring test in the
overall set, followed by the test that adds most to this test
(suite), and so on.

Input: generator configuration GC, population size PS, timeout TO,

 degree of parallelism P.

Output: Generated test suite OS

1. create P instances of test generator as G1-P, configured with GC

2. for each Gx, in G1-P run the following in parallel

3. create empty test suite TS (∅)

4. create unique randomization seed for Gx

5. use Gx to generate PS new test cases as the test set GS

6. add tests in TS to GS

7. clear TS, setting TS to empty set ∅

8. for each test T in GS

9. calculate added score AS for T when added to TS

10. add highest scoring T to TS and remove it from GS

11. if any T remains in GS with AS > 0, iterate from step 8

12. if timeout TO has been reached, stop generation with Gx

13. else if TS scores higher or is shorter than previous TS

14 continue from line 5

15. else stop generation with Gx

16. wait for all Gx to finish

17. merge results for all Gx using lines 8-11 as output set OS

18. return OS

Figure 3. Greedy algorithm for offline optimization.

Single Target Optimizer. The single target offline optimiza-
tion approach, described in Figure 4, aims to generate a set of
test cases where each coverage requirement is covered by a
single test case of the shortest possible length. This can be
useful if specific tests are needed but we want to have them
generated from the model as opposed to manual scripting.

This algorithm starts by generating test cases as random
walks through the model, using a set of P test generators G1-P
running in parallel. Each Gx is used to generate a given number
PS of test cases. When a Gx finds a new test case T that covers
a previously uncovered requirement R, it changes the global
generator state to target finding R and to only allow the steps in
T. T now becomes the reference test, called BT, for covering
R. Upon finishing their iteration of generating PS tests, each Gx
reconfigures itself with the new global generator state. This
means that the goal of every G is to find a shorter path to cover
R. The set of R to find can be given to the algorithm or it can
pick them up from the model as it generates tests from it.

To further help the generators find potentially shorter paths,
the global state is modified after each iteration to look for only
those tests which are shorter than BT. Each Gx is configured to
allow each available step one time less than in BT. If any Gx
finds a new test T with a shorter path to R, this T becomes the
new BT for R and all Gx reconfigure to target shortening this
new BT. After test timeout TO is reached or the path cannot be
shortened any more (it only has instances of one step), the final
BT for R is added to the final output set OS.

Finally, the search is restarted with the goal of finding a
new test for an uncovered R. The previously covered require-
ments are ignored at this point. The process is repeated until all
requirements have been covered or suite timeout SO is reached.

Input: generator configuration GC, population size PS,

 suite timeout SO, test timeout TO, degree of parallelism P.

Output: Generated test suite OS with one test case for reaching each

 requirement R

1. create P instances of test generator as G1-P, configured with GC

2. create unique randomization seed for each Gx in G1-P

3. while SO has not been reached

4. run each Gx in parallel to generate PS test cases as test suite TS

5. if any test T in any TS for any Gx reached a new uncovered R

6. set R as target to cover for each Gx

7. set best test BT for R to T

8. for each step S in BT

9. reconfigure all Gx to only allow the steps in (BT – S)

10. use Gx to generate PS new test cases TS2

11. if any test T2 in TS2 is shorter than BT, set BT to T2

12. iterate from line 8 until minimal BT achieved or TO is reached

13. add BT to final output test suite OS

14. iterate from line 1 until SO is reached or all requirements are

covered

15. return OS

Figure 4. Single target algorithm for offline optimization.

IV. EVALUATION

In this section, we describe the evaluation of the algo-
rithms. Due to space reasons, we cannot include all the details
of all the test runs here. The detailed results are available in
[14].

1594 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

While we have experience with several industry models, we
cannot describe these due to confidentiality reasons. Thus our
evaluations use three publically available models. Two of
these, a test model for a movie reservation system (ECinema),
and for a GSM SIM card [1], are ported from the ModelJUnit
MBT tool [15]. The third model was previously developed by
us for a web application called iTrust, which is a role-based
healthcare application [16]. While these are not actual industry
models, in our experience the relevant complexity is similar in
terms of relevant structural coverage elements of the model
such as states, and test steps. The models are available as part
of our tool website and repository [7]. Table 2 summarizes the
sizes of these models in terms of their model elements (used in
coverage calculations).

Model Steps Step-

Pairs

States State-

Pairs

Reqs

ECinema 19 177 9 40 17

SIM 15 240 2.6k+ 22k+ 32

iTrust 40 800 47 1124 11

Table 2. Model sizes.

We used the default coverage weights described in Table 1
with one exception. For the SIM model we set the state weight
to 5 and state-pair weight to 1 in order to avoid the huge state
space taking over all other coverage criteria. This is a typical
example of tuning the coverage weights per domain as dis-
cussed in Section II-B.

A. Online Algorithm

For this algorithm, we are interested in the improvements of
coverage when compared to the baseline approach of random
step selection and any delay it adds. That is, we are interested
in the cost and benefit of exploring the next step(s) while the
previous are executing.

To set our evaluation parameters, we did an initial scalabil-
ity study in which we found that test length of 100 steps and a
depth of 2 were the most suitable parameters. Thus we used
these in the online algorithm evaluation.

Coverage. To evaluate the algorithm in terms of coverage, we
ran the test generator against each of the three test models. We
did this with the random algorithm, and with the exploration
algorithm using depths of 1 and 2. We repeated each of these
experiments 100 times and collected the minimum, maximum
and average achieved coverage for each algorithm in each
configuration for each model. The results indicate that explora-
tion algorithm generally outperforms the random selection for
all our coverage criteria.

Timing. To evaluate the timing aspect of the algorithm, we
used the iTrust system as a test subject as it was tested through
the web-based graphical-user interface (GUI), which in our
experience is a good candidate platform for parallel optimiza-
tion due to test execution delays. The experiment was run on
our laptop system, also running the SUT, including the data-
base server, and the webserver. Test execution used the Seleni-
um WebDriver (Chrome) component, allowing control of an
actual browser to simulate a test user using the application.
Thus, the flow is the same as with an actual user, with all the
requests going through the whole SUT from the browser to the
backend database and back.

As random selection is practically instant, it was used as a
baseline for comparison. To briefly summarize the interesting
parts, exploration at depth of 1 (Expl-D1) is in all cases faster
than the execution of the concurrent test step (Random). Explo-
ration at depth of 2 (Expl-D2) is in most cases much slower
than the step execution time. This means that, for our setup, the
depth of 1 is very reasonable, while depth of 2 is slower, alt-
hough it does also achieve a much higher exploration score that
depth 1.

Our goal in this study was also to evaluate the general fea-
sibility of the approach to achieve near real-time test generation
and execution. Here, this is true for depth 1. With optimizations
and faster computing resources (e.g., [13]) we believe this is
within reach for depth 2. Of course, this also largely depends
on concrete test execution speed, which may give us more or
less time for exploration. In our experience, long delays are
common in many cases, specifically, with GUI-based testing.

B. Greedy algorithm

For this algorithm, we were interested in evaluating how
well it covers variation over the test model structure. We were
also interested in the time it takes to achieve the coverage and
length of the resulting test cases.

Coverage. To evaluate the algorithm in terms of coverage, we
again used all three of our test models. Comparing the results
against the baseline random selection algorithm and the online
optimization algorithm, Greedy generally outperforms the
other two over long term. However, while Greedy performs
much better than exploration in the long run, it may sometimes
perform slightly worse for some properties.

Figure 5 shows the overall coverage score evolution for one
run of each algorithm as new tests are added to the test suite.
The coverage score shown is the overall score of the test suite
as shown in Section �II-�II.C. The obvious observation is how
random selection yields much lower coverage score than the
other algorithms. What is not so clearly visible is how the ex-
ploration algorithms score slightly higher than greedy in the
beginning, with greedy surpassing depth 1 at test 30 and depth
2 at test 100.

Figure 5. Coverage score evolution over 200 tests.

Timing. Unlike the online exploration algorithm, the greedy
algorithm takes time to start and build the test suite for later
execution. In this case running the greedy algorithm with our
desktop configuration takes about 165 minutes. This is the
delay one would have to wait before starting to execute the
tests. Compared to the online exploration algorithm, the online
version has no delay in the start and the overall generation time
for the exploration at depth of 1 is about 20 minutes and for
depth 2 about 105 minutes.

TEEMU KANSTRÉN, MARSHA CHECHIK: A COMPARISON OF THREE BLACK-BOX OPTIMIZATION APPROACHES 1595

C. Single Target Algorithm

To evaluate the single target algorithm, we started by inves-
tigating the limits of the algorithm. To do this, we a model with
10 test steps, each always enabled. Thus the probability of
taking any one of them with random choice is 10%. It has one
requirement to cover, and the length of the path that needs to be
taken to cover this requirement can be configured by the target
parameter. Different values for this parameter were then ap-
plied with tests of different length.

The results indicated that the algorithm could always re-
duce the path to the shortest in all these configurations. Addi-
tionally, we used binomial distribution to verify these results.
These calculations matched our experiments and thus con-
firmed the algorithm is useful for such model requirement
coverage optimization. This also shows how this type of prob-
ability analysis can be used to tune the search parameters when
we have an idea of the complexity of paths we need.

To further evaluate the performance, we used the SIM
model as a test subject. It had a set of 35 coverage requirements
defined by its original authors, and our target was to cover
these with one test each. The results indicated that three re-
quirements were not covered at all. In order to find out the
reason, we manually analyzed the test model for the paths to
reach these requirements. We found that due to complex ways
the different test steps and model variables interact, it was not
possible to reach those requirements in any way. While we are
not the authors of the model, we assume that this is the result of
model evolution where the requirements have not been re-
checked, perhaps due to the complexity of this process. In any
case, such knowledge in itself is valuable to better understand
the test model and the generated test cases.

As for the 32 covered requirements, we found that the algo-
rithm did find the minimal path to reach each of these require-
ments in the model. The results are good but we also realize
that there can be more complex cases where the paths are more
difficult to minimize due to dependencies between model steps
and state variables. We leave further exploration of such mod-
els for future work. Again, we remind that the detailed results
are available in [14].

V. DISCUSSION

Out of the three algorithms that we have presented, the
online optimizer and the greedy offline optimizer target similar
goals. Both try to optimize coverage for a variation of chosen
parts of the model for each test case and the overall test suite.
The single target offline optimizer is different in trying to gen-
erate a set of test cases where each one reaches a specific path
requirement. It is not looking for the overall variation using our
coverage score but rather for a specific set of test cases, each
with a minimal set of steps for reaching a given requirement.

As shown in Figure 5, the online exploration approach
gains coverage faster in the beginning but loses to greedy over
the long term. This is due to the online algorithm finding many
uncovered steps, states and their combinations in the beginning
but lacking vision in later test cases for how to achieve a state
from which it can again gain more coverage score. It is also
due to the states being distributed more after the initial set has
been covered. The greedy version, on the other hand, selects

from a large set of random tests, where the initial tests may not
be as good as those in the online exploration version but where
over time it finds more uncovered coverage elements in the
larger set of random tests. For generating an overall regression
test suite, a combination of these could be useful.

Overall, we prefer to use the online exploration algorithm
when working on models for systems where test execution
takes non-trivial time. One example is when we are evolving
the models and trying to determine the impact of the modifica-
tion on test results. In these cases, the algorithm quickly pro-
duces a variation over different parts of the model. If we want
to focus this variation on specific parts of the model, we use
scenarios to guide the generator to only consider these parts
and the algorithm to produce a variation over these chosen
parts. Scenarios are a way to tell the generator to ignore some
steps completely, use a specific sequence to start every test,
and to limit the number of times a test can contain some steps.

If we need the ability to execute large test suites, we have
found the greedy or even the random approach to work better.
When the tests execute fast (e.g., testing middleware or appli-
cation logic), it is possible to run a large test set fast even on a
single multi-core machine. In such a case, in the time it takes
for the optimization approaches to produce the test set, the
random selection and its online execution have very likely
already achieved a high coverage score and also covered addi-
tional combinations. For slower to execute cases such as GUI-
based testing, some of these benefits may also be achievable
with large-scale testing tools such as Selenium Grid (e.g.,
overnight or over the weekend using a large set of machines)
when we want to perform very extensive test runs.

One of the main considerations for us is the fast evolution
of the test models. Modern software development is fast paced
and changes are frequent, especially with agile software devel-
opment practices. In such environments, we prefer the online
approach. This allows us to version control only the test model
(as opposed to thousands of tests), generate and execute the
tests, modify the model and repeat. However, we also find it
useful to generate an offline test suite for cases where we want
a specific set covered every time, e.g., one larger set executed
to provide a high overall model coverage once the external test
interfaces have sufficiently stabilized.

This also brings us to the single target optimization algo-
rithm. While the larger test suites generated by the greedy and
online optimization algorithms generally also cover the re-
quirements defined in those models, and in many cases a single
test case covers many requirements, there can still be value in
specific test cases. For example, they are useful to show man-
agement and domain experts how specific test requirements are
covered by a concise set of test cases, or how specific paths
through the model are formed by the generator. They can also
be used as a smaller set of offline test cases to support a larger
online test generation and execution process.

Our results indicate that using the single target algorithm,
coverage requirements can often be more easily found by gen-
erating much longer test cases that the expected required length
to cover the requirements, and then having the tool minimize
them. As noted, the probability calculation presented in Sec-
tion IV- C can be a useful tool to set these parameters.

1596 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

One advantage of online testing compared to its offline
counterpart is the ability of the former to adapt to responses
and state changes of the SUT on the fly [1], e.g., when testing a
non-deterministic system. While the algorithms we have pre-
sented mostly assume a deterministic test response, the online
version can also adapt to non-determinism, with the explora-
tion becoming the estimation of future paths, and each estimate
is re-calculated for each new step.

As shown in Figure 5, the optimizations help achieve a
more diverse coverage according to the defined score weights
when compared to the random choice. We also found it useful,
in practice, to add random variation to the generated test cases,
to avoid expert bias, i.e., cases not considered by the human
expert but exercised in practice. We find that the generation
and optimization approaches based on our diverse coverage
score (greedy and online look-ahead) work well to achieve
such goals. Practically, they focus on achieving the given mod-
el coverage criteria and interleave these with elements of ran-
domness in different parts. That is, the result may not be fully
optimized to produce the smallest possible test sets, but gener-
ally, we prefer this over too aggressive optimization. This pro-
vides a good tradeoff between generating huge random test sets
and only generating manually defined specific test sets, which
do not make use of the large scale capacity of test generators
and are subject to expert bias in what is tested.

VI. RELATED WORK

Test optimization in MBT has been a popular research topic
with various tools and approaches being implemented. Tools
such as Conformiq [3], Uppaal [4], and Spec Explorer [5] use
customized modelling languages, and static analysis-based
approach with symbolic execution and constraint solving to
optimize test sets. Mostly these approaches target offline test
generation, while some work [6, 4] has also made use of two-
phased test generation where static analysis is first performed
and the resulting information is used to aid in online test gener-
ation. In contrast, our approaches are targeted to cases where
such static analysis is not available due to the complexity of the
modeling language and environment.

Various approaches using general-purpose programming
languages for modelling have also been presented. Model pro-
grams similar to ours are used in MBT tools such as Spec Ex-
plorer [5], PyModel, NModel [10], and ModelJUnit [1]. All of
these tools use variations of random search for test selection.
Spec Explorer, PyModel and NModel support guiding test
selection through user defined scenarios which slice the model
to focus test generation around the specific parts of the model.
Similar scenarios are also supported in our generator, and these
can be used together with the optimization approaches we
presented to focus testing on specific model parts.

A black-box optimization approach for test generation from
models expressed using general purpose modelling languages
is also available with ModelJUnit [15]. It supports executing
the test model in a simulation mode as a pre-analysis phase
before starting the actual test generation. Possible sequences of
steps observed in these runs are collected and used to guide the
actual online test generation in the following phase. However,
this approach does not consider the state of the model, which
defines what paths are available, and thus the set of paths as-

sumed by the optimization analysis are different from the actu-
al ones available during generation. The difference to our ap-
proaches is that we do not use a separate pre-analysis phase and
produce accurate results where the exact paths and impacts on
coverage are known.

Regression test selection, minimization and prioritization
are topics related to optimizing test suites [17]. These typically
consider the optimization in terms of different ways to cover
the SUT implementation [17]. In this paper we have discussed
optimization of test model coverage using a more varied set of
coverage criteria at a higher abstraction level. However, inves-
tigating ways to use works such as described in [17] together
with our approach is an interesting topic for future work.

The techniques presented in this paper can also be viewed
as a multi-objective test optimization problem. We aim to cov-
er the items defined for the scoring function in Section II,
which can be seen as a fitness function in the terms of search-
based testing (see e.g., [18]). The algorithms we apply for
coverage score optimization can be seen as a dynamic multi-
object optimization algorithm for the test suite. Various ap-
proaches in search-based optimization have been applied be-
fore [18] but none in our knowledge to model-based test gener-
ation with black-box constrains. In fact, we are not aware of
previous work in MBT for optimizing a set of coverage criteria
as diverse as the one we optimize in this paper.

A multi-objective approach to test suite optimization for
product lines is presented in [19], targeting objectives such as
cost of test case, cost of test requirement and product variants.
Test coverage is considered as single coverage requirements on
the test model as opposed to our extensive model variation
coverage support. An interesting aspect to integrate with our
work could be the association of cost to certain test targets as
part of the coverage score function.

In software testing and verification, various combinations
of static analysis and (random) test data generation have been
used. For example, directed automated random testing (DART)
[20] combines static analysis and observations about the run-
ning system with random inputs to guide it towards new paths.
Java PathFinder (JPF) [21] enables generating test paths based
on a combination of symbolic and concrete executions. While
these are different testing approaches than MBT, combining
the information from these types of different sources with test
generation (similar to [6]) and the approaches presented in this
paper could be an interesting future research topic. While it
may be prohibitive in terms of wait time to perform such ex-
tensive pre-analysis, a possible approach could be to perform
this as a background process during modelling similar to what
is described for executing unit tests in [22].

In general, a lot of work in automated test generation tar-
gets the traditional code coverage as a test target. When addi-
tional test coverage targets are considered, these are typically
specific coverage requirements such as labels on the test mod-
els [23]. In addition to the optimization algorithms we present-
ed in this paper, the coverage scoring method itself extends
these with wider generic model coverage criteria (the model
structure elements), supported by domain-specific criteria (user
defined state and variables).

TEEMU KANSTRÉN, MARSHA CHECHIK: A COMPARISON OF THREE BLACK-BOX OPTIMIZATION APPROACHES 1597

Random testing has been shown to work well in various
situations [24, 25], and some criticism has been voiced on the
effectiveness of guided random testing approaches when the
same coverage can be achieved by simply executing a large set
of random test cases in the same time [25]. We share this view
in noting that executing a very large set of random tests should
yield the same or even higher coverage over time as our opti-
mization approaches do. The aim of our approaches is to prac-
tically choose a reasonable subset of such a larger set under
different use cases.

VII. CONCLUSIONS

In this paper, we presented three different approaches to
test optimization in black-box model-based testing. We then
evaluated their performance and provided comparisons on the
strengths and weaknesses of each. Our evaluation highlights
the benefits of these different approaches over the traditional
random choice and their usefulness in different contexts. The
online version works well to provide added coverage when
prototyping slow to execute test cases. The greedy offline op-
timizer gives a test suite for higher overall model coverage.
The requirements targeting optimizer can help provide specific
test cases where useful. Combining potential benefits of these
approaches with static analysis where possible would be an
interesting future research topic. Domain-specific applications
of these approaches, including customizations of algorithms
and modelling languages, are also interesting future topics.

VIII. REFERENCES

[1] M. Utting and B. Legeard, Practical Model-Based Testing: A

Tools Approach, Morgan Kaufman, 2006.

[2] W. Grieskamp, N. Kicillof, K. Stobie and V. Braberman,

"Model-Based Quality Assurance of Protocol Documentation:

Tools and Methodology," Journal of Software Testing,

Verification and Reliability, vol. 21, no. 1, pp. 55-71, 2011.

DOI: 10.1002/stvr.427

[3] A. Huima, "Implementing Conformiq Qtronic," in Testing of

Software and Communicating Systems, 2007.

[4] M. Mikucionis, K. Larsen and B. Nielsen, "T-Uppaal: Online

Model-Based Testing of Real-Time Systems," in 19th

International Conference on Automated Software Engineering

(ASE), 2004. DOI: 10.1109/ASE.2004.1342774

[5] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N.

Tillmann and L. Nachmanson, "Model-Based Testing of Object-

Oriented Reactive Systems with Spec Explorer," Formal

Methods of Testing, pp. 39-76, 2008.

[6] D. Ahman and M. Kääramees, "Constrain-Based Heuristic On-

line Test Generation from Non-Deterministic I/O EFSMs," in

7th Workshop on Model-Based Testing, 2012. DOI:

10.4204/EPTCS.80.9

[7] T. Kanstrén, "OSMO Tester Home Page," February 2013.

[Online]. Available: http://code.google.com/p/osmo. [Accessed

February 2013].

[8] A. Groce, A. Fern, J. Pinto, T. Bauer, A. Alipour, M. Erwig and

C. Lopez, "Lightweight Automated Testing with Adaptation-

Based Programming," in IEEE International Symposium on

Software Reliability Engineering, 2012. DOI:

10.1109/ISSRE.2012.1

[9] M. Veanes, C. Campbell, W. Schulte and N. Tillmann, "Online

Testing with Model Programs," in ESEC/FSE-13, 2005. DOI:

10.1145/1095430.1081751

[10] J. Ernits, R. Roo, J. Jacky and M. Veanes, "Model-Based

Testing of Web Applications using NModel," in Testing of

Software and Communication Systems, 2009.

[11] M. Utting, A. Pretschner and B. Legeard, "A Taxonomy of

Model-Based Testing Approaches," Software Testing,

Verification and Reliability, vol. 22, no. 5, pp. 297-312, 2012.

DOI: 10.1002/stvr.456

[12] J. A. Whittaker, Exploratory Software Testing: Tips, Tricks,

Tours, and Techniques to Guide Test Design, Addison-Wesley,

2009.

[13] T. Kanstren and T. Kekkonen, "Distributed Online Test

Generation for Model-Based Testing," in Asia Pacific Software

Engineering Conf., 2013. DOI: 10.1109/APSEC.2013.43

[14] T. Kanstrén and M. Chechik, "A Comparison of Three Black-

Box Optimization Approaches for Model-Based Testing," 5

June 2014. [Online]. Available:

http://www.kanstren.net/appendix/ATSE2014_full.pdf.

[Accessed 5 June 2014].

[15] M. Utting, "The ModelJUnit Model-Based Testing Tool," 2009.

[Online]. [Accessed 17 May 2013].

[16] North Carolina State University, "iTrust: Role-Based

Healthcare," 2013. [Online]. [Accessed 17 May 2013].

[17] S. Yoo and M. Harman, "Regression Testing Minimization,

Selection and Priorization: A Survey," Software Testing,

Verification and Reliability, vol. 22, no. 2, pp. 67-120, 2012.

DOI: 10.1002/stvr.430

[18] P. McMinn, "Search-based testing: Past, present and future," in

3rd International Workshop on Search-Based Software Testing,

2011. DOI: 10.1109/ICSTW.2011.100

[19] H. Baller, S. Lity, M. Lochau and I. Schaefer, "Multi-Objective

Test Suite Optimization for Incremental Product Family

Testing," in IEEE Internation Conference on Software Testing,

Verification and Validation (ICST), 2014.

[20] P. Godefroid, N. Klarlund and K. Sen, "DART: Directed

Automated Random Testing," in Programming Language

Design and Implementation (PLDI), 2005. DOI:

10.1145/1064978.1065036

[21] C. S. Pasareanu and N. Rungta, "Symbolic Pathfinder: Symbolic

Execution of Java Bytecode," in Automated Software

Engineering (ASE), 2010. DOI: 10.1145/1858996.1859035

[22] D. Saff and M. Ernst, "Reducing Wasted Development Time via

Continous Testing," in Proc. Int'l. Conf. on Software Testing

and Analysis (ISSTA), 2003.

[23] S. Bardin, N. Kosmatov and F. Cheynier, "Efficient Leveraging

of Symbolic Execution to Advanced Coverage Criteria," in

IEEE International Conference on Software Testing,

Verification and Validation (ICST), 2014.

[24] I. Ciupa, A. Pretschner, M. Oriol, A. Leitner and B. Meyer, "On

the Number and Nature of Faults Found by Random Testing,"

Software Testing, Verification and Reliability, vol. 21, no. 1, pp.

3-28, 2009. DOI: 10.1002/stvr.415

[25] A. Arcuri, M. Z. Iqbal and L. Briand, "Random Testing:

Theretical Results and Practical Implications," IEEE

Transactions on Software Engineering, vol. 38, no. 2, pp. 258-

277, 2012. DOI: 10.1109/TSE.2011.121

1598 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

