
Efficient Volumetric Segmentation Method

Dumitru Dan Burdescu, Liana Stanescu, Marius Brezovan, Cosmin Stoica Spahiu

Computers and Information Technology Department

Faculty of Automation, Computers and Electronics, University of Craiova,

Craiova, Dolj, Romania

Address: Bvd. Decebal, Nr. 107, 200440, Tel./Fax: +40-251 438198

dburdescu@yahoo.com; lia_stanescu@yahoo.com

Abstract -- In this paper we extend our previous work for

planar images by adding a new step in the volumetric

segmentation algorithm that allows us to determine regions

closer to it. There are huge of papers for planar images and

segmentation methods and most of them are graph-based for

planar images and very few papers for volumetric

segmentation methods. However, even if image segmentation is

a heavily researched field, extending the algorithms to spatial

has been proven not to be an easy task. A true volumetric

segmentation remains a difficult problem to tackle due to the

complex nature of the topology of spatial objects, the huge

amount of data to be processed and the complexity of the

algorithms that scale with the new added dimension. The

problem of partitioning images into homogenous regions or

semantic entities is a basic problem for identifying relevant

objects. Visual segmentation is related to some semantic

concepts because certain parts of a scene are pre-attentively

distinctive and have a greater significance than other parts. A

number of approaches to segmentation are based on finding

compact regions in some feature space. A recent technique

using feature space regions first transforms the data by

smoothing it in a way that preserves boundaries between

regions. The key to the whole own algorithm of volumetric

segmentation is the honeycomb cells. The pre-processing

module is used mainly to blur the initial RGB spatial image in

order to reduce the image store and to make algorithms to be

efficient. Then the volumetric segmentation module creates

virtual cells of prisms with tree-hexagonal structure defined on

the set of the image voxels of the input spatial image and a

volumetric grid graph having tree-hexagons as cells of vertices.

Early graph-based methods use fixed thresholds and local

measures in finding a volumetric segmentation.

Index terms- Volumetric Segmentation; Graph-based

segmentation; Color segmentation; Syntactic segmentation

I.INTRODUCTION AND RELATED WORKS

HERE is a wide range of computational vision problems for
planar images that could use of segmented images. The

problem of partitioning images into homogenous regions or
semantic entities is a basic problem for identifying relevant objects.
Higher-level problems such as object recognition and image
indexing can also make use of segmentation results in matching, to
address problems such as figure-ground separation and recognition
by parts. In both intermediate level and higher-level vision
problems, contour detection of objects in real images is a
fundamental problem. However the problems of planar image
segmentation and grouping remain great challenges for computer
vision. As a consequence we consider that a spatial segmentation
method can detect visual objects from images if it can detect at least

the most objects. We develop a visual feature-based method which
uses a virtual spatial graph constructed on cells of prisms with tree-
hexagonal structure containing half of the image voxels in order to
determine a forest of spanning trees for connected component
representing visual objects. Thus the spatial image segmentation is
treated as a spatial graph partitioning problem. In addition our
spatial segmentation algorithm produces good results from both
from the perspective perceptual grouping and from the perspective
of determining homogeneous in the input images. Early graph-
based methods use fixed thresholds and local measures in finding a
spatial segmentation.

In [1] one determined the normalized weight of an edge by
using the smallest weight incident on the vertices touching that
edge. Other methods for planar images [2], [3] use an adaptive
criterion that depends on local properties rather than global ones. In
contrast with the simple graph-based methods, cut-criterion
methods capture the non-local cuts in a graph are designed to
minimize the similarity between pixels that are being split [4] [5].
The normalized cut criterion [5] takes into consideration self
similarity of regions. An alternative to the graph cut approach is to
look for cycles in a graph embedded in the image plane. In [6] the
quality of each cycle is normalized in a way that is closely related to
the normalized cuts approach. Other approaches to planar image
segmentation consist of splitting and merging regions according to
how well each region fulfills some uniformity criterion. Such
methods [7] use a measure of uniformity of a region. In contrast [2]
and [3] use a pair-wise region comparison rather than applying a
uniformity criterion to each individual region. Complex grouping
phenomena can emerge from simple computation on these local
cues [8]. A number of approaches to segmentation are based on
finding compact regions in some feature space [9]. A recent
technique using feature space regions [10] first transforms the data
by smoothing it in a way that preserves boundaries between regions.
Our previous works [11] and [12] are related to the works in [2] and
[3] in the sense of pair-wise comparison of region similarity. In
these papers we extend our previous work by adding a new step in
the spatial segmentation algorithm that allows us to determine
regions closer to it.

II.CONSTRUCTING A VIRTUAL TREE-HEXAGONAL STRUCTURE

The pre-processing module is used mainly to blur the initial
RGB spatial image in order to reduce the image noise [13] and to
apply the spatial segmentation algorithm. Then the segmentation
module creates virtual cells of prisms with tree-hexagonal structure
defined on the set of the image voxels of the input spatial image and
a spatial triangular grid graph having tree-hexagons as cells of
vertices. In order to allow a unitary processing for the multi-level
system at this level we store, for each determined component C, the
set of the tree-hexagons contained in the region associated to C and
the set of tree-hexagons located at the boundary of the component.
In addition for each component the dominant color of the region is
extracted. This color will be further used in the post-processing

T

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 659–668

DOI: 10.15439/2014F174

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 659

module if any. The contour extraction module determines for each
segment of the image its boundary. The boundaries of the de
determined visual objects are closed contours represented by a
sequence of adjacent tree-hexagons. At this level a linked list of
points representing the contour is added to each determined
component. The post-processing module (if any) extracts
representative information for the above determined visual objects
and their contours in order to create an efficient index for a
semantic image processing system.

A spatial image processing task contains mainly three important
components: acquisition, processing and visualization. After the
acquisition stage an image is sampled at each point on a three
dimensional grid storing intensity or color information and implicit
location information for each sample. The grid is the most dominant
of any grid structure in image processing and conventional
acquisition devices acquire square sampled images. An important
advantage of using this grid is the fact that the visualization stage
uses directly the voxels of the digitized image. We do not use a
hexagonal lattice model because of the additional actions involving
the double conversion between square and tree-hexagonal voxels.
However we intent to use some of the advantages of the tree-
hexagonal grid such as uniform connectivity. This implies that there
will be less ambiguity in defining boundaries and regions [14]. As a
consequence we construct a virtual tree-hexagonal structure over
the grid voxels of an input image, as presented in Figure 1. This
virtual tree-hexagonal grid is not a tree-hexagonal lattice because
the constructed hexagons are not regular.

Fig. 1. Virtual Tree-Hexagonal structure constructed on the image voxels

Let I be a spatial initial image having the dimension h×w× z
(e.g. a matrix having ’h’ rows, ‘w’ columns and ‘z’ deep of matrix
voxels). In order to construct a tree-hexagonal grid on these voxels

we retain an eventually smaller image with

h′ = h−(h−1) mod 2,
w′ = w−w mod 4, (1)

z’ = z- z mod 4.

In the reduced image at most the last line of voxels and at most

the last three columns and deep of matrix of voxels are lost,
assuming that for the initial image h > 3 and w > 4 and z > 4, that is
a convenient restriction for input spatial images.

Each tree-hexagon from the tree-hexagonal grid contains
sixteen voxels: such twelve voxels from the frontier and four
interior frontiers of voxels. Because tree-hexagons voxels from an
image have integer values as coordinates we select always the left
up voxel from the four interior voxels to represent with
approximation the gravity center of the tree-hexagon, denoted by
the pseudo-gravity center. We use a simple scheme of addressing
for the tree-hexagons of the tree-hexagonal grid that encodes the
spatial location of the pseudo-gravity centers of the tree-hexagons
as presented in Figure 1.

Let h× w× z the three dimension of the initial spatial image

verifying the previous restriction (e.g. h mod 2 = 1, w mod 4 = 0, z

mod 4 = 0, h ⁋ 3 and w⁋4 and z⁋4). Given the coordinates

(l,c,d) of a voxel p’from the input spatial image, we use the

linearized function, ip h ,w, ,z (l,c,d) = (l −1)w+c+d, in order to
determine an unique index for the voxel.

Let ‘ps’ be the sub-sequence of the voxels from the sequence of

the voxels of the initial spatial image that correspond to the pseudo-

gravity center of tree-hexagons, and’ hs’, ‘ws’ and ‘zs’ the sequence

of tree-hexagons constructed over the voxels of the initial spatial

image. For each voxel ‘p’ from the sequence ps having the
coordinates (l,c,d), the index of the corresponding tree-hexagon

from the sequence hs, ws and zs are given by the following relation:

f h h, w ,z (l,c,d) = [(l−2)w+c+d−2l]/4 +1 (2)

In this case the following relation holds:

f h h, w ,z (l,c,d) = i. . (3)

Moreover it is easy to verify that the function ‘f h’ defined by
the relation (2) is bijective. Its inverse function is given by:

f h−1 h, w, z (k) = (l,c,d) (4)
where:
l = (2+ 4(k−1)/w if h < w,
l = 2+ 4(k−1)/w +tw if h ⁋ w, and h = tw+h′, (5)

c = 4(k−1)+2l−(l−2)w, (6)

d = 4(k−1)+2l−(l−2)w. (7)

Relations (4), (5), (6) and (7) allow us to uniquely determine

the coordinates of the voxel representing the pseudo-gravity center
of a tree-hexagon specified by its index (its address). In addition
these relations allow us to determine the sequence of coordinates of
all sixteen voxels contained into a tree-hexagon with an address ‘k’.

The sub-sequence ‘ps’ of the voxels representing the pseudo-

gravity center and the function ‘fh’ defined by the relation (2) allow
to determine the sequence of the tree-hexagons ‘Hs’ that is used by
the segmentation and contour detection algorithms. After the

processing step the relations (4), (5), (6), (7) allow to up-date the

voxels of the spatial initial spatial image for the visualization step.

Each tree-hexagon represents an elementary item and the

entire virtual tree-hexagonal structure represents a triangular grid

graph, G = (V,E), where each tree-hexagon ‘H’ in this structure

has a corresponding vertex v ∈V. The set E of edges is constructed

by connecting tree-hexagons that are neighbors in a 20-connected

sense. The vertices of this graph correspond to the pseudo-gravity

centers of the hexagons from the tree-hexagonal grid and the edges

are straight lines connecting the pseudo-gravity centers of the

neighboring hexagons, as presented in Figure 2.

Fig.2. Triangular grid graph constructed on the pseudo-gravity centers of

the tree-hexagonal grid

There are two main advantages when using tree-hexagons
instead of all voxels as elementary piece of information:

660 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

• The amount of memory space associated to the graph vertices
is reduced. Denoting by ‘np’ the number of voxels of the initial
spatial image, the number of the resulted tree-hexagons is always
less than np/4, and thus the cardinal of both sets V and E is
significantly reduced;

• The algorithms for determining the visual objects and their
contours are much faster and simpler in this case.

We associate to each tree-hexagon ‘H’ from V two important
attributes representing its dominant color and the coordinates of its

pseudo-gravity center, denoted by c(h) and g(h). The dominant

color of a tree-hexagon is denoted by c(h) and it represents the color

of the voxel of the tree-hexagon which has the minimum sum of

color distance to the other twenty voxels. Each tree- hexagon ‘H’ in
the tree-hexagonal grid is thus represented by a single point, g(h),

having the color c(h). By using the values g(h) and c(h) for each

tree-hexagon information related to all voxels from the initial image

is taken into consideration by the spatial segmentation algorithm.

III. VOLUMETRIC SEGMENTATION ALGORITHM

Let V = {h1, . . . ,h|V|} be the set of virtual tree-hexagons
constructed on the input spatial image voxels as presented in
previous section and G = (V,E) be the undirected spatial grid-graph,
with E containing pairs of honey-beans cell (tree-hexagons) that are
neighbors in a 20-connected sense. The weight of each edge e =
(hi,hj) is denoted by w(e), or similarly by w(hi,hj), and it represents
the dissimilarity between neighboring elements ‘hi’ and ‘hj’ in a
some feature space. Components of a spatial image represent
compact regions containing voxels with similar properties. Thus the
set V of vertices of the graph G is partitioned into disjoint sets, each
subset representing a distinct visual object of the initial image.

As in other graph-based approaches [15] we use the notion of
segmentation of the set V. A segmentation, S, of V is a partition of

V such that each component C ∈ S corresponds to a connected

component in a spanning sub-graph
GS = (V,ES) of G, with ES ⊆E.
The set of edges E −ES that are eliminated connect vertices

from distinct components. The common boundary between two

connected components C′,C’‘ ∈ S represents the set of edges

connecting vertices from the two components:

cb(C′,C’‘) = {(hi,hj) ∈ E | hi ∈ C′, hj ∈ C’‘} (8)

The set of edges E−ES represents the boundary between all
components in S. This set is denoted by bound(S) and it is defined
as follows:

bound(S)= ∪C′,C’‘∈S cb(C′,C’‘). (9)

In order to simplify notations throughout the paper we use Ci
to denote the component of a segmentation S that contains the

vertex hi ∈V.

We use the notions of segmentation too fine and too coarse as
defined in [2] that attempt to formalize the human perception of
salient visual objects from an image. A segmentation S is too fine if

there is some pair of components C′,C’‘ ∈ S for which there is no

evidence for a boundary between them. S is too coarse when there
exists a proper refinement of S that is not too fine. The key element
in this definition is the evidence for a boundary between two
components.

The goal of a spatial segmentation method is to determine a
proper segmentation, which represent visual objects from an image.

Definition 1 Let G = (V,E) be the undirected spatial graph
constructed on the virtual tree-hexagonal structure of an image, with
V = {h1, . . . ,h|V|}. A proper segmentation of V, is a partition S of
V such that there exists a sequence [Si, Si+1, . . . ,S f−1,S f] of
segmentations of V for which:

• S = Sf is the final segmentation and Si is the initial

segmentation,

• Sj is a proper refinement of S j+1 (i.e., S j ⊂ S j+1) for each j =

i, . . . , f −1,
• segmentation Sj is too fine, for each j = i, . . . , f −1,
• any segmentation Sl such that Sf ⊂ Sl , is too coarse,

• segmentation Sf is neither too coarse nor too fine.

Let C’,C’’ ∈ Sa be two components obtained by splitting a

component C ∈ Sb. In this case C′ and C’’ have a common

boundary, cb(C′,C’’) ≠Ø.
Our segmentation algorithm starts with the most refined

segmentation, S0 = {{h1}, . . . ,{h|V|}} and it constructs a sequence

of segmentations until a proper segmentation is achieved. Each

segmentation S j is obtained from the segmentation Sj−1 by merging

two or more connected components for there is no evidence for a

boundary between them. For each component of a segmentation a

spanning tree is constructed and thus for each segmentation we use

an associated spanning forest.
The evidence for a boundary between two components is

determined taking into consideration some features in some model
of the spatial input image. When starting, for a certain number of
segmentations the only considered feature is the color of the regions
associated to the components and in this case we use a color-based
region model. When the components became complex and contain
too much tree-hexagons, the color model is not sufficient and
geometric features together with color information are considered.
In this case we use a syntactic based with a color-based region
model for regions. In addition syntactic features bring
supplementary information for merging similar regions in order
determine salient objects.

For the sake of simplicity we will denote this region model as
syntactic-based region model.

As a consequence, we split the sequence of all segmentations,
Si

f = [S0,S1, . . . ,Sk−1,Sk], (10)
in two different subsequences, each subsequence having a

different region model,
 Si = [S0,S1, . . . ,St−1,St],

Sf = [St ,St+1, . . . ,Sk−1,Sk], (11)
where Si represents the color-based segmentation sequence,

and Sf represents the syntactic-based segmentation sequence.
The final segmentation St in the color-based model is also the

initial segmentation in the syntactic-based region model.
For each sequence of segmentations we develop a different

algorithm. Moreover we use a different type of spanning tree in
each case: a maximum spanning tree in the case of the color-based
segmentation, and a minimum spanning tree in the case of the
syntactic-based segmentation. More precisely our method
determines two sequences of forests of spanning trees,

 Fi = [F0,F1, . . . ,Ft−1,Ft],

 F f = [Ft′,Ft’+1, . . . ,Fk’−1,Fk′], (12)

each sequence of forests being associated to a sequence of
segmentations.

The first forest from Fi contains only the vertices of the initial
graph, F0 = (V, Ø), and at each step some edges from E are added
to the forest Fl = (V,El) to obtain the next forest, Fl+1 = (V,El+1). The
forests from Fi contain maximum spanning trees and they are
determined by using a modified version of Kruskal’s algorithm,
where at each step the heaviest edge (u,v) that leaves the tree
associated to ‘u’ is added to the set of edges of the current forest.

The second subsequence of forests that correspond to the
subsequence of segmentations Sf contains forests of minimum
spanning trees and they are determined by using a modified form of

Boruvka’s algorithm. This sequence uses as input a new graph,

DUMITRU DAN BURDESCU ET AL.: EFFICIENT VOLUMETRIC SEGMENTATION METHOD 661

G′ = (V′,E′), which is extracted from the last forest, Ft ,

of the sequence Fi. Each vertex ‘v’ from the set V’ corresponds to a
component Cv from the segmentation St (i.e. to a region determined
by the previous algorithm). At each step the set of new edges added
to the current forest are determined by each tree T contained in the
forest that locates the lightest edge leaving T. The first forest from

Ff contains only the vertices of the graph G′, Ft′ = (V′,Ø).
We focus on the definition of a logical predicate that allow us

to determine if two neighboring regions represented by two

components, Cl′ and Cl’‘, from a segmentation Sl can be merged

into a single component Cl+1 of the segmentation Sl+1. Two

components, Cl′ and Cl’’ , represent neighboring (adjacent)

regions if they have a common boundary:

ad j(Cl′,Cl’‘) = true if cb(Cl’,Cl’‘) ≠ Ø,
ad j(Cl’,Cl’‘) = f alse if cb(Cl’,Cl’‘) = Ø (13)
We use a different predicate for each region model, color

based and syntactic-based respectively.
PED(e,u) = [wR(Re−Ru)

2+wG(Ge−Gu)
2+wB(Be−Bu)

2] ½ (14)
where the weights for the different color channels, wR, wG,

and wB verify the condition wR +wG +wB = 1. Based on the
theoretical and experimental results on spectral and real world data
sets, Gijsenij et al. [16] is concluded that the PED distance with
weight-coefficients (wR =0.26, wG = 0.70, wB =0.04) correlates
significantly higher than all other distance measures including the
angular error and Euclidean distance.

In the color model regions are modeled by a vector in the RGB
color space. This vector is the mean color value of the dominant
color of tree-hexagons belonging to the regions.

The evidence for a boundary between two regions is based on
the difference between the internal contrast of the regions and the
external contrast between them [2] and [15]. Both notions of
internal contrast and external contrast between two regions are
based on the dissimilarity between two colors.

Let hi and hj representing two vertices in the graph G =(V,E),
and let wcol(hi,hj) representing the color dissimilarity between
neighboring elements hi and hj, determined as follows:

wcol(hi,hj) =PED(c(hi),c(hj)) if (hi,hj) ∈ E,

wcol(hi,hj) =∞ otherwise, (15)
where PED(e,u) represents the perceptual Euclidean distance

with weight-coefficients between colors ‘e‘ and ‘u’, as defined by
Equation (14), and c(h) represents the mean color vector associated
with the tree-hexagon ‘H’. In the color-based segmentation, the
weight of an edge (hi,hj) represents the color dissimilarity,

w(hi,hj) = wcol(hi,hj).
Let Sl be a segmentation of the set V. We define the internal

contrast or internal variation of a component C ∈ Sl to be the

maximum weight of the edges connecting vertices from C:

IntVar(C) = max(hi,hj)∈C (w(hi,hj)). (16)

The internal contrast of a component C containing only one
tree-hexagon is zero:

IntVar(C) = 0, if |C| = 1.
The external contrast or external variation between two

components, C’,C’‘ ∈ S is the maximum weight of the edges

connecting the two components:

ExtVar(C’,C’‘) = max(hi,hj)∈cb(C’,C’‘) (w(hi,hj)). (17)

We chosen the definition of the external contrast between two
components to be the maximum weight edge connecting the two
components and not to be the minimum weight, as in [2] because:
(a) it is closer to the human perception (in the sense of the
perception of the maximum color dissimilarity), and (b) the contrast
is uniformly defined (as maximum color dissimilarity) in the two
cases of internal and external contrast.

The maximum internal contrast between two components,

C’,C’‘ ∈ S is defined as follows:

IntVar(C’,C’‘) = max(IntVar(C’), IntVar(C’‘)), (18)
The comparison predicate between two neighboring

components C’ and C’‘ (i.e., ad j(C’,C’‘) = true) determines if there
is an evidence for a boundary between C’ and C’‘ and it is defined
as follows:

diffcol(C’,C’‘) = true, if
ExtVar(C’,C’‘) > IntVar(C’,C’‘) + thkg(C’,C’‘),

diffcol(C’,C’‘) = false, if

ExtVar(C’,C’‘) ⁊ IntVar(C’,C’‘)+ thkg(C’,C’‘), (19)

with the the adaptive threshold thkg(C’,C’‘) given by
thkg(C’,C’‘) =thkg / min(|C’|, |C’‘|) , (20)

where |C| denotes the size of the component C (i.e. the number
of the tree-hexagons contained in C) and the threshold ‘thkg‘ is a
global adaptive value defined by using a statistical model.

The predicate ‘diffcol’ can be used to define the notion of

segmentation too fine and too coarse in the color-based region

model.
Definition 2 Let G = (V,E) be the undirected spatial graph

constructed on the tree-hexagonal structure of a spatial input image
and S a color-based segmentation of V. The segmentation S is too
fine in the color-based region model if there is a pair of components

C’,C’‘ ∈ S for which

ad j(C’,C’‘) = true ∧ diffcol(C’,C’‘) = false.

Definition 3 Let G = (V,E) be the undirected spatial graph
constructed on the tree-hexagonal structure of a spatial input image
and S a segmentation of V. The segmentation S is too coarse if
there exists a proper refinement of S that is not too fine.

We decided to use the RGB color space because it is efficient

and no conversion is required.
Let G= (V,E) be the initial graph constructed on the virtual

tree-hexagonal structure of a spatial image. The proposed
segmentation algorithm will produce a proper segmentation of V
according to the Definition 1. The sequence of segmentations, Si f ,
as defined by Equation (10), and its associated sequence of forests
of spanning trees, Fi f , as defined by Equation (12), will be
iteratively generated as follows:

• The color-based sequence of segmentations, Si, as defined by
Equation (11), and its associated sequence of forests, Fi, as defined
by Equation (12), will be generated by using the color-based region
model and a maximum spanning tree construction method based on
a modified form of the Kruskal’s algorithm [17].

• The syntactic-based sequence of segmentations, Sf, as

defined by Equation (11), and its associated sequence of forests, F f,

as defined by Equation (12), will be generated by using the

syntactic-based model and a minimum spanning tree construction

method based on a modified form of the Boruvka’s algorithm.
The general form of the segmentation procedure is presented in

Algorithm 1

Algorithm 1 Segmentation algorithm
1: procedure SEGMENTATION (l,c,d,P,H,Comp)
2: Input l, c, d, P
3: Output H, Comp
4: H ←CREATEHEXAGONALSTRUCTURE(l, c, d, P)
5: G←CREATEINITIALGRAPH(l, c, d, P,H)
6: CREATECOLORPARTITION (G,H,Bound)
7: G’ ←EXTRACTGRAPH (G,Bound, thkg)
8: CREATESYNTACTICPARTITION(G,G’, thkg)
9: Comp ←EXTRACTFINALCOMPONENTS(G’)
10: end procedure

662 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

The input parameters represent the image resulted after the
pre-processing operation: the array P of the spatial image voxels
structured in ‘l’ lines, ‘c’ columns and ‘d’ depths. The output
parameters of the segmentation procedure will be used by the
contour extraction procedure: the tree-hexagonal grid stored in the
array of tree-hexagons H, and the array Comp representing the set
of determined components associated to the salient objects in the
input spatial image. The global parameter thkg is the thresholds.

The color-based segmentation and the syntactic-based
segmentation are determined by the procedures
CREATECOLORPARTITION and
CREATESYNTACTICPARTITION respectively.

The color-based and syntactic-based segmentation algorithms
use the tree-hexagonal structure H created by the function
CREATEHEXAGONALSTRUCTURE over the voxels of the
initial spatial image, and the initial triangular grid graph G created
by the function CREATEINITIALGRAPH. Because the syntactic-
based segmentation algorithm uses a graph contraction procedure,
CREATESYNTACTICPARTITION uses a different graph, G’,
extracted by the procedure EXTRACTGRAPH after the color-
based segmentation finishes.

Both algorithms for determining the color-based and syntactic
based segmentation use and modify a global variable (denoted by
CC) with two important roles:

• to store relevant information concerning the growing forest of
spanning trees during the segmentation (maximum spanning trees in
the case of the color-based segmentation, and minimum spanning
trees in the case of syntactic based segmentation),

• to store relevant information associated to components in a
segmentation in order to extract the final components because each
tree in the forest represent in fact a component in each segmentation
S in the segmentation sequence determined by the algorithm.

In addition, this variable is used to maintain a fast disjoint set-
structure in order to reduce the running time of the color based
segmentation algorithm. The variable CC is an array having the
same dimension as the array of hexagons ‘H’, which contains as
elements objects of the class Tree with the following associated
fields:

(isRoot, parent, compIndex, frontier, surface, color)
The field ‘isRoot’ is a boolean value specifying if the

corresponding tree-hexagon index is the root of a tree representing a
component, and the field ‘parent’ represents the index of the tree-
hexagon which is the parent of the current tree-hexagon. The rest of
fields are used only if the field ‘isRoot’ is true. The field
‘compIndex’ is the index of the associated component.

The field ‘surface’ is a list of indices of the tree-hexagons
belonging to the associated component, while the field ‘frontier’ is a
list of indices of the tree-hexagons belonging to the frontier of the
associated component. The field ‘color’ is the mean color of the
tree- hexagon colors of the associated component.

The procedure EXTRACTFINALCOMPONENTS determines

for each determined component C of Comp, the set sa(C) of tree-

hexagons belonging to the component, the set sp(C) of tree-

hexagons belonging to the frontier, and the dominant color c(C) of

the component.

IV.COLOR-BASED REGION ALGORITHM

Let G = (V,E) be the undirected spatial graph constructed on
the tree-hexagonal structure of a spatial image. The proposed color-
based segmentation algorithm will produce a proper segmentation
of V according to the Definition 1, where the notion of
segmentation too fine is given by the Definition 2.

The sequence of segmentations, (S0,S1, . . . ,St−1,St), and its
associated sequence of growing forests,

(F0,F1, . . . ,Ft−1,Ft), will be iteratively generated, based on a
maximum spanning tree construction method. We use a modified
form of the Kruskal’s algorithm [17] presented in Algorithm 2,
where the trees generated at each step represent the connected
components of spatial segmentation.

The input parameters of the color-based segmentation
algorithm are the initial spatial graph ‘G’ and the array ‘H’ of the
tree-hexagons from the tree-hexagonal grid. The output parameter is
the list ‘Bound’ of edges representing the boundary of the final
spatial segmentation. The global parameter threshold ‘thkg‘ is
determinate by using Algorithm 1.

This value is used at the line 19 of Algorithm 2, where the
expression thkg (ti, t j) is given by the relation (20), ti and tj
representing the components Cti and Ctj respectively.

Because we use maximum spanning trees instead of minimum
spanning trees the list of the edges E(G) is sorted in non-increasing
edge weight. The forest of spanning trees is initialized in such a
way each element of the forest contains exactly one tree-hexagon.

Algorithm 2 Color-based segmentation
1: **procedure CREATECOLORPARTITION(G,H, Bound)
2: Input G = (V,E), H = {h1, . . .,h|V|}
3: Output Bound

4: thkg ←*DETERMINETHRESHOLD(G)

5: Bound ←hi ⊲ Initialize Bound

6: for all i←1, |V| do

7: *MAKESET(hi) ⊲ Initialize the disjoint set data structures
8: end for

9: ⊲ At this point l ←0

10: ⊲ and S0 ←{{h1}, . . . ,{h|V|}}

11: *SORT(E,E)
12: ⊲ E= (e1 , . . ., e|E|) is the sorting of E

13: ⊲ in order of non-increasing weight

14: for all k←1, |E| do

15: ⊲ Let ek = (hi ,hj) be the current edge in E
16: ti ←*FINDSET(hi)

17: t j ←*FINDSET(hj)

18: if ti ≠t j then

19: if w(hi ,hj) ⁊ INTVAR(ti, t j)+ thkg (ti, t j) then

20:* UNION(ti, t j,w(hi,hj))

21: ⊲ l ←l+1

22: ⊲ Sl ←Sl−1−{{Cti},{Ct j }}∪{Cti ∪Ct j }

23: else
24:* Add the edge (hi ,hj) the the list Bound

25: ⊲ bound(Sl)←bound(Sl−1)∪{(hi,hj)}

26: end if
27: else

28: ⊲ Do nothing, ti ∈ Ct j

29: end if
30: end for
31: end procedure

The expression thkg (ti, t j) = thkg /min(|Cti |,|Cj j |) at the line 19

of Algorithm 2 is very important at the beginning of the algorithm
because initially the components considered contains only one tree-
hexagon and in this case

 IntVar(Cti ,Cj j)=0, and thkg /min(|Cti |,|Cj j |) = thkg. In order
to consider an edge (hi,hj) to belonging to the non-boundary class of
edges and in consequence to merge the components Cti and Cj j

corresponding to ‘hi’ and ‘hj’ respectively, it is necessary that
w(hi,hj) < thkg.

DUMITRU DAN BURDESCU ET AL.: EFFICIENT VOLUMETRIC SEGMENTATION METHOD 663

When the components grow and both components Cti and Cj j

contain more than one tree-hexagon, the external variation between
Cti and Cj j decreases, and in this case the decision for merging or
non-merging Cti and Cj j is affected more by their size than by the
global threshold ‘thkg’.

For each segmentation Sl determined by Algorithm 2 and for
each connected component C of the corresponding spanning graph
Gl there is a unique maximum spanning tree, Fl(C), that maximize
the sum of edge weights for this component.

The forest of all maximum spanning trees associated to the
segmentation Sl is

Fl =∪C∈Sl Fl(C),

and algorithm makes greedy decisions about which edges to
add to Fl . Every time when an edge is added to the maximum
spanning tree a union of the two partial spanning trees containing
the two vertices of the edge is made. In this way the sequence of the
edges contained in the forest Fl of spanning trees is implicit
determined at the line 14 of Algorithm 2.

Conversely for each spatial tree T from the forest Fl , the set of
all vertices of the initial graph contained in the tree T is denoted by
Set(T) and it represents the connected component of Sl associated
to maximum spanning tree T:

T = Fl(Set(T)).
The functions MAKESET, FINDSET and UNION used by the

segmentation algorithm implement the classical MAKESET, FIND-
SET and UNION operations for disjoint set data structures with
union by rank and path compression [17]. In addition the function
call, UNION(ti, t j ,w(hi,hj)), performs the following operation,
assuming that ti is the root of the new spanning tree resulted by
combining the spanning trees represented by ‘ti’ and ‘t j’ :
• determining CC[ti].surface as the concatenation of the lists

CC[ti].surface and CC[tj].surface,

• determining CC[ti].frontier as a list of indices of tree-

hexagons belonging to the frontier of the new component

{Cti ∪Ct j},

• determining CC[ti].color as the value (ni*ci+nj*cj)/(ni+nj) ,

where ci = CC[ti].color, and ‘ni’ represents the number of elements

in the tree CC[ti].

V.SYNTACTIC-BASED REGION ALGORITHM

The syntactic-based region model uses some geometric properties

of regions together with color information. We use a subset of

syntactic features advocated [18] including homogeneity,

compactness and regularity.

The region model contains the area of the region and the region

boundary. As presented in the previous Subsection, for each region

C the segmentation algorithm determines the set sa(C) containing

the tree-hexagons forming the region, and the set sp(C) containing

the tree-hexagons located at the boundary of the region. Because

for each tree-hexagon ‘H’ we determine its dominant color c(h)
and its pseudo-gravity center g(h), for each region C the following

information can be further determined:

- the mean color of the region, c(C), the area of the region,

a(C), and the length of the contour of the region, p(C). In

addition, for each pair of regions, Ci and Cj , the length

p(Ci,Cj) of the common boundary between these region

can be determined.

In order to reduce the time complexity of the segmentation

algorithm we estimate the area a(C) and the perimeter p(C) of a

region C in function of the length of the sets sa(C) and sp(C)
respectively. Assuming that the distance between two neighboring

voxels situated on axis Ox, Oy or Oz has the value 1, the area of a

tree-hexagon is 12 and thus the area of a region C is given by the

following relation:

a(C) = 12×|sa(C)|, (21)

where |sa(C)| represents the cardinal of the set sa(C).

In order to determine a good final segmentation and to discover the

salient objects from the input image, the syntactic based sequence

of segmentations, Sf , as defined by Equation (11), can

decomposed into several subsequences, each subsequence being

determined by a modified form of the Boruvka’s algorithm.
Let i1 < i2 < . . . < ix < ix+1 be a sequence of indices, with i1 =

t and ix+1 = k, that allows a decomposition of the sequence Sf as

follows:

Sf = (Si1 ,Si1+1, . . . ,Si2−1,Si2 ,

Si2+1,Si2+2, . . . ,Si3 ,

. . .

Six+1,Six+2, . . . ,Six+1). (22)

As presented in Algorithm 1 the procedure

CREATESYNTACTICPARTITION implements the syntactic

based segmentation, while the function GENERATEPARTITION

is used to generate the subsequences of segmentations, Sf1 , . . .

,Sfx , each subsequence of the form,

Sf j = (Si j ,Si j+1, . . . ,Si j+1−1,Si j+1), (23)

being determined by the function GENERATEPARTITION at the

j-th call. The last segmentation of the subsequence Sf j generate by

GENERATEPARTITION is also the input sequence of the (j +1)-
th call of GENERATEPARTITION. The first input segmentation

Si1 is the final segmentation St of the color based segmentation

algorithm. The function DETERMINEWEIGHTS determines the

set A of weights as defined by following relation.

The construction of A is realized as following:

1. Let SB = [b1,b2,b3,b4] be the sequence contained the same

elements as the set B in non-decreasing order. For this reasoning

we choose another set of weight values, which is related to the

initial set B;

2. Let ‘r’ be the lowest common divisor of the numbers (b2− b1),
(b3−b2), and (b4−b3),
3. Let s = (b4−b1)/r ,
4. The set of weights that we use are:

A = {a0, a1, . . . ,as}, (24)

where a0 = b1, ak = b4, ai = a0+i*r, for i = 1, . . . , s, and in addition

b2,b3 ∈ A.

Algorithm 3 Syntactic-based Segmentation

1: **procedure CREATESYNTACTICPARTITION(G,G’, thkg)

2: Input G, G’, thkg

3: Output G’
4: A←*DETERMINEWEIGHTS(G’)

5: count ←0

6: repeat

7: G’ ← *GENERATEPARTITION(G,G’, thkg,newPart)

8: if newPart then

9: count ←0

10: k←[a0 a0 a0 a0]T

11: end if

12: thkg ←*MODIFYWEIGHTS(G’, k)

13: count ←count +1

664 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

14: *NEXTKVECTOR(k)

15: until count = |A|4

16: end procedure

More formally, the j-th call of the function

GENERATEPARTITION, for which the output parameter

‘newPart’ has the value ‘true’, is associated to the non-

empty subsequence Sf j of segmentations and it generates a

sequence of graphs,

Gi j = (Gi ji j ,Gi ji j+1, . . . ,Gi ji j+1−1,Gi ji j+1), (25)

and a sequence of associated forests of minimum spanning trees,

Fi j = (Fi ji j ,Fi ji j+1, . . . ,Fi ji j+1−1,Fi ji j+1), (26)

such that the last forest is empty, Fi ji j+1 = Ø. For each graph Gi jl

from the sequence Gi j , Fi jl represents the forest of minimum

spanning trees of Gi jl , and Gi jl+1 is the contraction of Gi jl over all

the edges that appear in Fi jl , as presented in Algorithm 4.

Because the last graph, Gi ji j+1 , of the sequence Gi j cannot be

further contracted the dissimilarity vectors of functions associated

to the edge weights, d(C(vi),C(vj)), are not modified, and thus the

edge weights, w(vi,vj), as defined by the function GRAPH

EXTRACTION are not modified. In order to restart the process for

determining the new subsequence,

Sf j+1 = (Si j+1 ,Si j+1+1, . . . ,Si j+2), (27)

the first graph, Gi j+1i j+1 of the sequence Gi j+1 differs from the

last graph, Gi ji j+1 , of the sequence Gi j by modifying only the

weighted vector k ∈ K. The function MODIFYWEIGHTS of

Algorithm 2 realizes this modification and recalculates the new

global weighted threshold. In this case the values for the weighted

vector k are sequential determined in the lexicographic order,

generated by the procedure NEXTKVECTOR.

This constraint is necessary in order to realize a stopping

criterion for the algorithm: the last graph cannot be modified and

for all distinct values of the weighted vectors k ∈ K and thus

another partition cannot be determined. Each time when

GENERATEPARTITION generates a non-empty sequence of

segmentations, the output parameter ‘newPart’ became

‘true’ and the first vector of the set K is generated.

When GENERATEPARTITION generates an empty sequence

of segmentations, ‘newPart’ is ‘false’ and the next vector

in lexicographic order is generated by the procedure

NEXTKVECTOR.

When sequentially for all distinct weighted vectors k ∈ K (e.g.

|A|4 distinct vectors, with the set A specified by the relation (24))

generated in lexicographic order the function

GENERATEPARTITION generates a empty sequence of

segmentations, the procedure

GCREATESYNTACTICPARTITION finishes.

Between the last graph, Gi ji j+1 , of the sequence Gi j and the first

graph, Gi j+1i j+1 of the sequence Gi j+1 , there is a sequence of

graphs that differ only by the edge weights,

b Gi j = (b Gi j1 , b Gi j2 , . . . , b Gi jbni j), (28)

such that b Gi j1 = Gi ji j and b Gi jbni j = Gi j+1i j+1 . This sequence

is obtained when the function GENERATEPARTITION generates

an empty sequence of segmentations, with bni j < |A|4.

As presented in Algorithm 4 the function

GENERATEPARTITION generates at the j-th call the sequence of

graphs Gi j defined by Equation (25), and the sequence of forests

of minimum spanning trees defined by Equation (26), where:

• the first graph of the sequence Gi j is the input graph of the

function (i.e. the parameter G’),

• the last graph of this sequence is the graph returned by the

function.

The function GENERATEPARTITION is a generalized Greedy

algorithm for constructing minimum spanning trees, as presented

in [19]. At each iteration, ‘l’, of the function

GENERATEPARTITION, the contraction of the tree Gi jl over all
the edges that appear in the minimum spanning tree Fi jl is

performed by the function CONTRACTGRAPH.

Algorithm 4 Generate a new sequence of partitions

1: **function GENERATEPARTITION(G,G’, thkg, newPartition)

2: Input G, G’, thkg, G’ ⊲ G’ = Gi ji j is the input graph

3: Output newPartition

4: newPartition← f alse ⊲ l ←0

5: repeat

6: k←0

7: for i←1,G’.n do

8: if G’.ad jEdges[i] ≠() then

9: Determine the lightest edge ‘e’ adjacent to G’.V[i]

10: ⊲ Let ei ∈ G’.ad jEdges[i] such that

11: ⊲ e = G’.E[ei] = (vi , vj) is the lightest edge

12: thkl← *DETERMINETHL(vi, vj)

13: if e.w ≤ min(thkg, thkl) then

14: ⊲ Determination of the MST Fi ji j+l

15: k ←k+1

16: e.inMST ←true

17: end if

18: end if

19: end for

20: if k > 0 then

21: G’ ←*CONTRACTGRAPH(G,G’, thkg)

22: ⊲ Determination of the graph G’ = Gi ji j+l+1

23: ⊲ l ←l+1

24: newPartition←true

25: end if

26: until k = 0

27: return G’ ⊲ G’ = Gi ji j+1 is the output graph

28: end function

The function DETERMINETHL returns the local weighted

threshold thhl associated to the components Cvi and Cvj , as

presented in the following relations:

- the local weighted threshold associated with the weighted

vector k ∈K and with the adjacent components C’ and C’‘ of

the segmentation Sl is denoted by th
kl(C’,C’‘) and it is

determined by considering the average of dissimilarity

functions for anly adjacent components with C’ and C’‘ from

the segmentation Sl ,

th
kl(C’,C’‘) = bkT l(C’,C’‘), (29)

where the components of the vector l(C’,C’‘) are determined, for

DUMITRU DAN BURDESCU ET AL.: EFFICIENT VOLUMETRIC SEGMENTATION METHOD 665

 i = 1,2,3,4, as follows:

li(C’,C’‘) =[p(C’,C’‘,Ca,Cb)edi(C’,C’‘)]/[p(C’,C’‘,Ca,Cb) 1] ,

(30)

where the predicate p(C’,C’‘,Ca,Cb) is defined as

p(C’,C’‘,Ca,Cb) = ((Ca,Cb) ∈ Sl)∧(ad j(C’,Ca) = true)∧
(ad j(C’‘,Cb) = true). (31)

The function implementing the contraction procedure,

CONTRACTGRAPH, is similarly to the function

EXTRACTGRAPH with the following differences:

• It detects the connected components specified by the edges

marked as MST in the GENERATEPARTITION, and assigns to

each vertex of the new generated graph the component it belongs

to. The function DETERMINECOMPONENTS implements a

Depth-First-Search traversal method on the input graph in order to

enumerate the connected components.

• As in the color-based segmentation algorithm (see Algorithm 2),

for each edge from the minimum spanning tree a union of the two

partial spanning trees containing the two vertices of the edge is

made by using the procedure UNION. In this way it is realized a

reunion of the components associated to the vertices from each

connected component of the input graph:

C(v) =∪u∈Set(Tv)C(u), (32)

where ‘Tv’ denotes the minimum spanning tree from the input

graph associated to the connected component that represents the

new created vertex in the output graph, and Set(Tv) represents the

connected component associated to ‘Tv’.
• The weights of the new created edges and also the weighted

threshold of the output graph use a weighted vector k ∈ K such

that its components have a value random chosen from the set

A = {a0,a1, . . . ,as} by using the procedure ALEAKCHOOSE. This

is an important aspect of the syntactic based segmentation

algorithm and in this way the distribution of the weights of the four

dissimilarity functions tends to became uniform.

The sequence F f of forests of minimum spanning trees as

defined by Equation (12) can be decomposed as the sequence Sf of

segmentations as follows:

F f = (Fi’1 ,Fi’1+1, . . . ,Fi’2−1,

Fi’2 ,Fi’2+1, . . . ,Fi’3−1,

. . .

Fi’x ,Fi’x+1, . . . ,Fi’x+1−1). (33)

Because the graph Gi ji j+l and its corresponding minimum

spanning tree Fi ji j+l , for j = 1, . . . ,x and l = 0, . . . , i j+1 −i j −1,

share the same set of vertices, from algorithm of graph contraction

one can see that each subsequence of forests determined at the jth

call of the function GENERATEPARTITION,

F fj = (Fi’j ,Fi’j+1, . . . ,Fi’j+1−1,Fi’j+1), (34)

can determined for each l = 0, . . . , i j+1−i j −1 as follows:

E’i j+l+1 = E’i j+l∪e∈Fi ji j+l Orig(e), (35)

where E’u represents the set of the edges associated to the forest F’
u = (V’,E’u), and Orig(e) represents the edge from the initial

graph G corresponding to the edge ‘e’ from the current graph Gi ji

j+l .

The call of the procedure UNION at the line 22 of graph

contraction allows the determination of the sequence of the

segmentations S f as defined by Boruvka’s algorithm.

Si j+l+1 = {Set(T) | T ∈ Fi j+l+1}= {C(v) | v ∈ Gi ji j+l+1}, (36)

for each j =1, . . . ,x and l =0, . . . , i j+1−i j−1. This relation

specifies the fact that there is a bijective mapping between the

components from the segmentations Si j+l+1 (or equivalently

between the trees from the forests Fi j+l+1) and the vertices of the

contracted graphs Gi ji j+l+1.

At j-th call of the function GENERATEPARTITION, each call

of the function CONTRACTGRAPH generates a new

segmentation, Si j+l+1, with l = 0, . . . , i j+1 −i j −1, which tends to

merge the components of the previous segmentation until regions

closer to salient objects are detected.

Algorithm 5 Graph contraction

1: **function CONTRACTGRAPH(G,G’, thkg)

2: Input G, G’ ⊲ G’ = Gi ji j+l is the input graph

3: Output thkg

4: n’‘ ← *DETERMINECOMPONENTS(G’, cIndex)

5: ⊲ Determine connected components of G’
6: ⊲ Let n’‘ the number of connected components

7: ⊲ Assign to each component an index in the array cIndex

8: G’‘ ← *CREATEGRAPH(n’‘, cIndex)

9: ⊲ Create a new graph with one vertex for each

10: ⊲ connected component in G’, i.e., G’‘.n = n’‘
11: Initialize two arrays of bins, B’ and B’‘, of dimension n’‘
12: for i←1,G’.m do ⊲ Let G’.E[i] = e = (vi , vj)

13: cj ←G’.V[vj].comp

14: Add i to the bin B’[cj]
15: if e.inMST then

16: ei0 ←e.origEdge

17: (hi,hj)←(G.E[ei0].vi,G.E[ei0].vji)

18: ⊲ (hi ,hj) is the original edge from G

19: ⊲ corresponding to the current edge (vi , vj)

20: (ti, t j)←(FINDSET(hi,CC), FINDSET(hj ,CC))

21: if ti 6= t j then

22: *UNION(ti, t j, e.w,CC)

23: ⊲ Determination of the MST Fi j+l+1

24: ⊲ and of the segmentation Si j+l+1:

25: ⊲ Fi j+l+1 ←Fi j+l∪{Orig(e)},

26: ⊲ Si j+l+1 ←Si j+l −{{Cti},{Ct j }}∪

27: ⊲∪{Cti ∪Ct j }

28: end if

29: end if

30: end for

31: for i←1,n’‘ do

32: for all ei ∈ B’[i] do ⊲ Let (vi, vj) = G’.E[ei]

33: ci ←G’.V[vi].comp

34: Add ei to the bin B’‘[ci]
35: end for

36: end for

37: *ALEAKCHOOSE(k)

38: for i←1,n’‘ do

39: if B’‘[i] 6= hi then

666 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

40: Determine the lightest edge from the bin B’‘[i]
41: ⊲ Let ei ∈ B’‘[i] such that

42: ⊲ G’.E[ei] = (vi , vj) is the lightest edge

43: ei0 ←G’.E[ei].origEdge

44: (hi,hj)←(G.E[ei0].vi,G.E[ei0].vji)

45: (ti, t j)←(FINDSET(hi,CC), FINDSET(hj ,CC))

46: dist ← *COLORDIST(ti, t j ,CC)

47: w← *WEIGHT(dist, ti, t j,CC, k)

48: hci, cji←hG’.V[vi].comp,G’.V[vj].compi

49: *ADDEDGE(G’‘, ci, cj ,w, ei0)
50: end if

51: end for

52: thkg ←*DETERMINETHG(G’‘, k)

53: return G’‘ ⊲ G’‘ = Gi ji j+l+1 is the output graph

54: end function

VI. SEGMENTATION RESULTS AND QUANTITATIVE EVALUATION

These modalities produce high-resolution voxel based
datasets which are in fact data points on a regularly spaced three
dimensional grid.

Because sampling data points from the real world is
performed slice by slice the existing spatial segmentation
techniques are often planar in nature, applying existing planar
algorithms to the volume data slice by slice. The results are inferior
to native volumetric based solution because these algorithms
ignore the interaction between adjacent slices [20], [21], [22], [23].

However, even if image segmentation is a heavily researched
field, extending the algorithms to spatial has been proven not to be
an easy task. A true volumetric segmentation remains a difficult
problem to tackle due to the complex nature of the topology of
volumetric objects, the huge amount of data to be processed and
the complexity of the algorithms that scale with the new added
dimension.

Martin thesis [24] states that human segmentation can be used
as the ground-truth reference in benchmarking segmentations
produced by different methods. On the other hand, one may argue
that human segmentation is subjective and will produce different
segmentations for the same image but in most cases they will differ
only in certain regions of local refinement. This idea has been
considered in [25], [26] as a method of avoiding penalizing
segmentations that are coarser or more refined than others.

In pattern recognition and information retrieval, Precision-
Recall method has received a world-wide acceptance and it’s
considered as a standard measure because it offers good results for
relevance [26].

In the general case, precision (or confidence) is defined as the
fraction of retrieved cases that are relevant, while recall (or
sensitivity) is the fraction of relevant cases that are retrieved. In
other words, in the context of classification, the precision for a
class is equivalent with the true positives accuracy which is the
number of true positives (i.e. the number of cases that are correctly
labeled as belonging to that class) divided by the total number of
cases labeled as belonging to that class (including false positives,
which are cases that were incorrectly labeled as belonging to the
class).

Precision = TP/(TP + FP) (37)
Also in this context, recall is equivalent with the true positives

rate which is defined as the number of true positives divided by the
total number of cases that actually belong to the positive class (i.e.

the sum of true positives and false negatives, which are cases that
were not labeled as belonging to the positive class but should have
been).

Recall =TP/(TP + FN) (38)
The terms: true positives (TP), true negatives (TN), false

positives (FP) and false negatives (FN) compare the classifier’s
prediction against apriority external information that is considered
as the ground truth (observation). These are synthesized in the
contingency table (or confusion matrix), expressed in Table I.

TABLE I. PRECISION-RECALL CONTINGENCY TABLE

 Observation

Prediction TP – Correct result FP – Unexpected
positive result

 TN - Correct absence of
result

FN – Missing
negative result

Fig. 3. Experiment Results

As said before, for image segmentation algorithms, Martin

[24] proposes a method that outputs Precision-Recall curves as a
mean to evaluate segmentation consistency. The curve offers a rich
descriptor where both axes are sensitive and intuitive and the
inherent trade-off between these two quantities can be easily
analyzed.

Recall is defined as the proportion of boundary pixels/voxels
in the ground truth that were successfully detected by the automatic
segmentation, while precision is the proportion of boundary
pixels/voxels in the automatic segmentation that correspond to the
true boundary pixels. Precision is in fact a measure of the amount
of noise in the classifier’s result. The segmentation method used
for the experimental results is based on simple hysteresis threshold.
All voxels with the density within a specified threshold ‘tkgh’ will
be treated as boundary voxels while the others as empty space [27],
[28], [29].

The results are as expected: the over-segmented volume has

high recall and low precision (see figure 3), while the under-

segmented image has low recall because it fails to find salient

features for the volume, and also low precision (since because

many boundary pixels remain unmatched).

VII.CONCLUSION

In this paper we present original and efficient volumetric

segmentation methods. The major concept used in graph-based

volumetric segmentation method is the concept of homogeneity of

regions and thus the edge weights are based on color distance. Our

previous works for planar images are related to other works in the

sense of pair-wise comparison of region similarity. The key to the

whole algorithm of volumetric segmentation is the honeycomb

cells.

DUMITRU DAN BURDESCU ET AL.: EFFICIENT VOLUMETRIC SEGMENTATION METHOD 667

Here we presented only Color-based Segmentation, Syntactic-

based Segmentation and Generate New Sequence of Partitions

with Graph Contraction algorithms besides general algorithm of

volumetric segmentation due to the entire space. Of course we

have many procedures into general algorithm of volumetric

segmentation methods. We have presented the original and

efficient algorithm of volumetric segmentation methods and

honeycomb cells used is the first run in volumetric segmentation

algorithm. Then we can use the graph facilities and their related

algorithms and computational complexity can be viewed as slow as

the fundamental graph algorithms. Our original algorithms for

Color-based Segmentation and Syntactic-based Segmentation are

linear. Enhancement and generalization of this method is possible

in several further directions. First, it could be modified to handle

open curves for the purpose of medical diagnosis. Second,

research direction is the using of composed shape indexing for

both semantic and geometric image reasoning.

VIII.REFERENCES

[1] R. Urquhar, Graph theoretical clustering based on limited
neighborhood sets. Pattern Recognition, 15(3), 173–187, 1982.

[2] P. Felzenszwalb, W. Huttenlocher, Efficient graph-based image
segmentation. International Journal of Computer Vision, 59(2),
167–181, 2004.

[3] L. Guigues, L. Herve, L.P. Cocquerez, The hierarchy of the
cocoons of a graph and its application to image segmentation.
Pattern Recognition Letters, 24(8), 1059–1066, 2003.

[4] Y. Gdalyahu, D. Weinshall, M. Werman, Self-organization in
vision: stochastic clustering for image segmentation, perceptual
grouping, and image database organization. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 23(10), 1053–1074,
2001.

[5] J. Shi, J. Malik, Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
22(8), 885–905, 2000.

[6] I. Jermyn, H. Ishikawa, Globally optimal regions and boundaries
as minimum ratio weight cycles. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(8), 1075–1088, 2001

[7] M. Cooper, The tractibility of segmentation and scene analysis.
International Journal of Computer Vision, 30(1), 27–42, 1998

[8] J. Malik, S. Belongie, T. Leung, J. Shi, Contour and texture
analysis for image segmentation. International Journal of
Computer Vision, 43(1), 7–27, 2001.

[9] D. Comaniciu, P. Meer, Robust analysis of feature spaces: color
image segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(5), 603–619, 2002.

[10] D. Comaniciu, P. Meer, Mean shift analysis and applications. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Madison, Wisconsin, pp. 1197–1203, 1999.

[11] M. Brezovan, D. Burdescu, E. Ganea, L. Stanescu, An Adaptive
Method for Efficient Detection of Salient Visual Object from
Color Images. In Proceedings of the 20th International
Conference on Pattern Recognition, Istambul, Turkey, pp. 2346–
2349, 2010.

[12] D. Burdescu, M. Brezovan, E. Ganea, L. Stanescu, A new method
for segmentation of images represented in a HSV color space.
Lecture Notes in Computer Science, 5807, 606–616, 2009

[13] R. Gonzales, P. Wintz, Digital Image Processing. Reading, MA:
Addison-Wesley, 1987.

[14] L. Middleton, J. Sivaswamy, Hexagonal Image Processing; A
Practical Approach (Advances in Pattern Recognition). Springer-
Verlag, 2005.

[15] L. Stanescu, D. Burdescu, M. Brezovan, CR. G. Mihai, Creating
New Medical Ontologies for Image Annotation, Springer-Verlag
New York Inc. ISBN 13: 9781461419082, ISBN 10:
1461419085”, 2011

[16] A. Gijsenij, T. Gevers, M. Lucassen, A perceptual comparison of
distance measures for color constancy algorithms, European
Conference on Computer Vision, Marseille, France, pp. 208–221,
2008.

[17] T. Cormen, C. Leiserson, R. Rivest, Introduction to algorithms,
Cambridge, MA: MIT Press, 1990.

[18] Bennstrom, C., Casas, J., Binary-partition-tree creation using a
quasi-inclusion criterion. In Proceedings of the Eighth
International Conference on Information Visualization, London,
UK, pp. 259–294, 2004.

[19] Gabow, H.N., Galil, Z., Spencer, T., Tarjan, R.E., Efficient
algorithms for finding minimum spanning trees in undirected and
directed graphs. Combinatorica, 6, pg. 109–122., 1986

[20] P. Arbelaez, Pont-Tuset, J., Barron, J., Marqués, F., and Malik, J.,
Multiscale Combinatorial Grouping, in Computer Vision and
Pattern Recognition (CVPR), 2014.

[21] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus,
Indoor segmentation and support inference from RGBD images,
in ECCV, 2012

[22] Abramowitz, M., Stegun, I.A. Handbook of Mathematical
Functions. New York: Dover Publications, 1964

[23] R. Huang, V. Pavlovic, and D. N. Metaxas, A tightly coupled
region shape framework for 3d, in Medical Image Segmentation,
IEEE International Symposium on Biomedical Imaging (ISBI06),
2006.

[24] David Martin. An Empirical Approach to Grouping and
Segmentation. PhD thesis, University of California, Berkeley,
2002.

[25] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of
human segmented natural images and its application to evaluating
segmentation algorithms and measuring ecological statistics,” in
In Proceedings of International Conference on Computer Vision,
no. 2, pp. 416–432, 2001.

[26] Y. Haxhimusa, A. Ion, and W. Kropatsch, Evaluating graph-
based segmentation algorithms, in Proceedings of the 18th
Internation Conference on Pattern Recognition, 2006.

[27] D. Powers, Evaluation: From precision, recall and F-measure to
ROC, informedness, markedness and correlation, Journal of
Machine Learning Technologies, vol. 2, no. 1, pp. 37–63, 2011.

[28] P. Arbelaez, C. Fowlkes, and D. Martin. The Berkeley
segmentation dataset and benchmark. Computer Science
Department, Berkeley University. [Online]. Available:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

[29] F. J. Estrada and A. D. Jepson, “Benchmarking image
segmentation algorithms,” International Journal of Computer
Vision, vol. 85, no. 2, pp. 167–181, Nov. 2009. [Online].
Available: http://dx.doi.org/10.1007/s11263-009-025

668 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

