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Abstract -- In this paper we extend our previous work for 

planar images by adding a new step in the volumetric 

segmentation algorithm that allows us to determine regions 

closer to it. There are huge of papers for planar images and 

segmentation methods and most of them are graph-based for 

planar images and very few papers for volumetric 

segmentation methods. However, even if image segmentation is 

a heavily researched field, extending the algorithms to spatial 

has been proven not to be an easy task. A true volumetric 

segmentation remains a difficult problem to tackle due to the 

complex nature of the topology of spatial objects, the huge 

amount of data to be processed and the complexity of the 

algorithms that scale with the new added dimension. The 

problem of partitioning images into homogenous regions or 

semantic entities is a basic problem for identifying relevant 

objects. Visual segmentation is related to some semantic 

concepts because certain parts of a scene are pre-attentively 

distinctive and have a greater significance than other parts. A 

number of approaches to segmentation are based on finding 

compact regions in some feature space. A recent technique 

using feature space regions first transforms the data by 

smoothing it in a way that preserves boundaries between 

regions. The key to the whole own algorithm of volumetric 

segmentation is the honeycomb cells. The pre-processing 

module is used mainly to blur the initial RGB spatial image in 

order to reduce the image store and to make algorithms to be 

efficient. Then the volumetric segmentation module creates 

virtual cells of prisms with tree-hexagonal structure defined on 

the set of the image voxels of the input spatial image and a 

volumetric grid graph having tree-hexagons as cells of vertices. 

Early graph-based methods use fixed thresholds and local 

measures in finding a volumetric segmentation. 

 

Index terms- Volumetric Segmentation; Graph-based 

segmentation; Color segmentation; Syntactic segmentation 

I.INTRODUCTION AND RELATED WORKS 

HERE is a wide range of computational vision problems for 
planar images that could use of segmented images. The 

problem of partitioning images into homogenous regions or 
semantic entities is a basic problem for identifying relevant objects. 
Higher-level problems such as object recognition and image 
indexing can also make use of segmentation results in matching, to 
address problems such as figure-ground separation and recognition 
by parts. In both intermediate level and higher-level vision 
problems, contour detection of objects in real images is a 
fundamental problem. However the problems of planar image 
segmentation and grouping remain great challenges for computer 
vision. As a consequence we consider that a spatial segmentation 
method can detect visual objects from images if it can detect at least 

the most objects. We develop a visual feature-based method which 
uses a virtual spatial graph constructed on cells of prisms with tree-
hexagonal structure containing half of the image voxels in order to 
determine a forest of spanning trees for connected component 
representing visual objects. Thus the spatial image segmentation is 
treated as a spatial graph partitioning problem. In addition our 
spatial segmentation algorithm produces good results from both 
from the perspective perceptual grouping and from the perspective 
of determining homogeneous in the input images. Early graph-
based methods use fixed thresholds and local measures in finding a 
spatial segmentation. 

In [1] one determined the normalized weight of an edge by 
using the smallest weight incident on the vertices touching that 
edge. Other methods for planar images [2], [3] use an adaptive 
criterion that depends on local properties rather than global ones. In 
contrast with the simple graph-based methods, cut-criterion 
methods capture the non-local cuts in a graph are designed to 
minimize the similarity between pixels that are being split [4] [5]. 
The normalized cut criterion [5] takes into consideration self 
similarity of regions. An alternative to the graph cut approach is to 
look for cycles in a graph embedded in the image plane. In [6] the 
quality of each cycle is normalized in a way that is closely related to 
the normalized cuts approach. Other approaches to planar image 
segmentation consist of splitting and merging regions according to 
how well each region fulfills some uniformity criterion. Such 
methods [7] use a measure of uniformity of a region. In contrast [2] 
and [3] use a pair-wise region comparison rather than applying a 
uniformity criterion to each individual region. Complex grouping 
phenomena can emerge from simple computation on these local 
cues [8]. A number of approaches to segmentation are based on 
finding compact regions in some feature space [9]. A recent 
technique using feature space regions [10] first transforms the data 
by smoothing it in a way that preserves boundaries between regions. 
Our previous works [11] and [12] are related to the works in [2] and 
[3] in the sense of pair-wise comparison of region similarity. In 
these papers we extend our previous work by adding a new step in 
the spatial segmentation algorithm that allows us to determine 
regions closer to it.  

II.CONSTRUCTING A VIRTUAL TREE-HEXAGONAL STRUCTURE 

The pre-processing module is used mainly to blur the initial 
RGB spatial image in order to reduce the image noise [13] and to 
apply the spatial segmentation algorithm. Then the segmentation 
module creates virtual cells of prisms with tree-hexagonal structure 
defined on the set of the image voxels of the input spatial image and 
a spatial triangular grid graph having tree-hexagons as cells of 
vertices. In order to allow a unitary processing for the multi-level 
system at this level we store, for each determined component C, the 
set of the tree-hexagons contained in the region associated to C and 
the set of tree-hexagons located at the boundary of the component. 
In addition for each component the dominant color of the region is 
extracted. This color will be further used in the post-processing 
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module if any. The contour extraction module determines for each 
segment of the image its boundary. The boundaries of the de 
determined visual objects are closed contours represented by a 
sequence of adjacent tree-hexagons. At this level a linked list of 
points representing the contour is added to each determined 
component. The post-processing module (if any) extracts 
representative information for the above determined visual objects 
and their contours in order to create an efficient index for a 
semantic image processing system. 

A spatial image processing task contains mainly three important 
components: acquisition, processing and visualization. After the 
acquisition stage an image is sampled at each point on a three 
dimensional grid storing intensity or color information and implicit 
location information for each sample. The grid is the most dominant 
of any grid structure in image processing and conventional 
acquisition devices acquire square sampled images. An important 
advantage of using this grid is the fact that the visualization stage 
uses directly the voxels of the digitized image. We do not use a 
hexagonal lattice model because of the additional actions involving 
the double conversion between square and tree-hexagonal voxels. 
However we intent to use some of the advantages of the tree-
hexagonal grid such as uniform connectivity. This implies that there 
will be less ambiguity in defining boundaries and regions [14]. As a 
consequence we construct a virtual tree-hexagonal structure over 
the grid voxels of an input image, as presented in Figure 1. This 
virtual tree-hexagonal grid is not a tree-hexagonal lattice because 
the constructed hexagons are not regular. 

 

Fig. 1. Virtual Tree-Hexagonal structure constructed on the image voxels 

Let I be a spatial initial image having the dimension h×w× z 
(e.g. a matrix having ’h’ rows, ‘w’ columns and ‘z’ deep of matrix 
voxels). In order to construct a tree-hexagonal grid on these voxels 

we retain an eventually smaller image with 

h′ = h−(h−1) mod 2, 
w′ = w−w mod 4,      (1) 

z’ = z- z mod 4. 

 
In the reduced image at most the last line of voxels and at most 

the last three columns and deep of matrix of voxels are lost, 
assuming that for the initial image h > 3 and w > 4 and z > 4, that is 
a convenient restriction for input spatial images.  

Each tree-hexagon from the tree-hexagonal grid contains 
sixteen voxels: such twelve voxels from the frontier and four 
interior frontiers of voxels. Because tree-hexagons voxels from an 
image have integer values as coordinates we select always the left 
up voxel from the four interior voxels to represent with 
approximation the gravity center of the tree-hexagon, denoted by 
the pseudo-gravity center. We use a simple scheme of addressing 
for the tree-hexagons of the tree-hexagonal grid that encodes the 
spatial location of the pseudo-gravity centers of the tree-hexagons 
as presented in Figure 1.  

Let h× w× z the three dimension of the initial spatial image 

verifying the previous restriction (e.g.  h mod 2 = 1, w mod 4 = 0, z 

mod 4 = 0, h ⁋ 3 and w⁋4 and z⁋4). Given the coordinates 

(l,c,d) of a voxel p’from the input spatial image, we use the 

linearized function, ip h ,w, ,z (l,c,d) = (l −1)w+c+d, in order to 
determine an unique index for the voxel.  

Let ‘ps’ be the sub-sequence of the voxels from the sequence of 

the voxels of the initial spatial image that correspond to the pseudo-

gravity center of tree-hexagons, and’ hs’, ‘ws’ and ‘zs’ the sequence 

of tree-hexagons constructed over the voxels of the initial spatial 

image. For each voxel ‘p’ from the sequence ps having the 
coordinates (l,c,d), the index of the corresponding tree-hexagon 

from the sequence hs, ws and zs are given by the following relation: 

f h h, w ,z (l,c,d) = [(l−2)w+c+d−2l]/4 +1      (2) 

In this case the following relation holds: 

f h h, w ,z (l,c,d) = i.    .                                                 (3) 

Moreover it is easy to verify that the function ‘f h’ defined by 
the relation (2) is bijective. Its inverse function is given by: 

f h−1 h, w, z (k) = (l,c,d)           (4) 
where: 
l = (2+ 4(k−1)/w  if  h < w, 
l = 2+ 4(k−1)/w +tw  if  h ⁋ w, and h = tw+h′,         (5) 

c = 4(k−1)+2l−(l−2)w,                     (6) 

d = 4(k−1)+2l−(l−2)w.                     (7) 

 
Relations (4), (5), (6) and (7) allow us to uniquely determine 

the coordinates of the voxel representing the pseudo-gravity center 
of a tree-hexagon specified by its index (its address). In addition 
these relations allow us to determine the sequence of coordinates of 
all sixteen voxels contained into a tree-hexagon with an address ‘k’. 

The sub-sequence ‘ps’ of the voxels representing the pseudo-

gravity center and the function ‘fh’ defined by the relation (2) allow 
to determine the sequence of the tree-hexagons ‘Hs’ that is used by 
the segmentation and contour detection algorithms. After the 

processing step the relations (4), (5), (6), (7) allow to up-date the 

voxels of the spatial initial spatial image for the visualization step. 

Each tree-hexagon represents an elementary item and the 

entire virtual tree-hexagonal structure represents a triangular grid 

graph, G = (V,E), where each tree-hexagon ‘H’ in this structure 

has a corresponding vertex v ∈V. The set E of edges is constructed 

by connecting tree-hexagons that are neighbors in a 20-connected 

sense. The vertices of this graph correspond to the pseudo-gravity 

centers of the hexagons from the tree-hexagonal grid and the edges 

are straight lines connecting the pseudo-gravity centers of the 

neighboring hexagons, as presented in Figure 2. 

 

Fig.2. Triangular grid graph constructed on the pseudo-gravity centers of 

the tree-hexagonal grid 

There are two main advantages when using tree-hexagons 
instead of all voxels as elementary piece of information: 
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• The amount of memory space associated to the graph vertices 
is reduced. Denoting by ‘np’ the number of voxels of the initial 
spatial image, the number of the resulted tree-hexagons is always 
less than np/4, and thus the cardinal of both sets V and E is 
significantly reduced; 

• The algorithms for determining the visual objects and their 
contours are much faster and simpler in this case. 

We associate to each tree-hexagon ‘H’ from V two important 
attributes representing its dominant color and the coordinates of its 

pseudo-gravity center, denoted by c(h) and g(h). The dominant 

color of a tree-hexagon is denoted by c(h) and it represents the color 

of the voxel of the tree-hexagon which has the minimum sum of 

color distance to the other twenty voxels. Each tree- hexagon ‘H’ in 
the tree-hexagonal grid is thus represented by a single point, g(h), 

having the color c(h). By using the values g(h) and c(h) for each 

tree-hexagon information related to all voxels from the initial image 

is taken into consideration by the spatial segmentation algorithm. 

III. VOLUMETRIC SEGMENTATION ALGORITHM 

Let V = {h1, . . . ,h|V|} be the set of virtual tree-hexagons 
constructed on the input spatial image voxels as presented in 
previous section and G = (V,E) be the undirected spatial grid-graph, 
with E containing pairs of  honey-beans cell (tree-hexagons) that are 
neighbors in a 20-connected sense. The weight of each edge  e = 
(hi,hj) is denoted by w(e), or similarly by w(hi,hj), and it represents 
the dissimilarity between neighboring elements ‘hi’ and ‘hj’ in a 
some feature space. Components of a spatial image represent 
compact regions containing voxels with similar properties. Thus the 
set V of vertices of the graph G is partitioned into disjoint sets, each 
subset representing a distinct visual object of the initial image. 

As in other graph-based approaches [15] we use the notion of 
segmentation of the set V. A segmentation, S, of V is a partition of 

V such that each component C ∈ S corresponds to a connected 

component in a spanning sub-graph  
GS = (V,ES) of G,   with ES ⊆E. 
The set of edges E −ES that are eliminated connect vertices 

from distinct components. The common boundary between two 

connected components C′,C’‘ ∈ S represents the set of edges 

connecting vertices from the two components: 

cb(C′,C’‘) = {(hi,hj) ∈ E | hi ∈ C′, hj ∈ C’‘} (8) 

The set of edges E−ES represents the boundary between all 
components in S. This set is denoted by bound(S) and it is defined 
as follows: 

bound(S)= ∪C′,C’‘∈S  cb(C′,C’‘).          (9) 

In order to simplify notations throughout the paper we use Ci 
to denote the component of a segmentation S that contains the 

vertex hi ∈V. 

We use the notions of segmentation too fine and too coarse as 
defined in [2] that attempt to formalize the human perception of 
salient visual objects from an image. A segmentation S is too fine if 

there is some pair of components C′,C’‘ ∈ S for which there is no 

evidence for a boundary between them. S is too coarse when there 
exists a proper refinement of S that is not too fine. The key element 
in this definition is the evidence for a boundary between two 
components. 

The goal of a spatial segmentation method is to determine a 
proper segmentation, which represent visual objects from an image. 

Definition 1 Let G = (V,E) be the undirected spatial graph 
constructed on the virtual tree-hexagonal structure of an image, with 
V = {h1, . . . ,h|V|}. A proper segmentation of V, is a partition S of 
V such that there exists a sequence [Si, Si+1, . . . ,S f−1,S f ] of 
segmentations of V for which: 

•  S = Sf is the final segmentation and Si is the initial 

segmentation, 

• Sj is a proper refinement of S j+1 (i.e., S j ⊂ S j+1) for each j = 

i, . . . , f −1, 
• segmentation Sj is too fine, for each j = i, . . . , f −1, 
• any segmentation Sl such that Sf ⊂ Sl , is too coarse, 

• segmentation Sf is neither too coarse nor too fine. 

 

Let C’,C’’ ∈ Sa be two components obtained by splitting a 

component C ∈ Sb. In this case C′ and C’’ have a common 

boundary, cb(C′,C’’) ≠Ø. 
Our segmentation algorithm starts with the most refined 

segmentation, S0 = {{h1}, . . . ,{h|V|}} and it constructs a sequence 

of segmentations until a proper segmentation is achieved. Each 

segmentation S j is obtained from the segmentation Sj−1 by merging 

two or more connected components for there is no evidence for a 

boundary between them. For each component of a segmentation a 

spanning tree is constructed and thus for each segmentation we use 

an associated spanning forest. 
The evidence for a boundary between two components is 

determined taking into consideration some features in some model 
of the spatial input image. When starting, for a certain number of 
segmentations the only considered feature is the color of the regions 
associated to the components and in this case we use a color-based 
region model. When the components became complex and contain 
too much tree-hexagons, the color model is not sufficient and 
geometric features together with color information are considered. 
In this case we use a syntactic based with a color-based region 
model for regions. In addition syntactic features bring 
supplementary information for merging similar regions in order 
determine salient objects. 

For the sake of simplicity we will denote this region model as 
syntactic-based region model. 

As a consequence, we split the sequence of all segmentations, 
Si 

f = [S0,S1, . . . ,Sk−1,Sk],               (10) 
in two different subsequences, each subsequence having a 

different region model, 
                Si = [S0,S1, . . . ,St−1,St ],    

Sf = [St ,St+1, . . . ,Sk−1,Sk],                (11) 
where Si represents the color-based segmentation sequence, 

and Sf represents the syntactic-based segmentation sequence. 
The final segmentation St in the color-based model is also the 

initial segmentation in the syntactic-based region model. 
For each sequence of segmentations we develop a different 

algorithm. Moreover we use a different type of spanning tree in 
each case: a maximum spanning tree in the case of the color-based 
segmentation, and a minimum spanning tree in the case of the 
syntactic-based segmentation. More precisely our method 
determines two sequences of forests of spanning trees, 

       Fi = [F0,F1, . . . ,Ft−1,Ft ], 

       F f = [Ft′,Ft’+1, . . . ,Fk’−1,Fk′],            (12) 

each sequence of forests being associated to a sequence of 
segmentations. 

The first forest from Fi contains only the vertices of the initial 
graph, F0 = (V, Ø), and at each step some edges from E are added 
to the forest Fl = (V,El) to obtain the next forest, Fl+1 = (V,El+1). The 
forests from Fi contain maximum spanning trees and they are 
determined by using a modified version of Kruskal’s algorithm, 
where at each step the heaviest edge (u,v) that leaves the tree 
associated to ‘u’ is added to the set of edges of the current forest. 

The second subsequence of forests that correspond to the 
subsequence of segmentations Sf contains forests of minimum 
spanning trees and they are determined by using a modified form of 

Boruvka’s algorithm. This sequence uses as input a new graph,  
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G′ = (V′,E′), which is extracted from the last forest, Ft , 

of the sequence Fi. Each vertex ‘v’ from the set V’ corresponds to a 
component Cv from the segmentation St (i.e. to a region determined 
by the previous algorithm). At each step the set of new edges added 
to the current forest are determined by each tree T contained in the 
forest that locates the lightest edge leaving T. The first forest from 

Ff contains only the vertices of the graph G′, Ft′ = (V′,Ø). 
We focus on the definition of a logical predicate that allow us 

to determine if two neighboring regions represented by two 

components, Cl′ and Cl’‘, from a segmentation Sl can be merged 

into a single component Cl+1 of the segmentation Sl+1. Two 

components, Cl′  and Cl’’ , represent neighboring (adjacent) 

regions if they have a common boundary: 

ad j(Cl′,Cl’‘) = true   if   cb(Cl’,Cl’‘) ≠ Ø, 
ad j(Cl’,Cl’‘) = f alse   if   cb(Cl’,Cl’‘) = Ø          (13) 
We use a different predicate for each region model, color 

based and syntactic-based respectively. 
PED(e,u) = [wR(Re−Ru)

2+wG(Ge−Gu)
2+wB(Be−Bu)

2 ] ½     (14)  
where the weights for the different color channels, wR, wG, 

and wB verify the condition wR +wG +wB = 1. Based on the 
theoretical and experimental results on spectral and real world data 
sets, Gijsenij et al. [16] is concluded that the PED distance with 
weight-coefficients (wR =0.26, wG = 0.70, wB =0.04) correlates 
significantly higher than all other distance measures including the 
angular error and Euclidean distance. 

In the color model regions are modeled by a vector in the RGB 
color space. This vector is the mean color value of the dominant 
color of tree-hexagons belonging to the regions. 

The evidence for a boundary between two regions is based on 
the difference between the internal contrast of the regions and the 
external contrast between them [2] and [15]. Both notions of 
internal contrast and external contrast between two regions are 
based on the dissimilarity between two colors. 

Let hi and hj representing two vertices in the graph G =(V,E), 
and let wcol(hi,hj) representing the color dissimilarity between 
neighboring elements hi and hj, determined as follows: 

wcol(hi,hj) =PED(c(hi),c(hj))   if (hi,hj) ∈ E, 

wcol(hi,hj) =∞   otherwise,                                   (15) 
where PED(e,u) represents the perceptual Euclidean distance 

with weight-coefficients between colors ‘e‘ and ‘u’, as defined by 
Equation (14), and c(h) represents the mean color vector associated 
with the tree-hexagon ‘H’. In the color-based segmentation, the 
weight of an edge (hi,hj) represents the color dissimilarity,  

w(hi,hj) = wcol(hi,hj). 
Let Sl be a segmentation of the set V. We define the internal 

contrast or internal variation of a component C ∈ Sl to be the 

maximum weight of the edges connecting vertices from C: 

IntVar(C) = max(hi,hj)∈C (w(hi,hj)).           (16) 

The internal contrast of a component C containing only one 
tree-hexagon is zero:  

IntVar(C) = 0,   if |C| = 1. 
The external contrast or external variation between two 

components, C’,C’‘ ∈  S is the maximum weight of the edges 

connecting the two components: 

ExtVar(C’,C’‘) = max(hi,hj)∈cb(C’,C’‘) (w(hi,hj)).    (17) 

We chosen the definition of the external contrast between two 
components to be the maximum weight edge connecting the two 
components and not to be the minimum weight, as in [2] because: 
(a) it is closer to the human perception (in the sense of the 
perception of the maximum color dissimilarity), and (b) the contrast 
is uniformly defined (as maximum color dissimilarity) in the two 
cases of internal and external contrast. 

The maximum internal contrast between two components, 

C’,C’‘ ∈ S is defined as follows: 

IntVar(C’,C’‘) = max(IntVar(C’), IntVar(C’‘)),   (18) 
The comparison predicate between two neighboring 

components C’ and C’‘ (i.e., ad j(C’,C’‘) = true) determines if there 
is an evidence for a boundary between C’ and C’‘ and it is defined 
as follows: 

diffcol(C’,C’‘) = true,  if  
ExtVar(C’,C’‘)  > IntVar(C’,C’‘) + thkg(C’,C’‘), 
 
diffcol(C’,C’‘) = false, if  

ExtVar(C’,C’‘) ⁊ IntVar(C’,C’‘)+ thkg(C’,C’‘),       (19) 

with the the adaptive threshold thkg(C’,C’‘) given by 
thkg(C’,C’‘) =thkg / min(|C’|, |C’‘|)  ,           (20) 

where |C| denotes the size of the component C (i.e. the number 
of the tree-hexagons contained in C) and the threshold ‘thkg‘ is a 
global adaptive value defined by using a statistical model. 

The predicate ‘diffcol’ can be used to define the notion of 

segmentation too fine and too coarse in the color-based region 

model. 
Definition 2 Let G = (V,E) be the undirected spatial graph 

constructed on the tree-hexagonal structure of a spatial input image 
and S a color-based segmentation of V. The segmentation S is too 
fine in the color-based region model if there is a pair of components 

C’,C’‘ ∈ S for which 

ad j(C’,C’‘) = true ∧ diffcol(C’,C’‘) = false. 

Definition 3 Let G = (V,E) be the undirected spatial graph 
constructed on the tree-hexagonal structure of a spatial input image 
and S a segmentation of V. The segmentation S is too coarse if 
there exists a proper refinement of S that is not too fine. 

 
We decided to use the RGB color space because it is efficient 

and no conversion is required.  
Let G= (V,E) be the initial graph constructed on the virtual 

tree-hexagonal structure of a spatial image. The proposed 
segmentation algorithm will produce a proper segmentation of V 
according to the Definition 1. The sequence of segmentations, Si f , 
as defined by Equation (10), and its associated sequence of forests 
of spanning trees, Fi f , as defined by Equation (12), will be 
iteratively generated as follows: 

• The color-based sequence of segmentations, Si, as defined by 
Equation (11), and its associated sequence of forests, Fi, as defined 
by Equation (12), will be generated by using the color-based region 
model and a maximum spanning tree construction method based on 
a modified form of the Kruskal’s algorithm [17]. 

• The syntactic-based sequence of segmentations, Sf, as 

defined by Equation (11), and its associated sequence of forests, F f, 

as defined by Equation (12), will be generated by using the 

syntactic-based model and a minimum spanning tree construction 

method based on a modified form of the Boruvka’s algorithm. 
The general form of the segmentation procedure is presented in 

Algorithm 1 
 
Algorithm 1 Segmentation algorithm 
1: procedure SEGMENTATION (l,c,d,P,H,Comp) 
2: Input l, c, d, P 
3: Output H, Comp 
4: H ←CREATEHEXAGONALSTRUCTURE(l, c, d, P) 
5: G←CREATEINITIALGRAPH(l, c, d, P,H) 
6: CREATECOLORPARTITION (G,H,Bound) 
7: G’ ←EXTRACTGRAPH (G,Bound, thkg) 
8: CREATESYNTACTICPARTITION(G,G’, thkg) 
9: Comp ←EXTRACTFINALCOMPONENTS(G’) 
10: end procedure 
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The input parameters represent the image resulted after the 
pre-processing operation: the array P of the spatial image voxels 
structured in ‘l’ lines, ‘c’ columns and ‘d’ depths. The output 
parameters of the segmentation procedure will be used by the 
contour extraction procedure: the tree-hexagonal grid stored in the 
array of tree-hexagons H, and the array Comp representing the set 
of determined components associated to the salient objects in the 
input spatial image. The global parameter thkg is the thresholds.  

The color-based segmentation and the syntactic-based 
segmentation are determined by the procedures 
CREATECOLORPARTITION and 
CREATESYNTACTICPARTITION respectively. 

The color-based and syntactic-based segmentation algorithms 
use the tree-hexagonal structure H created by the function 
CREATEHEXAGONALSTRUCTURE over the voxels of the 
initial spatial image, and the initial triangular grid graph G created 
by the function CREATEINITIALGRAPH. Because the syntactic-
based segmentation algorithm uses a graph contraction procedure, 
CREATESYNTACTICPARTITION uses a different graph, G’, 
extracted by the procedure EXTRACTGRAPH after the color-
based segmentation finishes. 

Both algorithms for determining the color-based and syntactic 
based segmentation use and modify a global variable (denoted by 
CC) with two important roles: 

• to store relevant information concerning the growing forest of 
spanning trees during the segmentation (maximum spanning trees in 
the case of the color-based segmentation, and minimum spanning 
trees in the case of syntactic based segmentation), 

• to store relevant information associated to components in a 
segmentation in order to extract the final components because each 
tree in the forest represent in fact a component in each segmentation 
S in the segmentation sequence determined by the algorithm. 

In addition, this variable is used to maintain a fast disjoint set-
structure in order to reduce the running time of the color based 
segmentation algorithm. The variable CC is an array having the 
same dimension as the array of hexagons ‘H’, which contains as 
elements objects of the class Tree with the following associated 
fields: 

( isRoot, parent, compIndex, frontier, surface, color ) 
The field ‘isRoot’ is a boolean value specifying if the 

corresponding tree-hexagon index is the root of a tree representing a 
component, and the field ‘parent’ represents the index of the tree-
hexagon which is the parent of the current tree-hexagon. The rest of 
fields are used only if the field ‘isRoot’ is true. The field 
‘compIndex’ is the index of the associated component. 

The field ‘surface’ is a list of indices of the tree-hexagons 
belonging to the associated component, while the field ‘frontier’ is a 
list of indices of the tree-hexagons belonging to the frontier of the 
associated component. The field ‘color’ is the mean color of the 
tree- hexagon colors of the associated component. 

The procedure EXTRACTFINALCOMPONENTS determines 

for each determined component C of Comp, the set sa(C) of tree-

hexagons belonging to the component, the set sp(C) of tree-

hexagons belonging to the frontier, and the dominant color c(C) of 

the component. 

IV.COLOR-BASED REGION ALGORITHM 

Let G = (V,E) be the undirected spatial graph constructed on 
the tree-hexagonal structure of a spatial image. The proposed color-
based segmentation algorithm will produce a proper segmentation 
of V according to the Definition 1, where the notion of 
segmentation too fine is given by the Definition 2.  

The sequence of segmentations, (S0,S1, . . . ,St−1,St), and its 
associated sequence of growing forests,  

(F0,F1, . . . ,Ft−1,Ft ), will be iteratively generated, based on a 
maximum spanning tree construction method. We use a modified 
form of the Kruskal’s algorithm [17] presented in Algorithm 2, 
where the trees generated at each step represent the connected 
components of spatial segmentation. 

The input parameters of the color-based segmentation 
algorithm are the initial spatial graph ‘G’ and the array ‘H’ of the 
tree-hexagons from the tree-hexagonal grid. The output parameter is 
the list ‘Bound’ of edges representing the boundary of the final 
spatial segmentation. The global parameter threshold ‘thkg‘ is 
determinate by using Algorithm 1. 

This value is used at the line 19 of Algorithm 2, where the 
expression thkg (ti, t j) is given by the relation (20), ti and tj 
representing the components Cti and Ctj respectively. 

Because we use maximum spanning trees instead of minimum 
spanning trees the list of the edges E(G) is sorted in non-increasing 
edge weight. The forest of spanning trees is initialized in such a 
way each element of the forest contains exactly one tree-hexagon. 

 
Algorithm 2 Color-based segmentation 
1: **procedure CREATECOLORPARTITION(G,H, Bound) 
2: Input G = (V,E), H = {h1, . . .,h|V|}  
3: Output Bound 

4: thkg ←*DETERMINETHRESHOLD(G) 

5: Bound ←hi ⊲ Initialize Bound 

6: for all i←1, |V| do 

7: *MAKESET(hi) ⊲ Initialize the disjoint set data structures 
8: end for 

9: ⊲ At this point l ←0 

10: ⊲ and S0 ←{{h1}, . . . ,{h|V|}}  

11: *SORT(E,E) 
12: ⊲ E= (e1 , . . ., e|E| ) is the sorting of E 

13: ⊲ in order of non-increasing weight 

14: for all k←1, |E| do 

15: ⊲ Let ek = (hi ,hj) be the current edge in E
16: ti ←*FINDSET(hi) 

17: t j ←*FINDSET(hj) 

18: if ti ≠t j then 

19: if w(hi ,hj) ⁊ INTVAR(ti, t j)+ thkg (ti, t j) then 

20:* UNION(ti, t j,w(hi,hj)) 

21: ⊲ l ←l+1 

22: ⊲ Sl ←Sl−1−{{Cti},{Ct j }}∪{Cti ∪Ct j }  

23: else 
24:* Add the edge (hi ,hj) the the list Bound 

25: ⊲ bound(Sl )←bound(Sl−1)∪{(hi,hj)}  

26: end if 
27: else 

28: ⊲ Do nothing, ti ∈ Ct j 

29: end if 
30: end for 
31: end procedure 
 
The expression thkg (ti, t j) = thkg /min(|Cti |,|Cj j |) at the line 19 

of Algorithm 2 is very important at the beginning of the algorithm 
because initially the components considered contains only one tree-
hexagon and in this case 

 IntVar(Cti ,Cj j )=0, and thkg /min(|Cti |,|Cj j |) = thkg. In order 
to consider an edge (hi,hj) to belonging to the non-boundary class of 
edges and in consequence to merge the components Cti and Cj j 

corresponding to ‘hi’ and ‘hj’ respectively, it is necessary that 
w(hi,hj) < thkg. 
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When the components grow and both components Cti and Cj j 

contain more than one tree-hexagon, the external variation between 
Cti and Cj j decreases, and in this case the decision for merging or 
non-merging Cti and Cj j is affected more by their size than by the 
global threshold ‘thkg’. 

For each segmentation Sl determined by Algorithm 2 and for 
each connected component C of the corresponding spanning graph 
Gl there is a unique maximum spanning tree, Fl(C), that maximize 
the sum of edge weights for this component. 

The forest of all maximum spanning trees associated to the 
segmentation Sl is 

Fl =∪C∈Sl  Fl(C),  

and algorithm makes greedy decisions about which edges to 
add to Fl . Every time when an edge is added to the maximum 
spanning tree a union of the two partial spanning trees containing 
the two vertices of the edge is made. In this way the sequence of the 
edges contained in the forest Fl of spanning trees is implicit 
determined at the line 14 of Algorithm 2. 

Conversely for each spatial tree T from the forest Fl , the set of 
all vertices of the initial graph contained in the tree T is denoted by 
Set(T) and it represents the connected component of Sl associated 
to maximum spanning tree T: 

T = Fl(Set(T)).  
The functions MAKESET, FINDSET and UNION used by the 

segmentation algorithm implement the classical MAKESET, FIND-
SET and UNION operations for disjoint set data structures with 
union by rank and path compression [17]. In addition the function 
call, UNION(ti, t j ,w(hi,hj)), performs the following operation, 
assuming that ti is the root of the new spanning tree resulted by 
combining the spanning trees represented by ‘ti’ and ‘t j’ : 
• determining CC[ti].surface as the concatenation of the lists 

CC[ti].surface and CC[tj].surface, 

•  determining CC[ti].frontier as a list of indices of tree-

hexagons belonging to the frontier of the new component  

{Cti ∪Ct j}, 

• determining CC[ti].color as the value (ni*ci+nj*cj)/(ni+nj) , 

where ci = CC[ti].color, and ‘ni’ represents the number of elements 

in the tree CC[ti]. 

V.SYNTACTIC-BASED REGION ALGORITHM 

The syntactic-based region model uses some geometric properties 

of regions together with color information. We use a subset of 

syntactic features advocated [18] including homogeneity, 

compactness and regularity. 

The region model contains the area of the region and the region 

boundary. As presented in the previous Subsection, for each region 

C the segmentation algorithm determines the set sa(C) containing 

the tree-hexagons forming the region, and the set sp(C) containing 

the tree-hexagons located at the boundary of the region. Because 

for each tree-hexagon ‘H’ we determine its dominant color c(h) 
and its pseudo-gravity center g(h), for each region C the following 

information can be further determined: 

- the mean color of the region, c(C), the area of the region, 

a(C), and the length of the contour of the region, p(C). In 

addition, for each pair of regions, Ci and Cj , the length 

p(Ci,Cj) of the common boundary between these region 

can be determined. 

In order to reduce the time complexity of the segmentation 

algorithm we estimate the area a(C) and the perimeter p(C) of a 

region C in function of the length of the sets sa(C) and sp(C) 
respectively. Assuming that the distance between two neighboring 

voxels situated on axis Ox, Oy or Oz has the value 1, the area of a 

tree-hexagon is 12 and thus the area of a region C is given by the 

following relation: 

a(C) = 12×|sa(C)|,           (21) 

where |sa(C)| represents the cardinal of the set sa(C). 

In order to determine a good final segmentation and to discover the 

salient objects from the input image, the syntactic based sequence 

of segmentations, Sf , as defined by Equation (11), can 

decomposed into several subsequences, each subsequence being 

determined by a modified form of the Boruvka’s algorithm.  
Let i1 < i2 < . . . < ix < ix+1 be a sequence of indices, with i1 = 

t and ix+1 = k, that allows a decomposition of the sequence Sf as 

follows: 

Sf = ( Si1 ,Si1+1, . . . ,Si2−1,Si2 , 

Si2+1,Si2+2, . . . ,Si3 , 

. . . 

Six+1,Six+2, . . . ,Six+1 ).          (22) 

As presented in Algorithm 1 the procedure 

CREATESYNTACTICPARTITION implements the syntactic 

based segmentation, while the function GENERATEPARTITION 

is used to generate the subsequences of segmentations, Sf1 , . . . 

,Sfx , each subsequence of the form,  

Sf j = (Si j ,Si j+1, . . . ,Si j+1−1,Si j+1 ),            (23) 

being determined by the function GENERATEPARTITION at the 

j-th call. The last segmentation of the subsequence Sf j generate by 

GENERATEPARTITION is also the input sequence of the ( j +1)-
th call of GENERATEPARTITION. The first input segmentation 

Si1 is the final segmentation St of the color based segmentation 

algorithm. The function DETERMINEWEIGHTS determines the 

set A of weights as defined by following relation. 

The construction of A is realized as following: 

1. Let SB = [b1,b2,b3,b4] be the sequence contained the same 

elements as the set B in non-decreasing order. For this reasoning 

we choose another set of weight values, which is related to the 

initial set B; 

2. Let ‘r’ be the lowest common divisor of the numbers (b2− b1), 
(b3−b2), and (b4−b3), 
3. Let s = (b4−b1)/r , 
4. The set of weights that we use are: 

A = {a0, a1,  . . . ,as},                         (24) 

where a0 = b1, ak = b4, ai = a0+i*r, for i = 1, . . . , s, and in addition 

b2,b3 ∈ A. 

 

Algorithm 3 Syntactic-based Segmentation 

1: **procedure CREATESYNTACTICPARTITION(G,G’, thkg) 

2: Input G, G’, thkg 

3: Output G’ 
4: A←*DETERMINEWEIGHTS(G’) 

5: count ←0 

6: repeat 

7: G’ ← *GENERATEPARTITION(G,G’, thkg,newPart) 

8: if newPart then 

9: count ←0 

10: k←[a0 a0 a0 a0]T 

11: end if 

12: thkg ←*MODIFYWEIGHTS(G’, k) 

13: count ←count +1 
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14: *NEXTKVECTOR(k) 

15: until count = |A|4 

16: end procedure 

 

More formally, the j-th call of the function 

GENERATEPARTITION, for which the output parameter 

‘newPart’ has the value ‘true’, is associated to the non-

empty subsequence Sf j of segmentations and it generates a 

sequence of graphs, 

Gi j = (Gi ji j ,Gi ji j+1, . . . ,Gi ji j+1−1,Gi ji j+1 ),        (25) 

and a sequence of associated forests of minimum spanning trees, 

Fi j = (Fi ji j ,Fi ji j+1, . . . ,Fi ji j+1−1,Fi ji j+1 ),          (26) 

such that the last forest is empty, Fi ji j+1 = Ø. For each graph Gi jl 

from the sequence Gi j , Fi jl represents the forest of minimum 

spanning trees of Gi jl , and Gi jl+1 is the contraction of Gi jl over all 

the edges that appear in Fi jl , as presented in Algorithm 4. 

Because the last graph, Gi ji j+1 , of the sequence Gi j cannot be 

further contracted the dissimilarity vectors of functions associated 

to the edge weights, d(C(vi),C(vj)), are not modified, and thus the 

edge weights, w(vi,vj), as defined by the function GRAPH 

EXTRACTION are not modified. In order to restart the process for 

determining the new subsequence, 

Sf j+1 = (Si j+1 ,Si j+1+1, . . . ,Si j+2 ),                 (27) 

the first graph, Gi j+1i j+1 of the sequence Gi j+1 differs from the 

last graph, Gi ji j+1 , of the sequence Gi j by modifying only the 

weighted vector k ∈  K. The function MODIFYWEIGHTS of 

Algorithm 2 realizes this modification and recalculates the new 

global weighted threshold. In this case the values for the weighted 

vector k are sequential determined in the lexicographic order, 

generated by the procedure NEXTKVECTOR. 

This constraint is necessary in order to realize a stopping 

criterion for the algorithm: the last graph cannot be modified and 

for all distinct values of the weighted vectors k ∈ K and thus 

another partition cannot be determined. Each time when 

GENERATEPARTITION generates a non-empty sequence of 

segmentations, the output parameter ‘newPart’ became 

‘true’ and the first vector of the set K is generated.  

When GENERATEPARTITION generates an empty sequence 

of segmentations, ‘newPart’ is ‘false’ and the next vector 

in lexicographic order is generated by the procedure 

NEXTKVECTOR. 

When sequentially for all distinct weighted vectors k ∈ K (e.g. 

|A|4 distinct vectors, with the set A specified by the relation (24)) 

generated in lexicographic order the function 

GENERATEPARTITION generates a empty sequence of 

segmentations, the procedure 

GCREATESYNTACTICPARTITION finishes. 

Between the last graph, Gi ji j+1 , of the sequence Gi j and the first 

graph, Gi j+1i j+1 of the sequence Gi j+1 , there is a sequence of 

graphs that differ only by the edge weights, 

b Gi j = ( b Gi j1 , b Gi j2 , . . . , b Gi jbni j ),             (28) 

such that b Gi j1 = Gi ji j  and b Gi jbni j = Gi j+1i j+1 . This sequence 

is obtained when the function GENERATEPARTITION generates 

an empty sequence of segmentations, with  bni j < |A|4. 

As presented in Algorithm 4 the function 

GENERATEPARTITION generates at the j-th call the sequence of 

graphs Gi j defined by Equation (25), and the sequence of forests 

of minimum spanning trees defined by Equation (26), where: 

• the first graph of the sequence Gi j is the input graph of the 

function (i.e. the parameter G’), 

•  the last graph of this sequence is the graph returned by the 

function. 

The function GENERATEPARTITION is a generalized Greedy 

algorithm for constructing minimum spanning trees, as presented 

in [19]. At each iteration, ‘l’, of the function 

GENERATEPARTITION, the contraction of the tree Gi jl over all 
the edges that appear in the minimum spanning tree Fi jl is 

performed by the function CONTRACTGRAPH. 

 

Algorithm 4 Generate a new sequence of partitions 

1: **function GENERATEPARTITION(G,G’, thkg, newPartition) 

2: Input G, G’, thkg, G’     ⊲ G’ = Gi ji j is the input graph 

3: Output newPartition 

4: newPartition← f alse   ⊲ l ←0 

5: repeat 

6: k←0 

7: for i←1,G’.n do 

8: if G’.ad jEdges[i] ≠() then 

9: Determine the lightest edge ‘e’ adjacent to G’.V[i] 

10: ⊲ Let ei ∈ G’.ad jEdges[i] such that 

11: ⊲ e = G’.E[ei] = (vi , vj) is the lightest edge 

12: thkl← *DETERMINETHL(vi, vj) 

13: if e.w ≤ min(thkg, thkl) then 

14: ⊲ Determination of the MST Fi ji j+l 

15: k ←k+1 

16: e.inMST ←true 

17: end if 

18: end if 

19: end for 

20: if k > 0 then 

21: G’ ←*CONTRACTGRAPH(G,G’, thkg) 

22: ⊲ Determination of the graph G’ = Gi ji j+l+1 

23: ⊲ l ←l+1 

24: newPartition←true 

25: end if 

26: until k = 0 

27: return G’   ⊲ G’ = Gi ji j+1 is the output graph 

28: end function 

 

The function DETERMINETHL returns the local weighted 

threshold thhl associated to the components Cvi and Cvj , as 

presented in the following relations: 

- the local weighted threshold associated with the weighted 

vector k ∈K and with the adjacent components C’ and C’‘ of 

the segmentation Sl  is denoted by th
kl(C’,C’‘) and it is 

determined by considering the average of dissimilarity 

functions for anly adjacent components with C’ and C’‘ from 

the segmentation Sl , 

th
kl(C’,C’‘) = bkT l(C’,C’‘),                           (29) 

where the components of the vector l(C’,C’‘) are determined, for 
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 i = 1,2,3,4, as follows: 

li(C’,C’‘) =[p(C’,C’‘,Ca,Cb)edi(C’,C’‘)]/[p(C’,C’‘,Ca,Cb) 1]  , 

(30) 

where the predicate p(C’,C’‘,Ca,Cb) is defined as 

p(C’,C’‘,Ca,Cb) = ((Ca,Cb) ∈ Sl)∧(ad j(C’,Ca) = true)∧ 
(ad j(C’‘,Cb) = true).                       (31) 

The function implementing the contraction procedure, 

CONTRACTGRAPH, is similarly to the function 

EXTRACTGRAPH with the following differences: 

•  It detects the connected components specified by the edges 

marked as MST in the GENERATEPARTITION, and assigns to 

each vertex of the new generated graph the component it belongs 

to. The function DETERMINECOMPONENTS implements a 

Depth-First-Search traversal method on the input graph in order to 

enumerate the connected components. 

• As in the color-based segmentation algorithm (see Algorithm 2), 

for each edge from the minimum spanning tree a union of the two 

partial spanning trees containing the two vertices of the edge is 

made by using the procedure UNION. In this way it is realized a 

reunion of the components associated to the vertices from each 

connected component of the input graph: 

C(v) =∪u∈Set(Tv)C(u),                    (32) 

where ‘Tv’ denotes the minimum spanning tree from the input 

graph associated to the connected component that represents the 

new created vertex in the output graph, and Set(Tv) represents the 

connected component associated to ‘Tv’. 
• The weights of the new created edges and also the weighted 

threshold of the output graph use a weighted vector  k ∈ K such 

that its components have a value random chosen from the set   

A = {a0,a1, . . . ,as} by using the procedure ALEAKCHOOSE. This 

is an important aspect of the syntactic based segmentation 

algorithm and in this way the distribution of the weights of the four 

dissimilarity functions tends to became uniform. 

The sequence F f of forests of minimum spanning trees as 

defined by Equation (12) can be decomposed as the sequence Sf  of 

segmentations as follows: 

F f = ( Fi’1 ,Fi’1+1, . . . ,Fi’2−1, 

Fi’2 ,Fi’2+1, . . . ,Fi’3−1, 

. . . 

Fi’x ,Fi’x+1, . . . ,Fi’x+1−1 ).             (33) 

Because the graph Gi ji j+l and its corresponding minimum 

spanning tree Fi ji j+l , for j = 1, . . . ,x and  l = 0, . . . , i j+1 −i j −1, 

share the same set of vertices, from algorithm of graph contraction 

one can see that each subsequence of forests determined at the jth 

call of the function GENERATEPARTITION, 

F fj = (Fi’j ,Fi’j+1, . . . ,Fi’j+1−1,Fi’j+1 ),       (34) 

can determined for each l = 0, . . . , i j+1−i j −1 as follows: 

E’i j+l+1 = E’i j+l∪e∈Fi ji j+l Orig(e),                    (35) 

where E’u represents the set of the edges associated to the forest F’ 
u = (V’,E’u ), and Orig(e) represents the edge from the initial 

graph G corresponding to the edge ‘e’ from the current graph Gi ji 

j+l . 

The call of the procedure UNION at the line 22 of graph 

contraction allows the determination of the sequence of the 

segmentations S f as defined by Boruvka’s algorithm. 

Si j+l+1 = {Set(T) | T ∈ Fi j+l+1}= {C(v) | v ∈ Gi ji j+l+1},      (36) 

for each j =1, . . . ,x and l =0, . . . , i j+1−i j−1. This relation 

specifies the fact that there is a bijective mapping between the 

components from the segmentations Si j+l+1 (or equivalently 

between the trees from the forests Fi j+l+1) and the vertices of the 

contracted graphs Gi ji j+l+1. 

At j-th call of the function GENERATEPARTITION, each call 

of the function CONTRACTGRAPH generates a new 

segmentation, Si j+l+1, with l = 0, . . . , i j+1 −i j −1, which tends to 

merge the components of the previous segmentation until regions 

closer to salient objects are detected. 

 

Algorithm 5 Graph contraction 

1: **function CONTRACTGRAPH(G,G’, thkg) 

2: Input G, G’   ⊲ G’ = Gi ji j+l is the input graph 

3: Output thkg 

4: n’‘ ← *DETERMINECOMPONENTS(G’, cIndex) 

5: ⊲ Determine connected components of G’ 
6: ⊲ Let n’‘ the number of connected components 

7: ⊲ Assign to each component an index in the array cIndex 

8: G’‘ ← *CREATEGRAPH(n’‘, cIndex) 

9: ⊲ Create a new graph with one vertex for each 

10: ⊲ connected component in G’, i.e., G’‘.n = n’‘ 
11: Initialize two arrays of bins, B’ and B’‘, of dimension n’‘ 
12: for i←1,G’.m do    ⊲ Let G’.E[i] = e = (vi , vj) 

13: cj ←G’.V[vj ].comp 

14: Add i to the bin B’[cj ] 
15: if e.inMST then 

16: ei0 ←e.origEdge 

17: (hi,hj)←(G.E[ei0].vi,G.E[ei0].vji) 

18: ⊲ (hi ,hj) is the original edge from G 

19: ⊲ corresponding to the current edge (vi , vj) 

20: (ti, t j)←(FINDSET(hi,CC), FINDSET(hj ,CC)) 

21: if ti 6= t j then 

22: *UNION(ti, t j, e.w,CC) 

23: ⊲ Determination of the MST Fi j+l+1 

24: ⊲ and of the segmentation Si j+l+1: 

25: ⊲ Fi j+l+1 ←Fi j+l∪{Orig(e)}, 

26: ⊲ Si j+l+1 ←Si j+l −{{Cti},{Ct j }}∪  

27: ⊲∪{Cti ∪Ct j }  

28: end if 

29: end if 

30: end for 

31: for i←1,n’‘ do 

32: for all ei ∈ B’[i] do ⊲ Let (vi, vj) = G’.E[ei] 

33: ci ←G’.V[vi].comp 

34: Add ei to the bin B’‘[ci] 
35: end for 

36: end for 

37: *ALEAKCHOOSE(k) 

38: for i←1,n’‘ do 

39: if B’‘[i] 6= hi then 
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40: Determine the lightest edge from the bin B’‘[i] 
41: ⊲ Let ei ∈ B’‘[i] such that 

42: ⊲ G’.E[ei] = (vi , vj) is the lightest edge 

43: ei0 ←G’.E[ei].origEdge 

44: (hi,hj)←(G.E[ei0].vi,G.E[ei0].vji) 

45: (ti, t j)←(FINDSET(hi,CC), FINDSET(hj ,CC)) 

46: dist ← *COLORDIST(ti, t j ,CC) 

47: w← *WEIGHT(dist, ti, t j,CC, k) 

48: hci, cji←hG’.V[vi].comp,G’.V[vj].compi  

49: *ADDEDGE(G’‘, ci, cj ,w, ei0) 
50: end if 

51: end for 

52: thkg ←*DETERMINETHG(G’‘, k) 

53: return G’‘   ⊲ G’‘ = Gi ji j+l+1 is the output graph 

54: end function 

VI. SEGMENTATION RESULTS AND QUANTITATIVE EVALUATION 

These modalities produce high-resolution voxel based 
datasets which are in fact data points on a regularly spaced three 
dimensional grid. 

Because sampling data points from the real world is 
performed slice by slice the existing spatial segmentation 
techniques are often planar in nature, applying existing planar 
algorithms to the volume data slice by slice. The results are inferior 
to native volumetric based solution because these algorithms 
ignore the interaction between adjacent slices [20], [21], [22], [23]. 

However, even if image segmentation is a heavily researched 
field, extending the algorithms to spatial has been proven not to be 
an easy task. A true volumetric segmentation remains a difficult 
problem to tackle due to the complex nature of the topology of 
volumetric objects, the huge amount of data to be processed and 
the complexity of the algorithms that scale with the new added 
dimension. 

Martin thesis [24] states that human segmentation can be used 
as the ground-truth reference in benchmarking segmentations 
produced by different methods. On the other hand, one may argue 
that human segmentation is subjective and will produce different 
segmentations for the same image but in most cases they will differ 
only in certain regions of local refinement. This idea has been 
considered in [25], [26] as a method of avoiding penalizing 
segmentations that are coarser or more refined than others. 

In pattern recognition and information retrieval, Precision-
Recall method has received a world-wide acceptance and it’s 
considered as a standard measure because it offers good results for 
relevance [26]. 

In the general case, precision (or confidence) is defined as the 
fraction of retrieved cases that are relevant, while recall (or 
sensitivity) is the fraction of relevant cases that are retrieved. In 
other words, in the context of classification, the precision for a 
class is equivalent with the true positives accuracy which is the 
number of true positives (i.e. the number of cases that are correctly 
labeled as belonging to that class) divided by the total number of 
cases labeled as belonging to that class (including false positives, 
which are cases that were incorrectly labeled as belonging to the 
class). 

Precision = TP/(TP + FP)              (37) 
Also in this context, recall is equivalent with the true positives 

rate which is defined as the number of true positives divided by the 
total number of cases that actually belong to the positive class (i.e. 

the sum of true positives and false negatives, which are cases that 
were not labeled as belonging to the positive class but should have 
been). 

Recall =TP/(TP + FN)                    (38) 
The terms: true positives (TP), true negatives (TN), false 

positives (FP) and false negatives (FN) compare the classifier’s 
prediction against apriority external information that is considered 
as the ground truth (observation). These are synthesized in the 
contingency table (or confusion matrix), expressed in Table I. 

TABLE I. PRECISION-RECALL CONTINGENCY TABLE 

 Observation  

Prediction TP – Correct result FP – Unexpected 
positive result 

 TN - Correct absence of 
result 

FN – Missing 
negative result 

 
 

 
Fig. 3. Experiment Results 

 
As said before, for image segmentation algorithms, Martin 

[24] proposes a method that outputs Precision-Recall curves as a 
mean to evaluate segmentation consistency. The curve offers a rich 
descriptor where both axes are sensitive and intuitive and the 
inherent trade-off between these two quantities can be easily 
analyzed. 

Recall is defined as the proportion of boundary pixels/voxels 
in the ground truth that were successfully detected by the automatic 
segmentation, while precision is the proportion of boundary 
pixels/voxels in the automatic segmentation that correspond to the 
true boundary pixels. Precision is in fact a measure of the amount 
of noise in the classifier’s result. The segmentation method used 
for the experimental results is based on simple hysteresis threshold. 
All voxels with the density within a specified threshold ‘tkgh’  will 
be treated as boundary voxels while the others as empty space [27], 
[28], [29]. 

The results are as expected: the over-segmented volume has 

high recall and low precision (see figure 3), while the under-

segmented image has low recall because it fails to find salient 

features for the volume, and also low precision (since because 

many boundary pixels remain unmatched). 

VII.CONCLUSION 

In this paper we present original and efficient volumetric 

segmentation methods. The major concept used in graph-based 

volumetric segmentation method is the concept of homogeneity of 

regions and thus the edge weights are based on color distance. Our 

previous works for planar images are related to other works in the 

sense of pair-wise comparison of region similarity. The key to the 

whole algorithm of volumetric segmentation is the honeycomb 

cells. 
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Here we presented only Color-based Segmentation, Syntactic-

based Segmentation and Generate New Sequence of Partitions 

with Graph Contraction algorithms besides general algorithm of 

volumetric segmentation due to the entire space. Of course we 

have many procedures into general algorithm of volumetric 

segmentation methods. We have presented the original and 

efficient algorithm of volumetric segmentation methods and 

honeycomb cells used is the first run in volumetric segmentation 

algorithm. Then we can use the graph facilities and their related 

algorithms and computational complexity can be viewed as slow as 

the fundamental graph algorithms. Our original algorithms for 

Color-based Segmentation and Syntactic-based Segmentation are 

linear. Enhancement and generalization of this method is possible 

in several further directions. First, it could be modified to handle 

open curves for the purpose of medical diagnosis. Second,  

research direction is the using of composed shape indexing for 

both semantic and geometric image reasoning. 

VIII.REFERENCES 

[1] R. Urquhar, Graph theoretical clustering based on limited 
neighborhood sets. Pattern Recognition, 15(3), 173–187, 1982. 

[2] P. Felzenszwalb, W. Huttenlocher, Efficient graph-based image 
segmentation. International Journal of Computer Vision, 59(2), 
167–181, 2004. 

[3] L. Guigues, L. Herve, L.P. Cocquerez, The hierarchy of the 
cocoons of a graph and its application to image segmentation. 
Pattern Recognition Letters, 24(8), 1059–1066, 2003. 

[4] Y. Gdalyahu, D. Weinshall, M. Werman, Self-organization in 
vision: stochastic clustering for image segmentation, perceptual 
grouping, and image database organization. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 23(10), 1053–1074, 
2001. 

[5] J. Shi, J. Malik, Normalized cuts and image segmentation. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 
22(8), 885–905, 2000. 

[6] I. Jermyn, H. Ishikawa, Globally optimal regions and boundaries 
as minimum ratio weight cycles. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 23(8), 1075–1088, 2001 

[7] M. Cooper, The tractibility of segmentation and scene analysis. 
International Journal of Computer Vision, 30(1), 27–42, 1998 

[8] J. Malik, S. Belongie, T. Leung, J. Shi, Contour and texture 
analysis for image segmentation. International Journal of 
Computer Vision, 43(1), 7–27, 2001. 

[9] D. Comaniciu, P. Meer, Robust analysis of feature spaces: color 
image segmentation. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 24(5), 603–619, 2002. 

[10] D. Comaniciu, P. Meer, Mean shift analysis and applications. In 
Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition, Madison, Wisconsin, pp. 1197–1203, 1999. 

[11] M. Brezovan, D. Burdescu, E. Ganea, L. Stanescu, An Adaptive 
Method for Efficient Detection of Salient Visual Object from 
Color Images. In Proceedings of the 20th International 
Conference on Pattern Recognition, Istambul, Turkey, pp. 2346–
2349, 2010. 

[12] D. Burdescu, M. Brezovan, E. Ganea, L. Stanescu, A new method 
for segmentation of images represented in a HSV color space. 
Lecture Notes in Computer Science, 5807, 606–616, 2009 

[13]  R. Gonzales, P. Wintz,  Digital Image Processing. Reading, MA: 
Addison-Wesley,  1987. 

[14] L. Middleton, J. Sivaswamy, Hexagonal Image Processing; A 
Practical Approach (Advances in Pattern Recognition). Springer- 
Verlag,  2005. 

[15] L. Stanescu, D. Burdescu, M. Brezovan, CR. G. Mihai, Creating 
New Medical Ontologies for Image Annotation, Springer-Verlag 
New York Inc. ISBN 13: 9781461419082, ISBN 10: 
1461419085”, 2011 

[16] A. Gijsenij, T. Gevers, M. Lucassen, A perceptual comparison of 
distance measures for color constancy algorithms, European 
Conference on Computer Vision, Marseille, France, pp. 208–221, 
2008. 

[17] T. Cormen, C. Leiserson, R. Rivest, Introduction to algorithms, 
Cambridge,  MA: MIT Press, 1990. 

[18] Bennstrom, C., Casas, J., Binary-partition-tree creation using a 
quasi-inclusion criterion. In Proceedings of the Eighth 
International Conference on Information Visualization, London, 
UK, pp. 259–294, 2004. 

[19] Gabow, H.N., Galil, Z., Spencer, T., Tarjan, R.E., Efficient 
algorithms for finding minimum spanning trees in undirected and 
directed graphs. Combinatorica, 6, pg. 109–122., 1986 

[20] P. Arbelaez, Pont-Tuset, J., Barron, J., Marqués, F., and Malik, J., 
Multiscale Combinatorial Grouping, in Computer Vision and 
Pattern Recognition (CVPR), 2014. 

[21] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus, 
Indoor segmentation and support inference from RGBD images, 
in ECCV, 2012 

[22] Abramowitz, M., Stegun, I.A. Handbook of Mathematical 
Functions. New York: Dover Publications, 1964 

[23] R. Huang, V. Pavlovic, and D. N. Metaxas, A tightly coupled 
region shape framework for 3d, in Medical Image Segmentation, 
IEEE International Symposium on Biomedical Imaging (ISBI06), 
2006. 

[24] David Martin. An Empirical Approach to Grouping and 
Segmentation. PhD thesis, University of California, Berkeley, 
2002. 

[25] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of 
human segmented natural images and its application to evaluating 
segmentation algorithms and measuring ecological statistics,” in 
In Proceedings of International Conference on Computer Vision, 
no. 2, pp. 416–432, 2001. 

[26] Y. Haxhimusa, A. Ion, and W. Kropatsch, Evaluating graph-
based segmentation algorithms, in Proceedings of the 18th 
Internation Conference on Pattern Recognition, 2006. 

[27] D. Powers, Evaluation: From precision, recall and F-measure to 
ROC, informedness, markedness and correlation, Journal of 
Machine Learning Technologies, vol. 2, no. 1, pp. 37–63, 2011. 

[28] P. Arbelaez, C. Fowlkes, and D. Martin. The Berkeley 
segmentation dataset and benchmark. Computer Science 
Department, Berkeley University. [Online]. Available: 
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/ 

[29] F. J. Estrada and A. D. Jepson, “Benchmarking image 
segmentation algorithms,” International Journal of Computer 
Vision, vol. 85, no. 2, pp. 167–181, Nov. 2009. [Online]. 
Available: http://dx.doi.org/10.1007/s11263-009-025

 

668 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014


