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Abstract—A real-time human head detection and tracking
method for a fall detection system is presented. It utilizes RGBD
images to obtain a head position in the three-dimensional space.
The proposed method is designed to be insensitive to a body
orientation and requires no initial calibration for the tracked
person. The evaluation was performed on the basis of annotated
videos with realistic non-studio indoor everyday activities and
falls. The proposed method outperforms head tracking from the
Microsoft Kinect SDK skeleton tracking.

I. INTRODUCTION

T
RACKING of a human head is an important aspect

of any system striving to monitor human behavior or

health condition. Many conclusions can be made based on

the information about a head position and orientation. A

certain application that can benefit from a reliable information

about a human head position is a fall detection for an elderly

people monitoring system. Existing solutions focus mostly on

detecting or tracking a human face instead of a head in general.

Most of them also takes an assumption about constant vertical

orientation of a human body. In a vast majority of situations

such an approach is sufficient but in the context of a fall

detection system there is no suitable existing solution.

The aim of our research was to develop a robust head

detection and tracking method that is capable of tracking a

human head regardless of its orientation and independently of

a tracked person. The method uses joined color, motion and

depth data to effectively perform this task. The introduced

method maintain its performance in situations when the head

position and orientation change rapidly such as during a fall.

The content of this paper is organized as follows. In section

II related works in the field of head tracking are introduced.

In section III we formulate the research problem, which our

method is designed to solve. In section IV we describe the

presented solution. Section V is dedicated to the evaluation

of our method and contains the description of the experiment

and the dataset followed by test results compared to the Kinect

SDK head tracking [1]. In section VI we conclude our work

and propose future work directions.

II. RELATED WORKS

The head tracking problem has been widely studied over

the past few years. In the literature, definitions of this problem

describe different tasks. The majority of papers identifies the

problem of head tracking with face tracking. They only tackle

situations when the face is clearly visible on a video image

and take the assumption that it is located near the camera, as in

[2], [3], [4], [5], [6], [7]. Two most common applications of

such defined head tracking are to obtain certain facial features

[6], [2], [3], [4], and to approximate a spatial head orientation

[5], [8]. In this paper the problem of head tracking refers to

determining the position of a head regardless of its rotation

around the vertical axis.

Since the information about a human head position and

orientation can be utilized in a vast number of applications,

there are many different approaches to solve this problem.

In this paper we focus on vision systems as most versatile

ones. The highest performance can be achieved using a thermal

camera [9] as a data source. It is a consequence of a human

head being easily distinguishable on thermal images. This

solution, however, cannot be widely applied due to the high

cost of thermal cameras. A common approach to this problem

is using a video camera as a data source. The video camera was

utilized in the methods described in [2], [3], [4], [10], [11],

[6]. Recent appearance of affordable sensors containing both

video and depth camera has exposed new possibilities in the

field of image processing. A widely used device, integrating

a depth sensor and a color camera is Microsoft Kinect. It is

used for the head tracking task in [5] and [8]. Additionally

Microsoft Company released SDK for Kinect [1], providing

a skeleton tracking functionality. Thanks to this solution,

if a skeleton is recognized properly by the Kinect sensor,

information about a head position can be easily obtained,

however, as shown in this paper, it lacks robustness.

Among vision systems utilizing different data sources, there

are various methods solving the head detection problem. A

method presented in [12] uses background subtraction to

detect a moving silhouette and treats its highest point as a

head. In [11] the background subtraction is also used to

find interest points. Then, a classifier is applied. In [10]

each tracked head must be initially introduced to the tracking

system from four directions. In [3] and [7] only a face is

detected using a generic Haar cascade face detector [13]. In

this case, a face needs to be visible in satisfactory resolution.

After the head is detected, the tracking process can be

initiated. Most methods assume an invariant orientation of

a head during tracking. Therefore, a template is captured
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once and subsequently SURF [7] or a Template Matching

algorithm is used to track the template. Other methods use

CAMSHIFT [2] algorithm or intensity gradient and color

histograms analysis [10] to perform tracking.

Existing methods fail, when the head is seen from different

perspectives or a human body is not arranged vertically, for

example during a fall. They also focus only on using a single

data source, while composition of color and depth information

allows greater versatility of a tracking system.

III. RESEARCH PROBLEM

The method described in this paper is designed to solve the

head detection and tracking problem with an assumption to

apply it to an elderly people monitoring system. The detection

task is defined as locating a single human head on an image

regardless of its rotation around the vertical axis. The tracking

task is interpreted as providing consecutive information about

the location of the initially detected head in each frame. Given

a streaming sequence of color and depth images obtained from

a RGBD sensor, the method returns a spatial position of a

tracked head or information that there is no head detected.

The returned position is defined in the 3-dimensional co-

ordinate system described in section IV. The detection and

tracking is performed in the real time, thus providing the

position of a head in the last processed frame. The input stream

is analyzed with the speed of fifteen frames per second. The

following assumptions are made. The method tracks a single

person in an indoor environment. Neither person-specific nor

room-specific calibration needs to be performed. The method

is sensor-independent, however, for a head to be detected, it

should be located within the sensor depth range, which is

from 0.8m to 4m for the Kinect. In order to perform tracking

successfully, the initially detected head needs to be visible on

a color image. It is not required to stay in the depth range.

The method should be robust to rapid changes in a position

and orientation of a head in situations such as a fall.

IV. METHOD DESCRIPTION

Our method uses image processing techniques and simple

decision rules. It utilizes a combined information, extracted

from color and depth images, obtained from a RGBD sensor.

The method consists of four modules. The interaction between

them for the n-th frame is presented in the Fig. 1.

The first module is capable of creating a motion image,

based on three consecutive color frames. The second module,

referred to as Detector, detects a head based on current color,

motion and depth frames. The Tracker module also uses cur-

rent color, motion and depth frames to track the head, detected

in the previous frame. In the fourth module, referred to as

Integrator, the information about the head position provided

by Detector and Tracker is integrated and the spatial position

of the head is returned.

An interest point for the head detection is the top of every

vertical silhouette, segmented from the depth image. The

interest region is marked as a head if it is recognized as a

face or a movement in this area is detected on the color image.

Fig. 1. The interaction between method modules for the n-th frame

TABLE I
SENSOR-SPECIFIC PARAMETERS

Symbol Description Kinect value

cw, ch color image width and height [pixels] 640, 480

dw, dh depth image width and height [pixels] 640, 480

sf scaling factor 1.06

hd horizontal displacement of the depth image
on scaled color image [pixels]

6

hda horizontal view angle of the depth camera [degrees] 58.5

vda vertical view angle of the depth camera [degrees] 45.6

hca horizontal view angle of the color camera [degrees] 62.0

vca vertical view angle of the color camera [degrees] 48.6

The tracking is performed independently on the color image

and on an image created as an absolute difference between

consecutive color frames. This image will be referred to as

a motion image. To increase the robustness of the tracking

algorithm, both images are multiplied by the depth mask which

cuts out the regions where the depth value differs significantly

from the last known depth of the tracked head. The results

returned by tracking on color and motion images are integrated

as a weighted average based on the certainty of each of them.

A. Sensor-specific parameters

Due to a variety of RGBD sensors with different character-

istics such as focal parameters, resolution and displacement of

color and depth cameras, the presented method is parameter-

ized to make it sensor-independent. Although the method was

implemented and tested with the Kinect sensor, no additional

Kinect SDK functionalities, such as skeleton tracking, were

used to assure portability to other sensors. Defined parameters

and their values for the Kinect sensor, described in the Kinect

specification, are listed in the Tab. I
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Color and depth image resolutions were selected from

several options available for the Kinect sensor. The scaling

factor was calculated with respect to the ratio of view angles

of depth and color camera. The horizontal displacement is

the consequence of displacement of cameras in the sensor.

View angles are characteristics of the camera specified by a

manufacturer.

To enable locating various points on the image in a real-

world coordinate system, the information about the view angle

of the depth camera and the depth value of the given point are

used. The world coordinates are expressed in the right-handed

coordinate system consistent with the one specified by Kinect

SDK [1]. The origin is located at the center of the sensor,

the Z-axis is pointing toward the direction of view and Y-

axis points upwards. Whereas the image coordinate system

has its origin in the top left corner of the image with the X-

axis pointing to the right and the Y-axis pointing downwards.

Image coordinate values are expressed in pixels. The real-

world spatial coordinate (sx, sy, sz) of a point (x, y) on the

image, located at the distance d, measured in meters, is given

by equations (1)

sx = 2d(
x

dh
− 0.5)tg(

hda

2
),

sy = 2d(0.5−
y

dw
)tg(

vda

2
), (1)

sz = d,

where dw, dh, hda, and vda are defined in the Tab. I.

The calculation allows a fast and accurate conversion from

the depth image space to real-world coordinates. The choice of

such coordinate system is justified by the possibility of com-

paring the method output with the Kinect skeleton tracking.

B. Preprocessing

The main problem, which needs to be solved in order to

allow combining the depth and the color images is mapping

between pixels of both images. The displacement of cameras

and their different focal characteristics cause the difference

between areas visible on both images. Kinect SDK provides

an accurate conversion from the depth to color space. This

conversion, however, only works in one direction and is only

applicable to Kinect sensor. Additionally, it can only map a

single depth pixel to color pixel which is computationally

ineffective. A method similar to the Kinect solution was

proposed in [14]. It is also unidirectional but in a contrast

to the previous approach, it does not need Kinect sensor to be

plugged in during its usage which allows wider application of

this solution. It is only unidirectional since the precise inverse

operation is not possible. It would require the analysis of depth

pixels to find the one that matches best to the given color pixel.

Such a solution would be very computationally complex. Since

the existing methods do not use any fast bidirectional space

mapping between color and depth images, a fast method of

solving this problem is proposed. The color image is scaled

and shifted to match the depth image. Given the resolution of

Fig. 2. Color image cropp rectangle

the depth image dw, dh, the new size of the color image cw’,

ch’ is calculated as in formula (2)

c′w = dwsf,

c′h = dhsf, (2)

where sf is the scaling factor defined in the Tab. I.

Subsequently, the color image is cropped to match the size

of the depth image by extracting a sub-image of the size dw, dh,

which top left corner is located in the point px, py calculated

as in formula (3)

px =
c′w − dw

2
+ hd,

py =
c′h − dh

2
, (3)

where dw, dh, and hd are defined in the Tab. I. The cropped

subimage is presented in the Fig. 2.

Once the transformation is completed, both images are

aligned and no further calculations are necessary. The transfor-

mation is designed to give the best projection between images.

While the method is not as accurate as the one in [14] or

Kinect SDK mapping, it is bidirectional and much faster. The

error of this method is greater for pixels located near the

camera but it is tolerable at the range where the full body

is visible.

The motion image is created based on the absolute differ-

ence between three consecutive color frames. It is a simplified

version of a Motion History Image, described in [21]. A value

of the pixel (x, y) is given by the equation (4)

Mn(x, y) = |2(Kn(x, y)−Kn−1(x, y))| (4)

+|(Kn−1(x, y)−Kn−2(x, y))|,

where Mn(x, y) is the value of pixel (x, y) on the motion

image, Kn−2(x, y), Kn−1(x, y) and Kn(x, y) are values of

corresponding pixels on three consecutive color frames. This

approach is used to accurately highlight the area where the

silhouette is currently located.

C. Head detection

The Detector module utilizes a current color, depth and

motion frame and returns lists of heads and uncertain heads

detected as a result for an input frame.
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Algorithm 1 Head detection - finding regions of interest

image← Dilatate(image);
image← Canny(image);
contourList← Group(image);
for all contour in contourList do

d← AvgDepth(contour);
h← Height(contour);
if h ≥ hTreshold then

rect← CropV (contour, hHeight);
median←Median(rect, contour);
if minHBreadth ≤ median ≤ maxHBreadth

then

regionOfInterest← CropH(rect,median);
interestRegions.Add(regionOfInterest);

end if

end if

end for

return interestRegions;

The head detection is performed in two steps. In the first

one, regions of interest are found. An interest region is a sub-

image that may contain a head. In the second step, each interest

region is labeled either as a head or as an uncertain head.

Since our methods measures detected objects to rule out

those, that cannot be human silhouettes, we define size

constraints that need to be satisfied. Corresponding to the

anthropometric studies of a human body [15], [16], the

average breadth of a human head is 13.9 cm for men and

13.3 cm for women, while its length is 18.0 cm for men and

17.2 cm for women and its height is 21.2 cm for men and 19.8

cm for women. Additionally, according to [17], the height of

a human body exceeds 1m after being four years old. Based on

the introduced measurements and taking into account various

transformations applied to the processed image, we define the

following parameters:

• hHeight - the height of a head (26.4 cm),

• minHBreadth - the minimum width of a head (12 cm),

• maxHBreadth - the maximum width of a head (24 cm),

• hTreshold - the minimum height of a silhouette (1 m).

The proposed values exceed the top and bottom limit of a size

of an adult human in order to avoid an omission of any real

head detection.

During the first stage of the head detection, the depth image

is analyzed. We use it to detect regions of interest. The aim

of its analysis is to find silhouettes of a human-like shape.

The process of finding interest regions is presented in the

Algorithm 1.

Firstly, the image is repeatedly dilated to rule out the noise

and erroneous pixels, which are white pixels, indicating no

depth data. It is then binarized by Canny edge detector. Edge

points are grouped into contours using a method described

in [18]. As a consequence of the dilatation, the average size

of a head on the image is increased by approximately 20%.

This information is vital since in our method, boundaries for

Algorithm 2 Head detection - head classification

for all region in interestRegions do

if FaceDetected(region) then

heads.Add(region);
else

if MovementDetected(region) then

heads.Add(region);
else

uncertainHeads.Add(region);
end if

end if

end for

various measurements of a human body are defined in the

real-world coordinate system. For each silhouette, its average

depth is calculated to determine its distance from the camera.

Having the distance, the height of the human silhouette is

calculated using formulas (1). Only silhouettes that are at

least the height of hTreshold are considered as possible human

silhouettes, others are instantly eliminated. Subsequently, the

bounding box of each silhouette is cropped leaving only its

top hHeight. The median of the width of the silhouette’s part

located within a cropped rectangle is calculated. The rectangle

is rejected if the calculated median is outside of the range

from minHBreadth to maxHBreadth. Otherwise, the rectangle

is cropped horizontally to obtain the interest region of a width

equal to the introduced median.

After finding regions of interest, each of them is labeled

as a head or an uncertain head. The classification process is

shown in the Algorithm 2.

A simple decision sequence is used for this labeling task.

Initially a Haar cascade is used to detect a face in the given

region. We use the cascade model for frontal face recognition

provided by OpenCV [19]. If the face is detected, the region is

labeled as a head. Otherwise, the occurrence of the movement

is checked in the interest region. If the movement is detected,

the region is labeled as a head. Otherwise it is labeled as

an uncertain head. To perform the movement detection, the

motion image is thresholded to filter out the noise and the

erosion is performed to clear the stronger noise. Subsequently

the image is transformed by a multiple dilatation to highlight

the movement region. The process is illustrated in the Fig. 3.

If the region being an uncertain head contains at least 20%

of white pixels we treat it as a head.

This approach has the following justification. The situation

when there is a vertical silhouette detected, which contains an

object of a size matching a human head in its top part, is not

sufficient to classify this object as a head. However, because

a human is not able to stand still without any movement, the

movement is a reasonable indicator of a human presence.

D. Head tracking

The Tracker module takes a current color, depth and motion

frame as an argument and, using the information about the

previously detected head, performs tracking and returns up to
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Fig. 3. Color image (left), motion image (center), and post-processed motion
image (right)

4 possible head positions together with their certainty factors.

Tracking is initiated when an area labeled as a head is

detected. It is performed independently on the color image

and on the motion image introduced in section IV. Both images

are multiplied by a binary mask cutting off areas where the

depth value is significantly different from the depth value of

the head. Such a mask is referred to as a depth mask.

In order to obtain the depth mask for each frame, auxiliary

tracking is performed on the depth image. When the head

is detected, a sub-image containing the head is recorded as a

template. In the subsequent frame, an attempt is made to match

the recorded template on the image. The search is performed in

the region of interest, specified as the area containing the head

in the previous frame, extended in each direction by a certain

margin. The margin is designed to cover the distance that a

head can traverse during the time of one frame. It is expressed

in meters and transformed into pixels using the distance from

the head to the sensor. The width of the margin is a parameter

of the method and should be adjusted to match needs of the

application. In our case, the video’s frame rate is equal to

15 frames per second, thus the time span between consecutive

frames is 66ms. For the fall detection system, where the speed

of the head can be high, the reasonable margin value is 0.5m.

The template matching within the region of interest is

performed using the Normalized Cross Correlation method

(NCC), described in [20]. Once the best match is found,

the template is updated with the newly found region, keeping

its original size. The method returns a certainty measure to

describe the quality of the match. This value is recorded

together with a template position and will be referred to as

a certainty factor. In the next step, the depth of the head is

calculated and the depth mask is created as a binary image.

The image has a black background and contains white pixels

only in the regions, where the difference of the depth value

and the depth of the head is not greater than the margin value.

Subsequently, the color and the motion images are multi-

plied by the depth mask. As a result of the multiplication,

the areas where the depth value differs from the depth of the

head are black, and those with a similar depth value are left

unchanged. The example of a depth masking is shown in the

Fig. 4.

Once masking is done, tracking on color and motion images

is performed. For both images the same technique is used. The

Fig. 4. Color image (left) and masked color image (right)

Fig. 5. Single tracking step for one image

single step of tracking on one image is presented in Fig. 5. For

each image, two templates are recorded. One having the size

of the detected head and the other, located centrally within the

first one and having a half of its size. It has been noticed that

different sizes of the template perform better under different

conditions, therefore tracking is executed independently for

two templates. NCC is used to find the best template match.

Next, the correction of the determined template location is

done. In case a part of the template contains a large number

of black pixels, its location is moved in the opposite direction.

If the best match of the template is located entirely in the

black area, its position is aligned to the second tracked tem-

plate. If this situation occurs to both templates simultaneously,

tracking on the image is terminated.

Tracking is executed in parallel to the head detection process

for each frame. If the head is detected within the range of

the margin value of any of tracked templates, the size and

position of each tracked template, including the auxiliary depth

template, is updated with the area of the newly detected head.

If no head is detected but there is an uncertain head in

the rectangle overlapping one of the tracked templates, it is

considered a head and all templates are updated as stated

above.

After tracking is ceased, the positions of the tracked tem-

plates are returned together with their certainty factors.

E. Result integration

The Integrator module is capable of integrating the results

returned by the Detector and the Tracker. The output of

this module is a 3-dimensional position of a single head or

information, that there was no head detected.

If any head was detected by the Detector, the results of

the Tracker are ignored and the detected head is treated as a

final result. Otherwise, the results of tracking are integrated in

the following manner. In each frame there are two templates

tracked on the color image and additional two on the motion

image, therefore tracking results need to be integrated in order

to provide a single location of the head. The location of the

head is determined as a weighted average of all template

positions. A certainty factor is used as a weight. This approach
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Fig. 6. The example of a color frame (left) and a depth frame (right) from
the dataset

causes inaccurate matches having less impact on the final

outcome. Only templates matched on the color and the motion

images are used in the integration process, because tracking

on the depth image tends to be less accurate.

In order to obtain the spatial location of the tracked head,

the formula (1) is used with the head position on the image and

its depth value. It is then returned as a result of this module

and the whole method.

V. EVALUATION

The evaluation of the method was performed to assess

its effectiveness and to compare it to the existing solution,

implemented in the Kinect SDK. Since there is no RGBD

benchmark dataset for the head tracking problem, the proper

dataset was prepared. The dataset is described in details in

the next subsection. Subsequently, the evaluation procedure,

including experimental method and description of used mea-

sures, is presented. Finally, the results for our method and the

Kinect SDK are shown and commented.

A. Dataset description

The dataset consists of 480 short films, recorded at 15 fps

and containing video and depth images for each frame. All

scenes are recorded in the indoor scenery and last from 6s to

24s, averagely 13s. Each scene shows one of two actors: a

man or a woman. Each film presents either a daily action or a

fall. The following actions were recorded: walking, standing,

sitting on a chair, sitting on the ground, bending down, lying

on a bed, lying on the ground, standing on a chair, cleaning,

falling forward, falling backward and falling sideward.

Each action was recorded 20 times per actor and, excluding

lying on a bed, contains records, where the actor was viewed

from the front, back, left and right. Each film begins showing

the empty room and captures the moment, when the person

enters the frame and, except falls, finishes after the person

leaves the frame. Films showing falls end when a person is

lying on the ground. The example frame is shown in Fig. 6.

The dataset was annotated with a current head position to

enable the evaluation of a head detection method, however, due

to laboriousness of the frame annotation process, for each film,

only 3 frames were annotated. They were located at 1/4, 1/2

and 3/4 of the film duration. The first and the last frame was

not taken into account, because a vast majority of them was

showing only the empty room. The annotation was performed

Fig. 7. Accuracy, Recall, Precision and TotalPrecision as a function of
accepted range

by one person and validated by another one. On each annotated

frame, the head position is specified or the frame was labeled

as containing no head. The head position was labeled as a

single point on the color image, located in the center of a

head and transformed, using the depth information, into the

real-world coordinate system. Together the 1440 frames are

annotated in 480 films. In 1350 of them, there was a head

visible in the frame, and in 90 of them, there was no head

visible.

To compare our method to the method from the Kinect SDK,

the skeleton information obtained from the Kinect sensor is

also recorded for each frame.

B. Test method

Both methods were evaluated using various measures to

provide a more comprehensive analysis of their performance.

They were then compared to recognize differences in their

functioning.

In the first step of the evaluation process, each film was

replayed and analyzed by our method to detect and track the

head in the real time. In each film, 3 frames, that are annotated

with the head position, were evaluated. The number of heads

annotated, tracked by our method and tracked by the Kinect

SDK was stored for each frame. Additionally, if both numbers

of annotated and tracked heads were greater or equal to 1, the

following distances were calculated:

• the 3-dimensional Euclidean distance between tracked

and annotated head, measured in meters, presented in

formula (5),

• the distance between vertical components of positions of

both heads, measured in meters, calculated as in (6).

d =
√

(tx − ax)2 + (ty − ay)2 + (tz − az)2, (5)

dv =
√

(ty − ay)2, (6)
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where d is the 3-dimensional distance, (tx, ty, tz) is the

position of a tracked head in the real-world coordinate system,

(ax, ay, az) is the position of an annotated head in the real-

world coordinate system and dv is a distance between vertical

components of those points.

In order to consider different precision requirements, various

measures were calculated as functions of the maximal distance

between the annotated and the tracked head to treat it as

detected correctly. The maximal distance is referred to as a

range and extends from 10 cm to 1 m with 10 cm intervals.

The measures presented in the formula (7) were calculated

for both our method and the Kinect SDK method

Accuracy(r) =
TPr + TN

AF
,

Recall(r) =
TPr

AH
,

Precision(r) =
TPr

DH
,

TotalPrecision(r) =
ATPr

ADH
, (7)

where: r is the range, the measure is calculated for, TPr is

a number of frames, in which the head was detected within

a range r, TN is the number of frames, correctly classified

as containing no head, AF is the number of annotated frames

(1440), AH is the number of frames, annotated as containing

a head (1350), DH is thenumber of frames, in which at least

one head was detected, ATPr is the number of heads, detected

within a range r, including multiple heads detected in one

frame, and ADH is the number of all detected heads, including

multiple heads detected in one frame.

Due to the fact, that our method is designed to track one

head for each frame and Kinect SDK can track higher number

of heads, to calculate Accuracy, Recall and Precision we

choose one head tracked by the Kinect, closest to the head

annotated in this frame, and compare it to the result of our

method. Only while calculating the TotalPrecision, we take

into account all the heads tracked by the Kinect independently,

even if there were more than one head in a given frame.

C. Experimental results

In this subsection, results of the experiment described

previously are presented and commented. Fig. 7. shows the

comparison of Accuracy, Recall, Precision and TotalPrecision

calculated for our method and for the Kinect SDK in the

function of the range.

As it can be seen, the Accuracy and Recall of our method

is mostly higher than of Kinect, except for the range of

20 cm while the Precision of Kinect is greater than ours

considering the range from 20 cm to 60 cm. For the rest of

ranges, Precision of both methods is comparable. However, the

TotalPrecision calculated for all heads detected by the Kinect

is only greater in the range of 20 cm to 40 cm, while in the

range wider than 50 cm, our method outperforms the Kinect.

It is also notable, that considering the range lower than 10 cm,

every measure is slightly higher for our method. This can be

caused by the fact, that Kinect tends to detect the head on the

Fig. 8. Accuracy, Recall, Precision and TotalPrecision as a function of
accepted vertical range

chin level or even on the neck, while the dataset was annotated

with points located in the center of the head, approximately on

the line of ears and eyes. The significant difference between

the Precision and TotalPrecision of Kinect indicates the high

number of heads detected wrong while there was another head

detected correctly. It is important to highlight that in situations

where the Kinect detected more than one head, only the best

one was used to calculate Accuracy, Precision and Recall

while the rest was ignored. The higher Accuracy and Recall of

our method indicate that Kinect detects less heads but when

it does, it tends to be more precise.
Regarding the fact, that our method is designed to match

needs of a fall detection system, the correct vertical coordinate

of a detected head is the one crucial for the proper functioning

of such system. To asses both methods in terms of application

in a fall detection system, the measures described by formulas

(7) were calculated considering only the vertical component

of the distance between the annotated and the tracked head.

Results are presented in Fig. 8.

When only the distance between Y-coordinates is taken into

account, Accuracy and Recall of our method is significantly

greater than Accuracy and Recall of the Kinect. The Precision

and TotalPrecision are also much greater considering the range

of 10 cm and comparable for the rest of ranges.

VI. CONCLUSIONS

The above results lead to the conclusion that our method

is more suitable for the application in a fall detection system

than the method from the Kinect SDK. Among other possible

applications, our method can be recommended for those,

where the Accuracy and Recall are more important than the

high Precision.

A. Summary

The method of human head detection and tracking on

RGBD images was presented. As the evaluation shows, it

outperforms the Kinect SDK skeleton tracking. Furthermore

the method is independent of a used sensor and therefore

its usage is not limited to the Microsoft Kinect. Promising
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evaluation results indicate that it is a valuable head tracking

method that can be successfully applied to tracking a single

person in the indoor conditions. Our solution is particularly

useful when there is no annotated dataset that could be used

for any other machine learning approach since it requires no

initial training and can be used to track any person without the

necessity of previous calibration. Furthermore it is suitable for

the fall detection task as it maintains its effectiveness during a

fall. Therefore it can be used either as a primary data source

for a newly developed fall detection system or as an auxiliary

tracking method to boost the robustness of an existing fall

detection system.

B. Future works

During the development and evaluation of our method, we

identified various improvements that could potentially increase

its effectiveness. During the classification of interest regions

recognized as uncertain heads, a machine learning approach

can be used to decide if the region should be classified as a

head. Such a solution would require annotated objects, which

are not heads, as negative examples and use them together

with positively annotated heads to train a classifier. For that

approach to be effective, the size of the dataset should be

greater than the one used during the development of our

method. The necessity to train a classifier would decrease

the assumed versatility of our method but could improve its

effectiveness in a specific target scenario. Potentially useful

features for the classification task would be shape descriptors

and color histogram components.
Another promising improvement is the dynamic adjustment

of the margin value used during the tracking process to define

the area where the search for a tracked head is performed. At

present, the size of the margin is fixed to a reasonable value of

0.5m, which is suitable for the fall detection task. This value

however could be adjusted based on the current speed of the

tracked head.
Our method was designed to solve the head detection and

tracking problem for a single person in the room, however it

can easily be extended to track any number of heads. Such a

modification would require developing a method of matching

tracked and detected heads to allow integrating positions of

corresponding heads.

Even though the presented configuration of our method has

proven to be effective, its further improvements are still a

subject of research. Since the method is flexible and divided

into modules, each module can be used, modified and adjusted

to fit special requirements independently.
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