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Abstract—A concept of artificial supervisor of multi-task real-
time object-oriented system is introduced. Next, a procedure
for automatic creation of artificial supervisors is presented. The
procedure is based on developmental genetic programming. As an
input data, UML diagrams are used. A representative example
of creation of a supervisor of building a house illustrates the
procedure. The efficiency of the procedure from various points
of view and comparison considerations are given.

I. INTRODUCTION

A
SYSTEM must meet user requirements and constraints.

Besides specified functionalities, cost effectiveness and

high performance are among the most important ones. Real-

time (RT) systems are present in all areas of human life.

Punctuality is an extra requirement for them. Sometimes punc-

tuality requires very high performance. However, the higher

performance the higher cost of the system. Usually the cost is

limited.

Going into details, one can find RT systems in civil engi-

neering, in traveling, in computer engineering, in banking, and

so on. In the first case, a building enterprise is such a system.

It owns resources, such as workers and building machinery,

necessary to build a house according to the requirements of a

client. These usually comprise functionalities of the house, its

cost and a deadline. In the second case a human being is an

RT system. He knows which means of transportation may use

to meet his requirements. From among flights, trains, buses,

rented cars, and even walking he selects a set, so that to reach

a target on time and at affordable cost. An embedded computer

system may be another example of RT system. A designer of

such a system has to decide what of the tasks of the system is

to allocate to what of its processing components, so that to get

maximum of the performance and not to surpass the cost. In a

bank an account may be operated in different ways. However,

an owner of the account usually wants to get maximum profit

with an acceptable risk in a specific time period. Summarizing,

an RT system uses some hardware or software objects of its

resources so that a specific goal is achieved, on time.

Multi-task system (MS) is a system where more than one

task can be processed at the same time. A home computer

is a familiar example of the MS. Common tasks are word

processing, printing, communicating, and playing games. The

system contains objects: hard drive, a monitor, a printer, a

network adapter and an optical drive. Some of these objects

are required for a subset of the tasks while others are required

for all these tasks. The monitor and hard drive will always

be in use whereas the printer is used only for printing, the

network adapter is used for communicating, and the optical

drive is used for reading stored materials. The enterprise is an

example of RT MS, while a traveler is not.

Usually, RT systems should be optimized for cost vs. speed

of operation (speed of reaching a goal or a target). Therefore,

a building enterprise, and a traveler, and hardware/software

system designer, and other RT systems have to be endowed

with optimization engine. We will call these engines: artificial

supervisors (AS) or artificial managers (AM) of resources. An

AS should find an optimum use of supervised resources, taking

into account the requirements and the constraints. This means

that the AS decides what functionalities should be allocated

to what resources and in which order these functionalities

should be executed. Actually, it has to find a solution for a

specific case of the well-known Resource-Constrained Project

Scheduling Problem (RCPSP) which consists in rescheduling

the project tasks (RT system tasks) efficiently using limited

renewable resources (components/objects of the RT system)

minimizing the maximal completion time of all activities [1].

The RCPSP is an NP-complete problem which is compu-

tationally very hard [2] [3]. Möhring [4] states that it is one

of the hardest problems of Operational Research. Therefore, a

skilled specialist with an assistance of the planner (Computer

Aided System Engineering in case of the enterprise) might

play a role of such an AS only for small systems containing a

limited number of tasks and a moderate number of resources.

No doubt, in case of real life systems, particularly RT MS, the

AS must be a very powerful optimization engine.

The general RCPSP model cannot cover all situations that

occur in practice. Therefore, many researchers have developed

many variants and extensions of project scheduling problems,

often using the standard RCPSP as a starting point [5].
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Constructing an efficient AS for a given class of RCPSP

problems is very difficult and time consuming. Moreover, a

scheduling strategy that is optimal for one problem may not

be efficient for others. Hence, instead of developing a general

AS for all RT MS, in this paper, we propose a method that

automatically generates a dedicated AS for the specific RT MS.

The method is based on an idea derived from developmental

genetic programming (DGP). It is universal and can be applied

to optimization of RT MS of any kind. Our methodology

is illustrated and evaluated with the help of a representative

example.

Genetic programming (GP) is an extension of the genetic

algorithm [6], in which the population consists of computer

programs. In the DGP [7] [8], strategies that create solutions

evolve, instead of computer programs. In this approach a

genotype and a phenotype are distinguished. The genotype

is a procedure that constructs a solution of the problem.

It is composed of genes representing elementary functions,

constructing the solution. The phenotype represents a target

solution. During evolution, only genotypes are evolved, while

genotype-to-phenotype mapping is used in the fitness compu-

tation, which is required for the genotype selection process.

Next, all genotypes are rated according to an estimated quality

of the corresponding phenotypes. The goal of the optimization

is to find the procedure constructing the best solution. The idea

is based on the theory from the molecular biology, concerning

protein synthesis that produces proteins (phenotype) from the

DNA (genotype). In our approach the AS corresponds to the

genotype while the phenotype is the solution i.e. a makespan.

First, the DGP is used to find the optimal solution, and the

genotype constructing this solution is saved as the AS.

The method is universal, but an AS must be well-fitted

to a particular RT MS. The RT MS is a micro-world with

its own functionalities and resources. Therefore, a formal

specification of the RT MS is an input data to the method.

RT MS, where a number of resources have punctually to

execute a number of tasks are good micro-worlds for object-

oriented modeling. Objects may play a role of resources that

execute tasks in real time for some costs. A widely accepted

standard for modeling object-oriented systems (OOSs) is the

Unified Modeling Language (UML) [9]. It shows how to

write a system’s blueprints, including conceptual things such

as business processes and system functions. It encompasses

OOSs of any kind, particularly real-time multi-task OOSs (RT

MOOSs). Using the UML for modeling RT OOS has been a

subject of many publications [10] [11] [12]. Hence, this will

be applied here.

Related work is briefly described in section II. In section

III the problem is stated. Section IV briefly shows how early

UML models should be used as input data for the method, and

section V explains how DGP can create the supervisors and

the initial solutions. In section VI a computational experiment

evaluating our approach is described. The experiment explains

of how a supervisor of a simple RT MOOS (of building a

house) is created. Finally, section VII contains conclusions.

II. RELATED WORK

Genetic approach was proved as very efficient for solving

RCPSP problems. Ones of the most efficient genetic algo-

rithms for RCPSP are presented in [13] [14]. In [15] the

method of improving the genetic algorithm for optimization

of multi-task project scheduling was proposed. It was showed

that the method is competitive in comparison with 11 other

heuristic approaches. A method of solving a large scale RCPSP

is presented in [16]. In this solution, a genetic algorithm is used

and a method of encoding classical RCPSP problem in the

chromosome is described. Results achieved by authors of [16]

give a slight improvement, in comparison with other existing

heuristics.

For the first time Developmental Genetic Programming

was proposed by Koza, Bennet, Andre and Keane [17], to

create electrical circuits. This methodology evolves circuit-

construction tree, in which nodes correspond to functions

defining the developmental process. The initial circuit consists

of an embryo and a test fixture. The sample embryo is at least

one modifiable wire while fixture is one or more unmodifiable

wires or electrical components. The circuit is developed by

progressively applying functions in the circuit-construction

tree to the modifiable parts (wires and electronic components)

of the embryonic circuit.

A similar methodology was used by Deniziak and Górski

in the co-synthesis of embedded systems described by task

graphs [18]. The system-construction tree is based on a task

graph. Each node of the tree specifies an implementation of

the corresponding task. The embryo is an allocation of the

first task. First (initial) population is created randomly. Then

after evolution, using crossover, mutation and reproduction, an

optimal (or suboptimal) solution is found.

In [19] a list of 36 instances of human-competitive results

produced by the GP is presented. A lot of them concern of

synthesis of an analog electrical circuits, developing quan-

tum algorithms, designing controllers. According to our best

knowledge, there is no approach concerning optimization

of object-oriented real-time multi-task systems using DGP

methods.

III. PROBLEM STATEMENT

Let us assume that information about the functionalities

of RT MOOS and resources available for implementation of

these functionalities are specified with the help of UML early

diagrams: use case, activity, and sequence. This is typical

while designing OOS of any kind. To start the system a

supervisor is needed, which allocates the functionalities into

the resources in such a way that the cost will be minimal

while all real-time constraints will be satisfied. Both, number

of the functionalities and the number of resources, are large

enough to exclude a human being as the supervisor. Therefore,

an engine which optimizes supervising the system should be

worked out. The engine will be named an artificial supervisor

(AS), since it does what the supervisor should do.

An AS should work as follows:
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1) it should work out a schedule for RT MOOS which

would be optimal under current operational conditions,

and

2) adjust the schedule, to keep its optimality, when the

conditions have changed (some of the resources had

failed, for example).

The goal of the research is to introduce a method of

automatic generation of ASs from the diagrams. An approach

based on an idea derived from developmental genetic program-

ming is used.

The procedure consists of two steps. In the first one informa-

tion included in the UML diagrams are transformed into a task

graph and a library of objects working for the system. These

are input data to the second step. In this step (Section V)

the AS is created. To this end a universal method of evolution

of a genotype of the AS is applied. Decision options, which

may be contained in the genes of the AS, are defined and

then the genotype is created developmentally, using DGP-like

approach.

An example of the generation of a supervisor in a building

enterprise is used to illustrate the method. The enterprise is an

RT MOOS because its resources may be dealt with as objects

of different kinds, human or technical, which work in real

time and in multi-task mode of operation. A user of the RT

MOOS specifies the functionalities of the house, a deadline

of the implementation and cost constraints. In the case of a

small building enterprise, a contractor assisted by a CASE tool

(Computer Aided Software Engineering) can elaborate optimal

or semi-optimal schedule of building the house. However, big

consortia own a large number of resources and implement

many different constructions. Hence, this duty must be waived

from the contractor and placed onto an AS. Not the contractor,

but the AS, which is engaged in building the house, should

generate an optimal schedule for management of enterprise

resources.

Summarizing, for each of the implementations an AS should

be generated. The AS elaborates optimal schedule of the

implementation. A procedure of generation of ASs is universal.

However, to generate a specific AS (for building a housing

estate or LNG terminal, or a bridge, or managing a bank

account, and so on) it should be supplemented with data

describing what should be supervised. This is done with the

help of UML diagrams.

An AS should react to events that make the schedule non-

optimal, such as failures of the resources, unexpected delays

of task executions and so on. In such situations, any break in

work could generate huge costs. Thus, changes in the schedule

should be done in real-time, and as soon as possible.

IV. FROM UML EARLY MODELS TO LIBRARY OF

RESOURCES

The first step of the method consists in the generation of

input data for DGP, which in turn will create an adequate

supervisor. To this end UML early models of RT MOOS,

which will be under optimization, are used. In case of building

1. Digging the place under

foundations

2. Bringing the

media

3. Overflow the concrete of

foundations

4. Sting of the walls in the

cellar

5. Overflow of the plate of first storey

6. Building of

chimney

7. Building of external ground-floor walls

8. Building of internal ground-floor walls

(rooms, kitchen, bathroom, ...)

9 .

Electricity

10. Purchase and the assembly of

windows

11. Purchase and the assembly of door

12. Purchase and the assembly of

stove, heater, pump, etc.

13. Arrangement of the plates,

panelling etc.

14. Plastering

15. Warming the

house

16. Overflow of the plate of second

storey

17. Building of the roof

Supervisor

Fig. 1. Use case diagram for building a house

a house the models describe all activities of the supervisor that

controls the whole process of the construction.

A. Functionalities and sequential constraints

Functionalities are described with the help of a UML use

case diagram where a Supervisor is the main actor. It owns

resources (objects) performing tasks in real-time and may

face orders of task executions. Use case diagram describing

building a house is given on Fig. 1. Actually, it maintains the

enterprise which works as a real RT MOOS.

A task is an activity performed by a specific user of an RT

MOOS. In the diagram, each of the use cases corresponds to

one of such tasks, since a use case is an action performed by

an object (objects) which aims to yield an observable goal for

the user. Thus, each of the tasks has a use case that explains

what the task is, and how it should function. Moreover, a use

case may include statements about pre-conditions (required

before the task began), post-conditions (valid when the task

was successfully completed) and, if needed, exceptions.

The diagram on Fig. 1 contains 17 use cases (stages of

a house building; numbered from 1 to 17 on Fig. 2) which

should be scheduled for enterprise resources. Therefore, as-

signment of the use cases, to the resources, is a subject of

optimization. However, the diagram may not say anything, that

one of the cases must be used before another one. Digging

foundations must precede their laying, and plastering must

be done before warming a house, for example1. In general,

an RT MOOS as an example of a multi-task system may

have sequential constraints. Tasks should not be executed in

arbitrary orders because some of the tasks need to be executed

before others.

The Supervisor knows use case sequential constraints. This

can be specified with the help of an extension and of an

inclusion associations («extend» or «include» stereotypes [9])

and on pre- and post-conditions defined for the use cases

(sequential dependencies [20]). As the summary, a UML

1Numerical prefixes are introduced to identify the use cases and will be
used later on.
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1. Digging the place under foundations

2. Bringing the media 3. Overflow the concrete of foundations

4. Sting of the walls in the cellar

5. Overflow of the plate of f irst storey

7. Bui lding of external ground-f loor wal ls 8. Bui lding of internal ground-f loor

walls (rooms, kitchen, bathroom, ...)

9. Electricity 16. Overflow of the plate of second storey

6. Building of chimney

17. Building of the roof

10. Purchase and the assembly of windows

11. Purchase and the assembly of door

12. Purchase and the assembly

of stove, heater, pump, etc.

14. Plastering

13. Arrangement of the plates, panelling etc. 15. Warming the house

[task9 done]

[task16 not done]
[task16 done]

[task9 not done]

Visual Paradigm for UML Community Edition [not for commercial use] 

a) b)

Fig. 2. Activity Diagram (a) and Task Graph (b) of the system.

activity diagram [9] for an RT MOOS can be defined, and

then transferred into a task graph (TG) showing an execution

of the tasks in a real-time. The constraints for the example are

shown on Fig. 2a whereas their corresponding TG is shown

on Fig. 2b2.

B. Resources

The resource is an object required to execute a task. In

general, it could be a human, a tool or any other object, which

is reusable or renewable. If there are many resources of the

same type, each of them should be presented as a separate

resource.

In the example, two types of the resources are required for

building a house. First are Workers. These are laborers like

electricians, plasterers, and so on, that are able to execute some

specific tasks. Also, a company, which could be used as an

outsourcing, should be given as a resource. A worker could

use the second type of the resources which are Tools. These are

machines which could be used by workers during execution

of tasks. Hardly ever one resource is able to complete a task

itself. Thus resources are grouped into work teams, which will

be described in the next subsection.

Not all resources are necessary for the execution of some

tasks. This could be determined by the Supervisor with the

help of the third kind of UML diagrams, namely sequence

diagrams.

C. Scenarios of the resource cooperation

Inspired by real world, where most tasks are executed by

a group of resources, a concept of a team is introduced. The

team is a set of resources that are able to execute a task. Any

task may be executed by more than one team. We assume

that the execution cost and time of the task are known. One

2Automatic generation of TG from UML diagrams is possible but will not
be discussed in the paper.

a l t

WR3 :

Resource

WR6 :

Resource

WR8 :

Resource

WR7 :

Resource

WR5 :

Resource

WR4 :

Resource

WR2 :

Resource

WR1 :

Resource

Supervisor

: done() : done() : done() : done() : done() : done()

: do(): do(): do(): do(): do(): do()

: done(): done()

: do(): do()

: done() : done()

: do() : do()

: done()

: do()

1

2

3

58

Fig. 3. Sequence diagram of Bringing the media use case.

resource may belong to different teams, but teams having the

same resources cannot be scheduled at the same time period.

A use case is refined into one or more sequence diagrams

to show how the case might be implemented with the help of

detailed actions. Therefore, each sequence of the actions de-

fines an actual work-flow and reflects a sequence of decisions

the supervisor should take to perform a single task. Every task

is executed by teams (single worker team is also possible, but

rarely). Different teams are able to finish their work faster or

cheaper, using more or less resources. The sequence diagrams

have to define these scenarios.

Fig. 3 shows an example how the supervisor might interact

with objects participating in the construction of the building3.

Moreover, the sequence diagrams show options (with time and

cost of their implementations) available to the supervisor of

the enterprise.

It is characteristic for a Supervisor that while traversing a

task graph it determines step by step what should be done

at that point and that its selections are usually optional. This

means that it actually decides what functionalities of the RT

MOOS should be assigned to what objects and in which order

these functionalities should be executed. Its decisions should

be optimal, taking into account costs and the time of execution.

Therefore, the quality of the supervisor should be as high as

possible.

D. Library of resources

Sequence diagrams specify how cooperating objects are

organized in teams and how do they work. For example, Fig. 3

shows 4 teams. Each of the teams could bring media to a house

under construction, but with different workload and costs.

From sequence diagrams a table is derived which determines

3Remaining 16 sequences are very similar.
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TABLE I
A LIBRARY OF RESOURCES.

Task # Team # Time Cost Time * Cost Members
(for the task #)

1: 0 125 6 750 WR1
1: 1 51 24 1224 WR1, WR2
1: 2 37 33 1221 WR1, WR2
... ... ... ... ... ...
1: 58 9 115 1035 WR1, WR2,

WR4, WR5,
WR7, WR8

... ... ... ... ... ...
1: 62 82 183 15006 WR1, WR2,

WR3, WR4,
WR5, WR7,
WR8

2: 0 57 62 3534 WR3
... ... ... ... ... ...
2: 3 41 82 3362 WR1, WR2,

WR5
... ... ... ... ... ...
2: 62 10 189 1890 WR3, WR4,

WR5, WR7,
WR8

... ... ... ... ... ...

a binding of tasks with teams. For the example, this is given

in Table I.

Columns “Time”, “Cost” and “Members” of the table are

filled in with data from sequence diagrams. Units of “Time”

or “Cost” are inessential. It could be a day or an hour, dollar

or euro. It is only important that all costs and all times are

defined using the same units.

Column “Time * Cost” does not give any new information,

but it is helpful to accelerate the time of the computations.

V. CREATION OF SUPERVISORS

The second step of the method consists of initiating and

evolving genotypes, corresponding to the supervisors, with the

help of DGP. It is assumed that the supervisor selects options

defining the strategy of the allocation of resources. The way

in which it does, it is a specific feature of its mind, and it is

contained in its genotype. A supervisor with the best genotype

(allocating the resources optimally) will be generated with

the help of DGP. DGP evolves genotypes, while genotype-

to-phenotype mapping is used in the fitness computation,

which is required for the genotype selection process. It is

possible, that one phenotype may be created from two different

genotypes, because genotype-to-phenotype mapping always

generates systems that meet the system requirements.

A genotype corresponding to the supervisor has a form of

a tree engineering the system. A root of the tree specifies a

construction of an embryonic system, while all other nodes

correspond to functions which progressively build up the

whole system. If the system is defined by a task graph,

then an embryo is a system executing the first task from the

task graph. Thus, the number of possible embryos equals the

number of teams, in the library of resources, which are capable

of executing the first task. Embryonic systems are selected

TABLE II
SUPERVISOR’S OPTIONS

Step Option P
1 a. The fastest team 0.16(6)

b. The cheapest team 0.16(6)
c. The lowest time * cost 0.16(6)
d. Determination by second gene 0.16(6)
e. The fastest starting team 0.16(6)
f. The fastest ending team 0.16(6)

2 List scheduling 1

randomly for each attempt to create an initial population of

supervisors.

A. Supervisor’s options

The supervisor undertakes the following two actions:

• resource allocation and task assignment, that send an

appropriate team to execute a particular task and hence,

allocate members of the team,

• task scheduling (only when more than one task is as-

signed to the same resource), that schedules the tasks

assigned to the resources. When the resource is unavail-

able, the execution of the task is delayed as long as the

resource is not released.

Initial population of supervisors consists of randomly gen-

erated genotypes. It selects one of the options given in part 1

of its decision table. Table II contains the options which the

supervisor may choose. The last column in Table II shows a

probability of the selection.

The first option prefers a team, which requires the smallest

period of time to execute a task. Second one prefers a team,

which brings the lowest cost increase. Third option prefers

a team with the best ratio of the costs to the time of the

execution. Fourth option works in a different way. It allows

us to use “a little pushed” teams, what cannot be obtained as a

result of the remaining options. The next option prefers a team,

which could start an execution of the task as soon as possible

(other teams might be busy). The last option prefers a team

whose members could be the first to finish a task (be freed).

For the second action only one option is available, namely the

list scheduling method.

B. Genotype

The genotypes have forms of binary trees corresponding

to various procedures of synthesis of phenotypes (target solu-

tions). Every node has the same structure presented on Fig. 4

The first field isLeaf determines a role of the node in a

tree. When it is true (the node is a leaf), the strategy for

tasks is described in the field named “strategy”, which stores

an option from Table II. In this case information from the

other fields is omitted. When the node is not a leaf, a content

of the field “strategy” is not important. In this case, cutPos

contains a number describing which group of tasks should be

scheduled by the left node and which one by the right node.

Thus, nextLeft and nextRight must not be null pointers.
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isLeaf :bool

strategy:

 char

cutPos: int

*nextLeft: 

 Node

*nextRight: 

 Node

Fig. 4. A node of the genotype

0

4

23

6 1

5

a) b)

Fig. 5. A simple genotype (a) and the corresponding phenotype (b)

The simplest genotype consists of only one node, which is

also a leaf and a root. A simple genotype and the correspond-

ing phenotype are presented on Fig. 5.

During the evolution, a genotype grows but a size of the

genotype tree is limited. If the tree exceeds the maximum

size then too long branches are cut off. For example, if the

maximum size is 6, every node on the sixth level which has

a successor is changed into a leaf, and all its successors are

destroyed.

An embryo of the tree could grow as an effect of genetic

operators: mutation and crossover. An action associated with

the mutation depends on the state of the node and is presented

in the Table III.

The crossover is used to exchange information between two

chromosomes. It is necessary to draw a point of cut a tree in

both chromosomes. An example of the crossover is presented

on Fig. 6

With every genotype an array is associated. Its size is equal

to the number of tasks and contains indexes of teams. If for

a task, strategy ’d’ is chosen, the team with an index taken

from the array is used. At the very beginning of the mutation,

a place in the array is randomly chosen. Next a new index is

randomly generated. During the crossover, parts of the arrays

from both genotypes are swapped.

C. Genotype to phenotype mapping

The first step in a genotype-to-phenotype mapping is to

assign strategies to tasks (that is teams from Table I to tasks

TABLE III
THE RULES OF MUTATIONS

Is a leaf?
Yes No

Draw: switch leaf/node or not?
Yes No Yes No
Set isLeaf as
FALSE. If
nextLeft or
nextRight is
NULL - create
a new leaf for
it.

Draw new
strategy

Set isLeaf as
TRUE

Change value
for a randomly
chosen field:
cutPos,
nextLeft or
nextRight

0

4

23

6 1

5

0

VII

IIIVI

II I

VIII IVV

0

4

23

6

1

5

0

VII

III

VI II I

VIII

IVV

Cut Place

Fig. 6. An example of the crossover

from Fig. 2b, in the example). This step is illustrated on Fig.

7. Please note, that node 1 partitions tasks from 11 to 17 into

two groups: from 11 to 18 and the rest. Because the first group

is out of the range, in fact, there is only one group, which is

taken by node 3.

In the second step all tasks without any predecessor, or

with predecessors having already assigned teams, are being

0

4

23

6 1

5

cutPos=10

cutPos=8

cutPos=2

strategy=’a’

strategy=’b’

strategy=’d’ strategy=’e’

1  2  3  4  5  6  7  8  9  10  11 12 13  14 15 16 17
a  a  a  a  a  a  a  a  a    a     d   d   e    e    e    e   e

0: cutPos = 10

6: strategy = ‘a’ 1: cutPos=8

4: strategy=’e’

3
: c

u
tP

o
s 

=
 2

5
: s

tr
at

e
g

y 
=

 ‘d
’

Fig. 7. The first step in genotype-to-phenotype mapping
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searched for. For these tasks, teams are assigned according to

their strategy. Then the step is repeated as long as there are

tasks without assigned teams.

In the third step, the total cost of the solution could be

calculated. For this purpose, the cost of each team from the

resource library (Table I) is given.

D. Parameters of DGP

During the evolution, new populations of supervisors are

created using genetic operations: reproduction, crossover (re-

combination) and mutation. After the genetic operations are

performed on the current population, a new population re-

places the current one. The number of individuals in each

population is always equal:

Π = α

n∏

i=1

si (1)

where n is the number of tasks, s is the number of teams

capable to solve specific problem and α is a constant between

0 and 1. If α is equal to 1, the population has as many

individuals as many solutions of the problem exist. The

evolution is controlled by parameters β, γ and δ, such that:

• Φ = β ·Π is the number of individuals created using the

reproduction,

• Ψ = γ ·Π is the number of individuals created using the

crossover,

• Ω = δ ·Π is the number of individuals created using the

mutation and

• β + γ + δ = 1

The last condition ensures that each of the created popula-

tion will have the same number of individuals.

Finally, the selection of the best individuals by a tournament

is chosen [21]. In this method, chromosomes (genotypes) are

drawn with the same probability in quantity defined as a size

of the tournament. From the drawn chromosomes the best one

is taken. Hence, the tournament is repeated as many times

as the number of chromosomes for a reproduction, crossover

and mutation is required . A size of the tournament should

not be too high, because the selection pressure is too strong

and the evolution will be too greedy. It also could not be too

low, because the time of finding any better result would be

too long.

E. Fitness function

A fitness function determines the aim of DGP. In the

presented approach, two options are possible. In the first

one, the cheapest solution which has to be finished before a

deadline is searched for. Such fitness function is applied when

hard real time constraints have to be satisfied. In the second

one, the DGP should find the fastest solution, which does not

exceed a given budget. This case concerns systems with soft

real-time requirements.
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Fig. 8. Progress of the evolution for different tournament sizes

VI. COMPUTATIONAL EXPERIMENTS

High efficiency of the DGP may be achieved only when

genetic parameters will be properly adjusted. The most impor-

tant are the number of individuals created during reproduction,

crossover, mutation and a size of the tournament. If their values

are not chosen correctly, the DGP will find solutions far from

the optimum or finding the best solution will take a lot of

time.

The presented method was evaluated with the help of

the example from Fig. 1. The deadline was equal 700 time

units. During the experiments, the following values of genetic

parameters were used:

• the evolution was stopped after 100 generations,

• each experiment was repeated 7 times, the mean of the

best solutions received in each pass is given as the result,

• parameter α was equal 7 ·10−30, thus the population size

was equal 102.

First, the convergence of the DGP for different sizes of the

tournament was explored. Tournament sizes equal 2, 5, 10

and 15 were examined (Fig. 8). We observed that the sizes

2 and 5 were too small. Very often the best solutions were

skipped over, and not selected for further evolution. The best

convergence was obtained for the size equal 10.

Next, we examined the influence of the crossover and

the mutation on finding the best solution. For this purpose,

an analysis of the best solutions achieved with different

combination of parameters controlling the crossover and the

mutation was performed. Fig. 9 presents the results obtained

for different number of mutations. We may observe that for

less than 10% of mutants in the population, the results are

poor. The best result was obtained for 18% of the mutants.

The number of mutants should not be too high. For more

than 85% of the mutants the DGP usually produces also poor

results. In this case, too much number of mutants probably

disturbs the evolution. Fig. 10 presents results obtained for

different numbers of individuals created using the crossover.

The highest probability of obtaining the best results is when

the crossover is applied for creation of at least 65% geno-

types.
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The results were also compared with greedy approach. The

greedy algorithm assigns the cheapest teams to first tasks.

However, if the deadline is to be exceeded, the algorithm

assigns the fastest (usually the most expensive) teams to tasks

at the end of the schedule as it is necessary to finish the

work before the deadline. To the problem the greedy algorithm

generates a solution which costs 1091 while the cost of the

solution generated by the DGP is equal to 323. Thus, the result

obtained with the help of our method is three times better.

To check whether our method led to global optimum or not,

the entire space of the solutions was tested (Fig. 11). Out of

7.63 · 1011 solutions, only 260 gave the best schedules, and

a cost of the cheapest schedule was 323. So the answer is

positive.

VII. CONCLUSIONS

A two-step procedure for automatic creation of supervisors

of RT MOOS has been formulated. In the first step one has to

specify functionalities of the system using early UML models

(use case, activity, and sequence diagrams) and transform the

models into a task graph and a library of resources of the

system. In the second step one has to define decision options

of a supervisor of the system and develop a genotype of

the supervisor using DGP. An application of the procedure

to RT MOOS, which was an enterprise of building houses,

resulted in the creation of the best supervisor in acceptable

time. It was evaluated from different points of view. Efficiency

and precision were taken into account. Experiments showed
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Fig. 11. The number of solutions to the problem for a given cost

that the supervisor can develop the best schedule, which

corresponds to the global optimum.

Variant of the RCPSP presented in this paper is based on

teams that are able to solve tasks. In general, a team is a group

of workers and tools, but could also contain only one member.

For different tasks, teams could contain different members,

thus a team is able to start working when all of its members

are idle. For this reason, it is possible, that choosing only

the fastest teams do not yield the fastest solution. For the

other hand, choosing only the cheapest teams could lead to

the situation when the deadline of solution will be exceeded.

The influence of genetic parameters on the evolution of the

genotype was also investigated. The most important parameter

is δ, which defines the number of mutations. If it is too small

or too large, DGP will have problems with escaping from

local minima or it will behave too randomly. For the example

presented in this paper, the best value for this parameter is

about 20%.

The significant influence on the optimization has also a size

of the tournament. If it is too small, DGP needs more time to

find acceptable results. In the opposite case, if this value is too

big, it leads DGP very quickly close to the global minimum,

but has never achieved it. Actually, it stuck in local minima,

because a variety of the population is decreasing.

The γ parameter corresponds to the number of crossovers.

The crossover is responsible for a genotype tree development.

Changing a genotype tree has also a bit similar effect of

mutations, because after changing a position of the branch

in the tree a new assignment of teams to tasks is achieved.

Although this parameter has the smallest influence on results,

it could be noticed that too high value of γ makes the solutions

more random. If the value is too small, DGP need more time

to achieve the optimal solution.
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