
Abstract—This paper introduces a new type of  brain emo-
tional learning inspired models (BELIMs). The suggested model
is   utilized  as  a  suitable  model  for  predicting  geomagnetic
storms. The model is known as BELPM which is an acronym
for  Brain  Emotional  Learning-based  Prediction  Model.  The
structure of the suggested model consists of four main parts and
mimics the corresponding regions of the neural structure under-
lying fear conditioning. The functions of these parts are imple-
mented by assigning adaptive networks to the different parts.
The learning algorithm of BELPM is based on the steepest de-
scent (SD) and the least square estimator (LSE). In this paper,
BELPM is employed to predict geomagnetic storms using the
Disturbance Storm Time (Dst) index.  To evaluate the perfor-
mance of  BELPM,  the  obtained results  have been compared
with the results  of the adaptive neuro-fuzzy inference system
(ANFIS).

I. INTRODUCTION

HE geomagnetic storm, which originates from the solar

wind, disturbs the Earth's magnetosphere and has caused

harmful damage to the ground based communication,  elec-

tricity power network, etc. Therefore,  developing alert sys-

tems for geomagnetic storms is essential in order to prevent

these harmful effects [1]-[6].

T

The disturbance storm time, Dst, is one of the main in-

dices of a geomagnetic storm and was defined by Bruce Tsu-

rutani [1], [5]-[6].  It is a measurement to count ‘the number

of  solar  charged  particles  that  enter  the  Earth’s  magnetic

field’ [6]. The Dst index has been proposed to characterize

the phases of geomagnetic storms i,e., the initial phase, main

phase and recovery phase and has been recorded by several

space centers such as the World Data Center for Geomag-

netism, Kyoto, Japan.

Different machine learning methods e.g., linear input-out-

put techniques or linear prediction filtering neural networks

[8][9],  neurofuzzy methods [2],[4],  have been investigated

for predicting geomagnetic storms using the Dst index [1]-

[4],  [6]-[12].  Amongst  them,  neural  networks  and  neu-

ro-fuzzy models  have shown high generalization [13],[14]

capabilities to model nonlinear behavior of the Dst index . 

Recently, inspiration from the mammalian emotional sys-

tems to develop emotion-based  models  has received  fairly

good  attention  [15]-[25].  The  emotion-based  models  that

were proposed in [15]-[17] have been developed by a limited

modification of a computational model of emotional learning

that  is  referred  to  as  ‘amygdala-orbitofrontal  system’; this

computational model simulates the emotional learning in the

amygdala (i.e.,one region of the mammalian brain) [26]. The

obtained results from [15]-[17] verify that there are not able

to accurately predict chaotic behavior of nonlinear systems.  

  This paper suggests a new instance of Brain Emotional

Learning-Inspired Models (BELIMs) that are emotion-based

models. The suggested model is applied to predict the Dst in-

dex of geomagnetic storms. So far different variations of BE-

LIMs have been [18]-[25] examined for forecasting solar ac-

tivity and geomagnetic storms. 

The main contribution of this paper is to present a new

version  of  BELIMs  to  be  used  as  an  accurate  prediction

method for the long horizon prediction of the Dst index. An-

other contribution of this paper is to provide comparative re-

sults when predicting the Dst index. 

The rest of the paper is organized as follows: Section II

reviews related works to emotions. Section III describes the

structure,  function  and  learning  algorithm of  the  BELPM

(Brain Emotional  Learning Based  Prediction Model).  Sec-

tion IV reviews the related studies in predicting the Dst in-

dex and the results of BELPM to predict the Dst index are

described.  Finally,  conclusions  about  the  performance  of

BELPM and the further improvements to the suggested mod-

el are discussed in Section V.

II. RELATED WORKS TO ‘EMOTIONS’

Neuroscientists and psychologists have tried  to  describe

emotions on the basis of different hypotheses, e.g., psycho-

logical,  neurobiological,  philosophy,  and learning hypothe-

ses [27]. Cognitive neuroscientists have also tried to describe

the neural system underlying the emotional process. One of

the earlier works is the ‘Papez circuit’ (See Fig. 1) that was

proposed by Jamez Papez.  As Fig. 1 shows, this circuit in-

cludes the ‘hypothalamus, anterior thalamus, cingulate gyrus

and hippocampus’ [27].
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Fig.1. The Papez Circuit and its component. 

 
MacLean modified the Papez circuit and proposed the 

limbic system theory to describe the regions of the brain that 

are responsible for emotional processing. The limbic system 

includes the hippocampus, amygdala, thalamus and sensory 

cortex [27]. Later, neuroscientists rejected the limbic system 

theory and stated that different parts of the brain are 

responsible for different emotional behavior [28]. Fear is a 

common emotional behavior that exists as well for humans as 

animals. Fear conditioning has been defined as a ‘behavioral 

paradigm’ which means learning fearful stimuli to predict 

aversive events [28].  

 

 
Fig. 2. A schematic of the brain’s parts and their interconnections in fear 

conditioning. 
 

Figure 2 displays how the amygdala and other parts of the 

brain, thalamus, sensory cortex and orbitofrontal cortex 

connected to process a fearful stimulus in the mammalian 

brain. As the diagram indicates, the amygdala is the central 

part to process the emotional stimulus. The neural structures 

of emotional behavior have been the foundation of the 

computational model of emotional learning.  

Computational models of emotion [23],[25],[26] are 

computer-based models that have been developed to simulate 

different aspects of the emotional system. A good example of 

computational models is a model that is referred to as 

amygdala-orbitofrontal system and has been proposed to 

simulate emotional learning in the amygdala [26].  

 

 
Fig.3. The Amygdala-orbitofrontal system [26]. 

 

Figure 3 depicts the internal structure of the 

amygdala-orbitofrontal system and describes that 

orbitofrontal cortex and amygdala consists of several nodes; 

the output of each node of the amygdala is represented as 
iA  

while the output of each node of the orbitofrontal cortex is 

represented as
iO . The overall output of the model is 

represented as E and it is formulated as equation (1) [26]. 

i i

i i

A O= -å åE                                                               (1) 

Here 
iA and 

iO are the output of the i
th node of the 

amygdala and the orbitofrontal cortex, respectively. The 

updating rules of the model are based on the reinforcement 

signal REW . The updating rules are formalized as equations 

(2) and (3) and are utilized to adjust the weights V and W  that 

are associated with the nodes of the amygdala and the 

orbitofrontal part, respectively [26]. Here 
i

s is the input 

stimulus for the i
th node of the amygdala and the orbitofrontal 

cortex [26].  

i i i

i

V (S max(0, A ))D = a ´ -åREW                                      (2) 

i i i

i

W (S ( O ))D = b ´ -å REW                                               (3) 

The amygdala-orbitofrontal model [26] has a simple 

structure and has been used as a foundation for numerous l 

emotion-based models [15]-[25],[29]-[33].  As was discussed 

earlier, the emotion-based models in [15]-[16] were proposed 

as chaotic time series prediction models. The foundation of 

these models is amygdala-orbitofrontal system; however they 

were developed by changing the updating rules of 

amygdala-orbitofrontal system. These models have not 

shown good results to accurately predict chaotic time series 

[15]-[16]. In [17], another modification of 

amygdala-orbitofrontal system was proposed by changing the 

input vector of the thalamus and the amygdala part; in 

addition, the updating rules of amygdala and orbitofrontal 

cortex were modified. The model that is named ‘ADBEL’[17] 
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(adaptive brain emotional decayed learning) was applied to  

predict the hourly Dst index; however, the obtained results 

verify the ADBEL could not accurately predict chaotic 

behavior of the Dst index.  

The Emotion-based controllers [29]-[33] have also been 

developed by imitating the structure of the 

amygdala-orbitofrontal.  

This paper presents a new type of emotion-based 

prediction models. Although the general structure of this 

model is similar to the amygdala-orbitofrontal system, the 

internal structure of this model is different from the 

amygdala-orbitofrontal system.  

III. BRAIN EMOTIONAL LEARNING-BASED PREDICTION 

MODEL    

The Brain Emotional Learning-Based Prediction Model 

(BELPM) is a type of Brain Emotional Learning-Inspired 

Model (BELIM) which is a new category of computational 

intelligence models. The general structure of a BELIM is an 

extension of the amygdala-orbitofrontal system by adding 

new internal parts that have been inspired by the neural 

structure of one of the emotional systems in the brain. 

Different types of BELIM: Brain Emotional Learning-based 

Fuzzy Inference System (BELFIS), Brain Emotional 

Learning-based Recurrent Fuzzy System (BELRFS) and 

Emotional Learning Inspired Ensample Classifier (ELiEC) 

[18]-[25] have been proposed as prediction models and 

classification models.   

 

A. Structural Aspect of BELPM  

Figure 4 depicts the structure of BELPM and shows that it 

consists of four main parts: TH, CX, AMYG and ORBI which 

refer to the THalamous, sensory CorteX, AMYGdala, and 

ORBItofrontal cortex, respectively. The structure of BELPM 

copies the interconnection of those parts (THalamous, 

sensory CorteX, AMYGdala, and ORBItofrontal cortex) that 

are responsible to process the emotional stimuli. It should be 

noted that these regions of the brain are very complex and 

there is no intention to mimic their functionality and all their 

connections in detail.  
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Fig. 4. The structure of BELPM. 

 

The following steps describes the input and output of each 

part of BELPM; when it receives an input as 
u , ji from the 

training data set, 
Nu

u u , j j 1{ } ==I i  .   

1. First, 
u, ji the jth input vector from 

N
u

u u , j j 1{ } ==I i  (taking 

the assumption that the number of training samples is equal to

uN ; the subscript u has been used to determine the input data 

is chosen from the training data set) enters the TH, which 

provides two outputs,
Max _ Min

u, j
th and

AGG

u, j
th which are sent to 

the AMYG and the CX, respectively.  

2. The CX provides u, js  and sends it to both the AMYG 

and the ORBI.  

3. The AMYG receives two inputs: 
Max _ Min

u, j
th and u, js . It 

provides the primary output,
u,ja

r , and expected punishment,

u , j

e

a
p , that is sent to the ORBI (the  subscript a has been used 

to show the outputs of AMYG).  

4. The ORBI receives u, js  and u , j

e

a
p . It provides the 

secondary output,
u,jo

r , and sends it to the AMYG. 5. The 

AMYG receives 
u,jo

r and provides the final output, 
u,jf

r  (the 

subscript f has been used to show the final outputs). 

B. Functional Aspect of BELPM  

The function of BELPM is implemented by assigning 

adaptive networks to different parts. Figure 5 describes how 

the adaptive networks can be assigned to each part to 

implement the functionality of that part.   

The adaptive network (see Fig. 6) consists of a number of 

nodes that are connected by directional links. The nodes of 

the adaptive network can be classified into circle and square 

nodes. A circle node has a function without adjustable 

parameters; in contrast, the square nodes have been defined 

by a function with the adjustable parameters. The learning 

parameters of an adaptive network are a combination of linear 

and nonlinear parameters and can be adjusted by using a 

learning algorithm.    

 
 

Fig. 5. Assigning different adaptive networks to different parts of  

BELPM. 
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Fig. 6. A structure of an adaptive network. 

C. A Weighted k-Nearest Neighbor based Adaptive Network  

In BELPM, weighted k-nearest neighbor based adaptive 

networks are assigned to the AMYG and the ORBI. This 

adaptive network has been developed on the basis of 

weighted k-Nearest Neighbor (Wk-NN).  Figure 7 describes a 

simple Wk-NN based adaptive network and shows that it is 

divided into four layers. In the following, the function, the 

input and the output of each layer has been explained.  

The first layer consists of k square nodes with K(.)

function (kernel function). Note that in Fig.7, k is equal to 

three. This layer has an input vector as 
k

min min,m m 1{d } ==d .
 

The mind is a set of k minimum distances of 
N

u
j j 1{d } ==d . The 

distances vector 
N

u
j j 1{d } ==d

 
can be calculated as Euclidean 

distances between a new input as
c, ji and the training data as

N
u

u, j j 1{ } =i . The output vector of the m th node of the first layer is 

calculated using equation (4). Here, the input to the m th node 

is
min,md . 

1

m min,mn K(d )=                                                                     (4) 

In general, the kernel function for the m th node can be one 

of the functions that have been defined as equations (5), (6), 

and (7). The input and the parameter of K(.) of m th node can 

be determined using md and
mb  .  

m m mK(d ) exp( d b )= -                                                        (5) 

m 2

m m

1
K(d )

(1 (d b ) )
=

+
                                                                 (6) 

m
m

max( ) (d min( ))
K(d )

max( )

- -
=

d d

d

                                                 (7) 

The second layer is a normalization layer and has k nodes 

(fixed or circle), which are labeled N to calculate the 

normalized values of 
1

n using (8). The input vector of this 

layer is 
1

n and the output of m th node in this layer can be 

calculated as (8) 
1

1 m

m k
1

m

(n )
n

n
=

=

å
m 1

                                                                       (8) 

The third layer has k circle nodes; the function of m th 

node of this layer is given in (9). This layer has two input 

vectors, 
1

n and
min,u

r ; the latter is a vector that is extracted 

from 
uu u ,1 u ,2 u ,N

r , r ,..., ré ù= ê úë ûr and is related to the target outputs 

of the k  samples of 
N

u
u, j j 1

{ } =i that have minimum distances 

with the new input
c, ji .  The output of this layer is 

3
n . 

 
1

3 m

m u,mk
1

m

(n )
n r

n
=

= ´

å
m 1

                                                                     (9) 

The fourth layer has a single node (circle) that performs 

the summation of the input vector,
3

n  to produce r .  

The above explanation has illustrated the function of  a 

simple Wk-NN based adaptive network. It should be noted 

that in BELPM, the AMYG and the ORBI are assigned this 

type of adaptive network.   

 

 

min,1
d 1

1n

ru,1

rmin,2
d

min,3
d

ru,2

ru,3

1
2n

1
3n

 
 

Fig.7. A weighted k-Nearest Neighbor adaptive network.  

 

D. Learning Aspect of BELPM   

To adjust the linear and nonlinear learning parameters, a 

hybrid learning algorithm that consists of the steepest descent 

(SD) and the least-squares estimator (LSE) is used. The SD 

updates the nonlinear parameters in a gradient related 

direction to minimize the loss functions, which are defined 

based on the outputs of the adaptive networks. The LSE is 

applied to update the linear parameters. The learning 

algorithm has been explained in detail in [25].  

IV. RELATED WORK TO PREDICT GEOMAGNETIC STORMS  

As was previously discussed, developing an alert system 

for geomagnetic storms is essential. The Dst index that has 

been defined to measure the intensity of geomagnetic storms 

has been utilized by many data driven models. The following 

subsection reviews several studies that have been used to 

predict geomagnetic storms.   

 

A. Related works to Predict Geomagnetic Storm  

 A good review of earlier studies related to use the Dst 

index to predict geomagnetic storms have been done in [6]. 

The authors of [6] provided a survey of using the Dst index to 

predict geomagnetic storms; they also proposed a neural 

network-based prediction model to predict the minimum 
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values of the Dst index. The model was successfully 

evaluated to predict geomagnetic storms of 1980 and 1989. In 

[9], a recurrent neural network was introduced to predict one 

hour step of Dst from 2001. The authors of [9] also showed 

that combining principal component analysis (PCA) and NN 

could significantly increase the accuracy of prediction of a 

geomagnetic storm. The damage and harmful effects of 

geomagnetic storms were reviewed in [10]. The authors of 

[10] studied the effect of  the embedding dimension on   the 

chaotic behavior of the Dst time series; the proposed model in 

[10] was is study tested for two super storms: 13 March 1989 

and 11 January 1997. In [2] a combination of Singular 

Spectrum Analysis (SSA) and locally linear neuro-fuzzy 

model was proposed as a useful methodology to increase the 

accuracy of long term prediction of Dst time series. 

Specifically, this method was examined to predict ten steps 

ahead of extracted Dst time series between 1988 and 1990, 

Within this time window the geomagnetic storm damaged 

Quebec’s power grid and caused a blackout in Quebec [10] is 

included.  A nice review of the Dst index prediction models 

and the benefits of prediction of the Dst index was presented 

in [12]. The authors of [12] also proposed a long term 

prediction model that is known as ‘Anemomils’[12] and 

tested it for three geomagnetic storms of 2001, 2005 and 

2012. 

B. Evaluating the BELPM’s Performance on the Dst index 

This subsection evaluates BELPM’s performance by 

examining it on two sets of the Dst index. The code of 

BELPM has been written in MATLAB and the Dst index can 

be downloaded from the World Data Center for 

Geomagnetism, Kyoto, Japan.  

The first data set is related to the Dst index of the super 

storm that occurred in March 1989.  The value of the Dst 

index on  the 13th March of 1989 reached to ‘-589 nanotesla 

(nT)’. Figure 8 depicts the hourly DST index during 

January1988 to January 1990.   

 
Fig. 8. The hourly Dst index from January 1988 to January 1990. 

 

The second data set is related to the geomagnetic super 

storm which occurred on July 15th to 17th ; the minimum of 

the Dst index was – 301 nanotesla (nT).  Figure 9 depicts the 

hourly DST index during the days of July 2000.    

  To provide a careful comparison with other methods, this 

paper utilizes two error measures: normalized mean square 

error (NMSE) and the correlation coefficient ˆy,yr that are 

given as equations (10) and (11).   
N

2

j j

j 1

N
2

j j

j 1

ˆ(y y )

NMSE

(y y )

=

=

-

-
=
å

å
                                                     (10) 

ˆy,y

ˆy y

ˆCov(y, y)
r

s s
=                                                                 (11) 

  The parameters ŷ
 
and y

 
refer to the predicted values 

and desired targets, respectively. The parameter y
 
is the 

average of the desired targets. 

 
Fig.9. The hourly Dst index for July 2000. 

 

As was mentioned earlier, in the first experiment, BELPM is 

tested to model the Dst time series between january1988 to 

January 1990. The Dst time series is related to one of the 

harmful geomagnetic storms which occurred during solar 

cycle 22 and caused severe damage to Quebec’s electricity 

power system. In this case, the embedded dimension is 

selected as three. Figure 10 shows the inputs and output of 

BELPM as a black box to predict the Dst time series.  

 

Dst(t 1)+

Dst(t)

Dst(t 1)-

Dst(t 2)-
 

  Fig.10. A black box of the BELPM to receive the Dst index and predict 

one step ahead of the Dst index.  
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The predicted values of the Dst index versus the observed 

values of the first data set includes the Dst index of 13th 

March 1989 which has been described in Fig.11(a).  The 

training data samples of Dst index has been depicted in Fig. 

11(b). This figure shows that BELPM can outperform ANFIS 

in modeling the Dst index.  

 

 
(a) 

 
(b) 

Fig.11. (a). The observed values and predicted values by ANFIS and 

BELPM. (b). The training data samples.  

 
Fig.12. The correlation between the predicted values and the observed 

values of March 1989.  

 

The correlation between the predicted values and the 

observed values are shown in Fig.12. The obtained NMSE of 

BELPM  is 0.1041; while the NMSE index of ANFIS is more 

than 0.15.   

For the second data set, BELPM is tested for multi-step 

ahead prediction of the Dst values. The main goal of this case 

is to evaluate the performance of BELPM for long term 

prediction of the Dst index. Figure 13. shows the predicted 

values by BELPM versus the observed values. For one step 

ahead prediction of the Dst index from 10th to 22nd of July 

2000, the NMSE index of BELPM equals to 0.0593; while the 

NMSE index of ANFIS is equal 0.112. As this figure 

describes BELPM could predict the Dst index better than 

ANFIS. Figure 14 shows how increasing the prediction 

horizon causes increases in the prediction errors of BELPM 

and ANFIS. It is notable that the values of the NMSE index of 

BELPM are lower than the values of the NMSE index of 

ANFIS.  

Tabel I compares the performance of three methods on six 

-steps ahead prediction of the Dst index. It is notable that the 

BELPM outperforms ANFIS and a  neural network method in 

terms of  NMSE and correlation coefficent.   

 

 
Fig.13.The predicted values of Dst index of 2000 

 

 Fig.14. The values of NMSE index versus the prediction horizon of the Dst 

time series.  
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TABLE I 
A COMPARISON BETWEEN BELPM, ANFIS AND ANN 

Method NMSE Correlation 

ANN[13] ----- 0.75 

BELPM 0.44 0.75 

ANFIS 0.45 0.74 

   

V. CONCLUSION 

This study has suggested another model of BELIMs that is 

referred to as Brain Emotional Learning-based Prediction 

Model (BELPM). This paper examined this model (BELPM) 

to model the Dst index and has been tested for prediction 

geomagnetic storms using two data sets of the Dst index. The 

results have verified that the proposed model can be used for 

long-term prediction of geomagnetic storms.  

As future work, the authors consider adding an 

evolutionary-based optimization method e.g., genetic 

algorithm to find optimal values of the fiddle parameters, e.g., 

the number of neighbors and the initial values of nonlinear 

parameters. Other improvements in the model would be made 

on the basis of kd-Tree data structure to address “the curse of 

dimensionality” problem and decrease the computational 

time complexity of BELPM. To adjust the nonlinear 

parameters, different types of optimization methods (e.g., 

Quasi-Newton or Conjugate Directions) may be utilized. The 

good results obtained when employing the BELPM for 

predicting geomagnetic storms are a motivation for applying 

this model to classify patterns as well as to identify complex 

systems. 
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