
Extended Entity-Relationship Approach in a
Multi-Paradigm Information System Modeling Tool

Vladimir Dimitrieski, Milan Čeliković, Slavica Aleksić, Sonja Ristić, and Ivan Luković
University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia

Email: {dimitrieski, milancel, slavica, sdristic, ivan}@uns.ac.rs

Abstract—In this paper we present a Multi-Paradigm Infor-
mation System Modeling Tool (MIST) that supports Extended
Entity-Relationship (EER) approach to database design. MIST
components currently provide a formal specification of EER
database schema specification and its transformation into the
relational data model, or the class model. Also, MIST allows gen-
eration of Structured Query Language (SQL) code for database
creation and procedural code for implementing database con-
straints. In addition, Java code that stores and processes data
from the database, may be generated from the class model.

I. INTRODUCTION

IN THE last few decades, a number of information sys-

tem (IS) development approaches have emerged. Some of

methods that are still in use include: Entity-Relationship (ER)

data model proposed by Chen [8] with its further extensions,

relational data model [9], form type (FT) model [15], and

object-oriented model [22].
Throughout our previous research [2], [15], [16], [17], we

have developed a tool named IIS*Studio, to allow a usage

of FT concepts in the IS design process. IIS*Studio provides

an approach to an evolutive and incremental IS development.

The approach is purely platform independent and it strictly

differentiates between the specification of a system and its

implementation on a particular platform. IIS*Studio currently

provides the following functionalities: (i) conceptual modeling

of database schemas, transaction programs, and business appli-

cations of an IS; (ii) automated design of relational database

subschemas in the 3rd normal form (3NF); (iii) automated

integration of subschemas into a unified database schema in

the 3NF; (iv) automated generation of SQL/DDL code for

various DBMSs [2]; (v) conceptual design of common GUI

models; (vi) automated generation of executable prototypes

of business applications; (vii) modeling check constraints

and untypical functionalities of business applications [16];

and (viii) reverse engineering of relational databases to FT

models [1].
With the emergence of Model Driven Software Devel-

opment (MDSD) paradigm and Eclipse Modeling Project

(EMP) [10] with an appropriate tooling, we decided to im-

plement some of the existing IIS*Studio functionalities using

these technologies. The motivation came from our intention to

provide designers of ISs a possibility to use Eclipse environ-

ment and thus reduce steep learning curve for new users of

Research presented in this paper was supported by Ministry of Education,
Science and Technological Development of Republic of Serbia, Grant III-
44010.

IIS*Studio. Therefore, we have developed a domain specific

language (DSL) allowing a specification of IS form type

models. A detailed specification of this language is presented

in [7].

One of the main goals of IIS*Studio is to provide a designer

conceptual modeling by creating platform independent models.

As designers mainly use other approaches than FT for this

purpose, we have decided to support not only FT concepts,

but also Extended Entity-Relationship (EER) data model, as

a commonly used, traditional approach. Therefore, we have

developed a DSL for the specification of EER database schema

specifications, named EERDSL. Together, FT and EER are

the approaches of our new Eclipse-based tool both providing

conceptual database schema modeling. The tool is named

Multi-paradigm Information System modeling Tool (MIST). In

MIST, both approaches may be used simultaneously. For both

FT and EER models, we provide in MIST a transformation

into a relational data model. In our previous research on

database reengineering approaches [1], we have developed a

transformation from a relational data model to a FT model,

named relational to form type transformation (R2FT). R2FT

is used to transform an EER model into an FT model via

relational data model.

As EER approach is present in almost every book on

databases, we believe that MIST may also be used for educa-

tional purposes, such as learning about: (i) EER concepts and

developing a database specification at the conceptual level;

(ii) transformations of EER to relational database schema

specifications; (iii) transformations of EER to class models;

and (iv) MDSD approach by means of the EER approach the

students are familiar with, since it is extensively taught in the

previous database courses.

In this paper we present the architecture of MIST. It

comprises several components that support not only conceptual

modeling with FT and EER approaches, but also code gener-

ation. The main focus in the paper is on tool components

supporting EER approach and transformations from EER to

relational and class models. A detailed presentation of the

code generators is out of the scope of this paper. Let us

just notify here that we have developed both SQL and Java

code generators. The SQL Generator provides SQL statements

for creating database tables and all basic types of constraints

according to SQL ANSI standard. Besides, the code of inverse

referential constrains, as they are defined in [3], is generated.

As it has to be implemented in a procedural way, different

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 1611–1620

DOI: 10.15439/2014F239

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 1611

generators are needed for each target database management

system (DBMS). Our tool currently supports generation of

PL/SQL statements for Oracle DBMS. Our Java code genera-

tor provides a generation of Java classes from a class model.

Generated Java classes are used in Java programs for storing

loaded data from a database.

Apart from Introduction and Conclusion, the paper is orga-

nized in four sections. In Section 2 we present the architecture

of MIST, while in Section 3 we present EER, Relational and

Class meta-models. The aforementioned meta-models are used

in the following transformation specifications: (i) the EER

data model to relational data model transformation, named

EER2Relational and (ii) the EER data model to class model

transformation, named EER2Class. These transformations are

presented in Section 4. In the same section we present results

of applying the aforementioned transformations in our exam-

ple and the excerpts from generated SQL and Java code. In

Section 5, we present related work.

II. THE ARCHITECTURE OF MIST

In this section we present the architecture of MIST. Its

global picture is depicted in Fig. 1. MIST comprises the fol-

lowing components: FTDSL, Synthesis, Business Application

Generator, EERDSL, EER2Rel, EER2Class, SQL Generator,

Java Generator, and R2FT. In the following text, we explain

each of the components from Fig. 1.

FTDSL component allows designers to specify a platform

independent model (PIM) of an IS. FTDSL comprises Ecore

meta-model specification of FT PIM concepts and a textual

DSL based on these concepts. With the DSL a designer may

specify a database schema of an IS, business applications and

their graphical user interfaces (GUIs). After an IS is specified

at the PIM level, the Synthesis component is used to generate

a model of a relational database schema. The Synthesis

component implements an improved synthesis algorithm, as

it is presented in [14]. First, the component takes a form type

specification and transforms it to a Universal Relation Schema

(URS) specification. URS and all its benefits are presented

in [14]. The synthesis algorithm takes the URS specification

and produces a relational database schema as an output. As the

FT component may be used to specify business applications of

an IS, the MIST architecture includes a Business Application

Generator component. This component takes a FT model as

an input and generates Java code of a modeled business

application. As the specification is enriched with GUI details,

the generated application prototype may be executed and used

to perform basic CRUD operations over the database.

EERDSL component provides a conceptual specification of

an IS database model. Unlike FTDSL, EERDSL is used to

specify IS database models only, without specification of busi-

ness applications and their GUIs. We have created both textual

and graphical notations for EERDSL. The textual notation was

developed using the Xtext tool, while the Eugenia tool was

used to develop the graphical notation. One of the benefits of

having a textual notation is that textual editors may be used

as an alternative option for more experienced users, or when

the Eclipse environment is unavailable. The textual notation

also allows a usage of commonly used textual version control

systems to provide a better collaboration inside the developer

team. Most database designers, however, are using some EER

graphical notation. Several different graphical notations for the

EER approach exist. Here we have implemented the notation

presented by Thalheim in [21]. Both graphical and textual

notations may be used by a designer simultaneously, while

specifying an EER model. By this, two different viewpoints

over the same model are provided in MIST.

EER2Rel component of MIST provides a transformation

of EER model to a relational data model. Models being

transformed conform to the EER meta-model and relational

meta-model, respectively. The meta-models are presented in

the following section. The relational data model may be further

used in the process of SQL code generation. For this purpose,

Fig. 1. The architecture of MIST

1612 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

the SQL Generator component is developed. Currently, it

provides generating SQL code for Oracle DBMS.

EER2Class component of MIST provides a transformation

of an EER model to a class model. The class model conforms

to the class meta-model presented in the Section 3. The

class model may be used to generate code in some of the

object-oriented programming languages. Our Java Generator

component is used to generate Java code from the provided

class model.

In order to provide reverse engineering of the relational

database model to the FT model, R2FT component has been

developed. The component comprises a transformation speci-

fication from the relational data model to the FT model. Also,

this component may be used to transform an EER data model

to the FT model through the relational data model.

III. EER, RELATIONAL, AND CLASS META-MODELS

In this section we present in more detail meta-models used

in EER approach. In Subsection A, we present our EER

meta-model and introduce an example used throughout the

paper. Our goal is to test the approach on this example.

Further evaluations of the approach are also possible, such

as comparing its quality and efficiency with the FT approach.

However, this comparison is not presented in this paper due

to the space limitations. In Subsection B, we present the

relational meta-model, while in Subsection C we present the

class meta-model.

A. EER meta-model and an example

In this subsection we present the EER meta-model depicted

in Fig. 2. In the rest of this section we present the names

of meta-model and model concepts in italic. This meta-model

represents the abstract syntax of EERDSL used for specifying

data models at the conceptual level. The root concept in our

meta-model presented in Fig. 2 is EERModel. Each EER

model comprises one or more Entities and zero or more

Relationships, Gerunds, and Domains.
Entity concept is used to specify a class of observed real

world entities in the IS being designed. In some approaches,

the Entity concept is named as Entity Type concept. According

to [21], we adopt the name Entity.
Each entity has zero or more attributes that are modeled by

Attribute class. Attributes represent properties of real world

entities that are of importance for the specified IS. For each

attribute, a domain is specified. A domain represents a speci-

fication of possible values that can be assigned to an attribute

and it is modeled using Domain. A domain must be based upon

a primitive domain, such as integer, string, real, boolean, date,

and time. The primitive domain is modeled by an enumeration

PrimitiveDomain. An assignment of a domain to an attribute

is modeled by AttributeDomain. For each attribute, length

and default value may be specified. This way of restricting

domains allows their reusability. Therefore, domains may be

specified once at the level of EER model, and reused and

further restricted at the level of attributes. An entity may have

one or more keys modeled by Key. Each key comprises one or

more attributes of the entity. Only one key may be declared as

the primary key. This is modeled by primaryKey association.
In the meta-model from Fig. 2, different types of re-

lationships between entities are modeled by: Relationship,

ISA, Categorisation, and IdentificationDependency. An n-ary

relationship between entities is modeled by Relationship. For

each entity its role, minimum, and maximum cardinalities must

be specified for each relationship. Minimum cardinality may

be provided with the values of zero or one, while a maximum

cardinality may be provided with the values of one or more.

Entity role and cardinalities are modeled by RegularEntity.

Each relationship may have zero or more attributes. IS-A

Fig. 2. EER meta-model

VLADIMIR DIMITRIESKI ET AL.: EXTENDED ENTITY-RELATIONSHIP APPROACH 1613

relationship, modeled by ISA, represents a specialization of

entities. For each IS-A relationship a single supertype entity

should be provided. This is modeled by supertype association.

Also, for each IS-A relationship, subtype entities should be

provided. This is modeled by subtype association. Catego-

rization relationship represents a classification, i.e. typization

relationship between entities. It comprises two or more cate-

gory entities, modeled by Categories, and a single categorized

entity. Identification dependency relationship concept is mod-

eled by IdentificationDependency. A weak entity is modeled

by weakEntity association, while regular entity is modeled by

regularEntity association.

An n-ary relationship may participate as an entity in another

relationship. Such relationship is called gerund and modeled

by Gerund. A gerund may take a role of a regular entity

in an n-ary or identification dependency relationship. Also,

it may take a role of a specialized entity in a specialization,

and category entity in a classification.

In Fig. 3, we present our example specified using a textual

notation of EERDSL. The textual notation is chosen as it is

rarely encountered while specifying EER models. However,

due to the limited space, we omit repetitive constructs from the

textual specification. We model a part of a Faculty IS, named

FacultySystem, responsible for storing data about students and

their grades.

Students are modeled with an entity named Student. Each

student has four attributes: studentID, studentsYear, student-

Name, and studentSurname. Primary key named keyStudent

comprises studentID attribute. Subjects are modeled with Sub-

ject entity having two attributes: subjectID and subjectName.

Primary key named keySubject comprises subjectID attribute.

Teachers of a faculty are modeled as Teacher entity and

are described by teacherTitle, teacherID, teacherName, and

teacherSurname attributes. TeacherID is the only attribute

in keyTeacher primary key. Relationship between teachers

and subjects they teach is modeled by TeachesClasses. Each

teacher may teach one or more subjects, while a subject may

be taught by one or more teachers. The relation between

students and subjects is modeled as Takes relationship. Each

student may enroll one or more subjects, while a subject may

be enrolled by zero or more students. Relationship Grades

models students’ grades given by teachers. As only a teacher

that teaches a subject may grade students enrolled on that

subject, relationship Grades must relate relationships Takes

and TeachesClasses. Therefore, relationships Takes and Teach-

esClasses must be represented as gerunds. Each student that

takes a subject may be graded by exactly one teacher teaching

the subject. A teacher teaching a subject may grade zero or

many students of the subject. For each grading examDate and

grade attributes are specified.

B. Relational meta-model

In this subsection we present our relational meta-model.

The root concept of the relational meta-model presented in

Fig. 4 is Database. Each database schema comprises Tables.

SystemDataTypes represent predefined data types built into

Fig. 3. Example of Faculty IS specification in EERDSL

each DBMS, while UserDefinedDataTypes represent user de-

fined restrictions on existing data types. Each table comprises

one or more columns, modeled with Column, and constraints

inheriting the abstract concept Constraints. At the level of

a relational database specification, for each table following

constraints may be specified: (i) primary key constraint mod-

eled by PrimaryKeyCon, comprising an array of columns; (ii)

unique constraint modeled by UniqueCon, comprising an array

of columns having a unique combination of values; (iii) foreign

key constraint modeled by ForeignKey, comprising: an array

of columns, referenced table, and primary key constraint or

unique constraint of referenced table; and (iv) check constraint

modeled by CheckCon, comprising a logical expression.

C. Class meta-model

In this subsection we present our class meta-model. We

have modeled only the most basic concepts to specify elements

for a representation of data in object oriented programs. The

root concept of the class meta-model depicted in Fig. 5 is

ClassModel. All concepts are grouped into packages modeled

by Package. A package comprises zero or more Classes and

1614 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Fig. 4. Relational meta-model

other Packages. Each class comprises zero or more fields,

modeled by Attribute concept, and methods modeled with

Function concept. Data types are modeled by Type. Classes

and types inherit the abstract Classifier. This concept is

specified in order to allow attributes and functions to have

both primitive and class types as their type, and the return type

respectively. Finally, for each attribute, class, and function an

access modifier should be provided. Possible access modifier

values are modeled as an enumeration, which comprises

following values: private, protected, default, and public.

IV. FROM EER DATA MODEL TO GENERATED CODE

In this section we present two transformations: EER2Rel

for transforming an EER model into a relational data model

and EER2Class for transforming and EER model into a class

model. Transformations are specified in ATL transformation

language (ATL) [13]. We present ATL code for the most

representative transformation rules. In this section we present

the results of applying transformations on the example. Finally,

generated code fragments of our example are presented at the

end of this section.

Once an EER database model is specified using EERDSL, it

may be transformed to the corresponding relational model. In

Table I, the first two columns represent all of the corresponding

concepts between the EER and relational meta-models. Based

on these correspondences, concrete ATL transformation rules

are specified.

Fig. 5. Class meta-model

VLADIMIR DIMITRIESKI ET AL.: EXTENDED ENTITY-RELATIONSHIP APPROACH 1615

TABLE I
TRANSFORMATION ELEMENTS FROM AN EER MODEL TO RELATIONAL AND CLASS MODELS

EER model Relational model Class model

EERModel Database ClassModel, Package

Domain UserSystemType, SystemDataType Type

Entity Table Class, Function (Constructor)

Attribute Column Attribute, Function (Get/Set)

Key PrimaryKeyCon (if the key is entity’s primary key) -

Relationship Table (if all maximum cardinalities are many) Class (if all maximum cardinalities are many), Function

Gerund Table Class, Function

Identification

dependency

Columns of the propagated primary key are included into the
primary key of the table created from a weak entity. Foreign

key is created to reference the table created from regular entity.

For a class created from a weak entity, an object-member is
created referencing a class created from a regular entity.

ISA
Columns of the propagated primary key are included into the
primary key of the table created from a subtype entity. Foreign

key is created to reference the table created from supertype entity.

A class created from a subtype entity inherits a class created
from a supertype entity.

Categorisation
Foreign key is created to reference the table created from
category entity.

For a class created from a categorized entity, object-member is
created referencing a class created from a category.

Each EER database concept may be transformed directly to

a relational database concept. A system data type is created

from EER primitive domains and for each restricted domain,

specific user system type is created. Tables are created from

three different concepts in EER model: Entity, Gerund, and

Relationship. All entities and gerunds are transformed directly

into tables, while only the relationships that have maximum

cardinality of many on both sides, are directly transformed

into tables.

In Fig. 6 we present a transformation rule for transforming

entities into tables. When transforming an entity to a table,

the table name is the same as the name of the entity. For

each entity, the following types of columns may be created:

(i) columns created from attributes of the entity being trans-

formed; (ii) columns created from attributes of a relationship

having a maximum cardinality one on the transformed entity

side; (iii) columns created from primary key attributes of

related entities, where the entity being transformed is on one

side of a relationship; (iv) columns created from primary

key attributes of related categories in categorization relation-

ships; (v) columns created from primary key attributes of re-

lated regular entities in identification dependency relationships

where transformed entity plays a role of weak entity; and

(vi) columns created from primary key attributes of related

supertypes in ISA relationships. In this transformation rule,

the aforementioned columns are created in both declarative

and imperative way. The declarative part of the ATL rule may

be used to create the first two types of columns. The creation

of these columns does not require the creation of foreign keys

and assigning the columns to a foreign key. Therefore, such

columns do not require additional references to be set and

as such they may be created in a fully declarative way. The

imperative section of the ATL rule must be used for the next

four types of columns. These columns represent copies of

already created primary key columns in other tables. As such,

foreign keys must also be created and lhsAttr and columnInFK

references must be assigned to the created foreign keys and

columns respectively. A foreign key must also reference a

table containing original primary key columns with refersTo Fig. 6. Entity to table transformation

1616 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

reference. As the created foreign key is a part of the newly

created table, the foreign key must be assigned to FKTable

reference. The creation of these columns and foreign keys is

provided in a form of the ATL called rule. We have specified

a CreateForeignKey called rule which creates columns from

primary key columns of a related table and a foreign key

referencing that table. This rule adds both created columns

and the foreign key to the newly created table and populates

all of the aforementioned relationships between foreign key,

tables and columns. Due to the space limitations, we have

not presented CreateForeignKey rule in this paper, but its

explicit invocation is presented in Fig. 6 Arguments that are

provided are as follows: (i) entity transformed to a table

being referenced with a foreign key; (ii) table containing the

foreign key, i.e. referencing table; (iii) primary key containing

attributes that are transformed to referenced columns; (iv)

a boolean value specifying whether an inverse referential

integrity should exist; and (v) a string value to be appended to

the names of newly created columns in order to avoid name

conflicts with previously created columns.

Besides being foreign key columns, columns created from

a supertype and a regular entity in ID relationship must be a

part of a primary key. In presented ATL rule, as to collect all

primary key columns we use a global attribute helper named

cols and a local variable named pkcolumns. CreateForeignKeys

uses cols to return created columns as the return value is

used to return a created foreign key. Returned columns are

then appended to the other columns contained in pkcolumns

variable which is local variable declared in the ”using” section

of an ATL rule. At the end of an imperative section of

Entity2Table rule, primary key of a table is set. If a primary

key has already been created in the declarative part of the rule,

pkcolumns are simply appended to PKandUQColumns of the

existing primary key. The columnInPKandUQ relationship is

set for each column referencing a primary key the column is

a part of. However, a primary key may not be created in the

declarative part of the rule. That may be the case if the entity

from EER diagram does not have a specified primary key,

e.g. a subtype in ISA relationship. For those entities a called

rule Key2PKMtoN is invoked which creates a primary key and

sets all of the appropriate references between columns and the

primary key.

Unlike entities, which are all transformed into tables, only

relationships that are not contained in gerunds and that have

all maximum cardinalities of many are transformed into tables.

ATL rule that transform such relationships into tables is

presented in Fig. 7 Attributes belonging to the relationship

are transformed into the table columns. However, when a

relationship between two or more entities is transformed

from EER to a relational specification it must reference all

primary key columns from all related entities. Similarly to

the aforementioned Entity2Table rule, former columns are

created in a declarative way while latter ones are created in

an imperative way.

Finally, tables are also created from gerunds. Each gerund

encapsulates a single relationship and it may be a part of

Fig. 7. Relationship to table transformation

another relationship. As such, a gerund has all traits of rela-

tionships and entities. Therefore, Gerund2Table transformation

rule is a combination of both Entity2Table and Relation-

ship2Table rules. It should be noted that a gerund may not

be a subtype of inheritance relationship, a weak entity of an

identification dependency relationship, or a categorized entity

in a categorization relationship. Therefore, the imperative code

from Entity2Table creating foreign keys and columns from

these kinds of relationships is not a part of Gerund2Table rule.

The code of Gerund2Table is not presented in this paper due

to the space limitations.

The transformation of an EER model to a class model is

very similar to the EER2Relational transformation. In Table I,

the first and the third column represent all of the corresponding

concepts between the EER and class meta-models. Instead

of tables, classes are created and instead of columns each

class has attributes. One notable difference is the lack of

constraint concepts. In the class model, primary keys are not

created which eases the transformation specification. Instead

of creation of foreign keys, an attribute of referenced class

type is created. If a relationship has a maximum cardinality of

many then the attribute is a collection of referenced classes.

The second difference is the existence of functions. For each

class a parametrized constructor is created and for each class

attribute, get and set methods are created.

In Fig. 8 we present results of the transformation of our

example. In the leftmost part of the figure, we present the same

example as in Fig. 3 opened in the Eclipse “Sample Reflective

Ecore Model Editor”. This model has served as the input

model for both EER2Rel and EER2Class transformations.

Output of EER2Rel is presented in central part of Fig. 8.

Each of three EER entities, Student, Teacher, and Subject,

has been transformed into a table with the same name.

VLADIMIR DIMITRIESKI ET AL.: EXTENDED ENTITY-RELATIONSHIP APPROACH 1617

Fig. 8. Faculty IS example: the EER model, the relational database model, and the class model

Here, we present table Student in more details. The table

contains columns created from studentName, studentSurname,

studentYear, and studentID attributes of Student entity in

EER model. From keyStudent in Student entity, PK Student

primary key is created. All the references between the key

and attributes are preserved in a form of references between

primary key and appropriate columns. Due to a lack of

space, these references are not shown in Fig. 8. The gerund

TeachesClasses is transformed into a table with the same

name. Its columns are created from primary key columns

of related Teacher and Subject tables. Appropriate foreign

keys are also created for these columns. A primary key of

TeachesClasses table represents a union of all primary key

columns from Teacher and Subject tables. However, more

interesting case of gerund to table transformations is the case

of Takes gerund. Its relationship relates entities Student and

Subject. Just like in the case of TeachesClasses gerund, the

resulting table, named Takes, will have columns and appro-

priate foreign keys that reference primary key columns from

both Student and Subject tables. These columns are studentID

and subjectID with their foreign keys FK Takes Student and

FK Takes Subject, respectively. Gerund Takes is related with

the gerund TeachesClasses with the relationship Grades. This

relationship is not to be transformed into a separate table

as it has a maximum cardinality of one on the gerund

Takes side. Instead, all of the relationship attributes from the

Grades relationship will be created in Grades table as its

own columns. Primary key attributes of TeachesClasses are

to be referenced form appropriate columns in Takes table.

Therefore, Takes table has grade and examnDate created from

the attributes of Grades relationship. Columns teacherID and

subjectID grades with foreign key FK Takes TeachesClasses

reference primary key attributes from TeachesClasses table.

Let us note that subjectID from TeachesClasses table had to

be renamed in Takes table as there was already a column with

that name. We chose to append the name of a relationship

through which the column was created in the table at the end

of a column’s name. As names of relationships are unique in

the EER model, renamed attributes will all have unique names

in their tables.

Output of EER2Class is presented in the rightmost part of

Fig. 8. Only a detailed overview of a Takes class is given. Sim-

ilarly to the relational model, a class model has five classes:

Student, Subject, Teacher, Takes, and TeachesClasses. First

three classes are created in a straightforward manner from the

entities with the same name. TeachesClasses is created from

TeachesClasses relationship. As relationship Takes relates Stu-

dent and Subject entities, table Takes has two object-members:

student and subject. For the same reasons as in the relational

model, class Takes has two attributes from Grades relationship

and an object-member representing Teaches Classes. These

two attributes are grade and examnDate and an object-member

is named teachesclasses. For object-members that represent a

collection, a Boolean value of isCollection attribute should be

set to true. For example, object member teachesclasses is of

1618 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

the collection type, as it is created from Grades relationship

that has a maximum cardinality of many on the side of Teach-

esClasses. In addition to attributes, a parametrized constructor

and get and set methods are created. For each method a body

is automatically generated in a form of a string.
In Fig. 9 we present excerpts from the generated SQL

and Java code. In the left part of the figure we present

a statement for creating Takes table as well as statements

that add constraints to this table. In the same figure we

present a part of the procedural code that handles inserting

new tuples into tables on top of which an inverse referential

constraint is enforced. In our example these two tables are

Subject and TeachesClasses. In order to allow simultaneous

insert in both tables, a view View Subject TeachesClasses

is created that will allow such insert. An algorithm that

handles such insert is a part of a generated trigger named

TRG IRI Subject TeachesClasses View. Finally, in the right

part of Fig. 9 we present generated Java code for the Takes

class. We have omitted repetitive code of get and set methods.

V. RELATED WORK

Since Chen proposed ER data model in [8], many papers

have been published discussing ER data model, its features,

extensions, and practical application. We found only one paper

presenting EER data model implementation in the Eclipse

environment using MDSD principles. In [12], the authors

present EER meta-model and the EERCASE tool based upon

it. The tool provides all of the EER concepts represented with

Elmasri-Navathe’s graphical notation [11].
Our tool is also integrated with the Eclipse environment, so

as to provide beginners with an easy of use tool as they are

already familiar with the environment. EERDSL component

of our tool provides all concepts from the EER approach. All

concepts are represented with widely used graphical notation

presented also by Thalheim in [21]. Apart from graphical nota-

tion, provided by all of the aforementioned tools, our tool also

provides EER modeling with a textual notation. Similarly to

the aforementioned tools, our tool also supports generation of

SQL and Java code from an EER model. Additionally, our tool

allows generation of the procedural code for implementation of

the inverse referential constraints. Currently, only a generation

of PL/SQL code is provided.

There are numerous Computer Aided Software Engineer-

ing (CASE) tools to support EER approach, such as Pow-

erDesigner [20], ERWin [5], SmartDraw [19], Oracle De-

signer [18], or Cameo Data Modeler [6] for MagicDraw.

These are mainly commercial and widely used CASE tools

and as such they provide proprietary graphical notation for

EER usually supporting only selected concepts. In contrast

to aforementioned CASE tools, EERDSL provides all of

the theoretical EER data modeling concepts. Our tool also

supports data modeling using the textual notation. EERDSL

is the component of the MIST tool that also provides modeling

using the FT concepts. MIST is the only tool that supports the

usage of the FT concepts.

VI. CONCLUSION

During our previous research we developed FT components

for our Multi-Paradigm Information System Modeling Tool

(MIST). These components provide specification of an IS

database schema, business applications and their graphical user

Fig. 9. Generated SQL and Java code

VLADIMIR DIMITRIESKI ET AL.: EXTENDED ENTITY-RELATIONSHIP APPROACH 1619

interface elements. However, designers widely use EER ap-

proach for database schema modeling. Therefore, we provided

MIST components supporting EER approach, to offer design-

ers a choice of two alternative conceptual level approaches

to create IS specifications at the platform independent level.

As both approaches allow a generation of relational database

model from a conceptual specification, it is also possible

to provide transformations between the two specifications

via relational data model. Currently, we have developed a

transformation from a relational to the FT model. It allows a

designer to create a model using the EER approach, and then

use the FT approach to enrich the specification with details of

business applications and their GUI elements.
The MIST tool prototype is ready to be used in database

and MDSD courses at our faculty. This should provide us with

the practical experience and user feedback, allowing further

improvement of the tool and new lessons to be learned.
In addition to the conceptual level meta-model and the

transformation to the relational data model presented in the

paper, we have developed several other model-to-model trans-

formations and code generators. Our SQL Generator com-

ponent provides generating SQL scripts and procedural code

for inverse referential integrity constraints, from a relational

model. Also, starting from an EER model, a class model of

a database may be created and Java classes are generated. In

this paper, our intention was not to give all the details about

developed meta-models and transformations. Instead, we tried

to focus just on those meta-model details that are necessary

to recognize a general picture of the components supporting

EER approach.
As components that support EER approach are public to

a user and well documented, they may also be used in the

educational purposes. It may be used in database courses to

assist students in better understanding basic concepts of EER

and the rules of EER to relational model transformations. A

possible usage is in courses on domain specific languages

and model driven software development, as students may

familiarize themselves with new concepts using well-known

EER concepts.
Several future research directions are possible, including a

specification of MIST meta-models semantics and new fea-

tures of the MIST tool. In order to formally specify semantics

of our meta-models, one of the approaches presented in [4]

should be used. This could allow us to fully automate the

construction of tools supporting our language. Next, in order

to fully support simultaneous conceptual specifications with

EER and FT approaches, several further research directions

are possible. One of them may include an implementation

of EER2FT and FT2EER transformations that would allow

transformations from one to another conceptual level speci-

fication. Also, another research direction would be to extend

EERDSL with new concepts allowing more detailed specifi-

cations of data models. These new concepts should provide

new constraint specifications at the conceptual level. For

example, formal specification of database check constraints

at the level of EER model is in many approaches poorly
supported, or not supported, at all. As we already provide a

conceptual specification of the check constraint at the level of

FT models, we plan to create the appropriate formalisms for

its specification at the level of EER model, too.

REFERENCES

[1] S. Aleksic, “Methods of database schema transformations in support
of the information system reengineering process,” Ph.D. dissertation,
University of Novi Sad, 2013.

[2] S. Aleksic, I. Lukovic, P. Mogin, and M. Govedarica,
“A generator of SQL schema specifications,” Computer

Science and Information Systems, 2007. [Online]. Available:
http://dx.doi.org/10.2298/CSIS0702081A

[3] S. Aleksic, S. Ristic, I. Lukovic, and M. Celikovic, “A design
specification and a server implementation of the inverse referential
integrity constraints,” Computer Science and Information Systems,
2013. [Online]. Available: http://dx.doi.org/10.2298/CSIS111102003A

[4] B. R. Bryant, J. Gray, M. Mernik, P. J. Clarke, R. B. France, and
G. Karsai, “Challenges and directions in formalizing the semantics
of modeling languages,” Computer Science and Information Systems,
2011. [Online]. Available: http://dx.doi.org/10.2298/CSIS110114012B

[5] “CA ERwin.” [Online]. Available: http://erwin.com/
[6] “Cameo Data Modeler.” [Online]. Available: http://www.nomagic.com/

products/magicdraw-addons/cameo-data-modeler.html
[7] M. Celikovic, I. Lukovic, S. Aleksic, and V. Ivancevic, “A MOF based

meta-model and a concrete DSL syntax of IIS*Case PIM concepts,”
Computer Science and Information Systems, 2012. [Online]. Available:
http://dx.doi.org/10.2298/CSIS120203034C

[8] P. P.-S. Chen, “The entity-relationship model toward a unified view
of data,” ACM Transactions on Database Systems, 1976. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-59412-0 18

[9] E. F. Codd, “A relational model of data for large shared data
banks,” Communications of the ACM, 1970. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-59412-0 16

[10] “Eclipse Modeling Project (EMP).” [Online]. Available: http://projects.
eclipse.org/projects/modeling

[11] R. Elmasri and S. B. Navathe, Fundamentals of Database Systems.
Addison-Wesley, 2010.

[12] R. N. Fidalgo, E. Alves, S. Espana, J. Castro, and O. Pastor,
“Metamodeling the enhanced entity-relationship model,” Journal

of Information and Data Management, 2013. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-34002-4 40

[13] F. Jouault, F. Allilaire, J. Bezivin, and I. Kurtev, “ATL: A model
transformation tool,” Science of Computer Programming, 2008.
[Online]. Available: http://dx.doi.org/10.1016/j.scico.2007.08.002

[14] I. Lukovic, “From the synthesis algorithm to the model driven transfor-
mations in database design,” in Proceedings of 10th International Scien-

tific Conference on Informatics (Informatics 2009), Herlany, Slovakia,
2009.

[15] I. Lukovic, P. Mogin, J. Pavicevic, and S. Ristic, “An approach to
developing complex database schemas using form types,” Software:

Practice and Experience, 2007. [Online]. Available: http://dx.doi.org/
10.1002/spe.820

[16] I. Lukovic, A. Popovic, J. Mostic, and S. Ristic, “A tool for
modeling form type check constraints and complex functionalities of
business applications,” Computer Science and Information Systems,
2010. [Online]. Available: http://dx.doi.org/10.2298/CSIS1002359L

[17] I. Lukovic, S. Ristic, P. Mogin, and J. Pavicevic, “Database schema
integration process a methodology and aspects of its applying,” Novi

Sad Journal of Mathematics, 2006.
[18] “Oracle Designer.” [Online]. Available: http://www.oracle.com/

technetwork/developer-tools/designer/overview/index-082236.html
[19] “SmartDraw.” [Online]. Available: http://www.smartdraw.com/
[20] “Sybase PowerDesigner.” [Online]. Available: http://www.sybase.com/

products/modelingdevelopment/powerdesigner
[21] B. Thalheim, Entity-relationship modeling: foundations of database

technology. Springer, 2000.
[22] R. S. Wazlawick, Object-oriented analysis and design for information

systems. Morgan Kaufmann, 2014.

1620 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

