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Abstract—Increasing demands on web user interface (UI)
usability, adaptability, and dynamic behavior drives ever growing
development and maintenance complexity. Conventional design
approaches scale poorly with such rising complexity, resulting
in rapidly increasing costs. Much of the complexity centers
around data presentation and processing. Recent work greatly
reduces such data complexity through the application of Aspect-
Oriented UI (AOUI) design, which separates various UI concerns;
however, rendering in conventional and even AOUI approaches
fails to maintain this separation, often resulting in high rep-
etitions of concern fragments due to tangling. Even worse,
mixing of dynamic and immutable components greatly limits
caching efficacy as each have differing lifetimes. We extend
AOUI design to push down concern separation to rendering,
which reduces description size, through repetition reduction, and
enables separate caching of individual concerns. Our results
show considerable size reduction of UI descriptions for data
presentations, faster load times and extended caching capabilities.

I. INTRODUCTION

E
NTERPRISE web applications have became common

for domestic and international business in the last two

decades. Users expect that enterprise applications support

various browsing devices and provide attractive, usable, and

fast UIs. Usability and speed often work in contradiction for

web applications. Features to enhance usability often increase

application size, which slows responsiveness, particularly in

low bandwidth network such as those used for mobile access.

Despite clear expectations from UIs of enterprise web

applications, conventional design approaches struggle from

multiple deficiencies. For example, the UI descriptions for

data presentations must restate information [18] from lower

layers of the application, in order to extend them. This

brings the risk of mistype errors caused by inconsistencies.

Furthermore, modifications to the application data definitions

require manual changes to the UI. The complexity is mostly

evident when the UI description uses Domain Specific Lan-

guages (DSLs) [26] with limited type-safety. Furthermore,

conventional approaches realize multiple UI concerns tangled

together in a single component [5]. This not only limits

component readability, but mostly limits its reuse, since such
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the component is strongly specialized. This “multi-concern

component solution” results from the inability of conventional

approaches to capture different concerns separately [33]. Such

inability is also evident in object-oriented (OO) design [20].

Providing UI for given data in two slightly different situations

(e.g., normal and mobile version of a website) may require

to implement two similar UI components that differ only in

details [5], [24], but requiring their separate maintenance. The

UI development efforts are apparent from research [5], [18],

which shows that approximately 48% of application code and

50% of development time is devoted to implementing UIs.

This percentage grows with UI abilities and context-specificity.

Next, consider UI delivery to remote clients. In most cases,

the UI is expressed as HTML and streamed to clients over the

Internet. Although, supplemented with immutable resources

such as images, stylesheets or JavaScripts the description

itself is provided as a single piece of information. Such a

single block of information has limited caching options and

its size might be extensive. As stated above, UI components

that present application data tangle multiple concerns together.

This concern mix is also evident in the HTML streamed to a

client. For example, an HTML data form mixes together field

presentation, form layout, data binding, field validation, etc.

Client web browser interprets the delivered HTML to present

the UI description to the user.

Aspect-oriented design for UIs [5] reduces information

restatement and supports separation of UI concerns for compo-

nents presenting data [24]. The reduction of restatement is ad-

dressed through automated code-inspection [19] that supplies

information for transformation to the UI. The aspect-oriented

transformation involves integration of various UI concerns.

This approach works at runtime and thus considers both static

and contextual information. Each data presentation is assem-

bled on demand, based on a given data instance. Concerns

are captured individually and integrated based on contextual

conditions. Individual concerns can thus be reused across

different presentations and data. The outcome is significant

UI code reduction and an assurance of correlation between

the data definition and the UI presentation, which eliminates

errors introduced by human factor [5], [9].
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Since it is possible to capture UI concerns separately at

the server-side, they can be also delivered individually to the

client. The benefit at the server-side is the increase of concern

reuse and thus UI code reduction. The delegation of the

UI component assembly to the client-side could considerably

decrease the amount of transferred information.

Efficient client-side caching of “tangled” HTML is compli-

cated or even impossible. When only a single concern changes,

the entire fragment must be transmitted again. Individual de-

livery of concerns to clients addresses reduction of replicated

information in UI descriptions and makes it possible to cache

certain concerns at the client. In this paper, we apply aspect-

oriented UI (AOUI) design and research the impact of split

concern streaming on the UI load time, transmission size

and content caching. Our empirical results show considerable

reduction of the UI description size, and the ability to cache

individual concerns, which significantly reduces page load

times for repeated visits. We evaluate our work by comparing

the proposed approach with the conventional approach with

respect to transmission content size, load time and caching.

The remainder of this paper is organized as follows: Sec-

tion 2 describes the background of user interface designs.

Section 3 provides an overview of existing work. AOUI ap-

proach is presented in detail in Section 4. Section 5 introduces

distributed version of the approach. Its evaluation is discussed

in Section 6. The final section presents our conclusion and

future work.

II. BACKGROUND

Enterprise system architecture [15], [22], [13] divides re-

sponsibilities into layers. For example the Java Enterprise

Edition (Java EE) specification [10] divides the application

into persistence, business logic and presentation layers. Devel-

opers implement each layer using a General Purpose Language

(GPL). It is common practice for the presentation layer to

use component-based UI approaches [2], which may involve

a DSL to better describe a UI; unfortunately, such languages

have limited type safety. Each layer has well defined re-

sponsibilities, and provides mechanisms to capture certain

concerns. A concern [14] [20] can be understood as a set

of information, which has some effect on the source code.

For example, consider the concerns of data persistence, UI

presentation, security, etc. Even though each layer has defined

responsibilities and captures given concerns, there exist con-

cerns that do not fit into a single layer but instead cross-cuts

multiple layers. These cross-cutting concerns are responsible

for tangled source code [20], and GPL languages, including

OO, do not have mechanisms to effectively handle them [20],

[21] so as to provide readability, maintenance or centralization.

The result is that an individual concern, spreads throughout the

source code and cross-cuts other concerns. Common examples

of such concerns are exception handling, logging, and security

as illustrated at Figure 1.

Aspect-Oriented Programming (AOP) provides an effective

solution to this problem. [20], [21]. AOP suggests that, in

addition to GPL components, there exists an additional concept
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Fig. 1. Cross-cutting concerns in 3-layer enterprise system architecture

called an aspect. A particular program is then implemented

using GPL and aspects. An aspect captures cross-cutting

concerns separately from the GPL components. The way GPL

components are connected with aspects is the main AOP

contribution. An aspect consists of two parts: pointcut and

advice. The pointcut specifies a situation, location or context

under which the aspect is woven into the GPL component.

The advice is the concern definition specified either in GPL

or a custom DSL. In order to effectively address location in

GPL components, AOP defines the concept of join-points. A

join-point can range from code location specified by name

or a wildcard, method invocation based on method name,

annotation, or even a particular application context. Naturally,

we can divide join-points into static and dynamic, with the

difference based on whether they are activated only by location

in the code or whether a runtime condition must hold to

activate it. An example can be seen in enterprise systems when

handing security with an AOP approach. When a user invokes

an action from the UI, this action goes through an action

controller [22], which has a method to implement the action.

Often, this method has a security annotation determining user

access, such as a user security role. Before the actual method is

called, the security annotation acts as a join-point that activates

a security aspect. This join-point is specified in the security

aspect point-cut, and its advice looks into the application

context to determine whether the actual user is logged into the

system and whether he/she has sufficient permission, given by

the security annotation, to be eligible to call the action. If not,

the advice throws a security exception; otherwise it delegates

the call to the controller method. The same security aspect

applies in the UI to determine whether or not to render a

given action button for a particular user, etc.

Tangled concerns can be found in the UI as well [5],

[4]. Conventional design approaches do not address them

separately but together in a single source code. This is directly

responsible for low code reuse and readability as well as for

high development and maintenance efforts. Various concerns

that play a role in the UI can be considered independently as

shown by Figure 2a. Unfortunately, because of limited GPL

and DSL constructs, all concerns must collapse together into

a single UI component, a single source code as depicted at

Figure 2b. This results with tangling of all involved concerns,

which makes individual concern localization difficult. Con-

sider the concern collapse in Figure 2b at the sample code

in Listing 1 while considering concerns from Figure 2a. Its

graphical representation sketch is shown in Figure 3. The

resulting source code is very specialized with limited reuse. At

the same time, we must consider that such UI code restates

information from the data definition [19], which introduces

interdependencies that must be maintained. Because of limited
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Fig. 2. (a) Concerns as orthogonal dimensions /
(b) Implementation space in a single dimension with tangled concerns
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Fig. 3. Graphical sketch of Listing 1 denoting concerns from Figure 2

type safety in DSLs, it is easy to introduce an error while

restating information [9]. The situation becomes worse when

multiple presentations exist for given data [4]. The limited

reuse forces us to maintain multiple, very similar components.

Moreover, when we consider conventional approaches and aim

to design adaptive or context-aware UIs, we end up with even

more similar UI components that we must manage and update

each time the data change [24].

The AOP approach for UIs [5] considers the data definition

to be the GPL component that is being presented in the

UI. In order to present data in UI, it considers individual

UI concerns (e.g., Figure 2a) and weaves them together at

runtime upon request to assemble the UI presentation. Such

data presentation reflects the actual data definition and the

particular application/user context. Data definitions, normally

OO classes, define data fields and their constraints that act

as static and dynamic join-points for the “data to UI” trans-

formation. Dynamic join-points are further extended with the

application context. A particular base presentation for each

data field is selected based on these join-points. Subsequently,

this base presentation is extended with field-level concerns

through various aspects. Once all data fields have determined

the presentation integrated with other concerns, the layout is

woven through the fields. The resulting component reflects

the data definition, context and considered concerns. Thus

issues, such as information restatement or multi-component

management, are eliminated. The result is that no physical

UI component for data presentation exists; they are assem-

bled on demand where each concern can be maintained and

vary individually based on the user/application context. The

advantage comes when we want to present novel data in the

UI. All concerns are be reused and thus scaling-up the data

model size does not impact the UI concern size or the UI

management. What impact the size of the individual concern

space are custom presentation layouts for given data, although

it is possible to design generic set of layouts reusable among

data.

When we consider client-server communication over HTTP,

we must be aware that all the concern assembly to receive

data presentation takes place at the server-side. Basically, at

the server-side all concerns tangle together through an aspect-

Listing 1. Sample source code for UI form reflecting Figure 2 (b)
<table><tr>

<td>Email:</td>

<td><h:input id="email" value="#{person.email}"

render="#{security.hasAccess(’email’)}"

validate="#{validator.validate(’email’)}"/></td>

</tr><tr>

<td>Name:</td>

<td><h:input id="name" value="#{person.name}"/></td>

</tr><tr>

<td>Country:</td>

<td><a:smenu id="country" value="#{person.country}"/></td>

</tr></table>
✝ ✆

weaver that produces UI descriptions, eventually translated to

HTML. This tangling may produce large and complex HTML,

containing repetitive information impacting the content size.

The server transmission outcome of conventional approaches

is similar, if not the same, to the outcome of AOP-based

UIs. While compression as well as caching of static resources

can be applied, there are two issues. First, compression,

although addressing repeating patterns, is not aware of the

content logical structure, and thus it addresses small repetitive

fragments rather than large concerns. Second, it does not allow

to cache immutable information occurring in the delivered

UI description. In this work, we show that it is possible to

improve the transmission content size and caching with AOP-

based UIs. Since AOP has constructs to separate individual

concerns, it is possible to stream separately to the client and

let the client perform the assembly at the client-side. This

reduces the repetitive information from the transmission and,

at the same time, an individual decision on concern caching

and reuse can be made. Such changes in the UI delivery impact

the UI transmission and presumably reduce the delivery time.

III. RELATED WORK

A. UI design approaches

Various approaches have been introduced to simplify devel-

opment of complex UIs. These approaches can be divided into

model-based, generation-based, inspection-based, and AOP-

based. Each of these offers certain advantages for UI develop-

ment; however, they typically fail to address UI maintenance

or complex situations, such as context-based UIs adapting

during the runtime. In terms of client-server communication,

conventional approaches transfer large, perhaps unnecessary,

amounts of data, which negatively impacts the communication

and response times.

Model-driven development (MDD) [29] suggests that a

model is the source of information, and the resulting source

code is generated using this model together with a set of

transformation rules. The main advantage should be reduction

of information restatement that must be handled manually

[9] for different perspectives. In [23] MDD is applied to

distributed UIs, with description of a workflow that uses a

task-centred approach described through the Concur Task Tree

(CTT) notation [1]. This allows the description of environment

and given context. MDD can handle multi-context UIs, for

example, in [3] authors split the context into user, platform

and environment parts. At the same time when we aim to
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describe different concerns through multiple models, MDD

does not provide any standard integration mechanisms to do

so [31]. Sottet et al. [31], [32] provide a deep explanation

of model-to-code and model-to-model transformations relevant

to UI MDD. Although, MDD can be used to capture complex

UIs, various contexts, and adaptive features, the model-to-code

transformations may struggle in the performance perspective

[24]. Transformations are usually performed at compile time

as they tend to be time consuming [24]. Compile-time transfor-

mations produce source code and descriptions for all possible

context states, which might not be fulfilled by the user [27].

Next, the transformation takes place at the server-side, and

thus the result may contain tangled UI descriptions possibly

containing repetition. The MDD-based UI design may struggle

from further issues. In [27], the authors observe that it suffers

during adaptation and evolution management. Such design

handles base situations well, although when context variations

or customizations are needed, the modification often take place

in the UI code [9] rather than in the model. Manual changes

are lost the next model-to-code transformation, which then

leads to difficult maintenance [9]. Another issue, presented by

[5], arises when the MDD applies solely to the UI but not to

other parts of the system, such as persistence or business logic

subsystems. In such cases, information captured by the model

must match to information captured by the rest of the system.

When only one part of the system changes, another part

may lose compatibility and may need to address the changes

manually. Such an approach is unfortunately very common in

the research discipline of human-computer interaction [24].

The use of DSLs [26] for the UI model description is

common, although, DSLs tend to provide weak type safety,

which extends maintenance efforts, since information change

propagation becomes tedious and error-prone in a manual

process. DSLs are often used to directly specify UIs [26] [17];

a practical example is the Java EE standard for component-

based development called JavaServer Faces (JSF) [2]. The

DSL brings simplification to the UI description [5], as oppose

to GPL. It is transformed to the target UI language, such

as HTML. DSLs naturally fit to UI descriptions, but through

their weak type-safety, it is easy to introduce errors related to

restated information from lower application layers [18]. For

example a DSL description may reference data, their fields

and constraints that are already described in the application

through GPL [12]; however, referencing a GPL component

from DSL requires certain restatement with a negative impact

on maintenance. Similarly to MDD, the DSL-to-native code

transformation takes place at the server-side, thus the trans-

mission streams the produced tangled code.

Another approach addresses information restatement by uti-

lizing code-inspection and meta-programming [18], [5], [24].

It inspects data GPL definitions and from the result composes a

structural model. This model is transformed to UI descriptions

with all data/constraint references resolved through the model;

this avoids human-errors related to inconsistencies. The output

can be in the form of DSL, such as JSF. In comparison to the

above approaches, this one works at runtime, although, it does

not address cross-cutting UI concerns. Similarly, the product

generated at the server-side is not different from the product

produced through DSLs or MDD.

One possible solution that addresses tangled code and

cross-cutting UI concerns is Generative Programming (GP)

[11], [30], which emphasizes domain methods and integration

with GPL. GP can be seen as programming that generates

source code through generic code fragments or templates. The

goal is to address gaps between program code and domain

concepts, support reuse and adaptation, simplify management

of component variants and increase efficiency. The generation,

although, happens at compile time. The use of GP for UI is

demonstrated at [30] through abstract UI specifications. An

application that uses this concept consists of three parts: a

DSL for UI description, configuration generator that automates

the product UI assembly and an extensible collection of

elementary components available for the assembly. The con-

figuration generator takes the DSL specification and assembles

implementation components from them and from the available

components. Such an approach allows production of a large

number of system variants for specific requirements. In a

presented case study, a system combined two hundred features

in the UI, with a resulting variability of 5× 10
17 prototypes.

It is questionable whether such a large number of feature

components is reasonable and could be ever used, although all

states are physically generated at compile time and statically

allocated. The nature of the compile-time assembly makes it

hard for use with future adaptive systems that need runtime

information to base its decisions on [27].

The AOP approach has been applied to extend capabilities

of existing approaches. In [27] the authors apply AOP to MDD

to support adaptive features at runtime. This work suggests that

MDD approaches do not naturally fit into adaptive systems

because they lack the runtime information, which should

be considered to influence model-to-code transformation. As

mentioned in [32] the MDD runtime transformation might be

performance inefficient for complex situations [24]. Some sug-

gest that MDD UI transformations may generate all possible

application states and configurations for hypothetical/possible

situations. In complex systems, this can grow exponentially.

Also, MDD-based systems suffer and become impractical

in evolution management of system adaptation. [27] thus

suggests using four runtime models that represent main sys-

tem data that are manipulated at runtime. These models are

responsible for system runtime adaptations and generation

of application components. The work describes the aspect-

oriented conceptual model [33], weaving process and context

very sparsely, and no performance consideration is given

to the manifest approach effectivity for production systems.

Alternative aspect-oriented UI design, based on conventional

UI designs and enabling both code inspection and separation

of concerns for data representations, is given at [5]. Similar to

inspection-based approaches, meta-programming determines a

structural model (join-point model). Subsequently an aspect-

oriented transformation of the model to the UI enables integra-

tion of various, separately defined, UI concerns. Although, the
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aspect weaving happens at runtime, it takes place at the server

side and thus the UI transmission to clients is no different from

the above approaches.

As shown above, existing research in UI fails to address ef-

fective UI transmission to clients or optimization of client-side

caching. One of the contemporary UI frameworks, although,

does address caching by compiling the GPL UI descriptions to

client cacheable resources. The Google Web Toolkit (GWT)

[16] suggests describing the UI in the type-safe Java lan-

guage and compile it to a JavaScript (JS) UI description.

Note well, that even GPL UI description consists of restated

information from application lower layers, such as data field

descriptions and their constraints. For example, to design a

UI representation for a given data field, the developer must

select an appropriate component, bind it with the field and

manually restate the component constraints already defined

at the field, through annotations [12]. As mentioned in [33]

and [20], GPL languages do not effectively handle cross-

cutting concerns; consequently, GWT tangles them together.

The GWT produces a JS UI description at compile time,

which is similar to the MDD approach. It produces multiple

versions of those descriptions to support various end-devices.

It consists of code fragments that can be cached as well as

these that cannot. GWT struggles from the same disadvantages

as MDD, and thus it does not fit to adaptive UIs. For instance a

UI page that presents many context-based variations compiles

all possible states to a single description and ships it to the

client not matter whether the user uses a single UI state

or multiple. This becomes obvious with complex adaptive

systems [27] with combinations of states and configurations

that grow exponentially. In our work, we suggest transmitting

UI concerns separately to clients. This allows transmitting only

the actual state needed by the client, and at the same time, each

concern may change individually, avoiding exponential grow.

B. UI delivery to the client

The standard client-server communication for web sys-

tems is based on the HTTP protocol that provides the core

mechanisms to improve the transmission. First, the TCP-

based protocol supports connection persistence so multiple

resources can be loaded from a single server. Connections

are reused, rather than reopened, which requires additional

overhead. Multiple connections may exist from a client to a

single server. HTTP supports content compression to reduce

the transmission content size. Furthermore, it supports content

caching at the client-side with time-based invalidation. The

caching applies mostly to static resources such as CSS, images,

and JS. In [7] authors show that the average contemporary web

systems consists of about 90% static and cacheable resources.

To further reduce the transmission, UI developers may apply

content obfuscation and resource merging [6]. To mitigate the

impact of client distance, servers often apply geo-distributed

caching of static resources called content-delivery networks

(CDNs), such as Akamai [28].

Structured Hypertext Transfer Protocol (STTP) [34] extends

HTTP to include new messages to control the resource trans-

mission for a particular web page. A similar approach, HTTP-

MPLEX [25], employs a header compression and response

encoding scheme for HTTP. Similar to STTP, it multiplexes

multiple responses to a single sustained stream of data to

speed response times and improve application layer use of

TCP. While experiments show performance improvements

with these protocols, they do not consider resource distribution

through CDNs, caching, or variations. Another optimization

approach is brought by cooperative-web cache [7], [8]. It

involves clients with cached resources in participation in an

overlay peer-to-peer network, which allows clients to share

these resources in the overlay. Unlike CDNs it supports natural

scalability and free P2P services; however, it must deal with

content invalidation in the overlay and mechanisms to disable

and prevent malicious clients from sharing corrupted data.

IV. AOP-BASED UI ASSEMBLY

The development and design approach of aspect-oriented

UIs (AOUI) [5] is considerably different from conventional

approaches. In order to describe the AOUI design, we first

illustrate the UI design with conventional approaches and

describe its dependencies to data definitions. Next, we sketch

the AOUI design differences and describe it genericity and

relaxed dependencies.

Figure 4 demonstrates the conventional UI design with

the data model at the top with individual data classes with

fields and given constraints as well as application context.

The bottom presents a sketch of various presentations of

given data. These presentations are rendered in the application

based on the context. Each presentation has physical code

representation and consists of multiple elements that bind to

a particular data field or its constraints. The UI presentation

has to restate field names as well as the constraints in its

source code, which increases UI component coupling. Each

such component is specialized to display specific data, and

we can hardly assume that such UI component could be used

for another data class. Such coupling must be seen from

the perspective of system maintenance, thus when a given

data class changes, for example a new field occurs, we must

manually reflect it in related UI components. When the UI

component description uses DSL, limited type safety may

not provide any enforcement mechanism on the compatibility

with data. We can summarize the disadvantages as follows:

no automated data change propagation to the UI, limited type

safety does not prevent human errors, limited separation of

concerns and limited reuse, data class presentation requires to

design a custom UI component. To see the difference with the

AOUI design, consider the case when we aim to render data

in the UI. In order to do that, we need to know the physical

location of a particular UI component (denoted via UI render

start mark at Figure 4), and this components then uses its

configuration to cooperate with the data class, and its fields

based on matching names.

Next, consider the AOUI design in the same illustration of

data classes and the application context at the top and data pre-

sentations at the bottom Figure 5. First, note that with AOUI
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Fig. 4. UI design with conventional approach

there is no physical location of the UI presentation, because it

does not exists. Instead it is generated on request by passing a

data instance reference to an aspect weaver (denoted via start

mark in Figure 5). The AOUI aspect weaver inspects the given

instance data class, denoted by 1©, and produces its structural

(join point) model for given data. This model is created once

upon the first use and consists of class and field information

and their constraints. Upon each use, a clone model is made

and modified/restricted according to user context. For example

fields not relevant to given context in the UI are eliminated or

restricted based on security rights. Additional elements from

the application context can be exposed to this model as well.

Each model element then acts as a join point for the subsequent

transformation stages. In the next stage 2©, the aspect weaver

considers generic mapping rules that select a presentation

for each particular data field based on its properties in the

structural model. These rules are not specific for a given data

class or a field; instead they only bind to model elements,

which may occur at any data field. This brings genericity and

reusability among fields and data classes. These rules become

reusable among data classes or even among different systems.

Each rule consists of two parts, a specification of structural

model elements in a query (a point-cut) and an advice in the

form of a presentation template. A rule applies to a field,

which has a given constellation of specified elements. For

example a query specifies a text-typed field with maximum

length greater than 255 letters. The selected rule then applies

an advice that selects a presentation template for the field

matching the given query. This presentation template consists

of a description for a basic field presentation in the target

UI language. It also contains extensions in the description

through which it is possible to integrate other aspects to it,

providing concerns weaving. Each template aspect consists

again of a point-cut that uses the same constructs as mapping

rules referencing the structural model and advising how to

integrate the concern. Often it embeds selected structural

model element values to the output. In the stage 3©, after

all data fields have resolved presentation, a layout template

is selected based on the context and integrated to the field

presentation. This results with stage 4© that provides the

presentation for given data instance and current application

context and renders it to the UI. The most important benefit

is that rules and presentation templates are generic and not

dependent on specific data, which allows us to scale-up the
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Fig. 5. UI design with AOUI

data model without an impact on the size or efforts related to

the UI. In other words, a new data class passed to the AOUI

aspect weaver is displayed based on the existing rules and

templates. Data changes do not cause inconsistency in the UI

because the change is reflected in the ad-hoc structural model

that influences the selection of a given transformation rule as

well as it subsequent aspect integration in the presentation

template. Novel constraints apply to the UI according to the

their occurrence in templates. In the [5] authors show that

among 63 data classes in a production system with about 473

fields, only 28 transformation rules and presentation templates

are needed. They are reused, and various concerns integrate

to it based on given context. The benefits can be summarized

as: Code volume reduction, constraint enforcement, separation

of concerns, data independence, concern reuse, reduction of

restatement. Furthermore, it is easy to integrate new concerns

and thus support context-aware or adaptive UIs while not

introducing complexity to the UI design.

V. DISTRIBUTED AOP-BASED UI ASSEMBLY

Conventional design approaches stream the UI description

as a single block of information. The AOUI design untan-

gles UI concerns for components reflecting data and reduces

development and maintenance efforts. Such weaving takes

place at the server-side and its product, with weaved-concerns,

is streamed to clients. This is equivalent to conventional

approaches. One may assume that content compression over

HTTP solves the inefficiency, although with no doubt, it

does not improve caching options. To the contrary, consider

a solution where concerns (such as these from Figure 2 a)

are streamed separately to clients. This might seem as an

addition overhead as we need to handle multiple connections.

On the other hand, this may eliminate repeating patterns in the

transmitted content and enable caching for given immutable

concerns.
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Fig. 6. UI design with dAOUI

In order to design distributed AOUI (dAOUI), the process

of concern weaving should be partially pushed to the client-

side. The application data model (or data transfer objects [15])

and application context are part of the server-side, and thus

the inspection part takes place there. This gives a structural

and context model, which could be streamed to the client.

Some model elements might not be relevant to presentation

or to a particular user. For example, there might be internal

fields such as primary key, version field, etc., and these might

not be relevant to the UI or to a particular user rights/tasks.

AOUI handles this through data model constraints as well

as through the context. To provide a particular user only the

model elements relevant to his session and rights, the context

is applied to the requested subset of structural model. This

eliminates elements that would not apply for the UI compo-

sition, and this subset is streamed to the client. The selection

of a particular presentation template for given data field could

be done at the client-side. This increases the complexity of

the client weaver since it must be aware of transformation

rules and these may need to have access to internal server-

side information to resolve rules to and make a decision. Thus

keeping this responsibility at the server-side and providing the

result to the client reduces the client weaver design complexity.

Figure 6 depicts the responsibility assignments between server

and client sides through service calls. Each client needs to have

access to the structural and context model for the given data

it represents in the UI 1©. It also needs access to presentation

templates 2©. The decision on template selection made on the

server-side is delivered together with the structural and context

model 1©. The client uses a particular presentation template

suggested by server. Each template content is resolved towards

the structural and context model of a given data field. Layouts
3©, similar to presentation templates, are provided to the client-

side for integration to the data UI presentation. Other concerns

might be provided as separate services and integrated either

at the server-side through transformation rules or via client-

side presentation templates. Each client composes the UI data

component based on provided concerns that are influenced

by system context. The server also provides the actual data

instances to the client 4©. These data are displayed in the

assembled UI component. The data submission uses HTTP

POST or GET mechanisms or a web service.

The life-cycle for the web systems works as follows. First,

the user requests navigation to a particular page or a dialog.

This page consists of description elements from conventional

UI design. The difference is for components representing data.

Such components are replaced by custom tags interpreted at

the client-side (for example a JS call). The tag indicates which

data to display and what settings (context) should apply for the

UI component assembly. Such content, with no data physical

representation in it, is transmitted to the client-side. When

client interprets the delivered content, it interprets it ordinarily.

Custom tags are interpreted through a client-side weaver

that requests given concerns from the server-side. Provided

responses consider user rights and security. As depicted at

Figure 6, the weaver assembles the UI representation of a data

instance (given by the custom tag) conforms the structural

model, application context and settings provided together

with the data reference. The weaver may either request a

particular concern from the server-side or may reuse it from its

cache. For example, presentation templates will hardly change

throughout a long period of time, or given data fields are

immutable in given context over the time or throughout a user

session/conversation.

VI. EVALUATION

In order to evaluate our approach, we consider existing

production level enterprise web application based on Java

EE 6 platform with JSF [2] framework for the UI design.

For our evaluation, we consider a subsystem for user account

management. We evaluate the existing solution regarding data

transmission, page load time and caching. Next, we implement

the same subsystem with dAOUI design. Specifically, we

design REST services at the server-side and a JS library

responsible for UI component assembly, interacting with these

services. These services include a service to obtain structural

and context model for given data, a service to obtain the actual

data from a given instance conforming system security and

finally a service to handle data manipulation from the client-

side. Next, we provide a JS package with presentation and

layout templates and the client-side aspect-weaver. The dAOUI

prototype is evaluated using the same criteria.

Figure 7 at outer left shows a sample UI subsystem consid-

ered in the evaluation. The same result can be designed with

both conventional and AOUI approaches [5]. The difference

relates solely to the server-side design; the content transmitted

to the client-side is equivalent for both approaches. The

dAOUI prototype is shown at inner right of Figure 7. The

differences are that the conventional UI uses JSF, which is

transformed to HTML through the framework and transmitted

to the client-side all together. The second UI consists of JSF

for the page without components representing data. Instead it

uses a JS library that interacts with the server REST services
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Fig. 7. Evaluated UI subsystem designed with conventional/AOUI approach
in the outer left position, the dAOUI approach in the inner right position

through JSON format to assemble the data presentation com-

ponents and embeds them to the UI. In both cases UI panels,

controllers and page navigation logic are equivalent.

A. Network transmission and page load times: The base case

To evaluate network transmission size and page load times,

we use the UIs described above. In the evaluation of page

loads, we consider complete page rendering. We must em-

phasize that both UIs utilize equivalent static web resources

(JS, CSS and images). These same resources are part of the

production system, so with the outcome we can consider a

realistic impact on a production system. The dAOUI version

has additional JS libraries, but on the other hand, the initial

HTML page does not contain descriptions for data compo-

nents. Instead, it consists of a JS initiation calls to assemble

data components based on settings given in the HTML page.

The considered data components at the page at Figure 7 consist

of 23 fields of various data types given by the production

system.

The conventional approach page produces 1458 KB to ren-

der the UI, although with HTTP compression the transmitted

content reduces to 329 compressed KB (cKB). The main

HTML document is 86 KB (11.1 cKB), and the rest 1372

KB are static resources. To download and render the UI page

with compression takes 2.3 sec (average over 10 samples

with standard deviation σ = 0.23). The download uses gzip

compression with no network restrictions. The dAOUI page

produces 1368 KB (311 cKB). The main HTML document

has the size only 2.9 KB (1.2 cKB); additionally there is 10

KB (3 cKB) of JS and four calls to REST services with a total

size of 13.6 KB (4.9 cKB). The page load reduces to 1.73 sec

(σ = 0.14), an almost 0.6 second (or 25%) time reduction.

Next, we consider caching. All static resources are cached

at the client-side. The conventional approach page with cached

resources requires 86 KB (11.1 cKB) to be loaded from the

server, and the page load time reduces to 1.67 sec (σ = 0.24).

The dAOUI allows us to cache the weaver, presentation and

TABLE I
BASE EVALUATION CASE, TRANSMISSION OF UIS WITH 23 FIELDS

No network throttling No-cache Cached

Size (KB)

Compressed Compressed

Convent. approach 1458 329 86 11.1

Distrib. AOUI 1386 311 3.9 2.1

Load time (using compression)

(sec) (relative) (sec) (relative)

Convent. approach 2.3 1 1.67 1

Distrib. AOUI 1.73 0.75 0.79 0.47

TABLE II
EXTENDED EVALUATION CASE, TRANSMISSION OF UIS WITH 42 FIELDS

No network throttling No-cache Cached

Size (KB)

Compressed Compressed

Convent. approach 1484 331 110 13.9

Distrib. AOUI 1394 315 6.9 3.8

Load time (using compression)

(sec) (relative) (sec) (relative)

Convent. approach 2.54 1 1.99 1

Distrib. AOUI 1.89 0.74 1.01 0.51

layout templates, as well as the data structure, which is

immutable. This reduces the transmitted content down to 3.9

KB (2.1 cKB), and the page load time needs only 0.79sec

(σ = 0.07), representing reduction of almost 0.9 sec, which is

less than 50% of the original wait time. The summary can be

seen from Table I.

B. Increasing the UI size: The larger case

The production system on which our study is based has

the person account page considerably larger than what we

considered above. Next, we consider the impact related to data

size extension. The extended UI has 42 fields at the page.

The conventional approach page extends to 1484 KB (331

cKB) out of which 110 KB is the HTML document (13.9

cKB). The page load time is 2.54 sec (σ = 0.33). The dAOUI

size has in total 1394 KB with the HTML document 5 KB (1.4

cKB) and JSON calls 19.3 KB (8.4 cKB ). The compressed

transmission size has 315 cKB. The page load time for dAOUI

is 1.89 sec (σ = 0.17), representing a reduction of 0.65 sec,

which is similar to the previous evaluation with reduction to

less than 75% compared to the conventional approach.

The cached-enable evaluation of the conventional approach

design consists of the total transmitted size of 110 KB (13.9

cKB) with load time 1.99 sec (σ = 0.38). The cached dAOUI

has 6.9 KB (3.8 cKB) and a load time of 1.01 sec (σ = 0.15).

Similar to the previous evaluation, the reduction of wait time

is almost 1 second and represents almost 50% of the load time.

The summary can be seen in Table II.

C. Throttling the network: 3G/DSL users case

The next evaluation throttles the network conditions to

evaluate behavior for both mobile users with a 3G network

and DSL users. For the 3G evaluation, we restrict the network

bandwidth to 384 kbit/s and set network delay to 20ms. Such

network restrictions allow us to emulate network conditions

for users with mobile devices. We evaluate the base page with

23 fields. The load time significantly grows to a barely usable

system. The page using the conventional approach requires
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TABLE III
3G AND DSL CASE, TRANSMISSION OF UIS WITH 23 FIELDS

Load time (using compression)

(sec) (relative) (sec) (relative)

384kbit/s 20ms delay No-cache Cached

Convent. approach (sec) 18.89 1 2.72 1

Distrib. AOUI (relative) 15.88 0.84 1.07 0.39

768kbit/s 10ms delay No-cache Cached

Convent. approach (sec) 9.45 1 1.79 1

Distrib. AOUI (relative) 8.28 0.88 1 0.49

TABLE IV
GWT COMPARISON, TRANSMISSION OF UIS WITH 23 FIELDS

No-cache Size (KB) Cached

Compressed Compressed

GWT 379 102 11.9 5.8

Distrib. AOUI 161 41.8 3.9 2.1

18.89 sec to load (σ = 2.16). The dAOUI requires still a

long time 15.88 sec (σ = 0.57). The reduction represents 3

sec, which is around 85% of the original load time. Caching

becomes a “must have” for these kinds of mobile users. With

caching, the conventional page loads within 2.7 sec (σ = 0.42)

compare to the dAOUI with 1.07 sec (σ = 0.19). This

represents a reduction of 1.6 sec, which is less than 40% of

the original load time. The summary is at the top of Table III.

Next, we evaluate the situation for DSL users with band-

width to 768kbit/s and delay 10ms. The conventional page

needs 9.45 sec to load (σ = 0.84). The dAOUI reduces

the load time by 1.1 sec, down to 8.28 sec (σ = 0.36).

The reduction in percentage is similar to the 3G version and

represents slightly less than 85% of the original load time.

Caching significantly helps for consequent page loads. The

conventional page loads within 1.79 sec (σ = 0.24) compared

to the dAOUI with 0.87 sec (σ = 0.08). The dAOUI is 0.9

sec faster and less than 50% of the load time. The summary

can be seen at the bottom of Table III.

D. Comparison with GWT

The GWT introduced in the related work targets improve-

ments to UI caching. To compare it with our approach, we

implemented the 23-field prototype application with GWT.

Note well, that the evaluated dAOUI page at Figure 7 is based

on a production system, while the GWT is just a prototype.

This results with differences in both prototypes regarding

linked JS libraries. While the dAOUI prototype links JS

resources related to given JSF component provider, the GWT

prototype does not link to any generic JS library. Although,

this does not impact the caching statistics, we modify the

dAOUI prototype as follows: We reduce the linked JS libraries

and only consider libraries related to the functionality of the

dAOUI, which makes it equivalent regarding the comparison

with the GWT prototype. The dAOUI prototype needs to

transmit 161 KB of data to build the UI at the client (41.8

cKB). The GWT version needs 379 KB (102 cKB). The main

document in GWT is converted to into JS with cacheable

fractions with 141KB (50 cKB) and non-cacheable fraction

with 7.2 KB (3.4 cKB).

The cached-enabled evaluation stays the same for dAOUI

with transmitted content 3.9 KB (2.1 cKB). The GWT version

needs to download the HTML page, displayed data and

the non-cacheable JS fragment, which is in total 11.9 KB

(5.8 cKB). The results are summarized in Table IV. From

the results, we see that UI construction in the form of JS

can considerably improve caching at the client-side. The JS

presents tangled code through mixed concern, which extends

its size. Separately streamed UI concerns can reduce the UI

description, and improve caching.

E. Summary

Streaming various concerns separately from server to clients

brings reduction to the overall transmitted content, page load

times (considering complete UI rendering) and improved

caching. In the evaluation, we streamed presentation and

layout templates, data structure with applied security as well as

the actual data. The dAOUI enables to use cache for concerns

that are normally tangled together in conventional approaches.

The study on a production system shows the reduction of con-

tent size in the range of tens of KBs even when compressed.

Even though the dynamic content represents only around 6%

(3.5% compressed) of the total content, the transmission size

of uncached UI content reduced in total by 5%. With caching

that strips the static content, it reduces transmission by 72-

81% compare to JSF. With GWT the transmission content

with cached resources improves by around 63%. The dAOUI

managed to reduce the page load time to the range of 75-

90% of what it takes with a conventional approach. This turns

even better with caching, which gives reduction in the range

of 40-50% compared to the conventional approach. The exact

reduction is, although, influenced by many factors including

network conditions and the UI itself.

In our evaluation, we reduced the transmitted content some-

times by an order of magnitude compare to the JSF approach.

While the GWT approach compiles the UI into a JS and

provides a solution with extended caching capabilities, such

a solution can be further improved with dAOUI.

VII. CONCLUSION

In this paper, we suggest an alternative design approach for

presentations of data in enterprise software systems. Conven-

tional designs mix various concerns together, which results

in code that is hard to maintain and reuse. We show that

some of the UI concerns do not change over the time, and we

may cache them at the client-side to reduce network traffic.

Conventional designs fail to offer this ability, so given concern

might be tangled with others without the possibly of variability

and reuse. AOUI design separates concerns for UI components

presenting data and thus reduces maintenance efforts as well

as improves reuse of these concerns. With an extension of such

design, it is possible to deliver concerns separately over the

network to clients and delegate the component assembly to

the client-side. This may reduce the transmitted content size

that needs to be delivered to the client over the network, but

mostly it enables caching and reuse of specific UI concerns

at the client-side. From a case study based on a subset of

a production system, we provide results showing a reduction

of the total transmission size from the server to the client
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and the page load time. Furthermore, we extend capabilities

for caching of UI concerns at the client-side, which further

reduces the data transmission as well as page load times.

Although the results from the study are promising, we must

consider its limitations. The design approach fits well for data

presentations; it builds on the top of other approaches that

deal with interaction, page-flow, etc. AOUI easily adapts to

development standards and allows integration of third parties

for security, context-awareness, etc. The approach does not

aim for complete design of UI pages but targets only data

presentations. Existing approaches provide a large palette of

various field components, suggestion boxes and data manip-

ulations. With this approach, it is necessary to design them

as no component library exists. On the other hand, it is easy

to integrate HTML5 components or custom presentations for

fat-clients. The interaction is not limited to only frontend

and backend parts of systems, but it possible to consider

middleware communication. Considering AOP’s natural ability

of concern separation, the design fits well to context-based

UIs. At the same time, the AOP development pushes towards

different development practices, and designer transition from

conventional habits might be difficult. In addition there is

a lack of tool and framework support as well as a missing

standard for AOUI.

In future work, we aim to extend concerns with business

rules integration. Our preliminary work [4] shows that it has

large potential. We also look at integration of aspect-oriented

design to service oriented architecture (SOA).
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