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Abstract—Dynamic and volatile grid conditions caused by the
growing amount of renewable energy producers require the
operation of large-scale distributed Demand-Side Management
(DSM) applications. This is one of the tasks of the aggregator role
in smart grid operation according to the Smart Grid Architecture
Model (SGAM). For the optimization of distributed demand-
side loads under such conditions, Multi-Agent Systems (MAS)
have been shown to provide an appropriate paradigm to model,
simulate and deploy automated operating components.

In this paper, we address an engineering problem that is
still a matter of concern, namely the construction of efficient
distributed optimization algorithms in conjunction with a generic
software architecture. For this purpose, a distributed Multi-Agent
architecture is presented with a generic consumer model and an
energy exchange market as well as further roles and components.
Ant Colony System Optimization is shown to effectively optimize
consumers in a nature-inspired, self-organizing way.

The applicability of the proposed approach will be demon-
strated in a use-case study where a group of heterogenous
consumers optimize their runtimes in order to map their demand
to the energy generation of a wind power plant in a self-organized
fashion.

I. INTRODUCTION

T
HE DEVELOPMENT of small, affordable and profitable

energy generators as well as the desired growth of renew-

able energy resources leads to an increasing decentralization

and heterogeneity in the smart grid. The capacity and avail-

ability of the decentralized energy resources often depends on

environmental influences so fast-reacting conventional power

plants and energy storages will be needed to compensate such

fluctuations.

The utilization of the demand-side potential, the Demand-

Side-Management (DSM), could be an additional planning

option which becomes achievable and affordable through the

increasing degree of automation and information- and com-

munication technology (ICT).

The management of both demand and production side can

be more efficient and safer with planning and forecasting, but

will require predictable and intelligent devices and appliances

for domestic households as well as industrial applications.

Those devices should be able to coordinate and optimize their

schedule in order to achieve pre-qualification for markets or to

lower their runtime costs. While in the energy domain no real

quality of service, like frequency- or availability services, can

be sold, demand-side orientated business models must focus

on the flexibility and planning potential of the devices with

dynamic pricing or stock exchange models. The scheduling

and optimization of the highly heterogeneous and distributed

devices needs adaptive solutions. It seems to be likely to

use these intelligent embedded devices themselves for this

task, because of their computational- and communication-

capacities. So a lightweight and simple optimization algorithm

and a distribution concept with a minimum of shared infor-

mation are required.

Because of the distribution- and autonomy-properties Multi-

Agent-Systems (MAS) are suitable as a paradigm for the

logical representation of grid entities. Even the current top-

down modus operandi of the grid could be considered as

a distributed MAS-architecture regarding the distribution of

loads, substations etc. Therefore, the architectural approach in

this paper utilizes the MAS-paradigm towards the distributed

optimization of consumers for DSM applications.

The remaining paper is structured as follows: Section II

provides an overview on the related literature and covers

different aspects of todays grid development towards an

emerging DSM integration. In Section III a description of the

distributed MAS-Architecture for DSM and optimization is

provided. Section IV describes the reference implementation

of an adapted Ant Colony System - Algorithm for distributed

optimization. In Section V the applicability of the proposed

approach is demonstrated in a use-case study where a group

of heterogenous consumers optimize their runtimes in order to

map their demand to the energy generation of a wind turbine

in a self-organized fashion, before Section VI concludes the

paper and gives an overview about future work.

II. RELATED WORK

Energy supply particularly on the field of electricity cur-

rently experiences a profound change. Due to the availability

and the versatile ways of use, electricity has become one

of the most important energy sources. New applications and

potential uses as well as laws, standards, guidelines and

social developments generate new requirements for the energy

generation, the grid-infrastructure and also the consumer-side.

This Section introduces current laws and standards of the

energy domain, it gives a brief overview about the situation

on the energy markets and presents current grid-infrastructures
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before an overview about related work on DSM and MAS-

Simulation concludes the Section.

A. Laws and Standards

In the USA the development of energy distribution has

mainly arisen from the oil crisis. Until today the National

Energy Conservation Policy Act (NECPA) from 1978 regulates

the energy consumption in the United States. Contrasting to

California, where the electricity-demand has been stabilized by

the 1972 decree on device efficiency, building regulation and

energy efficiency for energy suppliers, which was manifested

as a law in 2006 [1], the power consumption in the rest of

the USA has risen steadily [2]. This led to the 2007 Energy

Independence and Security ACT (EISA) as an extension of

the NECPA. In 2000 Germany applied a law1 to regulate the

favored input of electricity from renewable energy resources

and to guarantee a fixed buyback price for the next 20 years.

Until 2020 the amount of electricity generated from renewable

resources should have reached at least 35%, rising up to at

least 80% in 2050. In 2013 this amount had already reached

23,4% [3]. Because of the volatility of renewable energy

resources, the favorable input of such unsteady resources

conflicts with the classical modus operandi and requires highly

dynamic and regulable power plants to compensate energy

deficiencies respectively the establishment of corresponding

storage capacities as required by the Energy Industry Act2.

This law demands that the security and reliability of the energy

grid is secured through net- or market-based measures in case

of disturbances or compromises. Besides the duties on the

producer side, the law also permits the detailed acquisition

of performance data and load balancing measurements on the

consumer side through load- and time-depended tariffs.

In order to deal with this situation almost all parts of the grid

from the producer to the consumer must be automated in the

future. This requires a new role- and domain-model as defined

by the NIST-Framework-Roadmap [4]. It is established as a

quasi-standard for further publications in this area. European

organizations and research facilities have adopted the model

and extend it for local requirements, e.g. with the extension of

the distributed energy resources (DER) domain as part of the

European Smart Grid Reference Architecture and the Smart

Grid Architecture Model (SGAM), a layered-architecture for

smart grids representing the communication and information

layers [5].

B. Energy Markets

Today’s electricity market in Europe is highly regulated in

order to maintain operational safety. Due to the big trade

volume it is mainly accessible for large producers and con-

sumers. The most important energy markets in Europe are the

European Energy Exchange (EEX)3 respectively the European

Power Exchange (EPEX SPOT)4 as power-based spot market

1Gesetz für den Vorrang Erneuerbarer Energien (EEG).
2Energiewirtschaftsgesetz (EnWG)
3www.eex.com
4www.epexspot.com

located in Leipzig, Germany. In 2011 the German net-agency

(Bundesnetzagentur BNetzA) reformed the bidding conditions

for secondary and tertiary control by reducing the minimum

submission size, enabling aggregation and allowed deliverance

guarantees by third parties. Through the low investment risk

and short amortization times both small and medium-sized

energy producers as well as DER have gained increasing

attractiveness in recent years [6]. But not without creating

new challenges: Due to the increasing distribution of energy

producers their coordination becomes more and more complex.

Also because of their low production rate DER are not able to

participate directly at the energy markets. A possible solution

is the grouping of DER to larger entities, the so called Virtual

Power Plants (VPP) [7], [8].

C. Communication Infrastructure

Many projects from the energy domain facilitate internet-

technology like the TCP/IP protocol as communication in-

frastructure for their applications because of the well-defined

standards and their wide dissemination [9]. Another interesting

infrastructure approach for domestic household automation

is given by the OGEMA-Project [10]. It deals with the

connection of household devices via a gateway-interface to

a coordination centre and allows the automated control of

consumers depending on variable power prices. Alongside to

the OGEMA-project, OpenADR is an established system for

automated demand-response, focusing on top-down business

models controlled by a system operator [11]. According to

[9] there is still a lack of a common communication standard

for demand-side management. [12] points out the need for a

registry for DER and consumers which provides information

about all available energy services. Therefore, the area-wide

facilitation of DSM capacities is still a topic of current research

areas.

D. Demand-Side Management and Multi-Agent Systems

Demand-Side Management (DSM) is defined by [13] as

planning and implementation activities of utilities and oper-

ators in order to influence the consumer’s demand so that

the intended consumer-behavior is achieved. A study of the

US Federal Energy Regulatory Commission [14] comes to the

conclusion, that in the USA the peak-load will rise from 775

GW in 2009 to 900 GW in 2019. That would require 2000 new

power plants. Here DSM is seen as a measurement to limit this

growth to 800 GW and to stabilize it in order to deal with the

increasing costs and environmental impacts [15]. Apart from

energy savings also the purposeful use of volatile effects from

the renewable energy resources is a significant DSM use-case

in Germany [9].

Multi-Agent Systems (MAS) are an established technology

in order to simulate different DSM applications in smart grids.

Due to their distribution and autonomy properties they can

be developed relatively similar to real infrastructures and grid

entities. Almost all approaches share the fact, that agents are

used to represent consumers or net-entities. Most approaches

utilize the demand-side for feedback control and secondary
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Fig. 1. Architectural model for the distributed optimization system.

and tertiary control energies. Hereby, the examined time frame

ranges from near real-time applications as presented in [16] to

applications like PowerMatcher [6] which focus more on day

ahead planning. The simulation systems mainly differ on how

the DSM is achieved. Here it can be differentiated between

direct and indirect control. Direct control focuses on the used

protocols and signaling, whereas indirect control approaches

can be further differentiated between approaches based on

price signals, auctions and optimization on the consumer-

side. An example for the direct control of load is presented

in [17] where the joint control of loads is researched. The

advantage of this approach is the reliable system response

for defined signals, as the connected consumers have to act

accordingly to specified signaling. Additionally, the according

service provider or operator has complete control over the

loads. But this mode of operation implicates hard constraints

on the consumer-side concerning the conditions under which

load can be switched centrally. Thereby, the coordination

centre requires detailed information about the controllable

loads and time frames, in order to anticipate the effects of the

according control signals. This approach seems to be more

interesting for industrial consumers due to the complexity and

heterogeneity of domestic household devices and appliances.

In the area of indirect load control very different approaches

have been researched. Close to direct control is the use of

price signals as described by [18]. It is based on the familiar

top-down communication of price signals through a central

control centre and therefore, a consequent enhancement of

existing tariff models. But simple price minimization may

cause peak-loads for automated consumers. Therefore, a real

time observation is required so that the operator is able to

counteract. Common are also auction-based approaches, where

the consumer either bargains directly with the distributed

energy resources or via aggregation agents [6], [16], [19]. All

this approaches have in common, that the generator and load

respectively the prices are tuned and negotiated in a bilateral

way. A common challenge hereby is the a priori agreement

on price barriers and acceptance levels for each DER or

load through the producers and consumers. The last class of

approaches focuses on the optimization on the consumer-side

in order to generate an optimal degree of efficiency related

to the according business- or operational-model. Both [20]

and [21] describe exemplary use-cases with regard to specific

business-models.

The usage of MAS for the aggregation of DERs to micro-

grids, modern, small-scale versions of the centralized electric-

ity systems is described in [22], [23]. In [22] the aggregation of

DERs and loads together to an autonomous entity a microgrid

is described. Here a MAS approach as a branch of distributed

artificial intelligence methods is introduced for DERs control

in the microgrid. Similar work has been undone in [23] where

a MAS for energy resource scheduling of an islanded power

systems with DER is presented. It monitors, controls and

operates an energy system consisting of a set of microgrids

and lumped loads.

An interesting overview about the lastest applications of

MAS in the smart grid context is given in [24].

III. DISTRIBUTED MULTI-AGENT ARCHITECTURE

Demand-Side applications usually contain large numbers

of dynamic and inhomogeneous loads and thus require a

distributed architecture with loose-coupled entities and generic

models in order to handle the system-immanent complexities.

Multi-Agents-Systems are a good metaphor for modeling and

simulating such distributed grid components.

The abstract MAS architecture designed for such demand

optimization problems shown in Figure 1 consists of four

layers. The first layer is the market layer containing exchange

markets for generation and energy services (see [4]). On a

physical layer, each domestic household acts like an agent,

monitoring the own environment through sensors, trying to

achieve interests and goals (like a low energy price), while

handling the system immanent restrictions (e.g. maintaining
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Fig. 2. Modular structure of the Device-Agent.

TABLE I
CLASSIFICATION OF LOADS

Class Description Control Examples

User-driven
loads

Loads that satisfy the
users demand directly

User-
controlled

Light, TV

Program-
driven
loads

The user starts the de-
vice but it may not run
immediately

semi-
automatic

Washing
machines,
dishwasher

Fully-
automated
loads

These devices have ac-
tors and sensors to
maintain a certain state

Automatic,
parameter
driven

Electric
heating or
cooling
(fridge)

a certain temperature in the household). This behavior, repre-

sented through Device-Agents, could be used by the Energy

Management System as a virtual (and distributed) load to

provide grid services to the market.

The Device-Agent (see Figure 2) is the most important

entity in this energy system. Its role is to make the underlying

physical layer transparent for the optimization system. With

the Device-Agent as a gateway interface to the smart grid, it

could abstract 1 : n physical devices and appliances, providing

the accumulated DSM-potential of the underlying physical

layer (like load-shifting). The Device-Agent needs actors and

sensors to control the physical devices as well as an intrinsic

simulation model in order to anticipate the runtime constraints

of the physical devices connected to it.

The load of the Device-Agent is described by:

L{τ1, τ2, . . . , τnm
} =

nm∑

i=0

L(t− τi), (1)

with nm as the variable number of starting times for the

device, L(t−τi) as the load of the agent, and τi as the discrete

starting times of the loads.

An optional second module of the Device-Agent is the opti-

mization module for the distributed, cooperative optimization

of the loads. It implements a distributed lightweight optimiza-

tion algorithm (described in Section IV) that optimizes the

starting time of all participating Device-Agents utilizing the

described iterative planning approach.

As stated in Table I loads could be classified into three

groups [17]. The first class is only relevant for long term

DSM efforts like strategic conservation [13]. The second and

third classes can be planned iteratively using the provided

IConsumerService of the related Device-Agent. An optimizer

requests the first possible starting time vector from a Device-

Agent and receives it as an integer array, then chooses

one starting time and commits it back to the Device-Agent.

Depending on the chosen starting times the Device-Agent

calculates the next possible runtime-vector with the simulation

model. This will be repeated until the Device-Agent returns an

end-of-planning-flag. Program-driven devices require just one

planning step, as the first vector contains all possible starting

times from the earliest to the latest. Under the assumption

that every planning step of a fully-automated-device depends

on the previous condition of it, the iterative planning provides

a generic way to plan such devices. Thus, the optimizer is able

to plan the device without domain-specific knowledge and the

whole simulation and planning logic remains at the device for

security reasons and separation of concern.

The Energy-Management-Agent (EMA) is the domain

specific representation of the control component. It is respon-

sible for planning and operation tasks and therefore, requires

knowledge about the intended modus operandi and the current

status of the associated Device-Agents. The role of the EMA

in the Smart Grid could be a versatile one. For example, the

EMA could aggregate Device-Agents all over the balancing

zone for secondary or tertiary control. Focusing more on local

business models, the EMA may optimize the load of domestic

households towards the available power provided by DERs in

a local grid.

The infrastructure domain is subdivided into two parts:

The infrastructure represented by a simple TCP/IP-network

supporting the service-based communication of the agents and

a Registry-Agent. The latter one provides and manages infor-

mation about the Device-Agents to the EMA as an additional

ancillary service, so it is able to find suitable Device-Agents
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for the intended business model.

The Energy Market is a reactive agent or entity that

provides a platform for an energy exchange. Here DERs can

offer their generated power with the according prices, so

consumers can evaluate and accept the offers.

At application runtime each Device-Agent has to register

at the Registry-Agent giving information about its runtime

capabilities, consumption capability, optional optimizer capa-

bility and some additional information (geographical or logical

position in the grid). A User (Operator/Service Provider)

defines the business plan parameters of the EMA i.e. the

user group, markets or system targets. The EMA requests

suitable Device-Agents at the Registry, reserves the control

capability of the Device-Agents, defines a subset of optimizers

out of the set of Device-Agents and parametrizes them (e.g.

announces which Device-Agents are in the user group, which

are the active/optimizing agents and which the passive ones).

The optimizing Device-Agents iteratively plan the runtimes of

all participating Device-Agents in the group and transmit the

result to the EMA. The EMA then parametrizes every devices

with its planed runtime.

IV. IMPLEMENTATION OF A DISTRIBUTED OPTIMIZATION

ALGORITHM

In order to optimize the starting times of the devices, every

starting time vector submitted by a Device-Agent could be

interpreted as a set of nodes in a directed graph (see Figure 3).

Thus, each optimizing Device-Agent receives the same ordered

list of Device-Agents to be optimized from the EMA, so they

are all traversing the identical graph. The edges of this graph

are weighted with the operational price.

This interpretation of the problem domain allows to apply

several meta-heuristics for combinatorial optimization. Fur-

thermore, to enable the consumer-side and to use the potential

of the embedded-systems, the applied algorithms must be

distributable, lightweight and scalable for different environ-

mental conditions. Thus, Meta-heuristics like Evolutionary

Algorithms (EA) with their population-based concepts seem

to be suitable for such load planning problems.

Fig. 3. Runtime vectors of three Device-Agents (A, B, C) interpreted as
graph

A. Definition of the optimization problem

The optimization problem for load planning based on

a power exchange market can be defined as the cost-

minimization of the whole system:

I = min

T∑

t=0

A∑

j=1

Ij(t)Pj(t), (2)

where T is the number of time slots in the optimization

period. Typically it ranges between 96 for quarter hour time

slots and 1440 for minute-based time slots. A denotes the

number of offers for the prices Ij(t), and Pj(t) the amount

of power bought from that offer. A constraint is: Pj(t) ≤
Pj,MAX(t), meaning that the power bought may never exceed

the offered amount.

The bought power is defined as:

A∑

j=1

Pj(t) := LN{τn}(t) (3)

with

LN{τn}(t) :=
M∑

m=0

Lm(τ1, τ2, . . . , τnm
)(t) (4)

where M is the total number of devices and LN{τn}(t) as

the total consumption over all devices participating.

Propagating this problem to the virtual load by the EMS,

the Device-Agents of the virtual load try to find cooperatively

an optimal scheduling for price-minimization.

B. The distributed ACS

As a reference implementation an adapted version of the Ant

Colony System (ACS, see [25]) was used. ACS is an algorith-

mic metaphor for food-searching ants, placing pheromones on

their trail to indicate the shortest path between colony and

food-source.

The problem described as a directed graph can be in-

terpreted as a path-finding through the graph, a task ACS

originally was designed for. In Figure 5 the global behavior

of the optimizing module is illustrated. After the initialization

phase, a Device-Agent (Master) with an optimizer module

dispatches a certain number of Ant-Agents (Slaves) as its local

colony. The local number of Ant-Agents and their serial or

parallel execution (see [26]) depends on the properties and

restrictions of each participating platform. Besides the nodes,

the pheromones were also stored locally at the corresponding

Device-Agent. Therefore, each Ant-Agent has to call the

Device-Agent’s service at least two times, one for the available

nodes and one for the corresponding pheromone vector.

An Ant-Agent requests the initial vector of possible start-

ing times from the first Device-Agent in the corresponding

ordered list and randomly chooses the first staring time out

of the vector and adds it to a temporary vector, before going

iteratively through the following steps:
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1) It requests the next possible starting time vector and the

pheromone vector from the Device-Agent, transmitting

the previously chosen starting time.

2) If the vectors are available, the Ant Agent chooses the

next node based on the costs of operation (edge-weight)

and the according pheromones on the trail.

3) If the Agent receives an end-of-planning-Flag it pro-

ceeds to the next Device-Agent in the ordered list (if

available) and executes step 1.

Every optimizing Device-Agent has its own colony. After

every full iteration, e.g. after each of the local Ant-Agent

has traversed the graph once, the Master-Agent chooses the

best-so-far path and places pheromones at the other Device-

Agents along the path through service calls. Because of

the different computational speeds of the Device-Agents the

pheromone adjustment happens asynchronously. Further syn-

chronizing efforts are not required but fast optimizers may

place pheromones more often than slower ones.

In a reference scenario with 100 domestic households,

the ACS performs best compared to a basic Ant-System

implementation [27] and a greedy algorithm. (see Figure 4).

Fig. 5. Behavior of the device-agent optimizing the loads of other device
agents.

V. USE-CASE: PLANNING OF WIND ENERGY RESOURCES

A typical use-case for consumer optimization is the day-

ahead optimization of predictable and controllable loads for a

given load profile. It is often necessary to plan the power con-

sumption according to the optimal utilization of volatile DERs

to achieve a higher efficiency. Based on weather forecasts it

is in many cases possible to predict the electricity generation

capacity of wind turbines with a sufficient accuracy one day

ahead. Energy generated by such plans is keen available, as

the operation does not require any additional resources and

thus the marginal costs are low. Therefore, if the demand is

planned accordingly to the generated energy the users may

save money through the efficient use of the resource as only a

low amount of external (and often expensive) control energy

has to be bought in addition.

For this use case example the generated energy of a 330

kW Enercon E-33 wind turbine is used to meet the demand

of flexible consumers in a reference scenario. Although the

DSM-potential of domestic households is often to be con-

sidered relatively low, the results can be easily transferred

and compared, as industrial applications have often very

specific requirements and constraints. The considered property

consists of 100 active domestic households. Accordingly to

the dispersion in Germany 92% of them have a washing

machine, 62% a dish washer and 4% an electrical heater. This

results in 158 program-driven and 4 full-automatic Device-

Agents representing and simulating the electrical consumers

and appliances. The program-driven agents were statistically

parameterized with regard to the Smart-A Project-Study [28].

The European-wide mean runtime probability of both washing

machines and dish washers based on studies of the University

of Bonn (Germany) were evaluated and implemented in the

agent models. In order to calculate the runtime flexibility, the

usage of power-up delays for the devices as described by the

Smart-A Project-Study was analyzed. In case of the washing

machines 56% of the users chose a power-up delay time period

of 0 to 3 hours and 28% a time period of 4 to 6 hours.

Therefore, by considering flexibilities up to six hours approx.

84% of the user preferences are considered in this use-case.

The study also shows the general acceptance of power-

up delays for these type of devices. The broad degree of

utilization alternates between approx. 38% in Sweden up to

81% in Italy in which the actual usage of power-up delays

for every stage of washing program goes to approx. 43%. The

situation for dish washers is similar. In 2007 39% of them

were equipped with a power-up delay capability and 27% of

the users were actually using it [28]. It can be assumed that

the degree of usage and acceptance will increase further if

the distribution of such power-up capabilities grows and more

profitable DSM use-case utilizing this function will arise.

The fully-automated-device representing the electrical

heater was parametrized with a temperature corridor of 1.0°C

around the standard room temperature of 21°C. The heater can

be turned on and off again in 15 minute intervals. The outside

temperature based on temperature data from the Hamburg’s

air quality control net for September 15th 2013.

The turbine’s power generation was simulated with the

Greenius-Tool5 based on weather data for the same day and

scaled to the controllable power demand of 100 households

in the reference property. So 10% of the turbine’s nominal

capacity can be used to meet the requirements of the flexible

consumers. The wind power generation simulated here is

extremely atypical for the property, where most of the energy

is required in the evening hours due to the high amount

of program-driven consumers. Therefore, even an optimized

5http://freegreenius.dlr.de
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Fig. 4. Comparison between ACS, AS and a greedy algorithms.

Fig. 6. Use-Case: Comparison of smart load control (below) and uncontrolled energy consumption (above).

schedule will not be able to utilize the available energy

completely. But by utilizing the degrees of freedom of the four

fully-automatic Device-Agents a significant energy saving can

be achieved.

Figure 6 shows the aggregated results for 10 simulation

runs. The upper chart shows the results for the uncontrolled

energy consumption while the lower one displays the results

of the ACS-based smart load optimization. For the latter parts

of the day the energy consumption excels the generation as

expected, but the optimized load control demands a significant

lesser amount of external energy and utilizes especially earlier

time slices better. The uncontrolled case utilizes 78,5% of

the generated energy, while the controlled case uses 85,6%

(+7,1%). This implies that for the uncontrolled case 100,0

kWh of external energy have to been bought in addition,

while the optimized scenario requires only 78,5 kWh (-21,5

kWh). The addition of more fully-automated consumers, e.g.

refrigerators or freezers should lead to further, significant

improvements.

VI. CONCLUSION AND FUTURE WORK

In this paper a Demand-Side-Management oriented Multi-

Agent-System for distributed optimization was presented. The

approach focusses on the automated use of flexibility poten-

tials on the consumer-side. Through the use of a lightweight
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and distributed optimization concept the demand-side was

integrated into the electricity market. The defined generic

Device-Agent supports the planning of both program-driven

and fully-automated devices without requiring domain specific

knowledge about the optimizing agents. The exchange market

model allows the application of many different use-cases,

including e.g. flexible tariffs.

The implementation of Ant Colony System (ACS) as a meta-

heuristics for the optimization was described as well as the

developed distribution concept of the algorithm. The presented

use-case study includes 100 active domestic households with

158 Device-Agents and a wind turbine. The Device-Agents of

the households optimized their demand towards the predicted

power generation of the wind-turbine. It could be shown

that the optimized planning lowered the demand for external

energy about 21,5 kWh, even as the generation was extremely

atypical for the normal load curve of the property.

Future work will cover several topics of the developed

system. First, grid restrictions (avalanche-effect protection,

see [20]) will be considered, which includes also the further

development of the exchange market and its capabilities. A

second aspect is to integrate a wider range of distributed

optimization algorithms. Evolutionary Algorithms like Genetic

Algorithms or other state of the art techniques of modern

Operations Research like combined Branch-and-Cut and meta-

heuristics will be examined as first tests have shown that ACS

finds very good solutions but leaves room for performance

improvement. Also specification for regional market layers

as well as generic energy-service descriptions of the typical

use-cases could be defined. Furthermore, field tests and the

integration of the proposed system as extension into systems

like OGEMA or OpenADR can be targeted.
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